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A B S T R A C T

Load forecasting is a crucial topic in energy management systems (EMS) due to its vital role in optimizing
energy scheduling and enabling more flexible and intelligent power grid systems. As a result, these systems
allow power utility companies to respond promptly to demands in the electricity market. Deep learning (DL)
models have been commonly employed in load forecasting problems supported by adaptation mechanisms
to cope with the changing pattern of consumption by customers, known as concept drift. A drift magnitude
threshold should be defined to design change detection methods to identify drifts. While the drift magnitude
in load forecasting problems can vary significantly over time, existing literature often assumes a fixed drift
magnitude threshold, which should be dynamically adjusted rather than fixed during system evolution. To
address this gap, in this paper, we propose a dynamic drift-adaptive Long Short-Term Memory (DA-LSTM)
framework that can improve the performance of load forecasting models without requiring a drift threshold
setting. We integrate several strategies into the framework based on active and passive adaptation approaches.
To evaluate DA-LSTM in real-life settings, we thoroughly analyze the proposed framework and deploy it in
a real-world problem through a cloud-based environment. Efficiency is evaluated in terms of the prediction
performance of each approach and computational cost. The experiments show performance improvements on
multiple evaluation metrics achieved by our framework compared to baseline methods from the literature.
Finally, we present a trade-off analysis between prediction performance and computational costs.
. Introduction

Global warming and the shortage of energy resources have made
nergy management system (EMS) a hot topic in the energy sector (Lee
nd Cheng, 2016). Industries have realized that developing improved
MS can potentially improve energy monitoring and budgeting. Effi-
ient energy planning is important to reduce energy costs and optimize
nergy usage (Martin and Ries, 2014). Enabling technologies for EMS
re smart meters that measure energy consumption, which facilitates
nergy management at the household or building level (Czétány et al.,
021). Data collected from smart meters are valuable assets for data-
riven analytics and decision-making with essential use cases, including
aining insight into consumption trends, forecasting the energy con-
umption load, or optimizing energy exchanges in smart microgrids,
hich are all core functional building blocks for EMS (Yildiz et al.,
017).
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Different prediction horizons are prominent in the load forecasting
literature: short-, medium-, and long-term forecasts (Shah et al., 2020).
Short-term forecasts refer to a prediction horizon from a few minutes
to days ahead. These forecasts are essential for decision-making that
involves prosumers in smart energy grids (Kyriakides and Polycarpou,
2007). Medium-term forecasts treat a horizon window of weeks to a few
months, which is important for scheduling power systems (Ringwood
et al., 2001). Lastly, long-term forecasting refers to monthly or yearly
predictions, which are utilized for the maintenance planning of the
grid (McSharry et al., 2005).

At the top level, load forecasting aims to predict the future de-
mand for electricity load by end-use customers. Several methods can
be used for load forecasting. Recently, machine learning (ML) meth-
ods have increased in popularity (Baliyan et al., 2015) due to their
simplicity of use. Having precise estimates of future energy demands
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would enable better decision-making (Cárdenas et al., 2012) and more
effective energy planning and scheduling strategies. However, load
forecasting comes with challenges of its own. One major challenge is
the changes in the patterns of energy consumption by consumers over
time. These changes in patterns would cause a concept drift problem,

hich is induced by variation in the underlying statistical properties
f the target variable (Lu et al., 2018). This problem would lead to
utdated ML models in the predictive system after the occurrence of
he change (Wang et al., 2019).

There are many reasons to change the energy consumption be-
aviors of customers. For example, high or changing electricity prices
ave greatly impacted customer behavior (Muratori and Rizzoni, 2015).
pecifically, higher prices would cause what is known as demand re-
ponse, which signifies that customers change their behavior in response
o high prices (Albadi and El-Saadany, 2007). Temporal or calendar
actors such as year or type of day (e.g., weekday or weekend) are
mong the other sources of change in consumption behaviors, in addi-
ion to changes in the number of household members or the appliances
sed in the household (Khatoon et al., 2014). Due to the dynamicity of
he energy load consumption, the conventional ML paradigms do not
erform well and suffer from performance degradation (Bayram et al.,
022).

Considering the poor performance exhibited by classical ML so-
utions, deep learning-based approaches have been widely adopted
n recent research on interval load forecasting since they achieve
uperior performance (Dong et al., 2021b). Specifically, Long Short-
erm Memory (LSTM) is an effective algorithm that demonstrated
igh performance in the load forecasting problem (Siami-Namini et al.,
018). Moreover, to maximize the efficiency of the deep learning (DL)
odels, an adaptive mechanism is fostered to cope with the changes in

oad consumption. This adaptation mechanism is set to automatically
pdate the model and adjust it to the new energy usage pattern that
resents concept drift (Hou et al., 2021). In practice, concept drift is
sually tracked actively or passively by the probability distribution that
enerates the data stream (Webb et al., 2016). However, the main chal-
enge in drift detection is determining a change magnitude threshold
hat exerts a great influence on overall predictive performance (Wares
t al., 2019). The change threshold should not be fixed, but should
e tuned according to the present conditions of the system (Liu et al.,
022).

In this paper, we build an interval load forecasting learning frame-
ork based on dynamic drift adaptation for LSTM networks, namely
A-LSTM. We design different load forecasting solutions based on
assive and active drift adaptation techniques. We highlight the ad-
antages and disadvantages of each solution. Overall, the primary
ontributions and findings of this paper are summarized as follows:

1. A novel drift-adaptive LSTM (DA-LSTM) learning framework is
proposed for interval load forecasting, which can be integrated
with passive and active drift adaptation techniques.

2. A dynamic active drift detection methodology that identifies the
change point in a consumer’s behavior without fixing a drift
magnitude threshold.

3. An adaptive LSTM network is designed to handle concept drift
by quickly adapting to the new trend in load consumption while
retaining the learned consumption patterns.

4. An extensive evaluation is conducted against baseline models
from the literature to demonstrate the effectiveness of the pro-
posed DA-LSTM framework.

5. A trade-off analysis between the different adaptation strategies is
performed based on prediction performance and computational
cost to suggest the adoption of the appropriate approach.

The remainder of the paper is organized as follows. In Section 2, we
eview the related work on load forecasting and Section 3 introduces
he background of the problem. Section 4 introduces our novel drift-
daptive LSTM approach. Section 5 shows the experimental evaluation
f our approach and demonstrates results, and Section 6 concludes the
aper.
2

2. Related work

2.1. DL for residential load forecasting

The building characteristics and socio-economic variables are the
most commonly used exogenous variables for building and occupancy
prediction. Artificial neural network (ANN), bottom-up, time series
analysis, regression, and Support Vector Machines (SVM) are the most
often used load forecasting models, according to a survey by Kuster
et al. (2017). The survey has also concluded that most regression mod-
els are used for long-term prediction, one year or more, while ML-based
algorithms, such as ANN, especially DL, and AutoRegressive Integrated
Moving Average (ARIMA) (Nepal et al., 2020), are commonly used
for short-term prediction (Hernández et al., 2014), which is also what
we aim for. Alternative methods in the literature consider additional
variables to improve forecasting accuracy. For example, the model
provided by Hong et al. (2020) leverages iterative ResBlocks in a Deep
Neural Network (DNN) to learn the spatial–temporal correlation among
different types of user’s electricity consumption habits.

DL algorithms such as Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNN) have demonstrated significant
efficiency. Nevertheless, these approaches use offline learning: they are
taught only once and miss the potential to learn from newly arriving
data. Sehovac and Grolinger (2020) proposed Sequence to Sequence
Recurrent Neural Network (S2S RNN) with attention to load forecast-
ing. The concept behind S2S RNN is based on adopting an attention
mechanism (Vaswani et al., 2017), often utilized in language transla-
tion, to load forecasting to improve accuracy. The attention mechanism
in the method is added to ease the connection between the encoder and
decoder. A hybrid approach between RNN and Principal Component
Analysis (PCA) technique has been proposed by Veeramsetty et al.
(2022) in a short-term load forecasting problem. The approach can
capture the temporal resolution diversity using a heterogeneous input
structure with PCA. The PCA-based summarized input features are used
as input to an RNN model.

LSTM network is a particular type of RNN that has been effectively
utilized in load forecasting problems. Zang et al. (2021) have combined
LSTM and attention mechanism for load forecasting of residential
households. The approach constructs pools of users based on mutual
information to increase the diversity of data used to train LSTM net-
works. To leverage the advantages of both networks, an integration
between CNN and LSTM has been frequently used in the load forecast-
ing literature (Eskandari et al., 2021; Rafi et al., 2021; Goh et al., 2021;
Somu et al., 2021). CNN exhibits high capabilities in feature learning,
while LSTM can handle short- and long-term temporal dependencies
between time steps. Additionally, recent studies have demonstrated
the effectiveness of employing advanced neural networks for load
forecasting such as temporal convolutional network (TCN) (Tang et al.,
2022; Song et al., 2020), and Restricted Boltzmann Machine (RBM) (Xu
et al., 2022). However, changes in customer behaviors can lead to
deterioration in the performance of the learning algorithm. Therefore,
load forecasting approaches have been integrated with a drift-adaptive
methodology to cope with the change (Azeem et al., 2022).

2.2. Load forecasting with concept drift

Only a few approaches have accommodated concept drift adaptation
techniques in the load forecasting models. In recent studies, Fekri
et al. (2021a) proposed an online adaptive RNN technique for load
forecasting that considers concept drift. The model can learn and adapt
to changing patterns as they emerge. This is done by adjusting the RNN
weights online based on fresh data to retain time dependencies. The on-
the-fly adjustment of the RNN parameters is activated in the event of
performance degradation. Similarly, Jagait et al. (2021) has proposed
an adaptive online ensemble with RNN and ARIMA for load forecasting
in the presence of concept drift. The adaptation to changes is made by



F. Bayram, P. Aupke, B.S. Ahmed et al. Engineering Applications of Artificial Intelligence 123 (2023) 106480

l
d
d
g
i

o
T
𝑡
c
s
u
s
s
d
c
c
2
c

3

o
g

adding Rolling ARIMA to the ensemble. Another approach that uses
incremental ensemble learning has been presented in Grmanová et al.
(2016). The model uses a heterogeneous learning process to build an
ensemble that deals with seasonality and concept drift. Fenza et al.
(2019) presented a drift-aware solution to distinguish the anomaly
behavior of customers from the regular pattern. The change is detected
based on the standard deviation of the prediction error in the last week.

In a different approach proposed by Ji et al. (2021), the ADap-
tive WINdowing (ADWIN) algorithm (Bifet and Gavalda, 2007) has
been utilized in short-term load forecasting problems to detect concept
drift in a model updating method. Load forecasting methods that
rely on calendar or weather information trained on historical data
fail to capture significant break induced by lockdown and have per-
formed poorly since the COVID-19 pandemic began. The article in Obst
et al. (2021) anticipates the electricity demand in France during the
lockdown period, demonstrating its ability to significantly minimize
prediction errors compared to conventional models. The method uses
Kalman filters and generalized additive models to produce an accurate
and rapid forecasting strategy to respond to the sudden shift in data.
However, existing approaches that rely on drift adaptation require
setting a drift threshold to trigger the alarm, which is a drawback, as
it primarily influences predictive performance (Wares et al., 2019).

With the limited number of studies that exploit drift handling
techniques in the load forecasting area, we propose a novel framework
that combines drift adaptation approaches with LSTM networks. We
incorporate a dynamic drift detection technique that does not require
a pre-defined drift threshold into the framework. Instead, the method
checks how extreme the drift magnitude is by leveraging the distribu-
tion of the drift magnitudes. In this way, there is no need to define a
drift threshold that can be difficult to determine or fix throughout the
learning process. Furthermore, the proposed framework can respond
rapidly to drifts by taking advantage of the most recent patterns. At
the same time, the framework can retain the learned knowledge, which
may re-appear in the future. We performed extensive experimental
analysis on a real-world energy consumption dataset. The result demon-
strates the strength of our framework in prediction accuracy compared
to traditional techniques.

3. Background

The statistical properties of the data streams often do not remain
stable over time and changes are likely to occur, a phenomenon known
as concept drift (Tsymbal, 2004). Statistical tests are usually used to
monitor and detect concept drift. Concept drift typically leads to a
reduction in the accuracy of forecasting models. Adaptation strategies
have typically been implemented to cope with performance loss that
update the models to cope with drift (Ditzler et al., 2015). Concept
drift adaptation strategies can be categorized into passive, also known
as blind, and active, also known as informed, methods (Song et al.,
2021a). A passive adaptation denotes the drift adaptation that does
not include drift detection techniques, and the predictor is regularly
updated (Khamassi et al., 2018). An active adaptation is the drift
adaptation strategy that is actively triggered once a concept drift alarm
is signaled from a concept drift detector (Dong et al., 2021a).

In the load forecasting context, changes in consumption behavior
may have multiple reasons, including changes in the number of house-
hold members, weather variations, or adding new electrical appliances
and devices such as gaming PCs or electric vehicles. Thus, the concept
drift solution strategy should be mainstreamed in load forecasting
problems. This section summarizes the background on the change-point
detection problem and the adaptive mechanism introduced in the LSTM

network to cope with the drift. t

3

3.1. Change-point detection

To identify variations in load consumption behavior, change-point
detection methods are employed to test whether load consumption
data have followed a change at a specific time point 𝑡. The following
subsections present the definitions and notations for the change-point
detection problem. We then illustrate the methods used to detect
changes in load consumption patterns using distributional similarity
measures.

3.1.1. Problem formulation
Change-point detection, also known as drift detection, refers to the

techniques used to identify change points of time-series data (such
as electrical load) where a significant change has occurred in the
underlying probability distribution that generates the data points (Liu
et al., 2013). The change detectors are usually coupled with a predictive
system. When the change exceeds the significance level, the detectors
signal an alarm and evoke the learner to be updated or replaced in
the forecasting system (Krawczyk et al., 2017). Practically, the change
signal is delayed by at least one time point (Song et al., 2021a).
The mechanism of change-point detection algorithms is illustrated in
Fig. 1. Different performance indicators for the change-point detection
algorithms are annotated in the figure. For example, the detection
delay 𝛿𝑡 is the time between drift occurrence and detection. Another
indicator is the misdetection rate, which quantifies the number of
changes missed by the algorithm. In contrast, the false alarm rate
is the ratio of incorrectly detected change points compared to real
drift occurrences. However, in real-world datasets, the ground-truth
information of changes is usually indeterminate (Haug and Kasneci,
2021). Therefore, the performance of change-point detection methods
is usually assessed by the predictive performance of the ML model along
with the associated adaptation costs.

In load forecasting problems, data are typically recorded as time-
series vectors, and it is fundamental to divide these data vectors into
time-series samples for the purpose of drift detection. Analogously to
the formulation presented by Liu et al. (2013), we define the following
notation of our problem. Let 𝐘(𝑡) ∈ R𝑘 be a sequence of univariate
time series of load consumption observations with length 𝑘 at time 𝑡:
𝐘(𝑡) ∶= [𝑦(𝑡 − 𝑘 + 1),… , 𝑦(𝑡 − 1), 𝑦(𝑡)]⊤ ∈ R𝑘, where 𝑦(𝑡) ∈ R is a single
oad consumption observation with an order that signifies the temporal
ependency between the observations of each time-series sequence, ⊤

enotes the transpose operation of the vector. By convention, since the
ranularity of the change-point detection analysis of time-series data
s the entire sequence of load consumption observations 𝐘(𝑡) rather

than a single observation 𝑦(𝑡), the term ‘‘sample’’ is adopted to refer
to the overall sequence of observations 𝐘(𝑡), instead of the single
bservation 𝑦(𝑡) (Kawahara and Sugiyama, 2012; Liu et al., 2013).
herefore, the set of 𝑛 consecutive load consumption samples at time
is defined as: Y(𝑡) ∶= {𝐘(𝑡 − 𝑛 + 1),… ,𝐘(𝑡 − 1),𝐘(𝑡)}. The task of

hange-point detection is to identify the (dis)similarity between two
amples at time 𝑡. Typically, the (dis)similarity score 𝐷(𝑡) is calculated
sing the probability distributions of the two samples. This similarity
core will be used as an indicator to diagnose the status of the time-
eries data. In load forecasting literature, existing methods that employ
rift detectors compares 𝐷(𝑡) to a pre-defined threshold 𝜆 to detect
hange points (Zhao et al., 2020; Li et al., 2022). However, energy
onsumption patterns are characterized by high volatility (Kong et al.,
017). Therefore, the threshold 𝜆 must be dynamic to cope with the
hanging nature of the energy consumption patterns.

.1.2. Divergence-based similarity score
As defined in Section 3.1.1, change-point detection methods rely

n identifying the significance of the change incurred in the data-
enerating probability distributions. A prevalent approach to measure

he similarity between two or more probability distributions of load
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Fig. 1. Change-point detection in time-series data.
t
b

consumption data is to calculate the divergence between these distribu-
tions (Lee, 2000). Higher magnitudes of the divergence values indicate
a more significant dissimilarity between probability distributions.

In our settings, we are interested in measuring the similarity at time
t between the probability distribution of two consecutive samples of
load consumption data to inspect the drift at t. The similarity score
𝐷(𝑡) will be calculated based on the comparison between a reference
sample of load consumption 𝐘𝑟𝑓 = 𝐘(𝑡−1) and the most recent sample
of load consumption in which the similarity will be tested 𝐘𝑡𝑠 = 𝐘(𝑡).

ote here that the samples are set to be segmented according to a pre-
efined window size. Windowing techniques generally require defining
he window size based on the number of data points or the time
nterval (Gama et al., 2014). The selection of window size will be
xplained in Section 4.1.

Jensen-Shannon divergence (JSD) is one of the most popular met-
ics used to measure the magnitude of the distributional change that
he time-series data have followed at a specific time point 𝑡 (En-

dres and Schindelin, 2003). JSD is a well-grounded symmetrization
of the well-known KullbackLeibler Divergence (KLD) metric. Liu et al.
(2013) showed that using a symmetric divergence metric leads to
greater change-point detection performance. The distance between two
probability distributions using JSD is defined as (Lin, 1991):

JSD(𝑃𝑟𝑓 ∥ 𝑃𝑡𝑠) = JSD(𝑃𝑡𝑠 ∥ 𝑃𝑟𝑓 ) ∶=
1
2

(

KL
(

𝑝𝑟𝑓 ∥
𝑝𝑟𝑓 + 𝑝𝑡𝑠

2

)

+ KL
(

𝑝𝑡𝑠 ∥
𝑝𝑟𝑓 + 𝑝𝑡𝑠

2

))

, (1)

where 𝑃𝑟𝑓 and 𝑃𝑡𝑠 are the probability distributions for the reference and
test samples 𝐘𝑟𝑓 and 𝐘𝑡𝑠, respectively, the function KL represents KLD
nd is given by:

L (𝑃 ∥ 𝑄) ∶= ∫ 𝑝(𝐘) log
(

𝑝(𝐘)
𝑞(𝐘)

)

𝑑𝐘. (2)

Therefore, JSD can be written as:

JSD(𝑃𝑟𝑓‖𝑃𝑡𝑠) = JSD(𝑃𝑡𝑠‖𝑃𝑟𝑓 ) ∶= 𝐻
( 𝑝𝑟𝑓 + 𝑝𝑡𝑠

2

)

−
𝐻(𝑝𝑟𝑓 ) +𝐻(𝑝𝑡𝑠)

2
, (3)

here the function 𝐻 denotes Shannon’s entropy:

(𝑝) = −∫ 𝑝(𝐘) log 𝑝(𝐘)𝑑𝐘. (4)

In addition to its symmetry, JSD exhibits several pertinent prop-
rties: It is always defined and bounded in the interval [0, 1] for two
robability distributions, while the value of KLD can diverge to infinity
nd can take values in the interval [0,∞), and the square root of
SD satisfies the triangle inequality (Endres and Schindelin, 2003). For
he abovementioned properties, we use the square root of JSD as the
istance metric in the change-point detection experiments.

.1.3. Nonparametric density estimation
Density estimation is the technique used to recover the probability

ensity function that generates the dataset. As we can see from Eq. (3),
4

o calculate the JSD value we first need to find the probability distri-
ution 𝑝(𝐘) to determine the distance between the samples. Several

methods to estimate the probability distribution can be found in the
literature. Histograms and Kernel Density Estimation (KDE) methods
are the most widely used nonparametric approaches to reconstruct the
underlying probability density function using a given dataset.

Although, in general, KDE has a slower convergence rate of mag-
nitude 𝑁−1 than traditional histograms (Burke et al., 2017), where 𝑁
is the number of data points, histograms are susceptible to exhibit a
lower convergence rate in dynamic environments that are characterized
by changing variance. When the dispersion of the data changes, the
number of bins should be varied as suggested by Banerjee and Martin
(2012), Burke et al. (2017). However, KDE suffers from the so-called
phenomenon curse of dimensionality, which makes the convergence rate
very slow when the dimension of the problem is large (Chen, 2017).
The optimal convergence rate of KDE is 𝑂

(

𝑁− 2
𝑑+4

)

, where 𝑑 is the
dimension of the data. We have adopted the KDE method in estimating
the density because this phenomenon will not affect the performance
of our proposed solution since the time-series samples of our dataset
are univariate.

To produce the density profile, KDE places a kernel at each data
point 𝑦𝑖, and then sums these individual kernels together to obtain the
final density estimate. This method will render a smooth curve, which
is one of the salient advantages of the KDE method (Bouezmarni and
Scaillet, 2005). At regions with a high density of data points, the KDE
will yield a large value, because many points will contribute to the sum
value. However, it will yield a low value for regions with only a few
data points. With

(

𝑦1, 𝑦2,… , 𝑦𝑛
)

being a sample of 𝑛 observations whose
underlying probability distribution is to be estimated, where 𝑦𝑖 ∈ 𝑅𝑑 .
The standard KDE function is formally expressed as follows (Silverman,
2018):

𝑝𝑛(𝑦) =
1

𝑛ℎ𝑑

𝑛
∑

𝑖=1
𝐾

(

𝑦 − 𝑌𝑖
ℎ

)

, (5)

where 𝐾 is a smooth kernel function 𝐾 ∶ R𝑑 ↦ R, ℎ > 0 is the
bandwidth or the smoothing parameter. As has been remarked in the
literature, the choice of the kernel function is not instrumental for
KDE (Wasserman, 2006), and the difference in the estimation error
is considered negligible (Chen, 2017). Thus, for selecting the kernel
function, we opted to use the Gaussian kernel, which is the most
common kernel function, given by the form:

𝐾
(

𝑦 − 𝑌𝑖
ℎ

)

= 1
√

2𝜋
𝑒−

(𝑦−𝑌𝑖)2
2ℎ2 . (6)

On the contrary, as can be noticed in Eq. (5), the density function is
strongly affected by the selection of the bandwidth parameter. There-
fore, different bandwidth values would give different density function
values as it controls the smoothness or roughness of the density estimate
(see Eq. (6)). Many procedures attempt to adaptively determine the
optimal bandwidth parameter (Scott, 2015), mainly by minimizing
the asymptotic mean integrated square error (AMISE) estimations of
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KDE (Chiu, 1996). The drawback of such automated procedures for
adaptive smoothing would most likely lead to the selection of different
values of bandwidth parameters for different samples. This means that
the amount of smoothing varies between different time intervals or
households in our problem, and thus the comparison between the data
distributions is incoherent. In this case, the divergence calculation
would be futile because the densities are constructed with different
amounts of smoothing. To overcome this drawback, we have used a
fixed bandwidth value across all the samples to extract homogeneous
KDE functions and make the distance calculation valid. Conventionally,
bandwidth is set according to domain expertise for load forecasting and
is customized for the specific problem using data-driven statistics (Ye
et al., 2019). In this paper, we have set the bandwidth value to 10 based
n empirical experience gained from observing the standard deviation
f the load consumption across all customers.

.2. Conventional LSTM

The conventional LSTM (Patterson and Gibson, 2017) is a sort of
NN but with additional long-term memory. The standard RNNs uses
ecurrent cells such as sigma, which can be expressed as follows (Yu
t al., 2019):

𝑡 = 𝜎
(

𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏
)

,

𝑡 = ℎ𝑡+,
(7)

here 𝑥𝑡, ℎ𝑡 and 𝑦𝑡 represent the input, recurrent information, and the
utput of the cell at time 𝑡, respectively, 𝑊ℎ and 𝑊𝑥 are the weights,
nd 𝑏 is the bias. The time-series sample for 𝑥𝑡 and 𝑦𝑡 are derived
rom 𝐘(𝑡). Although the usage of standard RNNs cells provided success
n problems such as sentiment analysis or image classification (Cho
t al., 2014; Shewalkar, 2019), they typically cannot treat long-term
ependencies well. LSTM networks can remember values from earlier
tages to use in the future, which deals with the vanishing gradient
roblem (Hochreiter and Schmidhuber, 1997). This problem occurs
ecause the network cannot backpropagate the gradient information
o the input layers of the model due to activation functions. The
igmoid function, for example, normalizes large input values in a space
etween 0 and 1. Therefore, a large change in the input will cause a
mall change in the output. Therefore, the derivative becomes small
nd possibly vanishes (Sundermeyer et al., 2012). To deal with this
roblem, Hochreiter and Schmidhuber (1997) introduced gates into the
ell.

The conventional LSTM cell features three gates (input, forget, and
utput), a cell, block input, and an output activation function. The
ell output is recurrently connected back to the cell input and all the
ates. The forget gate was not part of the initial LSTM network, but was
roposed by Gers et al. (2000) to allow the LSTM to reset its state. The
hree gates regulate the flow of information associated with the cell.

The input gate combines the current input 𝑋𝑡, the output of the
rior LSTM cell ℎ(𝑡−1) and the cell state 𝐶(𝑡−1). The following equation

illustrates the procedure (Yu et al., 2019):

𝑖(𝑡) = 𝜎
(

𝑊𝑖𝑥
(𝑡) + 𝑅𝑖ℎ

(𝑡−1) + 𝑝𝑖 ⊙ 𝑐(𝑡−1) + 𝑏𝑖
)

, (8)

where ⊙ denotes point-wise multiplication of two vectors, 𝑊𝑖, 𝑅𝑖, and
𝑝𝑖 are the weights associated with 𝑥𝑡, ℎ(𝑡−1), and 𝐶(𝑡−1), respectively.
𝑏𝑖 represents the bias vector associated with this component. The prior
LSTM layer determines which information should be retained in the cell
states 𝑐𝑡. This includes the selection of candidate values 𝑧𝑡 that could
be added to cell states and activation values 𝑖𝑡 of the input gates.

The forget gate determines which information should be removed
from its previous cell states 𝐶(𝑡−1). Therefore, the activation values 𝑓𝑡
are calculated based on the current input 𝑥𝑡, the outputs ℎ(𝑡−1) and the
state 𝐶(𝑡−1) of the memory cells at the previous time step (𝑡 − 1).

(𝑡) ( (𝑡) (𝑡−1) (𝑡−1) )
𝑓 = 𝜎 𝑊𝑓𝑥 + 𝑅𝑓 𝑦 + 𝑝𝑓 ⊙ 𝑐 + 𝑏𝑓 , (9)
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where 𝑊𝑓 , 𝑅𝑓 , and 𝑝𝑓 are the weights associated with 𝑥𝑡, ℎ(𝑡−1) and
𝐶(𝑡−1), respectively, while 𝑏𝑓 denotes the bias vector.

The cell state combines the input values of the block 𝑧𝑡, the input
gate 𝑖𝑡, and the forget gate 𝑓𝑡, with the previous cell value:

𝑐(𝑡) = 𝑧(𝑡) ⊙ 𝑖(𝑡) + 𝑐(𝑡−1) ⊙ 𝑓 (𝑡). (10)

The output gate combines the current input 𝑥𝑡, the output of the
previous unit ℎ(𝑡−1), and the cell value 𝐶(𝑡−1) in the last iteration:

𝑜(𝑡) = 𝜎
(

𝑊𝑜𝑥
(𝑡) + 𝑅𝑜ℎ

(𝑡−1) + 𝑝𝑜 ⊙ 𝑐(𝑡) + 𝑏𝑜
)

, (11)

where 𝑊𝑜, 𝑅𝑜 and 𝑝𝑜 are the weights associated with 𝑥𝑡, ℎ(𝑡−1) and 𝐶(𝑡−1),
respectively, while 𝑏𝑜 denotes the bias weight vector.

3.3. Adaptive LSTM

Inspired by incremental learning techniques, which are useful in
solving drift problems (Zang et al., 2014), we continuously adapt the
LSTM model to pertain to the previously acquired knowledge and
update the model based on the most recent data that represent the
current trend in load consumption. Incremental learning is an ML
paradigm in which the learning process continually evolves whenever
new samples emerge. Furthermore, incremental learning adjusts what
has been learned according to these newly available samples (Ade
and Deshmukh, 2013). The literature provides different definitions for
incremental learning (Zhou and Chen, 2002; Xu et al., 2016; Lange
and Zilles, 2003; Giraud-Carrier, 2000). In this paper, we adopt a
universally accepted setting for incremental learning that satisfies the
following conditions (Lange and Zilles, 2003; Giraud-Carrier, 2000):

• Knowledge obtained previously should be preserved;
• Learning new knowledge from new data should be possible;
• Knowledge of previous historical data is not required when up-

dating the model;
• Changes in the characteristics of the new data should be learned.

Incremental learning algorithms can be categorized into two main
approaches: the growing or pruning of the model architectures (Hung
et al., 2019) and the controlled modification of the learner weights
(Xing et al., 2016; Singh and Khaiyum, 2021). In this paper, we adopt
the latter approach, which is appropriate for load forecasting tasks.
The main motivation for our choice is that old consumption behavior
usually reoccurs in the future due to seasonality (He, 2017). Therefore,
modifying the current models while preserving the previously learned
knowledge would be more favorable than completely forgetting the
historical knowledge. The adaptation is divided into two main steps:
the hyperparameter optimization (HPO) technique and the adaptation
of the LSTM model.

3.3.1. Hyperparameter optimization (HPO)
HPO is a technique to find the best combination of hyperparameters

that optimize the performance of ML model (Feurer and Hutter, 2019).
Tuning the hyperparameters for specific problems leads to increased
performance (Melis et al., 2017).

Different techniques are used in the literature to automatically find
the optimal hyperparameters. Grid search and random search are the
most basic HPO methods. However, they suffer from unawareness of
past evaluations, which often leads towards sub-optimal hyperparame-
ters (Montgomery, 2017). Bayesian optimization (BO) (Bergstra et al.,
2011) overcomes this by keeping track of previous evaluations by
forming surrogate models to map hyperparameters to a probability 𝑃
of the objective function score:

𝑃 ( score ∣ hyperparameters ). (12)

BO uses probabilistic surrogate models for the objective function
because they are easier to optimize than the actual objective function.

The process of BO is described in Algorithm 1. The probabilistic model
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Table 1
Search space for hyperparameter values.

Hyperparameter Values

Learning rate LR=[0.0001, 0.001, 0.01]

Dropout rate DR=[0, 0.1, 0.5]

Number of units in the LSTM layer 𝑁𝑈=(32: 32: 512)

Algorithm 1 Bayesian Hyperparameter Optimization
1: 𝑃𝑚𝑜𝑑𝑒𝑙 ← 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒(𝑓 (𝑥))
2: 𝑥⋆ ← []
3: while 𝑖 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: 𝑥⋆ ← 𝑃𝑚𝑜𝑑𝑒𝑙(𝑠𝑐𝑜𝑟𝑒, ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)
5: 𝑠𝑐𝑜𝑟𝑒 ← 𝑓 (𝑥⋆)
6: 𝑃𝑚𝑜𝑑𝑒𝑙 ← 𝑈𝑝𝑑𝑎𝑡𝑒(𝑃𝑚𝑜𝑑𝑒𝑙 , 𝑠𝑐𝑜𝑟𝑒)
7: end while

𝑃𝑚𝑜𝑑𝑒𝑙 is initialized on 𝑓 (.) a priory. For each iteration, the best set of
⋆ is found for the current 𝑃𝑚𝑜𝑑𝑒𝑙 model, and the model 𝑠𝑐𝑜𝑟𝑒 for the

set 𝑥⋆ is determined and 𝑃𝑚𝑜𝑑𝑒𝑙 is updated (Bergstra et al., 2011).
Since we apply incremental learning techniques in this work, using

PO for every hyperparameter available in LSTM networks is not ap-
licable. Structural hyperparameters, such as the number of layers and
he size of the hidden layer affect the weights of the model. Changing
hose requires a complete retraining of the surrogate model, which
nvalidates the purpose of surrogate models, in general. However, non-
tructural hyperparameters such as learning and dropout rate do not
equire a complete re-training of the model, which makes their tuning
pplicable in this case (Fekri et al., 2021a; Greff et al., 2016). Table 1
llustrates the ranges of the non-structural hyperparameters used for the
PO in the experiments.

.3.2. Adaptation of LSTM model
As mentioned above, we were inspired by incremental learning

echniques to adapt the LSTM model. To suit the receiving data for
he model, we followed the batch-wise approach for incremental LSTM
sed in Lemos Neto et al. (2022). Since LSTM expects the dataset as
atches for the training, we divide it into multiple sub-batches for
ncremental processing.

The stored weights 𝑊𝑡 of the baseline model LSTM retain the knowl-
dge preserved from the previous historical data. After an update signal
s triggered, these weights must be adapted to the new batch of data
oints and the corresponding updated non-structural hyperparameters.
o preserve already learned knowledge and reduce training time, stored
eights 𝑊𝑡 are updated only with new data points, excluding previous
istorical data. This is enabled by the possibility of continuing the
raining at the point of the storage of the weights 𝑊𝑡. The new weights
(𝑡+1) of the adapted model are stored later to be used for the next

pdate signal.

. Proposed drift-adaptive LSTM (DA-LSTM)

The LSTM algorithm was integrated into a drift-adaptive learning
ramework using adaptation techniques. The techniques are active and
assive approaches based on the methodology implemented to trigger
he adaptation of LSTM networks. This section explains the selection
f drift detection granularity and the drift-adaptive LSTM (DA-LSTM)
pproaches.

.1. Drift adaptation granularity

As discussed in Section 3.1, change-point detection requires com-
aring the distributions of different samples. The samples should be
artitioned according to a specific windowing strategy. Therefore, the

ata distribution is built for these windows. The main ingredient for

6

Algorithm 2 Passive drift adaptation algorithm
Input: Historical time-series samples Y(𝑡 − 1)
utput: Learner 𝑓 (𝑡)

1: Initialize: 𝑓 (𝑡−1)(Y(𝑡 − 1)
)

2: for 𝐘(𝑡), 𝑡 = 2,… do
3: Update 𝑓 (𝑡) ← 𝑓 (𝑡−1)(𝐘(𝑡)

)

4: Predict 𝑓 (𝑡)(𝐘(𝑡 + 1)
)

5: Calculate 𝐸𝑡+1
6: end for

such windowing strategies is the window size that represents the check-
ing points to monitor the drift occurrence. The selection of window
size significantly affects drift analysis and should be carefully de-
cided (Webb et al., 2018). In load forecasting, the load consumption
trends can be monitored across spatial or temporal scales (Jain et al.,
2014). But since our dataset, as will be discussed in Section 5.1,
does not have spatial information about the households, we have used
temporal granularity to divide the time-series data.

Different levels of granularity can be defined to check the efficacy
of the adaptation methods. For good performance, it is important to
determine the optimal temporal granularity for drift analysis. Short-
term forecasting was shown to deliver the best performance among
prediction horizons (Long et al., 2014). To support this argument, we
have compared the drift magnitude for the household consumption data
according to different temporal granularity levels: daily, weekly, and
monthly. The JSD values of all customers are averaged, and the results
are reported in Fig. 2. As we can see, the daily granularity shows the
highest level of drift magnitude by showing the most significant diver-
gence values. For this reason and to avoid overriding drift occurrences,
we have adopted daily granularity in our adaptation solution.

4.2. Passive adaptation approach

The passive drift adaptation scheme is similar to incremental learn-
ing from a technical point of view (Song et al., 2021b). The primary
analogy is that both mechanisms work without explicitly detecting a
change, i.e., no drift detector component is involved, and the learning
process evolves with the data arrival. Following the integration of this
adaptation mechanism with the learning process, the model is updated
after a specific time interval or chunk size. This periodicity is identified
to sufficiently resemble the latest consumption trend and thus can
handle the potential change in the time series.

Algorithm 2 outlines the passive drift adaptation approach, which
periodically updates the LSTM networks. The periodicity of the model
update assumes a daily granularity, as it shows the highest drift signif-
icance, as discussed in Section 4.1. First, the LSTM model is initialized
using the historical time-series data. A daily update signal is sent to
the LSTM model to be updated according to the method explained in
Section 3.3. This update mechanism is designed to incorporate the most
recent consumption trends represented by the most recent data.

However, one of the criticisms of this approach is derived from
the constant update of the trained learner. This setup of constant
updates might accommodate unnecessary updates when the time-series
data have been stationary in some intervals. The unnecessary updates
would cause an avoidable computational cost and resources (Ditzler
and Polikar, 2012). To overcome this drawback, we present an active
approach, discussed in the next section, that only updates the model
after drift detection in the time-series data.

4.3. Active adaptation approach

Drift detectors form the foundation of active adaptation solutions.

The detectors continuously monitor the time-series data and perform
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a set of statistical tests to identify the changes in the data. In this ap-
proach, we employ a change-point detection based on Jensen–Shannon
divergence to trace the changes in the time-series data distribution,
see Section 3.1. Once the change exceeds a certain significance level
𝜏, the adaptation phase is activated by sending an update signal to
the LSTM networks. The LSTM adaptation is carried out as specified
in Section 3.3.

One of the main challenges to create a drift detection method is
selecting a suitable drift threshold (Barros and Santos, 2018). Setting
a low drift magnitude threshold would lead to an increased false
alarm rate. However, setting a high threshold value would cause drift
misdetections. In a recent study (Liu et al., 2022), the authors pointed
out that the selection of a suitable drift threshold could have a greater
impact on performance than the detection algorithm. Moreover, the
authors have demonstrated that the drift threshold should not be fixed
throughout the learning process and must follow the dynamicity of
the data based on the current conditions. Motivated by these obser-
vations, we have developed a dynamic mechanism to efficiently signal
a time-series data distribution change.

Algorithm 3 outlines our active drift adaptation approach. The
algorithm first checks for drift occurrence and then makes predictions
according to the drift analysis. We have developed the drift detection
method based on monitoring the distribution of the divergence values
calculated for each time window frame. The time window size is seg-
mented according to the daily granularity as explained in Section 4.1.
As detailed in lines 3–6 of Algorithm 3 and shown in Fig. 3, after each
time window frame, the divergence 𝐷𝑖𝑣𝑡 = 𝐽𝑆𝐷𝑡(𝑃𝑟𝑓 ∥ 𝑃𝑡𝑠) is calcu-
lated between the probability density function of this specific day 𝑑 at
time 𝑡 that represent the test samples 𝑃𝐷𝐹 𝑡𝑠 and probability density
function of historical data of all days that precede 𝑡 which represent
the reference samples 𝑃𝐷𝐹 𝑟𝑓 , and so on. The divergence values are
found using the Jensen–Shannon method (see Section 3.1.2), and the
divergence metric is calculated on the densities that are estimated using
the KDE methods (see Section 3.1.3). For a training dataset of length
𝑑 periods that represent the temporal granularity of the drift detection
mechanism, i.e., days in our case, 𝑑−1 divergence values are calculated
that comprise the historical trends of changes in load consumption.
These values will initialize the distribution of the divergence values
before sliding on the evaluation dataset.

After the initialization step, the divergence-based similarity score is

found using the sliding window mechanism for each temporal granular-

7

Algorithm 3 Active drift adaptation algorithm
Input: Historical time-series samples Y(𝑡 − 1), probability distribution

of historical divergence values PDF(𝑑𝑖𝑣𝑡), significance level 𝜏
utput: Learner 𝑓 (𝑡), 𝑃𝐷𝐹 (𝑑𝑖𝑣𝑡+1)

1: Initialize: 𝑓 (𝑡−1)(Y(𝑡 − 1)
)

2: for 𝐘(𝑡), 𝑡 = 2,… do
3: Calculate PDF

(

𝐘(𝑡)
)

← KDE
(

𝐘(𝑡)
)

4: Calculate PDF
(

Y(𝑡 − 1)
)

← KDE
(

Y(𝑡 − 1)
)

5: Calculate Div𝑡+1 ← JSD
(

PDF
(

𝐘(𝑡)
)

||PDF
(

Y(𝑡 − 1)
)

)

6: Calculate PV(𝑑𝑖𝑣𝑡+1) ← P-value
(

PDF(𝑑𝑖𝑣𝑡),Div𝑡+1
)

7: if PV(𝑑𝑖𝑣𝑡+1) < 𝜏 then
8: Update 𝑓 (𝑡) ← 𝑓 (𝑡−1)(𝐘(𝑡))
9: Predict 𝑓 (𝑡)(𝐘(𝑡 + 1))
0: else
1: Predict 𝑓 (𝑡−1)(𝐘(𝑡 + 1))
2: end if
3: Calculate 𝐸𝑡+1
4: end for
5: Update PDF(𝑑𝑖𝑣𝑡+1) ← [PDF(𝑑𝑖𝑣𝑡), 𝑑𝑖𝑣𝑡+1]

ity frame of the evaluation samples. Then, we test the null hypothesis
of no change in the time-series data. The algorithm checks the 𝑝-
alue of the observed divergence value associated with the historical
ivergence value distribution. As illustrated in Fig. 4, the algorithm
ejects the null hypothesis if the value exceeds the significance level

and assumes a change in the behavior of the consumption load.
he 𝑝-value is equal to the area under the curve of the probability

density function (Knijnenburg et al., 2009). Our approach is dynamic
for detecting the change point without fixing a detection threshold. This
happens because the distribution of the divergence values evolves with
the recording of more observations for load consumption. Furthermore,
the significance level 𝜏 represents how extreme the divergence can be
before signaling a change. The main advantage of using the 𝑝-value is
that it is more persistent than a threshold that could be volatile for the
change detection problem; hence, it is a more reliable indicator. The
significance level 𝜏 controls the sensitivity to detect changes regardless
of the magnitude of this change measured by the divergence metric.
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Fig. 3. Active detection method based on dynamic drift magnitude.
Fig. 4. Drift alarms based on hypothesis testing.

. Experimental evaluation and results

The performance of the ML predictions is evaluated using energy
onsumption records from real-world datasets that include nine house-
olds. However, for more detailed evaluations, we specifically selected
wo example households, namely Household 1 (an apartment) and
ousehold 7 (a house). These households were chosen because they

epresent different types of households, allowing us to assess the perfor-
ance of our model under varying conditions. The performance of ML
redictions is affected by the detection of and reaction to drifts. Typ-
cally, drift adaptations improve the model’s accuracy by performing

retraining or update process, which may impact the computational
ost. Therefore, there is a trade-off between prediction accuracy and
omputational cost.

In this section, we answer the following questions:

• Prediction performance (Section 5.3): How accurately do active
and passive DA-LSTMs predict the energy demand for different
parameters?
8

• Computational Cost (Section 5.4): What is the impact on the
computational cost of both active and passive approaches?

• Performance-cost trade-off (Section 5.5): What is the trade-off
between performance and cost, and how can we use it to select
the most suitable approach?

• Real-life Pros and Cons (Section 5.6): What are the advantages
and disadvantages of each approach in real-life problems?

5.1. Consumption dataset

To evaluate our approach, we used consumption data from the
Swedish Energy Agency or Energimyndigheten.1 It contains the energy
consumption of nine customers for one year at a resolution of ten
minutes. Detailed information on the dataset is shown in Table 2. The
table presents the start and end dates for the training and test dataset,
divided by 75% and 25%, respectively. We chose this split since it
showed a better prediction performance for datasets that are affected
by seasonality (Jumin et al., 2021). The validation dataset was created
with 1

6 of the entire training dataset for each customer, allowing for a
reasonable amount of data to be used for training while still reserving
a portion for validation and effectively capturing the complexity of the
data. Additionally, information on the type of housing is given.

5.2. Experimental setup

5.2.1. Baseline methods
To establish a comparable basis for the evaluation, we trained a

baseline LSTM model and several baseline methods that are frequently
used in load forecasting problems for each household individually. In
particular, the baseline methods are: LSTM, Rolling ARIMA, Bagging
Regression (Oza and Russell, 2001) and an RNN model (Fekri et al.,
2021b; Jagait et al., 2021). For LSTM-based methods, the structure of
the model consists of a singular LSTM layer combined with a dense
layer. For each model, we individually tune the hyperparameters. The
dataset of each household was divided into training and test sets

1 https://www.energimyndigheten.se/

https://www.energimyndigheten.se/
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Table 2
Information of energy consumption dataset.

Household information Training and validation dataset Test dataset

Household Type Start date End date Size Start date End date Size

Household 1 Apartment 18.08.2005 24.06.2006 44640 24.06.2006 23.08.2006 8640

Household 2 Apartment 24.12.2005 08.01.2007 42768 08.01.2007 22.03.2007 10512

Household 3 Apartment 22.03.2006 29.01.2007 44640 29.01.2007 30.03.2007 8640

Household 4 Apartment 24.04.2007 08.03.2008 44640 08.03.2008 07.05.2008 8640

Household 5 Apartment 21.08.2005 05.07.2006 44496 05.07.2006 04.09.2006 8784

Household 6 Apartment 02.09.2005 07.07.2006 44784 07.07.2006 04.09.2006 8496

Household 7 House 01.09.2005 30.07.2006 44064 30.07.2006 02.10.2006 9216

Household 8 House 15.09.2005 28.07.2006 44496 28.07.2006 27.09.2006 8784

Household 9 House 04.10.2006 15.08.2007 44496 15.08.2007 15.10.2007 8784
according to the specifications mentioned in Section 5.1. Each of the
predictors takes 12 time steps (2 h) as input and generates a prediction
for the next six time steps, equal to an hour ahead. In addition,
we created an LSTM model for the passive and active approaches,
respectively.

5.2.2. Evaluation parameters
For the active drift detection approach, three significance levels of

p-values are defined: 0.07, 0.10, and 0.15. The significance level con-
trols the extremeness of change magnitude for flagging a drift alarm.
The higher the level value, the more probable the null hypotheses will
be rejected because more values will fall within the drift-alarm region.
The passive approach is equivalent to setting the 𝑝-value significance
level to 1, meaning a drift always occurs. On the contrary, the baseline
approach is equivalent to setting the 𝑝-value significance level to 0,
i.e. a drift never occurs.

5.2.3. Error metrics
To measure the prediction performance, we used Mean Absolute

Percentage Error (MAPE) and Root Mean Square Error (RMSE) as
evaluation metrics since they are the most common error metrics used
in the load forecasting literature according to a survey by Nti et al.
(2020). To compare the results daily, we take the mean of 24 prediction
errors as we detect changes on a daily basis. Since we predict an hour
in advance, we calculate the mean of error metrics of 24 predictions
for each day as follows:

MAPE = 1
𝑛

𝑛
∑

𝑡=1

|

|

|

|

𝐴𝑡 − 𝐹𝑡
𝐴𝑡

|

|

|

|

∗ 100, (13)

MSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1

(

𝐴𝑡 − 𝐹𝑡
)2, (14)

where 𝐴𝑡 represents the vector of the actual consumed energy, 𝐹𝑡 the
orecasted ones and 𝑛 is the number of predictions.

.2.4. Computing environments
To gain insight into the operational efficiency of each approach,

e deploy the solution on Amazon Web Services (AWS)2 cloud ser-
vice. This will facilitate the trade-off analysis between the prediction
performance and computational cost. AWS is one of the most popular
public-cloud providers and frequently used as a deployment service
for AI applications (George et al., 2020). To quantify the computa-
tional cost, we measure the usage of Central Processing Unit (CPU)
and Graphics Processing Unit (GPU) during run-time and the costs of
running the approaches in a cloud environment (AWS). Table 3 presents
the specifications for the local machine and the corresponding AWS
instance. We selected a G4 instance, namely: g4dn.4xlarge.3 For the
alculation of the computational cost of the AWS instance, we measured
he training time for the adaptation and calculated the on-demand price
f the instance for that period, similar to Pakdel and Herbert (2017).

2 https://aws.amazon.com/
3 AWS instance: https://aws.amazon.com/ec2/instance-types/g4/
9

Table 3
Computational specifications.

Local environment

CPU Intel Core i9-9900X CPU, 20 Threads

GPU Nvidia GeForce RTX 2080, 11GB GDDR6

RAM 64GB DDR4

AWS

CPU Intel Xeon Scalable Processors, 16 Threads

GPU Nvidia T4, 16GB GDDR6

RAM 64GB DDR4

5.3. Prediction performance of DA-LSTM

We conducted an exhaustive performance evaluation of our pro-
posed DA-LSTM method against a conventional LSTM model, as it
represents the main benchmark for comparison. Furthermore, we com-
pared our method with several other baseline methods in the literature.
However, we performed a more exhaustive evaluation for the conven-
tional LSTM model, given that our proposed method is an improvement
over it.

5.3.1. Comparison against conventional LSTM
The predictive performance of the different DA-LSTM strategies is

evaluated and compared with the conventional baseline LSTM. We
have also analyzed the drift detection counts for the active-based drift
detection approach. The detection counts of all households with respect
to the significance level value 𝜏 are summarized in Fig. 5. We can see
that households of the type House have more irregular consumption
patterns. Furthermore, some households do not have drift detected for
a significance level of small values. This means that no adaptations are
implemented for this household in the corresponding significance levels
for the active approach.

Table 4 shows the prediction error of all households observed
for passive and active approaches for different parameters. For each
household, we calculate the overall mean MAPE, RMSE performance
metrics, and the standard deviation (STD) to check the variability of the
errors during the evaluation period. In the case of active and passive
approaches, an additional column represents the improvement (Imp)
with respect to the prediction error reduction compared to the baseline
model. For households without drift detection, see Fig. 5, the baseline
model is used without any adaptation.

Setting the significance level to a higher value increases the sen-
sitivity to drift. This triggers more adaptation events, leading to an
improvement in prediction quality (that is, a reduction in MAPE and
RMSE). From the Tables 4 and 5, we can see that the passive approach
consistently outperforms all other approaches in all households. On
average, the passive approach improves the MAPE metric of all house-
holds produced by the baseline approach by 40.90%, and the RMSE
metric by 50.16%.

https://aws.amazon.com/
https://aws.amazon.com/ec2/instance-types/g4/
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Table 4
MAPE performance results of all households.

Household Baseline LSTM Active LSTM, 𝜏 = 0.07 Active LSTM, 𝜏 = 0.1 Active LSTM, 𝜏 = 0.15 Passive LSTM

Mean STD Mean STD Imp Mean STD Imp Mean STD Imp Mean STD Imp

Household 1 6.56 1.10 4.74 0.87 27.74% 3.70 0.70 43.60% 3.22 0.68 50.91% 2.95 0.68 55.03%

Household 2 4.05 2.85 4.03 0.85 0.49% 4.02 0.79 0.74% 3.50 0.73 13.58% 2.53 0.16 37.53%

Household 3 21.69 13.43 21.41 9,11 1.29% 21.23 8.56 2.12% 19.46 7.98 10.28% 11.24 7.66 48.18%

Household 4 9.48 9.18 9.48 0.00 0.00% 6.54 0.93 31.01% 5.55 0.51 41.46% 5.10 0.18 46.20%

Household 5 3.09 3.46 3.09 0.00 0.00% 2.76 0.69 10.68% 2.75 0.53 11.00% 2.66 0.35 13.92%

Household 6 4.34 3.64 4.34 0.00 0.00% 4.34 0.00 0.00% 3.59 0.24 17.28% 2.62 0.06 39.63%

Household 7 8.32 2.08 6.03 1.62 27.52% 4.80 1.36 42.31% 3.94 1.16 52.64% 4.09 1.65 50.84%

Household 8 6.11 7.85 6.01 1.68 1.64% 6.01 1.45 1.64% 5.43 1.02 11.13% 5.33 0.68 12.77%

Household 9 8.34 4.51 7.25 3.49 13.07% 7.16 2.98 14.15% 6.96 2.56 16.55% 3.0 0.54 64.03%

Average 8.00 5.34 7.36 2.04 8.62% 6.73 1.94 16.25% 6.04 1.71 24.98% 4.39 1.33 40.90%
Table 5
RMSE performance results of all households.

Household Baseline LSTM Active LSTM, 𝜏 = 0.07 Active LSTM, 𝜏 = 0.1 Active LSTM, 𝜏 = 0.15 Passive LSTM

Mean STD Mean STD Imp Mean STD Imp Mean STD Imp Mean STD Imp

Household 1 0.45 0.15 0.32 0.08 28.88% 0.25 0.07 44.44% 0.23 0.06 48.88% 0.21 0.07 53.33%

Household 2 0.24 0.17 0.21 0.07 12.50% 0.18 0.08 25.00% 0.13 0.07 45.83% 0.10 0.06 58.33%

Household 3 0.74 0.25 0.52 0.17 29.72% 0.45 0.15 39.18% 0.39 0.10 47.29% 0.32 0.08 56.75%

Household 4 0.21 0.11 0.21 0.00 0.00% 0.15 0.07 28.57% 0.12 0.07 42.85% 0.11 0.05 47.61%

Household 5 0.19 0.10 0.19 0.00 0.00% 0.12 0.08 36.84% 0.10 0.06 47.36% 0.08 0.06 57.89%

Household 6 0.24 0.14 0.24 0.00 0.00% 0.24 0.00 0.00% 0.16 0.05 33.33% 0.15 0.04 37.50%

Household 7 0.42 0.19 0.25 0.10 40.47% 0.19 0.08 54.76% 0.18 0.07 55.89% 0.18 0.06 57.14%

Household 8 0.35 0.16 0.33 0.12 5.71% 0.28 0.10 19.99% 0.24 0.09 31.42% 0.20 0.08 42.85%

Household 9 0.30 0.12 0.26 0.09 13.33% 0.24 0.08 20.00% 0.21 0.07 30.00% 0.18 0.07 40.00%

Average 0.35 0.15 0.27 0.10 21.41% 0.23 0.09 32.18% 0.20 0.07 42.68% 0.17 0.06 50.16%
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Fig. 5. Detection counts per household for active approaches with different significance
alues 𝜏.

Specifically, the improvement in MAPE reaches 64.03% for House-
old 9, while it reaches 58.33% for Household 2 on RMSE. However,
or active approaches, the percentage of improvement increases with
igher significance levels. The average percentage of improvement of
APE is 8.62% for the active approach with a significance level of
= 0.07, reaching 24.98% for 𝜏 = 0.15. We observe a similar pattern

f improvement in the RMSE metric, but with a larger effect size. For
= 0.07 the improvement is 21.41% and reaches 42.68% for 𝜏 = 0.15.

To evaluate performance on a more granular level, we plotted the
aily performance metrics for two examples of each type of household.
igs. 6(a) and 6(c) present the daily MAPE and RMSE for Household 1,
 p

10
espectively. While Figs. 6(b) and 6(d) present the performance metrics
or Household 7. As we can see, for both households, the baseline model
as the highest error rates compared to when using the drift-adaptive
pproaches for each day of the test data. Moreover, the error curves
or DA-LSTM approaches are stacked over most days in both figures.
owever, in a few cases, the active approach performs better than the
assive approach due to the non-determinism property of the output of
eural networks (Taylor et al., 2003).

.3.2. Comparison against additional baseline methods from the literature
To further verify the effectiveness of our proposed method, we per-

ormed additional evaluations against several commonly used baseline
ethods in the literature. Figs. 7(a) and 7(b) show the performance

f the baseline methods and DA-LSTM on the MAPE and RMSE met-
ics. Regarding the non-LSTM-based baseline methods, the Bagging
egression method performs better than the RNN and ARIMA methods.
pecifically, the performance of the Bagging Regression model is the
ost similar to the LSTM baseline model. Overall, the results show

hat the proposed DA-LSTM method outperforms all other baseline
ethods in all cases by a considerable margin for MAPE and RMSE for

ll households. DA-LSTM achieved a maximum improvement of 62.8%
ver RNN on MAPE and 84.51% on RMSE.

.3.3. DA-LSTM hyperparameter optimization results
As described in Section 3.3.1, we performed the HPO for all of the

STM models to find the optimal parameters. Tables 6 to 9 illustrate the
utcomes of hyperparameter tuning using validation data. Specifically,
o provide a glimpse into the range of values that may be effective
or this approach, examples of the selected hyperparameter values
re reported in Tables 6 and 8 for Household 1, and Tables 7 and
for Household 7, with significance levels 𝜏 = 0.07 and 𝜏 = 0.10,

espectively. In contrast to the results reported in Tables 4 and 5, which

resent the evaluation results for Household 1 and 7 respectively and
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Fig. 6. Performance evaluation for LSTM-based methods.
Fig. 7. Performance evaluation for baseline and DA-LSTM methods.
are aggregated for the entire test dataset of each household. The tables
represent the best combination of hyperparameters that resulted in the
optimal performance in terms of loss value (MAPE). An interesting
observation is that some hyperparameters, such as LR and DR, appear
to have similar values across different detection numbers. For example,
in Table 7, detection numbers 1, 6, 10, and 16 all have the same LR
and DR values of 0.001 and 0.4, respectively. Similarly, in Table 9,
detection numbers 1, 9, 17, and 23 have the same LR and DR values. On
the contrary, the parameter 𝑁𝑈 exhibits greater variability in different
detection numbers than the other hyperparameters, suggesting that it
is more sensitive to data changes.

5.3.4. Learning curves for LSTM-based methods
To corroborate the performance during the training process, we

analyze the learning curves to inspect whether the LSTM-based models
are overfitting or underfitting. Figs. 8(a) and 8(b) illustrate the training
11
Table 6
DA-LSTM Hyperparameter values for Household 1, 𝜏 =
0.07.

Detection
number

𝐿𝑅 𝐷𝑅 𝑁𝑈 Loss

1 0.001 0.4 192 3.13
2 0.0001 0 160 3.14
3 0.001 0.3 160 3.12
4 0.001 0.3 192 3.10
5 0.0001 0 128 3.10
6 0.0001 0 256 3.08
7 0.001 0.2 224 3.07
8 0.001 0.1 256 3.05
9 0.0001 0 192 3.05
10 0.001 0.4 192 3.00
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Fig. 8. Training and validation curves.
Table 7
DA-LSTM Hyperparameter values for Household 7, 𝜏 =
0.07.

Detection
number

𝐿𝑅 𝐷𝑅 𝑁𝑈 Loss

1 0.001 0.4 224 2.74
2 0.001 0 288 2.76
3 0.0001 0 224 2.75
4 0.001 0.2 192 2.75
5 0.0001 0 224 2.75
6 0.001 0.4 320 2.75
7 0.0001 0 320 2.75
8 0.001 0.3 224 2.77
9 0.0001 0 480 2.79
10 0.001 0.4 224 2.79
11 0.0001 0.1 384 2.81
12 0.0001 0.2 320 2.84
13 0.001 0 480 2.83
14 0.001 0.3 224 2.82
15 0.0001 0.1 416 2.83
16 0.001 0.4 320 2.83
17 0.001 0 320 2.85
18 0.0001 0 224 2.88
19 0.01 0 256 2.88
20 0.001 0.2 256 2.87

Table 8
DA-LSTM Hyperparameter values for Household 1, 𝜏 =
0.10.

Detection
number

𝐿𝑅 𝐷𝑅 𝑁𝑈 Loss

1 0.01 0 96 3.17
2 0.001 0.4 256 3.24
3 0.001 0 288 3.14
4 0.001 0.3 288 3.10
5 0.0001 0.1 224 3.40
6 0.0001 0.2 224 3.79
7 0.0001 0.1 224 3.24
8 0.001 0.1 288 3.69
9 0.001 0.2 256 3.08
10 0.001 0 288 3.12
11 0.0001 0.1 256 3.18
12 0.0001 0 224 3.68
13 0.001 0.4 352 2.99
14 0.001 0.1 192 3.00
15 0.0001 0 288 2.98

and validation curves for Household 1 and Household 7, respectively.
The curves show that the model can capture the patterns in the training
data without overemphasizing noise, while still being able to generalize
to new data as seen in the validation set and there is no specific sign
of over- or under-fitting.
12
Table 9
DA-LSTM Hyperparameter values for Household 7, 𝜏 =
0.10.

Detection
number

𝐿𝑅 𝐷𝑅 𝑁𝑈 Loss

1 0.001 0.4 224 4.36
2 0.001 0 288 2.74
3 0.0001 0 224 2.74
4 0.0001 0 288 2.75
5 0.001 0.2 192 3.47
6 0.001 0 224 2.77
7 0.0001 0 224 2.74
8 0.001 0.2 480 2.76
9 0.001 0.4 320 2.76
10 0.001 0 448 2.77
11 0.0001 0 320 2.78
12 0.001 0 224 2.79
13 0.001 0 480 3.16
14 0.001 0 448 2.82
15 0.001 0.3 224 4.29
16 0.0001 0 480 2.83
17 0.001 0.4 224 2.83
18 0.0001 0.1 384 2.84
19 0.0001 0.2 320 2.83
20 0.001 0 480 2.83
21 0.001 0.3 224 2.84
22 0.0001 0.1 416 2.85
23 0.001 0.4 320 2.87
24 0.001 0 256 2.89
25 0.0001 0 352 2.88
26 0.0001 0 288 2.88
27 0.0001 0 352 2.89
28 0.0001 0 128 2.88
29 0.001 0 320 2.89
30 0.0001 0 224 2.89
31 0.01 0 256 2.87
32 0.001 0.2 256 2.87

5.4. Computational cost

Adjusting the models to adapt to changes is associated with addi-
tional computational costs. Figs. 9 and 10 present the CPU and GPU
usage for each of the active and passive approaches of Household 7; the
household with the highest number of detected drifts. As can be seen,
when the adaptation signal is activated due to a change in behavior,
we have a similar resource utilization pattern in both approaches. For
CPU, it fluctuates between 7% and 10% per thread, while for GPU,
the utilization of resources is between 45% and 60%. The conventional
LSTM model, as described in Section 3.2, only computes sequentially.
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Fig. 9. Daily CPU usage percentage of forecasting model for Household 7.
Fig. 10. Daily GPU usage percentage of forecasting model for Household 7.
But both TensorFlow and PyTorch introduced a cuDNNLSTM wrap-
per4 for the normal LSTM implementation, which enables its partly
parallelization (Braun, 2018; Appleyard et al., 2016)

In Table 10, the total AWS costs in Euros for the entire evaluation
period of each household are presented. The cost is calculated based on
the number of minutes needed for the adaptation with the on-demand
pricing of the instance. The table shows that the passive approach
is at least twice as costly as the active approach with the selected
significance levels. On the daily level, Fig. 11 shows the computational
cost for Household 7 to adapt the model on the AWS instance. As can
be seen, the passive approach shows a constant cost throughout the
whole observed evaluation period. This is because the training time
and hyperparameter tuning for each daily period require the same
timeframe. However, the active approaches impose a variable cost. For
example, when 𝜏 = 0.07, a significant change in computational cost
an be observed on day 37 with a cost of 0.744 for the training in ML
daptation. This increase in cost occurs when the time between changes
s prolonged, leading to a more extensive training dataset for the
daptation of LSTM and, consequently, to higher costs. The total cost
f running the system for 58 consecutive days for the passive approach
s 15.93 Euros, which corresponds to 0.27 per day. In comparison,
he cost for the same period when using the active approaches are:
.96, 6.67, and 8.44 with an increasing 𝜏, respectively. It is visible that
ven with a single household over the time span of only 58 days, the
roposed approach can save about 53% of the computational cost with
= 0.15. Scaling the number of households in a typical case of only

ne low voltage feeder of tens of households, e.g., 70 households, the

4 CUDNNLSTM: https://www.tensorflow.org/api_docs/python/tf/compat/
1/keras/layers/CuDNNLSTM
13
Table 10
Total computational cost per household in EUR.

Household 𝜏 = 0.07 𝜏 = 0.10 𝜏 = 0.15 Passive

Household 1 7.53 8.86 9.88 24.17

Household 2 7.44 8.11 11.02 31.31

Household 3 4.56 5.50 6.50 26.37

Household 4 0.00 4.10 4.91 22.80

Household 5 0.00 7.66 9.89 18.95

Household 6 0.00 0.00 2.52 20.60

Household 7 5.96 6.68 8.45 15.93

Household 8 9.42 10.56 12.56 31.04

Household 9 7.27 9.25 10.47 20.60

savings in practice are even much higher in the case of several low
voltage feeders on a residential region of some hundreds of residencies.
Thus, this method would result in high savings in terms of costs.

5.5. Performance-cost trade-off

In the previous section, it was evident that there is a trade-off
between predictive performance and the associated computational cost
of each approach. In most cases, the passive approach is the most
powerful approach in terms of prediction accuracy. However, at the
same time, it is the most expensive approach in terms of computational
costs. Similarly, the active approach showed behaviors identical to
those of the passive approach. Effective approaches are associated with
additional workload costs due to the number of adaptation events. We
have calculated a metric that combines predictive performance and

computational costs to further analyze the trade-off.

https://www.tensorflow.org/api_docs/python/tf/compat/v1/keras/layers/CuDNNLSTM
https://www.tensorflow.org/api_docs/python/tf/compat/v1/keras/layers/CuDNNLSTM
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Table 11
Trade-off metric between performance improvement and cost.

Household 𝜏 = 0.07 𝜏 = 0.10 𝜏 = 0.15 Passive

Household 1 3.68 4.92 5.15* 2.28

Household 2 0.07 0.09 1.23* 1.2

Household 3 0.28 0.39 1.58 1.83*

Household 4 0.00 7.57 8.44* 2.03

Household 5 0.00 1.39* 1.11 0.73

Household 6 0.00 0.00 6.87* 1.92

Household 7 4.62 6.34* 6.23 3.19

Household 8 0.17 0.16 0.89* 0.41

Household 9 1.88 1.53 1.58 3.11*

The simplest measure that combines both performance and costs
s the ratio between the two metrics (Vandierendonck, 2017). The
rade-off score (TS) can be simply calculated as follows:

S = Performance
Cost

, (15)

where Performance is the metric that is used to evaluate the predictive
performance of the approach, we chose the MAPE metric as it yielded
similar results to RMSE, and cost is the total cost of the associated AWS
instance for the evaluation period. The most efficient approach is one
that maximizes performance per unit cost ratio (TS). Table 11 presents
the results in the household of computing the trade-off metric for each
approach. The metric is calculated based on the improvement of the
error rate (shown in Table 4) and the total cost of the AWS instance
(shown in Table 10).

We can see that there is no single approach that fits all household
data. However, the results show that the active strategy with a sig-
nificance level of 𝜏 = 0.15 is the most efficient approach in terms of
the TS metric for five out of nine households. Meanwhile, despite its
low error rate, the passive strategy is the most effective approach for
two households only. This means that the additional costs do not move
proportionally with the performance improvement rates. Furthermore,
the active strategy with a significance level of 𝜏 = 0.1 has been the most
effective approach for two households in total.

5.6. Discussion

In this section, we presented a detailed experimental evaluation of
the performance of DA-LSTM using a real-life dataset. Our DA-LSTM
approach introduces a novel adaptive mechanism that dynamically ad-
justs the LSTM model to changing data patterns, allowing for accurate
and robust predictions in the presence of concept drift. We employed
an active-based drift detection approach, which leverages statistical
significance testing, to detect drift events and trigger model adaptations
 t

14
accordingly. This active approach is a key contribution of our work, as
it enables the LSTM model to dynamically adapt to changes and main-
tain high prediction performance over time. Additionally, compared to
other drift adaptive methods in interval load forecasting such as Fekri
et al. (2021b), Jagait et al. (2021), Ji et al. (2021), which require
setting a threshold for drift magnitude, the dynamic drift detection
methodology implemented in the proposed method is a flexible tool
for detecting changes in consumption patterns without pre-defining
a threshold. As it can be challenging to determine an appropriate
threshold for drift detection in real-life settings. This feature adds to
the practicality and usefulness of the proposed method in real-world
applications. Moreover, the incremental learning technique employed
in our DA-LSTM approach is advantageous as it builds on the previously
learned knowledge and avoids the shortcomings of complete forgetting,
as required in some studies that only rely on the most recent observa-
tions as a prerequisite (Fenza et al., 2019; Chitalia et al., 2020), and
hence cannot leverage old patterns that may reappear.

The results of our experiments clearly demonstrate that our DA-
LSTM model significantly outperforms commonly used baseline meth-
ods in terms of prediction accuracy, while also achieving a reasonable
trade-off between performance and computational cost. In terms of
prediction performance, the passive LSTM approach showed superior
results compared to other methods in terms of MAPE and RMSE met-
rics, with notable average improvements across all households. The
active approach also exhibited higher prediction performance, with
average improvements for a significance level of 𝜏 = 0.07 and even
igher improvements for 𝜏 = 0.15. Furthermore, our DA-LSTM method
urpassed other commonly used baseline methods from the literature,
uch as RNN, ARIMA, and Bagging Regression, by a significant margin
n terms of MAPE and RMSE for all households.

By comparing the performance-cost trade-off results of the different
ethods, we could gain deeper insights into which method might

e best suited for different use cases. Specifically, we found that the
ctive approach yielded a better overall trade-off performance than
he passive approach. This suggests that the active approach could be
ore suitable in scenarios where computational cost is a determinative

actor. Another important advantage of the active LSTM approach is its
nterpretability. Active detection provides additional information about
hange points in the time-series data, allowing for a better understand-
ng of the underlying dynamics driving the consumption patterns. This
nterpretability can be particularly useful for power utility companies
n real-world applications, where it is important to have insights into
hy and when changes in consumption occur. In contrast, passive
daptation provides more accurate predictive capabilities but at the
ost of higher computational burden and limited interpretability due

o the lack of information on changes in the data.
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5.7. Limitations and outlook

To assess the proposed framework, we evaluated the framework
for the load forecasting use case with LSTM models. However, the
framework is not limited to these settings, and the drift-adaptation
methodology is model-agnostic and can be integrated with any ML-
based predictor. Furthermore, the framework can be applied to other
data types. In the multivariate case, the divergence metric will be
calculated based on a multivariate probability density function. Ad-
ditionally, the predictive model should support multiple inputs in
the input layer that we would investigate in future work. For drift
magnitude sensitivity, the TS metric could be a useful indicator that
helps in selecting the most appropriate approach for the corresponding
problem. However, some limitations may also affect the adoption of
the appropriate approach, such as a threshold for minimum desired
performance or budget allocations for costs.

6. Conclusion

DL techniques have been exploited in the problem of interval load
forecasting of residential households. Most existing solutions use of-
fline learning, where the solution is built using historical data and
deployed once it achieves good results with training data. This solution
does not guarantee good performance after deployment since changes
could occur and the solution would be obsolete. This paper proposes
a drift-adaptive framework for LSTM networks (DA-LSTM) that can
dynamically detect and adapt to changes. The main characteristic of
the proposed framework is that it does not require fixing a drift thresh-
old, since it evolves with time dynamically using the drift magnitude
distribution. We integrate several detection strategies and apply them
to real-world datasets. The evaluation is carried out in terms of predic-
tion performance using MAPE and RMSE metrics, and the associated
computational costs of using CPU and GPU resources. Additionally, the
costs of using a cloud-based service (AWS) are calculated to quantify
the deployment costs. The evaluation results demonstrate the efficiency
of our solution compared to conventional LSTM and other popular
baseline methods in terms of prediction performance. We also present
an analysis of the trade-off between the performance and costs of each
approach that would provide suggestions for adopting the appropriate
approach in real-life problems.
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