
ORIGINAL ARTICLE

A domain-region based evaluation of ML performance robustness
to covariate shift

Firas Bayram1
• Bestoun S. Ahmed1,2

Received: 21 October 2022 / Accepted: 17 April 2023 / Published online: 12 May 2023
� The Author(s) 2023

Abstract
Most machine learning methods assume that the input data distribution is the same in the training and testing phases.

However, in practice, this stationarity is usually not met and the distribution of inputs differs, leading to unexpected

performance of the learned model in deployment. The issue in which the training and test data inputs follow different

probability distributions while the input–output relationship remains unchanged is referred to as covariate shift. In this

paper, the performance of conventional machine learning models was experimentally evaluated in the presence of covariate

shift. Furthermore, a region-based evaluation was performed by decomposing the domain of probability density function of

the input data to assess the classifier’s performance per domain region. Distributional changes were simulated in a two-

dimensional classification problem. Subsequently, a higher four-dimensional experiments were conducted. Based on the

experimental analysis, the Random Forests algorithm is the most robust classifier in the two-dimensional case, showing the

lowest degradation rate for accuracy and F1-score metrics, with a range between 0.1% and 2.08%. Moreover, the results

reveal that in higher-dimensional experiments, the performance of the models is predominantly influenced by the com-

plexity of the classification function, leading to degradation rates exceeding 25% in most cases. It is also concluded that the

models exhibit high bias toward the region with high density in the input space domain of the training samples.

Keywords Covariate shift � Concept drift � Robust machine learning � Classifier evaluation � Model degradation

1 Introduction

Robustness to changes is one of the most exemplary

properties of a high-quality machine learning (ML) model

in this ever-shifting world. Maintaining this property will

allow users to work with trustworthy ML systems that

perform consistently and efficiently when exposed to the

deployment environment. The issue arises from the

assumption of most ML models that the data points are

independently and identically distributed (i.i.d), which

presume that the data are sampled from the same proba-

bility distribution. However, this assumption is often not

satisfied in real-world applications [1]. This violation

would cause the performance of the predictive model to

degrade substantially in practice. The main reason for this

model degradation is that probability theory forms a cen-

tral foundation for many data mining and machine learning

techniques [2], as it provides a framework for quantifying

uncertainty [3].

Changes in the underlying probability distributions have

been extensively studied in the literature [4, 5]. The situ-

ation in which there is an inconsistency between the joint

probability distributions P(x, y) of the training and test

datasets is called dataset shift [6]. Researchers have clas-

sified the general dataset shift phenomenon into several

types based on the probabilistic source of change. These

types are covariate shift, concept drift and prior probability

shift [7]. Detailed taxonomy and definitions of change

types can be found in our recent overview [8]. Covariate

shift takes the form of a change between the marginal

& Bestoun S. Ahmed

bestoun@kau.se

Firas Bayram

firas.bayram@kau.se

1 Department of Mathematics and Computer Science, Karlstad

University, Karlstad 65188, Sweden

2 Department of Computer Science, Faculty of Electrical

Engineering, Czech Technical University in Prague,

12135 Prague, Czech Republic

123

Neural Computing and Applications (2023) 35:17555–17577
https://doi.org/10.1007/s00521-023-08622-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-9051-7609
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08622-w&domain=pdf
https://doi.org/10.1007/s00521-023-08622-w

distributions of the training and test inputs PtrðxÞ and

PteðxÞ, while the conditional distribution Pðy j xÞ remains

unchanged [9, 10], whereas the concurrent occurrence of

changes in both marginal and conditional distributions is

called concept drift [11]. Another type of dataset shift

occurs when the distribution of classes P(y) changes,

known as prior probability shift [12]. The focus of this

paper is on analyzing the behavior of ML models in

covariate shift situations as it is one of the most common

cases in practice [13].

Covariate shift could appear in many real-world

domains, such as healthcare systems [14], computer vision

[15], NLP [16], and social media [17]. In practice, many

sources cause covariate shift situations. The main reason is

that the training input is not a representative sample of the

entire population [18]. In this case, the training samples do

not represent the overall problem due to the biased data

collection process toward a specific subpopulation, known

as sample selection bias [19], for example, bias toward

specific demographic groups. Therefore, the model will be

implemented on an unseen distribution in deployment,

which, as a consequence, would affect the performance of

the model.

Analyzing the out-of-sample performance of ML mod-

els before deployment is not trivial because of the ubiq-

uitousness of the system’s evolution in real-life

applications. The classical way is to perform out-of-sample

validation using held-out datasets through cross-validation

or bootstrap techniques. These techniques assume station-

arity in the data distribution of training and test data.

Therefore, they cannot fully estimate the model’s success

rate in the deployment environment where a distributional

shift is likely to occur [20]. Another approach to validate

the ML models’ performance is analyzing the accuracy and

bias variability across data sub-populations. Exploring such

variability would help diagnose the performance and

potentially develop methods to mitigate its effects.

In this paper, the robustness of several common machine

learning algorithms on synthetic data is evaluated in the

presence of covariate shift in binary classification prob-

lems. An overall performance assessment and a region-

based evaluation of the model’s robustness are performed

by decomposing the probability density function (pdf) of

the input space domain of the test samples according to the

input density distribution ratio between the test and training

data samples. To this end, the contributions of this paper

are summarized as follows:

1. An evaluation framework is presented to assess the

robustness of common ML classifiers in several drift

scenarios.

2. Comprehensive comparisons and experiments are

conducted to measure model degradation rates under

covariate shift in different classification problem

settings.

3. Decomposition of the input space based on the ratio of

test-to-training input densities is proposed to evaluate

the models’ performance per domain-region.

For the sake of visualization, exhaustive comparison

experiments are conducted on two-dimensional artificial

classification problems with covariate shifts formulated by

simulating a broad spectrum of distribution drifts before

evaluating the model robustness using additional higher-

dimensional datasets. The experiments in this paper are

designed to address the following primary research

questions:

RQ1: What are the main factors that affect the robust-

ness of performance in covariate shift problems and lead to

model degradation?

RQ2: Which ML classification algorithms tend to be

more robust (vulnerable) to specific problem settings?

RQ3: How does the performance of the classifiers vary

in the input space domain when decomposed by regions

based on the test-to-training density ratio?

The remainder of this paper is organized as follows.

Section 2 gives a general background on the covariate shift

problem and provides an overview of the related work.

Next, Sect. 3 contains a detailed explanation of the settings

specified for the experiments. The methodology for the

performance evaluation of the ML models is detailed in

Sect. 4. Section 5 presents the results of the different

experiments. Threats to validity are discussed in Sect. 6.

Finally, Sect. 7 concludes the work and sets out future

directions for further extended use of this paper.

2 Background and related work

This section provides an overview of the covariate shift

problem and reviews the related work to evaluate the

robustness of the ML model’s performance under covariate

shift.

2.1 Problem formulation and notation

In binary classification problems, the goal is to obtain a

prediction function f : X �! Y that has been trained on

training dataset Dtr ¼ xi; yið Þf gNi¼1 of size N drawn i.i.d

from a joint distribution ptrðx; yÞ, where xi 2 Rd is a d-

dimensional data instance, or covariates vector x, and yi 2
f�1;þ1g is the class label. The classifier’s performance is

evaluated on a test dataset Dte drawn from a joint distri-

bution pteðx; yÞ. The classical method to learn the classifier

is through solving the following empirical risk minimiza-

tion (ERM) problem:

17556 Neural Computing and Applications (2023) 35:17555–17577

123

min
h2H

R fð Þ ¼ min
h2H

Epte ‘ fh xð Þ; yð Þ½ �

� min
h2H

1

N

XN

i¼1

‘ fh xið Þ; yið Þ;
ð1Þ

where h denotes the parameter vector, Epteðx;yÞ is the

expectation over the test distribution pteðx; yÞ, and ‘ is a

selected loss function. In stationary distributions, i.e., when

pteðxÞ ¼ ptrðxÞ, ERM provides a consistent estimator [21].

While adaptation techniques are required for non-station-

ary distributions, such as covariate shift situations.

2.2 Covariate shift adaptation

The minimization problem in Eq. 1 works well under the

assumption that pteðx; yÞ is the same as ptrðx; yÞ, which

usually does not hold in practice. Thus, an adjustment to

ERM introduced in Eq. 1 should be performed for dataset

shift situations, that is, when pteðx; yÞ 6¼ ptrðx; yÞ. A prob-

abilistic source for the dataset shift is a change in the input

data distributions, i.e., when pteðxÞ 6¼ ptrðxÞ, which is

referred to as distribution shift [22], also known as data

drift [23]. As depicted in Fig. 1, covariate shift is a subset

of the generic distribution shift situation when the condi-

tional probability distribution that represents the input–

output rule is the same between the training and the test

data [24]:

ptrðy j xÞ ¼ pteðy j xÞ; ptrðxÞ 6¼ pteðxÞ: ð2Þ

One of the most common techniques to address the

covariate shift problem is to employ an importance

weighting function defined as: wðxÞ ¼ pteðxÞ
ptrðxÞ which estimates

the test-to-training density ratio [25]. Subsequently, the

risk minimization problem in Eq. 1 is adjusted to the

importance-weighted risk:

min
h2H

Rðf Þ ¼ min
h2H

1

N

XN

i¼1

wðxiÞ‘ fh xið Þ; yið Þ: ð3Þ

There are many popular algorithms to compute the

importance weights wðxiÞ, such as Kernel Mean Matching

(KMM) [26], Kullback-Leibler Importance Estimation

Procedure (KLIEP) [27] and least squares importance

fitting (LSIF) [28]. It was shown that the importance

weighting procedure can provide consistent learning under

covariate shift, and thus increase the robustness of the

performance in changing distributions [29]. However, the

main drawback of the procedure is the high computational

cost [30].

2.3 Measuring robustness to distribution shift

Much research is devoted to evaluating ML models’ per-

formance under distribution shifts. Such an evaluation

would be useful for determining the model’s performance

after deployment, where the model might perform unex-

pectedly on unseen data points. A study has investigated

the relationship between robustness and complexity of

classifiers and concluded that complex classifiers remain

more robust to changes than simple classifiers [31]. Simi-

larly, in [32], the authors have tested the robustness of

common classifiers in distributional shift situations. The

drift was simulated by changing a particular attribute and

assessing the influence on the information gain. The

authors have concluded that ML models that use more

attributes, such as K-Nearest-Neighbors (KNN), in making

predictions tend to be more robust than those which rely on

fewer attributes, such as Naive Bayes and Logistic

Regression.

Several recent studies have investigated the variability

in the model’s performance across data regions and sub-

populations. MANDOLINE framework [33] was proposed

to estimate the model’s performance under distribution

shift. The framework uses a labeled validation set from the

source distribution and an unlabeled set from the target

distribution. Users can use their prior knowledge to group

the data along the possible axes of distribution shift. Then,

the reweighted performance estimates are computed.

Another framework was proposed to proactively evaluate

the model’s performance on the worst-case distribution

[22]. Users choose two sets of variables, immutable vari-

ables whose distribution should remain unchanged and

mutable variables whose distribution can be changed. The

method identifies the sub-populations with the worst-case

risk. Similarly, Sagawa et al. [34] developed a training

procedure that uses prior knowledge to form groups in

training data and minimizes worst-case loss over these data

groups.

In contrast to previous studies, another line of research

follows a different approach by predicting the model’s

performance in distributional shift situations using the

regression function. The Average Thresholded Confidence

(ATC) method [35] was proposed to obtain a threshold on a

model confidence score that enables the prediction of out-

of-distribution model’s accuracy. In another recent study,

Guillory et al. [36] proposed the so-called difference of
Fig. 1 Visual representation of the relationship between the types of

distributional change

Neural Computing and Applications (2023) 35:17555–17577 17557

123

confidences (DoC) method that predicts the model’s per-

formance under distribution shift. DoC is used to directly

estimate the classifier’s accuracy gap between the training

and the target distributions. When lacking true labels for

test sets, the authors [37] have derived distribution statistics

that can benefit from the Automatic model Evaluation

(AutoEval) problem and estimate the classifier’s accuracy.

Evaluating the model’s robustness has also been inves-

tigated in domain-specific problems. In image processing,

the model’s performance has been evaluated for many

prominent image classification benchmark datasets, such as

CIFAR and ImageNet [38–40], MNIST [41]. The problems

are constructed by inducing a wide range of distribution

shifts. In natural language processing (NLP), Miller et al.

[42] evaluated the model’s robustness to distribution shift

using the popular Stanford Question Answering Dataset

(SQuAD) [43]. The authors noted that training models on

more out-of-distribution data did not lead to improved

robustness for ML models. Despite the rich literature pre-

sent in the area, the evaluation of the performance of the

ML model per region decomposed by test-to-training

density ratio has not been yet investigated and is provided

by this paper.

3 Experimental settings

In this section, the specifications of the experiments per-

formed using synthetic binary classification problems are

illustrated. The experiments are simulated in a two-di-

mensional input space and a higher input space of four-

dimensions. The experimental settings were made more

diverse by selecting two- and four-dimensional space set-

tings and omitting the three-dimensional case. And hence

to gain a better insight into the performance of the different

ML models in varied scenarios.

For the experiment design part, the training dataset is

considered to be sampled from a standard Gaussian dis-

tribution X�N dð0; 1Þ throughout all experimental setups.

Since any normally distributed variable X, with a particular

population mean l and standard deviation r, can easily be

transformed into a standard Gaussian distribution by

applying equation z ¼ X�l
r . Therefore, the training input

density function is as follows:

ptrðxÞ ¼
1

ð2pÞd=2
exp � 1

2
XTX

� �
; ð4Þ

where d is the dimension of the input space.

To generate the test data, several affine transformations

are applied to the density of the training data. This method

has been widely adopted in the literature to simulate the

covariate shift problem in the dataset [10, 21]. The data

points are considered to be sampled from a Gaussian dis-

tribution X�N dðl;RÞ for the test data. Therefore, the test

input density function is given by:

pteðxÞ ¼
1

ð2pÞd=2 j R j1=2
exp � 1

2
ðX � lÞTR�1ðX � lÞ

� �
;

ð5Þ

where l 2 Rd is the mean and R 2 Sd
þþ is the d � d

symmetric positive-definite covariance matrix whose

(i, j)th entry is Cov½Xi;Xj�. The statistics l and R represent

the parameters of the affine transformations that simulate

the drift in the experiments. Specifically, the mean l sim-

ulates a drift induced by translation, and R simulates a drift

induced by scaling through the variance elements

varðxiÞ ¼ r2
ii, or rotation through the correlation coefficient

q in the covariance elements covðxi; xjÞ ¼ r2
ij ¼ qrirj. For

each drift type, the experiments are run in a two-dimen-

sional input space and a higher four-dimensional input

space.

Regarding the definition of class posterior probability

functions, the formulations that are commonly used in

covariate shift research have been followed [44, 45]. In

particular, for the two-dimensional datasets settings, two

different class posterior probability functions have been

defined for classifying the points. The first function is

defined as follows:

F1 :p y ¼ þ1jX ¼ x1; x2ð Þð Þ

¼ 1

2
1 þ tanh min 0; x1ð Þ þ 4x2ð Þð Þ:

ð6Þ

The second class posterior probability function that was

designed is more complex to learn and is defined as

follows:

F2 : p y ¼ þ1jX ¼ x1; x2ð Þð Þ

¼ 1

2
1 þ sin min 0; x1ð Þ þ 2x2ð Þð Þ:

ð7Þ

Similarly, for the higher-dimensional datasets settings,

Two different class posterior probability functions have

been defined as follows:

F3 : p y ¼ þ1jX ¼ x1; x2; x3; x4ð Þð Þ

¼ 1

2
1 þ tanh min 0; x1ð Þ � x2 þ 2x3 þ 2x4ð Þð Þ; ð8Þ

F4 : p y ¼ þ1jX ¼ x1; x2; x3; x4ð Þð Þ
¼ 1

2
1 þ sin min 0; x1ð Þ þ 4x2 � 3x3 þ 2x4ð Þð Þ; ð9Þ

where pðy ¼ �1 j XÞ ¼ 1 � pðy ¼ þ1 j XÞ and the optimal

decision boundary is the set of points that satisfy

pðy ¼ �1 j XÞ ¼ pðy ¼ þ1 j XÞ ¼ 1
2
. For all experiments,

training data points of size Ntr ¼ 20000 are sampled from

the probability density function (pdf) defined in Eq. 4, test

17558 Neural Computing and Applications (2023) 35:17555–17577

123

data points sampled from the same distribution of size

Nts ¼ 20000, and another test data points of size Ntd ¼
20000 sampled from the drifted distribution defined in

Eq. 5. Parameter settings and specifications of the two-

dimensional experiments are summarized in Table 5 in

Appendix 1, and the four-dimensional experiments in

Table 6 in Appendix 1. A more detailed description of

each experiment is provided in the following subsections.

3.1 Drift simulated by translation

The first set of experiments was created by shifting the

mean of the data l and fixing the covariance matrix R. For

this type of drift, two settings were created. One setting is

characterized by the one-axis translation simulating a local

concept drift case [46], and the other by the two-axis

translation simulating a global concept drift case [47]. The

details of the experiments are given as follows:

(a) One-axis Translation: For the two-dimensional input

space, the translation vector 3 0½ �T is used to shift

the original mean 0 0½ �T . Using the aforemen-

tioned drift parameters, two experiments have been

created, one experiment whose class posterior prob-

ability function defined in Eq. 6, it is referred to as

Exp1.1, and visualized in Fig. 2a, and the other one

using the function defined in Eq. 7, it is referred to as

Exp1.2, and visualized in Fig. 2b.

(b) Two-axis Translation: For the two-dimensional

space, the original mean is shifted by the translation

vector 3 1½ �T . Exp1.3 refers to the experiment

whose class posterior probability function defined in

Eq. 6, and Exp1.4 using the function defined in

Eq. 7. Exp1.3 and Exp1.4 are visualized in Fig. 2c

and d, respectively. Similarly for the four-dimen-

sional data, the original mean is shifted by the

translation vector 0 �2 �1 1½ �T . The experi-

ment whose class posterior probability function is

defined in Eq. 8 is denoted as Exp2.1, while Exp2.2

denotes the experiment whose class posterior prob-

ability function is defined in Eq. 9.

3.2 Drift simulated by scaling

On the contrary of the drift explained in the previous Sect.

3.1, the data have been transformed by scaling the

covariance matrix R and fixing the mean l of the data. In

this set of experiments, two settings have been created, one

setting for one-axis scaling simulating a local concept drift

situation and another one for two-axis scaling simulating a

global concept drift situation. To scale the covariance

matrix R using the scalars si [0 for i ¼ 1; . . .; d that

represent the scaling factors for each axis direction, the

scaling matrix can be written in matrix form as:

Sd ¼

s1 0 � � � 0

0 s2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � sd

2
66664

3
77775
; si [0: ð10Þ

Therefore, the scaled covariance matrix R
0

can be found by

computing the product R
0 ¼ SSR, the scaled covariance

matrix is cataloged as:

R
0 ¼

s2
1 0 � � � 0

0 s2
2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � s2
d

2
66664

3
77775

r2
1 r2

12 � � � r2
1d

r2
21 r2

2 � � � r2
2d

..

. ..
. . .

. ..
.

r2
d1 r2

d2 � � � r2
d

2
66664

3
77775

¼

ðs1r1Þ2 ðs1r12Þ2 � � � ðs1r1dÞ2

ðs2r21Þ2 ðs2r2Þ2 � � � ðs2r2dÞ2

..

. ..
. . .

. ..
.

ðsdrd1Þ2 ðsdrd2Þ2 � � � ðsdrdÞ2

2
666664

3
777775
;

ð11Þ

where si is the scaling factor of dimension i and rij is the

covariance between dimensions i and j. The details of the

experiments are given as follows:

Fig. 2 Training and test data points and the optimal decision

boundary of the experiments

Neural Computing and Applications (2023) 35:17555–17577 17559

123

(a) One-axis scaling: For the two-dimensional input

space, the scaling matrix S ¼ 2 0

0 1

� �
is used to

transform the original covariance matrix

R ¼ 1 0

0 1

� �
. Applying Eq. 11, the scaled covari-

ance matrix is R
0 ¼ 4 0

0 1

� �
. Using the scaled

covariance matrix R
0
, two experiments have been

created: Exp1.5, visualized in Fig. 2e, and Exp1.6,

visualized in Fig. 2f, whose class posterior probabil-

ity function defined in Eqs. 6 and 7, respectively.

(b) Two-axis scaling: For the two-dimensional space, the

original covariance matrix is transformed by the

scaling matrix S ¼
ffiffiffi
3

p
0

0
ffiffiffi
2

p
� �

, resulting in a scaled

covariance matrix R
0 ¼ 3 0

0 2

� �
. Exp1.7, visualized

in Fig. 2g, and Exp1.8, visualized in Fig. 2h, refer to

the experiments whose class posterior probability

function defined in Eqs. 6 and 7, respectively. Sim-

ilarly for the four-dimensional data, the original

covariance matrix is transformed by the scaling

matrix: S ¼

ffiffiffi
3

p
0 0 0

0
ffiffiffi
2

p
0 0

0 0
ffiffiffi
2

p
0

0 0 0
ffiffiffi
3

p

2
664

3
775. By applying

Eq. 10, the scaled covariance matrix is found:

R
0 ¼

3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

2
664

3
775. Exp2.3 and Exp2.4 denote

the experiments whose class posterior probability

function defined in Eqs. 8 and 9, respectively.

3.3 Drift simulated by translation and scaling

In this set of experiments, a combination of linear trans-

formations of the data points is used by translating and

scaling the dataset to simulate the drift. For two-dimen-

sional data, translation is formed using the translation

vector 3 1½ �T , while scaling is formed using the scaling

matrix S ¼
ffiffiffi
3

p
0

0
ffiffiffi
2

p
� �

, resulting in a scaled covariance

matrix R
0 ¼ 3 0

0 2

� �
.

Exp1.9, visualized in Fig. 2i, and Exp1.10, visualized in

Fig. 2j, refer to the experiments whose class posterior

probability function defined in Eqs. 6 and 7, respectively.

3.4 Drift simulated by translation, scaling
and rotation

In this set of experiments, the drift is simulated by applying

three different affine transformations to the dataset by

translating, scaling, and rotating the data points. The

covariance matrix after scaling and rotating can be calcu-

lated by means of the following matrix multiplication:

R
00 ¼ RR

0
RT ; R

0 ¼ SSR; ð12Þ

where R is the rotation matrix. Note that the order of the

transformation methods affects the end results. In these

experiments, the assumption is made that the data are being

scaled and rotated.

For the rotation of the data points, a rotation matrix R is

defined to rotate the data points through a desired angle h
about their origin in space. In a two-dimensional space, the

general definition of the rotation matrix R is given by the

following equation:

RðhÞ ¼
cos h � sin h

sin h cos h

� �
: ð13Þ

For the four-dimensional space, a basic rotation matrix R is

given by the following equation:

RðhÞ ¼

cos h � sin h 0 0

sin h cos h 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð14Þ

where h is the rotation angle.

In our experimental settings, for the two-dimensional

case, a translation vector 4 �1½ �T is used to shift the

original mean l. For scaling and rotation, the scaling

matrix S ¼ 2 0

0
ffiffiffi
3

p
� �

is used to scale and rotate the data

by 45�. This parameter setting would result in the follow-

ing scaled and rotated covariance matrix by applying

Eq. 12 and the rotation matrix defined in Eq. 13:

R
00 ¼ 3:5 0:5

0:5 3:5

� �
.

Exp1.11, visualized in Fig. 2k, and Exp1.12, visualized

in Fig. 2l, refer to the experiments whose class posterior

probability function defined in Eqs. 6 and 7, respectively.

For four-dimensional data, the original mean l is shifted

through the translation vector 0 �2 �1 1½ �T and scale

the data points through the scaling matrix

S ¼

ffiffiffi
3

p
0 0 0

0
ffiffiffi
2

p
0 0

0 0
ffiffiffi
2

p
0

0 0 0
ffiffiffi
3

p

2

664

3

775, and then rotate the scaled

data points by 45�. This parameter setting would result in

17560 Neural Computing and Applications (2023) 35:17555–17577

123

the following scaled and rotated covariance matrix by

applying Eq. 12 and the rotation matrix defined in Eq. 14:

R
00 ¼

2:5 0:5 0 0

0:5 2:5 0 0

0 0 2 0

0 0 0 3

2
664

3
775. Exp2.5 and Exp2.6 denote

the experiments whose class posterior probability function

is defined in Eqs. 8 and 9, respectively.

4 Evaluation methodology

In this section, the methodology to address the research

questions and quantify the robustness of ML models’

performance to covariate shift situations is explained. The

ML models used for evaluation are first iterated, followed

by a description of the evaluation metrics used to assess

performance. Lastly, the decomposition of the pdfs by the

density ratio regions is described.

4.1 ML models

In this paper, the performance of several popular conven-

tional ML algorithms is compared under covariate shift to

address RQ1 and RQ2. To draw conclusions and gain

better insight into the robustness to distributional shifts, the

chosen ML algorithms have been diversified by selecting

classification algorithms from different families.

The selected ML algorithms for our evaluation are the

following:

• Support vector machines (SVM): SVM [48] is one of the

most popular ML classification algorithms. SVM clas-

sifies the points by finding the optimal separating

hyperplane between the classes.

• Logistic regression (LR): LR models are used to predict

the likelihood of the target class and are usually solved

by maximum likelihood methods [49]. For binary

classification, the logistic regression model predicts

the probability as follows:

pðy ¼ 	1 j x;wÞ ¼ 1

1þ exp �ywTxð Þ : ð15Þ

• Random forests (RF): Random forests are an ensemble

of decision tree models and an extension of the bagging

method [50]. It creates a collection of de-correlated

decision trees and then aggregates the predictions of

each individual tree.

• Gaussian Naive Bayes (GNB): GNB is a simple

probabilistic classification algorithm that implements

Bayes’ Theorem [51]. It involves calculating the

posterior probability by applying the Bayes rule:

pðy ¼ 	1 j xÞ ¼ pðy ¼ 	1Þ
Qd

i¼1 pðxi j y ¼ 	1Þ
pðxÞ :

ð16Þ

GNB algorithm assumes that the class-conditional

probability distribution, i.e., pðx j y ¼ 	1Þ, follows the

Gaussian distribution and estimates the mean and

standard deviation parameters from the training data.

• K-Nearest-Neighbors (KNN): KNN is a popular algo-

rithm that uses the neighborhood of the data point to

make predictions [52]. A voting mechanism is used to

determine the class of the new data point. The votes are

retrieved from the k data points that are the closest to

the new data point.

4.2 Evaluation metrics

Observing the loss rate in the performance of ML models is

a commonly adopted approach to measure the robustness

of the learning algorithms to distributional changes

[53, 54]. The performance is usually measured on two data

samples, the training samples and out-of-distribution

samples. This paper evaluates the robustness of the ML

models used in the experiments using the degradation rate

of different performance metrics, including accuracy, F-

score, and Matthews coefficient of correlation (MCC). The

percentage of data points that are correctly classified rep-

resents the accuracy of the model. With TP representing

the count of true positives, TN represents the count of true

negatives, FP represents the count of false positives, and

FN the count of false negatives, the accuracy can be

expressed as:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
: ð17Þ

On the other hand, the F-score, also called the F1 score, is

the harmonic mean between the precision and recall met-

rics [55]. Recall measures the ratio of positive data points

that are correctly classified, whereas precision measures the

ratio of data points that are classified as positive that are

truly positive:

F-score ¼ 2 � Precision � Recall

Precision þ Recall
; ð18Þ

where

Recall ¼ TP

TPþ FN
; ð19Þ

Precision ¼ TP

TPþ FP
: ð20Þ

Similarly, MCC uses the confusion matrix to score the

quality of the classification in the interval [-1, ?1], with

Neural Computing and Applications (2023) 35:17555–17577 17561

123

-1 denoting perfect misclassification and ?1 denoting

perfect classification, where 0 means prediction more of a

random prediction:

MCC ¼ TP � TN � FP � FNffi
ðTP þ FPÞ � ðTPþ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p :

ð21Þ

4.3 PDF domain region decomposition

To address RQ3 and evaluate the performance on sub-

populations of the dataset according to the density ratio

between the test and training datasets, the input space

domain of the test dataset is decomposed into two regions.

The first region, denoted R1, is the region with a high

density of the training dataset; i.e., where the density ratio

is r ¼ pteðxÞ
ptrðxÞ
 1. The other region denoted R2, is the region

with high density of the test dataset, that is, where the

density ratio r ¼ pteðxÞ
ptrðxÞ [1. To decompose the pdfs by

density regions, the following equation must be solved:

pteðxÞ ¼ ptrðxÞ: ð22Þ

Since the distribution is multivariate in our experiments,

the pdfs are hypersurfaces of dimension d embedded in

ðd þ 1Þ-dim space, and they intersect in a set of d-dim

points that lie on a hypersurface H, also embedded in

(d þ 1)-dim space; where d is the dimension of the data

points. The solution of Eq. 22 would provide the hyper-

surface H equation.

Solving Eq. 22 for the d-dimensional case of our

experiments; X�N dðl;RÞ:
1

ð2pÞd=2jRj1=2
exp � 1

2
X � lð ÞTR�1 X � lð Þ

� �

¼ 1

ð2pÞd=2
exp � 1

2
XTX

� �
;

ð23Þ

results in the hypersurface H defined by the following

equation:

HðXÞ : ðX � lÞTR�1ðX � lÞ þ logðj R jÞ � XTX ¼ 0:

ð24Þ

The data points that lie in the region R1 are those points

which satisfy the inequality:

ðX � lÞTR�1ðX � lÞ þ logðj R jÞ � XTX
 0; ð25Þ

otherwise, the points lie in the region R2.

Specifically, solving Eq. 22 for the two-dimensional

datasets of our experiments; i.e., where the test input

density is
x
y

� �
�N

l1

l2

� �
;

r2
1 qr1r2

qr1r2 r2
2

� �� �
:

1

2p 1 � q2ð Þ1=2r1r2

exp � 1

2 1 � q2ð Þ
x� l1

r1

� �2
"(

�2q
x� l1

r1

� �
y� l2

r2

� �
þ y� l2

r2

� �2
#)

¼ 1

2p
exp � 1

2
x2 þ y2
� �� �

;

ð26Þ

results in a 2D curve that lies on a surface S. We obtain the

following equation defining the surface S in the 3D space:

Sðx; yÞ : �1

2
þ b

r2
1

� �
x2 þ �1

2
þ b

r2
2

� �
y2

� 2bl1

r2
1

� 2bql2

r1r2

� �
x� 2bl2

r2
2

� 2bql1

r1r2

� �
y

� 2bq
r1r2

xy ¼ r;

ð27Þ

where:

r ¼ cþ 2bq
r1r2

l1l2; ð28Þ

c ¼ a� bl2
1

r2
1

� bl2
2

r2
2

; ð29Þ

b ¼ 1

2 1 � q2ð Þ ; ð30Þ

a ¼ log
1

r1r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � q2

p : ð31Þ

The data points that lie in the region R1 are those points

which satisfy the inequality:

�1

2
þ b

r2
1

� �
x2 þ �1

2
þ b

r2
2

� �
y2 � 2bl1

r2
1

� 2bql2

r1r2

� �

x� 2bl2

r2
2

� 2bql1

r1r2

� �
y� 2bq

r1r2

xy� r;

ð32Þ

otherwise, the points lie in the region R2.

The surface S has a particular shape based on the type of

drift simulated in the pdf of the dataset. Specifically, in the

case of drifts simulated by two-axis translation, the surface

S is a vertical plane in the 3D space defined by the fol-

lowing equation:

2l1x� l2
1 þ 2l2y� l2

2 ¼ 0: ð33Þ

For a translation on one axis, the surface S is a vertical

plane that is parallel to the xz-plane or the yz-plane. In

particular, if the translation is along the x-axis, the surface

S is a vertical plane parallel to the yz-plane and is given by

equation:

17562 Neural Computing and Applications (2023) 35:17555–17577

123

x ¼ l1

2
: ð34Þ

On the contrary, if the translation is along the y-axis, the

surface S is a vertical plane parallel to the xz-plane and is

given by equation:

y ¼ l2

2
: ð35Þ

In the case of two-axis scaling; r1 [1 and r2 [1; the

surface S is an elliptic cylinder defined by equation:

x2

a2
þ y2

b2
¼ 1; ð36Þ

where:

a2 ¼ 2r2
1 logðr1r2Þ
r2

1 � 1
; ð37Þ

and:

b2 ¼ 2r2
2 logðr1r2Þ
r2

2 � 1
: ð38Þ

In the special case of scaling at the same magnitude in both

dimensions; i.e., r1 ¼ r2)a ¼ b; the surface S is a right-

circular cylinder.

In the case of a one-axis scaling, the two pdfs intersect

in curves that lie on two parallel planes. If r1 ¼ 1; these

parallel planes are defined by the following equation:

y2 ¼ 2r2
2 log r2

r2
2 � 1

: ð39Þ

Whereas if r2 ¼ 1; the parallel planes are defined by the

following equation:

x2 ¼ 2r2
1 log r1

r2
1 � 1

: ð40Þ

Similarly, in the case of translation and scaling at the same

time, the surface where the two pdfs intersect is a cylinder

that is centered at
l1

1�r2
1

; l2

1�r2
2

	

. Figure 3 shows the densi-

ties of the training and test data along with the corre-

sponding intersection surface between the two pdfs of the

two-dimensional experiments.

5 Empirical results and analysis

The results of the experiments detailed in Sect. 3 will be

scrutinized in this section to answer the research questions.

Specifically, the overall results of applying the ML models

to different datasets characterized by various types of drift

will be presented. Additionally, a model-wise performance

analysis will follow. To execute the experiments, the scikit-

learn library1was utilized, a widely used open-source

Python ML package that provides the implementation of

several classification algorithms.

5.1 Degradation rate in evaluation metrics

Changes in data distribution usually lead to a degradation

of performance metrics [56]. To measure the performance

loss after the drift and address RQ1, the degradation rate is

calculated, this rate represents the percentage of the per-

formance drop of the ML model on the drifted dataset.

Table 1 recapitulates the results of the two-dimensional

experiments across the different performance metrics of the

ML models.

The first observation from the results is that the Random

Forests algorithm demonstrated a high robustness level in

most experiments across all performance metrics. This is

an advantage of ensemble-based methods that can alleviate

the biases of the datasets by combining individual classi-

fiers’ votes [57]. However, this is not the case in the four-

dimensional experiment results summarized in Table 2. RF

has shown much poorer robustness in higher-dimensional

data. This could be attributable to the fact that learners

which use more covariates to make predictions tend to

show greater robustness than those that rely on a subset of

covariates [32]. The default value provided by the scikit-

learn library was used to select the parameter that controls

the subset of covariates used to find the best tree split in the

Random Forests algorithm. The library assigns the square

root value of the total covariates to the parameter. Fur-

thermore, LR showed the highest degradation rate in most

of the two-dimensional experiments, which is a recognized

drawback of the algorithm in the case of out-of-sample

predictions, where the maximum likelihood estimator tends

to display poor performance due to the overfitting effect

[58].

For the rest of the models, there are no precise general

conclusions that can be deduced, since each model’s

degradation rates were affected by the settings of the

experiments. It can be seen from Table 1 that SVM is the

model with the second lowest degradation rate after RF in

most cases where multiple drifts were simulated, that is, in

experiments Exp1.9 to Exp1.12. On the other hand, GNB

and KNN are highly affected by multiple drifts since

p(x) has been altered to a great extent. Each model’s per-

formance will be further investigated in the following

subsection.

In terms of the effects of the complexity of the decision

surface, it can be seen that the performance on the test data

is worse and the degradation rates are higher in the four-

dimensional experiments than in the two-dimensional cases

1 https://scikit-learn.org/.

Neural Computing and Applications (2023) 35:17555–17577 17563

123

https://scikit-learn.org/

when using the more complex decision function F2, except

for the LR and GNB algorithms, as they display low

degradation rates due to poor performance on the original

dataset. This can be associated with the positive correlation

between the complexity of the decision boundary and the

dimensional space of the problem [59]. Furthermore, the

effect of the complexity of the decision boundary is more

discernible in experiments with mixed drifts, i.e., a higher

magnitude of drift.

To see how the performance metrics are acting in the

experiments, the correlation matrices of the two- and four-

dimensional experiments between the degradation rates of

different performance metrics used to evaluate the models

have been plotted. The correlation matrices are shown in

Figs. 4 and 5. From the matrices it can be seen that a strong

correlation between the degradation rates of the perfor-

mance metrics in the two-dimensional experiments (see

Fig. 4). This indicates that the performance has been stirred

in the same direction across the different metrics. However,

this correlation between the degradation rates is lower in

the four-dimensional experiments (see Fig. 5). Further-

more, by comparing the degradation rates in Tables 1 and

2, it can be seen that the MCC metric is the most affected

by changes, showing higher rates than accuracy and

F-score. However, accuracy and F-score have shown sim-

ilar degradation rates in most experiments.

5.2 Model-wise analysis

In this section, the ML model’s performance in the dif-

ferent experimental settings to address RQ2 is scrutinized.

The model-wise results of the two-dimensional experi-

ments are organized in Fig. 6, while Fig. 7 details the

results of the four-dimensional experiments. The common

ground between all ML models in the two-dimensional

datasets is that they are mostly damaged in the experiments

formulated by three types of transformation, i.e., in

experiments Exp1.11 and Exp1.12. Whereas in the four-

Fig. 3 Training and test input densities decomposed by the R1 and R2 regions and the intersection surface

17564 Neural Computing and Applications (2023) 35:17555–17577

123

Table 1 Two-dimensional robustness evaluation results

Experiment ML model Same distribution Drifted distribution Degradation rate

Acc. F1 MCC Acc. F1 MCC Acc. (%) F1 (%) MCC (%)

Exp1.1 SVM 0.998 0.9978 0.9959 0.9846 0.9847 0.9695 1.34 1.31 2.65

LR 0.9768 0.975 0.9535 0.8916 0.9014 0.8022 8.72 7.55 15.87

RF 0.9998 0.9998 0.9997 0.9987 0.9986 0.9974 0.11* 0.12* 0.23*

GNB 0.971 0.9686 0.9417 0.9523 0.9495 0.9087 1.93 1.97 3.50

KNN 0.9978 0.9977 0.9957 0.9634 0.9638 0.9274 3.45 3.40 6.86

Exp1.2 SVM 0.9976 0.9973 0.9951 0.9612 0.9765 0.8742 3.65 2.09 12.15

LR 0.9786 0.9768 0.9569 0.9457 0.9688 0.7825 3.36 0.82 18.23

RF 1.0 1.0 1.0 0.9988 0.9988 0.9977 0.12* 0.12* 0.23*

GNB 0.9711 0.9687 0.9419 0.9663 0.9796 0.8886 0.49 1.13 5.66

KNN 0.9973 0.9971 0.9946 0.9823 0.9896 0.9318 1.50 0.75 6.31

Exp1.3 SVM 0.997 0.9967 0.9939 0.986 0.9832 0.9712 1.10 1.35 2.28

LR 0.9768 0.9747 0.9533 0.955 0.9487 0.9107 2.23 2.67 4.47

RF 0.9983 0.9981 0.9966 0.9931 0.9919 0.986 0.52* 0.62* 1.06*

GNB 0.9655 0.9622 0.9305 0.9502 0.9415 0.8982 1.58 2.15 3.47

KNN 0.9962 0.9958 0.9922 0.9896 0.9878 0.9788 0.66 0.80 1.35

Exp1.4 SVM 0.9966 0.9963 0.9932 0.9936 0.993 0.9872 0.30 0.33 0.60

LR 0.9766 0.9747 0.953 0.9699 0.9675 0.9402 0.69 0.74 1.34

RF 0.9983 0.9982 0.9966 0.997 0.9968 0.9941 0.13 0.14* 0.25*

GNB 0.97 0.9674 0.9397 0.9689 0.9657 0.9373 0.11* 0.18 0.26

KNN 0.9965 0.9962 0.993 0.9922 0.9914 0.9844 0.43 0.48 0.87

Exp1.5 SVM 0.9982 0.998 0.9964 0.872 0.9077 0.7375 12.64 9.05 25.98

LR 0.9776 0.9756 0.9548 0.944 0.9643 0.8463 3.44 1.16 11.36

RF 0.9998 0.9999 0.9996 0.9988 0.9988 0.9977 0.10* 0.11* 0.19*

GNB 0.9684 0.9656 0.9365 0.9539 0.9686 0.888 1.50 0.31 5.18

KNN 0.9969 0.9966 0.9938 0.9906 0.9938 0.9744 0.63 0.28 1.95

Exp1.6 SVM 0.9978 0.9976 0.9956 0.8842 0.7538 0.7177 11.39 24.44 27.91

LR 0.9752 0.9729 0.9501 0.9232 0.8834 0.8398 5.33 9.20 11.61

RF 1.0 0.9999 0.9999 0.9984 0.9982 0.9967 0.16* 0.17* 0.32*

GNB 0.9696 0.9667 0.9389 0.9532 0.9127 0.8874 1.69 5.59 5.49

KNN 0.9958 0.9954 0.9914 0.9868 0.9773 0.9681 0.90 1.82 2.35

Exp1.7 SVM 0.9907 0.9902 0.9814 0.9478 0.9481 0.8956 4.33 4.25 8.74

LR 0.8198 0.8036 0.6391 0.7532 0.7816 0.5241 8.12 2.74 17.99

RF 0.9998 0.9998 0.9996 0.9956 0.9954 0.9913 0.42* 0.44* 0.84*

GNB 0.7645 0.7137 0.5408 0.7558 0.7197 0.5301 1.14 0.84 1.98

KNN 0.9906 0.9901 0.9812 0.9242 0.9254 0.8487 6.70 6.53 13.50

Exp1.8 SVM 0.9903 0.9899 0.9806 0.9325 0.94 0.8636 5.84 5.04 11.93

LR 0.8231 0.8046 0.6474 0.6383 0.7581 0.2909 22.45 5.78 55.07

RF 0.9952 0.995 0.9905 0.9868 0.9884 0.9735 0.84* 0.66* 1.72*

GNB 0.769 0.7192 0.5524 0.7049 0.7885 0.418 8.34 9.64 24.33

KNN 0.9918 0.9914 0.9835 0.8882 0.9072 0.7734 10.45 8.49 21.36

Exp1.9 SVM 0.99 0.9894 0.9798 0.9698 0.9683 0.9394 2.04 2.13 4.12

LR 0.8188 0.7997 0.6375 0.7405 0.714 0.4803 9.56 10.72 24.66

RF 0.9942 0.9939 0.9884 0.9805 0.9796 0.961 1.38* 1.44* 2.77*

GNB 0.7664 0.7138 0.5449 0.7264 0.66 0.4683 5.22 7.54 14.06

KNN 0.9916 0.9912 0.9833 0.9625 0.9607 0.9249 2.93 3.08 5.94

Neural Computing and Applications (2023) 35:17555–17577 17565

123

dimensional datasets, the models are more affected by the

complexity of the classification function, i.e., in the

experiments where the true classification function is F2,

namely, the experiments with even numbers.

In the two-dimensional experiments, as shown in

Fig. 6a, the SVM algorithm was found to be more sus-

ceptible to scaling than to translating the data distribution,

i.e., in experiments Exp1.5 �1.8. This is interwoven with

the decision boundary built by the SVM algorithm for the

classification problem. Scaling the covariance matrix will

lead to changes in the dispersion of the data points that

could require a change in the shape of the decision

boundary, whereas translating the mean would require

shifting the decision boundary without adjusting its shape.

In contrast, as shown in Fig. 6b, the LR algorithm has

shown poorer performance in the translated one-axis dis-

tribution and the scaled two-axis distribution. RF algorithm

has exhibited a steady degradation rate that increases with

the complexity of the drift simulated in the dataset, as

shown in Fig. 6c. Similarly to RF, GNB and KNN algo-

rithms have shown relative degradation rates to the types of

drift simulated in the data distribution, by scoring low

degradation rates in experiments that include single drifts,

and higher rates in experiments that include mixed types of

drift, as shown in Fig. 6d and e.

In four-dimensional experiments, it is clear that perfor-

mance degradation is most dominant by the complexity of

the class posterior probability function used across all ML

models; see Fig. 7. Specifically, the MCC metric was the

most sensitive, showing the highest degradation rates in all

experiments. However, the degradation rates of accuracy

and F-score are quite close to each other.

5.3 Region-based performance evaluation

After evaluating the overall performance of the ML models

in the presence of distributional shifts, the performance of

the ML models have been evaluated on subpopulations of

the data to address RQ3. To ensure an impartial evaluation,

we assessed the performance on 10,000 data points in each

region. The findings of the region-based evaluation of the

two-dimensional experiments are shown in Tables 3 and 4

for the four-dimensional experiments.

From the results, it can be seen that the performance of

the different ML models is very high in the R1 region, that

is, in the region with a high training input density in most

experiments. However, the models are more erroneous in

the R2 region, that is, in the region with a low training

input density. This is an important observation that the

models tend to be accurate in the high-training input den-

sity regions and work well in such regions, even though the

distribution has changed. Furthermore, upon comparing

Tables 1 and 3, and Tables 2 and 4, it can be observed

that the results obtained from data sampled from the same

training distribution are similar to the outcomes observed

in region R1. This is because the majority of data points are

concentrated in this region due to a higher training input

density. Likewise, for the drifted distribution, the results

Table 1 (continued)

Experiment ML model Same distribution Drifted distribution Degradation rate

Acc. F1 MCC Acc. F1 MCC Acc. (%) F1 (%) MCC (%)

Exp1.10 SVM 0.9906 0.99 0.9811 0.9674 0.9671 0.935 2.34 2.31 4.70

LR 0.8198 0.7985 0.6392 0.6716 0.6548 0.3445 18.08 18.00 46.10

RF 0.9954 0.9952 0.9909 0.9792 0.9791 0.9584 1.63* 1.62* 3.28*

GNB 0.7677 0.7119 0.547 0.6486 0.6106 0.3023 15.51 14.23 44.73

KNN 0.9918 0.9912 0.9834 0.9618 0.9618 0.9236 3.02 2.97 6.08

Exp1.11 SVM 0.9902 0.9898 0.9805 0.849 0.8452 0.7006 14.26 14.61 28.55

LR 0.822 0.8062 0.6434 0.6114 0.7094 0.2809 25.62 12.01 56.34

RF 0.9952 0.995 0.9905 0.993 0.9931 0.986 0.22* 0.19* 0.45*

GNB 0.7721 0.7315 0.5559 0.6644 0.7242 0.366 13.95 1.01 34.16

KNN 0.9916 0.9912 0.9832 0.8474 0.853 0.6951 14.54 13.94 29.30

Exp1.12 SVM 0.9909 0.9904 0.9817 0.7302 0.6574 0.5161 26.31 33.62 47.43

LR 0.8208 0.7998 0.6421 0.5327 0.4914 0.0681 35.10 38.56 89.39

RF 0.9958 0.9955 0.9915 0.9752 0.9748 0.9512 2.07* 2.08* 4.06*

GNB 0.7709 0.7183 0.5548 0.4958 0.3764 0.0051 35.69 47.60 100.92

KNN 0.9916 0.9912 0.9833 0.728 0.7185 0.458 26.58 27.51 53.42

The bold asterisk indicates the machine learning model with the lowest degradation rate compared to other models in the same experiment

17566 Neural Computing and Applications (2023) 35:17555–17577

123

are similar to those obtained from region R2 since the test

density is high in this region, resulting in a higher number

of data points contributing to the experiments.

This result can be beneficial for interpreting where

models tend to fail when making predictions. Additionally,

it can be used to develop an adaptive solution for covariate

shift situations, where a region-based importance weight

can be introduced to correct the bias and ensure high-ro-

bustness in the affected regions. Moreover, introducing

such region-based importance weights can reduce the cost

of computing point-wise importance weights to region-

wise importance weights in the cases of large datasets. This

would also solve the drawback of the conventional

importance weighting technique, where w(x) can become

unbounded and very large for a few points, leading to large

variances of the estimated ratios [60].

In the two-dimensional experiments, it can be seen that

the LR and GNB algorithms perform poorly in the R1

region in the experiments with mixed drifts. However, they

do not tend to be sensitive to this region in the four-di-

mensional experiments, as they exhibit similar perfor-

mance across the evaluation metrics in all the experiments.

It is also noteworthy to see that the RF algorithm has a high

performance in R1 in all two- and four-dimensional

experiments in all evaluation metrics, and most of the

misclassifications were in the R2 region. Similarly to the

overall robustness results presented in the previous section,

the MCC appears to be the most susceptible metric

Table 2 Four-dimensional robustness evaluation results

Experiment ML model Same distribution Drifted distribution Degradation rate

Acc. F1 MCC Acc. F1 MCC Acc. (%) F1 (%) MCC (%)

Exp2.1 SVM 0.993 0.9923 0.9859 0.9739 0.9812 0.9385 1.92 1.12 4.81

LR 0.9691 0.9714 0.9795 0.9662 0.9377 0.9327 0.24* 1.38 0.53*

RF 0.9768 0.9746 0.9533 0.9337 0.9517 0.8471 4.41 2.35 11.14

GNB 0.9641 0.9599 0.9281 0.92 0.9391 0.8368 4.57 2.17 9.84

KNN 0.974 0.9716 0.9477 0.9592 0.9706 0.9038 1.52 0.10* 4.63

Exp2.2 SVM 0.7518 0.7449 0.5038 0.6056 0.6132 0.2113 19.45 17.68 58.06

LR 0.5002 0.6346 0.0053 0.4982 0.4689 0.0004 0.40* 35.34 92.45

RF 0.9166 0.9158 0.8333 0.7844 0.7811 0.5692 14.42 14.71 31.69*

GNB 0.501 0.5155 0.0091 0.4952 0.5124 0.002 1.17 0.60* 78.02

KNN 0.904 0.9029 0.808 0.7756 0.77 0.5518 14.20 14.72 31.71

Exp2.3 SVM 0.9938 0.993 0.9874 0.9818 0.9793 0.9632 1.21 1.38 2.45

LR 0.9704 0.9668 0.9401 0.9627 0.9591 0.926 0.79 0.80 1.50

RF 0.9796 0.9772 0.9587 0.9652 0.961 0.9296 1.47 1.66 3.04

GNB 0.9708 0.9666 0.9411 0.9674 0.9626 0.9341 0.35* 0.41* 0.74*

KNN 0.9768 0.974 0.953 0.969 0.9653 0.9374 0.80 0.89 1.64

Exp2.4 SVM 0.7512 0.7468 0.5026 0.5994 0.5875 0.1987 20.21 21.33 60.47

LR 0.5011 0.4817 0.0038 0.4983 0.4734 0.0017 0.56 1.75* 55.26

RF 0.9216 0.9211 0.8433 0.7838 0.7821 0.5676 14.95 15.09 32.69

GNB 0.5042 0.5182 0.0088 0.5017 0.4014 0.0013 0.50* 22.54 85.23

KNN 0.9008 0.9001 0.8015 0.7741 0.7731 0.5482 14.07 14.11 31.60*

Exp2.5 SVM 0.9935 0.9927 0.9869 0.9174 0.9285 0.8411 7.66 6.47 14.77

LR 0.9698 0.9737 0.9389 0.9673 0.9661 0.9312 0.26* 0.79 0.82*

RF 0.976 0.9731 0.9514 0.9301 0.9413 0.8575 4.70 3.27 9.87

GNB 0.9686 0.9642 0.9369 0.9445 0.9527 0.8914 2.49 1.19 4.86

KNN 0.974 0.9709 0.9473 0.959 0.9669 0.9133 1.54 0.41* 3.59

Exp2.6 SVM 0.758 0.7558 0.5161 0.5383 0.5558 0.077 28.98 26.46 85.08

LR 0.5025 0.5234 0.0048 0.498 0.2368 0.0037 0.90 54.76 22.92*

RF 0.92 0.92 0.8401 0.6544 0.6663 0.3099 28.87 27.58 63.11

GNB 0.5012 0.51 0.006 0.497 0.4913 0.0026 0.85* 3.81* 56.67

KNN 0.9014 0.9015 0.8029 0.6662 0.6837 0.3348 26.09 24.16 58.30

The bold asterisk indicates the machine learning model with the lowest degradation rate compared to other models in the same experiment

Neural Computing and Applications (2023) 35:17555–17577 17567

123

compared to accuracy and F-score in the R2 region,

showing higher performance loss rates. Furthermore, the

complexity of the decision function has been shown to

have a higher impact on the R2 region.

The performance of ML models in the context of region-

based analysis was further investigated by conducting an

examination of the data points based on the density ratio

values. Specifically, the region R1 consists of data points

with a density ratio of a positive number that is less than 1,

while region R2 includes data points with a density ratio

higher than 1. To provide a comprehensive overview of the

density ratio values in the experiments, quartiles were

calculated, which can be found summarized in Table 7 for

the two-dimensional experiments, and Table 8 in the

appendix Sect. B. The performance metric used in this

analysis is the accuracy, as it was found to have high

correlations with other performance metrics, see Tables 4

and 5. Therefore, similar insights could be obtained by

analyzing the different performance metrics.

The performance of the ML models in each quartile of

the density ratio for the two-dimensional experiments is

shown in Fig. 8. As can be observed, in most cases, the

Fig. 4 Correlation between degradation rates of performance metrics

in the two-dimensional experiments

Fig. 5 Correlation between degradation rates of performance metrics

in the four-dimensional experiments

Fig. 6 Model-wise performance evaluation in two-dimensional

experiments

17568 Neural Computing and Applications (2023) 35:17555–17577

123

performance of the models degrades significantly as the

density ratio increases, indicating that the models become

less reliable as we move further from the training domain

region. In particular, SVM exhibits the highest level of

sensitivity as the density ratio increases, while RF

demonstrates the highest level of robustness at high density

ratio values. Similar trends are observed in the four-di-

mensional experiments, as shown in Fig. 9. However, LR

and NB notably exhibit relatively stable performance

across the density ratio quartiles in most experiments.

6 Threats to validity

Like any other empirical study, the main threat to external

validity is related to the generalization of the findings.

Although the scope of this paper is to compare the per-

formance of different ML algorithms under distributional

shifts, the default parameters provided by the scikit-learn

library have been used. Using a fixed set of parameters

would narrow the focus to monitor the performance of the

different algorithms rather than to monitor the same algo-

rithm under different parameter settings. Furthermore,

taking the impact of the models’ parameters into account as

a factor, in addition to the drift parameters, would extend

the parameter space of the experiments expansively.

However, different parameter settings would yield different

results clearly, but we argue that the concluding remarks

would be the same.

On the other hand, the experiments have been conducted

using synthetic data, which might not always be similar

and mimic the real-world context. As a result, this may

affect the generalization of our findings to real-world

datasets. Despite this, in the literature, synthetic datasets

are widely used in research on changing environments

[9, 20], as they include information about drift, such as

drift time and type [61, 62], and they provide valuable

insights and a basis for further research. Moreover, real-

world datasets lack annotations of ground-truth changes,

and their underlying PDFs are often unknown [63]. Addi-

tionally, these generated datasets allow us to work on

controlled classification settings and simulate various drift

situations, and draw concrete conclusions about the per-

formance of the ML models.

7 Conclusion

In this paper, the robustness of the performance of popular

machine learning algorithms was investigated in covariate

shift situations through an exhaustive comparative study.

Several problems using a tractable classification frame-

work have been generated. Each problem is parameterized

by specific conditions that simulate a particular type of

change. Our results show that the Random Forests algo-

rithm is the most robust algorithm in the two-dimensional

experiments, showing the lowest degradation rates in the

evaluation metrics. The complexity of the classification

rule has a major impact on the performance in higher-

dimensional experiments.

The decomposition of the input space domain into

regions based on the test-to-training density ratio have

allowed to diagnose the models’ performance on subpop-

ulations of the data points. The experimental results show

the high bias of the algorithms in the regions where the

training input density is high, despite inducing a change in

the distribution of the test data points. Our future work will

consist of using this observation to develop a covariate

shift solution based on region-based importance weights.

Additionally, and to address the threats presented in

Sect. 6, we would like to investigate the effects of the

models’ hyperparameters in coping with distributional

changes. Also, the impact of using real-world datasets in

our evaluation environment. Another potential continuation

for future research could be the evaluation of deep learn-

ing-based models to further validate the conclusions drawn

from conventional ML models.

Fig. 7 Model-wise performance evaluation in four-dimensional

experiments

Neural Computing and Applications (2023) 35:17555–17577 17569

123

Table 3 Comparison of region-based performance in the two-dimensional experiments

Exp # ML model R1 region performance R2 region performance

Acc. F-score MCC Acc. F-score MCC

Exp1.1 SVM 1.0* 1.0* 1.0* 0.9835 0.9836 0.9673

LR 0.9846* 0.9846* 0.9692* 0.8848 0.8959 0.7912

RF 1.0* 1.0* 1.0* 0.9998 0.9998 0.9997

GNB 0.9721* 0.9713* 0.9457* 0.9509 0.9478 0.906

KNN 0.9949* 0.9948* 0.9897* 0.961 0.9615 0.923

Exp1.2 SVM 0.9965* 0.9974* 0.9923* 0.9591 0.9755 0.8616

LR 0.9784* 0.9838* 0.9518* 0.9437 0.9681 0.7571

RF 1.0* 1.0* 1.0* 0.9981 0.998 0.997

GNB 0.9697* 0.9765 0.9361* 0.9661 0.9798* 0.8821

KNN 0.9974* 0.998* 0.9942* 0.9814 0.9892 0.9234

Exp1.3 SVM 0.9977* 0.9975* 0.9954* 0.9739 0.9653 0.9446

LR 0.9826* 0.981* 0.9651* 0.9268 0.9125 0.8601

RF 0.9989* 0.9988* 0.9978* 0.9871 0.9834 0.9733

GNB 0.9708* 0.968* 0.9412* 0.9291 0.91 0.8527

KNN 0.9967* 0.9965* 0.9934* 0.9824 0.9772 0.963

Exp1.4 SVM 0.9966* 0.9963* 0.9931* 0.9911 0.9899 0.982

LR 0.9807* 0.9792* 0.9612* 0.9605 0.9573 0.9236

RF 0.9988* 0.9987* 0.9976* 0.9955 0.9949 0.9909

GNB 0.9727* 0.9704* 0.9454* 0.9656 0.9615 0.9305

KNN 0.9968* 0.9966* 0.9935* 0.9883 0.9866 0.9764

Exp1.5 SVM 0.9993* 0.9994* 0.9986* 0.8499 0.8941 0.6906

LR 0.9838* 0.9867* 0.9661* 0.9371 0.9614 0.8104

RF 1.0* 1.0* 1.0* 0.9989 0.9982 0.9979

GNB 0.9774* 0.9811* 0.9536* 0.9498 0.9669 0.8716

KNN 0.9973* 0.9978* 0.9944* 0.9894 0.9933 0.9688

Exp1.6 SVM 0.9981* 0.9974* 0.9958* 0.8746 0.7204 0.6879

LR 0.9819* 0.9758* 0.9617* 0.9183 0.8745 0.8296

RF 1.0* 1.0* 1.0* 0.9981 0.998 0.996

GNB 0.9806* 0.9729* 0.9587* 0.951 0.9057 0.8801

KNN 0.9974* 0.9965* 0.9944* 0.986 0.9752 0.9654

Exp1.7 SVM 0.9918* 0.9919* 0.9836* 0.9446 0.9449 0.8893

LR 0.856* 0.859* 0.7118* 0.7459 0.7766 0.5118

RF 1.0* 1.0* 1.0* 0.995 0.995 0.991

GNB 0.756* 0.7291* 0.5307* 0.7558 0.719 0.53

KNN 0.9881* 0.9883* 0.9761* 0.9196 0.9209 0.8396

Exp1.8 SVM 0.9895* 0.9908* 0.9786* 0.9291 0.9369 0.8567

LR 0.8273* 0.8631* 0.6566* 0.6269 0.7528 0.2628

RF 0.9982* 0.9985* 0.9964* 0.9862 0.9878 0.9722

GNB 0.7844* 0.8105* 0.5605* 0.7001 0.7874 0.4139

KNN 0.9895* 0.9908* 0.9786* 0.8821 0.9024 0.7609

Exp1.9 SVM 0.9909* 0.9904* 0.9817* 0.9482 0.9463 0.8963

LR 0.837* 0.8191* 0.6746* 0.642 0.6084 0.2826

RF 0.9962* 0.996* 0.9925* 0.9645 0.9629 0.929

GNB 0.7788* 0.7309* 0.5701* 0.673 0.5847 0.3631

KNN 0.9935* 0.9931* 0.9869* 0.9309 0.928 0.8618

Exp1.10 SVM 0.9903* 0.9896* 0.9805* 0.9482 0.9499 0.8965

LR 0.8889* 0.8773* 0.7779* 0.4882 0.4831 -0.0206

RF 0.9967* 0.9965* 0.9934* 0.9644 0.9658 0.9288

GNB 0.8265* 0.7857* 0.6703* 0.4985 0.4886 0.0008

KNN 0.9941* 0.9937* 0.9882* 0.9345 0.9376 0.8688

17570 Neural Computing and Applications (2023) 35:17555–17577

123

Table 3 (continued)

Exp # ML model R1 region performance R2 region performance

Acc. F-score MCC Acc. F-score MCC

Exp1.11 SVM 0.9909* 0.9916* 0.9816* 0.8244 0.8163 0.652

LR 0.814* 0.8369* 0.625* 0.5763 0.6911 0.2213

RF 0.9956* 0.996* 0.9911* 0.9926 0.9926 0.9851

GNB 0.7588* 0.7722* 0.5174* 0.6481 0.7257 0.3546

KNN 0.9909* 0.9916* 0.9816* 0.8226 0.8276 0.6458

Exp1.12 SVM 0.9865* 0.9858* 0.973* 0.7086 0.6234 0.4801

LR 0.7478* 0.7056* 0.4966* 0.5145 0.4746 0.0321

RF 0.9961* 0.9959* 0.9923* 0.9734 0.9731 0.9479

GNB 0.6996* 0.61* 0.412* 0.4785 0.3576 -0.0402

KNN 0.9878* 0.9872* 0.9757* 0.706 0.6961 0.4146

The bold asterisk represents the region with the highest score in the specific performance metric being evaluated

Table 4 Comparison of region-

based performance in the four-

dimensional experiments

Exp # ML model R1 region performance R2 region performance

Acc. F-score MCC Acc. F-score MCC

Exp2.1 SVM 0.9928* 0.9932* 0.9856* 0.9715 0.9801 0.93

LR 0.9645 0.9662* 0.9288 0.9723* 0.9307 0.9319*

RF 0.9784* 0.9795* 0.9567* 0.9281 0.9491 0.8281

GNB 0.9591* 0.9597* 0.9207* 0.9152 0.9372 0.8234

KNN 0.978* 0.9791* 0.9558* 0.9568 0.9698 0.894

Exp2.2 SVM 0.7681* 0.7662* 0.5367* 0.5862 0.5955 0.1727

LR 0.5019* 0.5615* 0.0011* 0.4977 0.4617 -0.0058

RF 0.9214* 0.922* 0.8429* 0.7682 0.7639 0.5366

GNB 0.4995 0.5741* -0.0047 0.5012* 0.5074 0.0024*

KNN 0.9008* 0.9008* 0.8017* 0.7607 0.754 0.5221

Exp2.3 SVM 0.9927* 0.9919* 0.9853* 0.9759 0.9722 0.9514

LR 0.9696* 0.9664* 0.9386* 0.959 0.9553 0.92

RF 0.9767* 0.9743* 0.953* 0.9589 0.9538 0.917

GNB 0.9631 0.9584* 0.9258* 0.9696* 0.9649 0.9386

KNN 0.9728* 0.97* 0.9452* 0.967 0.9627 0.9331

Exp2.4 SVM 0.7649* 0.7631* 0.5298* 0.5086 0.4879 0.0168

LR 0.4958 0.4743 -0.0088 0.504* 0.4857* 0.0075*

RF 0.9319* 0.9311* 0.864* 0.7026 0.701 0.4051

GNB 0.5039* 0.5114* 0.008* 0.5005 0.3178 -0.0032

KNN 0.9208* 0.9204* 0.8416* 0.6937 0.6924 0.3873

Exp2.5 SVM 0.9933* 0.9928* 0.9865* 0.9026 0.9187 0.8121

LR 0.9648 0.9626 0.9295 0.9678* 0.9753* 0.93*

RF 0.9758* 0.9742* 0.9514* 0.9212 0.9365 0.8365

GNB 0.9608* 0.9565* 0.9229* 0.9413 0.9521 0.8833

KNN 0.9743* 0.9726* 0.9484* 0.956 0.966 0.9039

Exp2.6 SVM 0.7269* 0.7179* 0.4532* 0.502 0.5272 0.0037

LR 0.5045* 0.4402* 0.0032 0.5021 0.1798 0.0108*

RF 0.9189* 0.9158* 0.8376* 0.6035 0.6222 0.2077

GNB 0.4896 0.4341 -0.026 0.5035* 0.5227* 0.0068*

KNN 0.9059* 0.9033* 0.8116* 0.6201 0.6452 0.242

The bold asterisk represents the region with the highest score in the specific performance metric being

evaluated

Neural Computing and Applications (2023) 35:17555–17577 17571

123

Fig. 8 Accuracy of machine learning models for each quartile of test-to-training density ratios in the two-dimensional experiments

17572 Neural Computing and Applications (2023) 35:17555–17577

123

Appendix A Summary of experimental
settings

This Appendix provides a summary of the parameter set-

tings and specifications used in the two-dimensional and

four-dimensional experiments conducted in this paper.

Tables 5 and 6 list the key parameters and their respective

values for the two-dimensional and four-dimensional

experiments, respectively.

Appendix B Summary of quartile values
for test-to-training density ratios

This appendix section includes summary tables of quartile

values for test-to-training density ratios in the two-dimen-

sional and four-dimensional experiments. Table 7 shows

the quartile values for the two-dimensional experiments,

while Table 8 shows the quartile values for the four-di-

mensional experiments. The reported values include the

minimum value (0), the 25th percentile (25), the median

value (50), the 75th percentile (75) and the maximum value

(100). These quartile values are useful in assessing the

spread of the test-to-training density ratios.

Fig. 9 Accuracy of machine learning models for each quartile of test-to-training density ratios in the four-dimensional experiments

Neural Computing and Applications (2023) 35:17555–17577 17573

123

Table 5 Summary of the two-dimensional experimental settings. F1 : 1
2

1 þ tanh min 0; x1ð Þ þ 4x2ð Þð Þ, F2 : 1
2

1 þ sin min 0; x1ð Þ þ 2x2ð Þð Þ

Experiment Transformation type Test data distribution Classification function

Exp1.1 One-axis translation
N x;

3

0

� �
;

1 0

0 1

� �� �
F1

Exp1.2 One-axis translation
N x;

3

0

� �
;

1 0

0 1

� �� �
F2

Exp1.3 Two-axis translation
N x;

3

1

� �
;

1 0

0 1

� �� �
F1

Exp1.4 Two-axis translation
N x;

3

1

� �
;

1 0

0 1

� �� �
F2

Exp1.5 One-axis scaling
N x;

0

0

� �
;

4 0

0 1

� �� �
F1

Exp1.6 One-axis scaling
N x;

0

0

� �
;

4 0

0 1

� �� �
F2

Exp1.7 Two-axis scaling
N x;

0

0

� �
;

3 0

0 2

� �� �
F1

Exp1.8 Two-axis scaling
N x;

0

0

� �
;

3 0

0 2

� �� �
F2

Exp1.9 Translation and scaling
N x;

3

1

� �
;

3 0

0 2

� �� �
F1

Exp1.10 Translation and scaling
N x;

3

1

� �
;

3 0

0 2

� �� �
F2

Exp1.11 Translation, scaling, rotation
N x;

4

�1

� �
;

3:5 0:5
3:5 0:5

� �� �
F1

Exp1.12 Translation, scaling, rotation
N x;

4

�1

� �
;

3:5 0:5
0:5 3:5

� �� �
F2

Table 6 Summary of the four-dimensional experimental settings. F3 : 1
2

1 þ tanh min 0; x1ð Þ � x2 þ 2x3 þ 2x4ð Þð Þ, F4 : 1
2

1 þ sin min 0; x1ð Þþðð
4x2 � 3x3 þ 2x4ÞÞ

Experiment Transformation

type

Test data

distribution

Classification

function

Exp2.1 Two-axis translation

N x;

0

�2

�1

1

2
664

3
775;

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775

0
BB@

1
CCA

F3

Exp2.2 Two-axis translation

N x;

0

�2

�1

1

2
664

3
775;

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775

0
BB@

1
CCA

F4

Exp2.3 Two-axis scaling

N x;

0

0

0

0

2
664

3
775;

3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

2
664

3
775

0
BB@

1
CCA

F3

Exp2.4 Two-axis scaling

N x;

0

0

0

0

2
664

3
775;

3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

2
664

3
775

0
BB@

1
CCA

F4

Exp2.5 Translation, scaling, rotation

N x;

0

�2

�1

1

2
664

3
775;

3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

2
664

3
775

0
BB@

1
CCA

F3

Exp2.6 Translation, scaling, rotation

N x;

0

�2

�1

1

2
664

3
775;

2:5 0:5 0 0

0:5 2:5 0 0

0 0 2 0

0 0 0 3

2
664

3
775

0
BB@

1
CCA

F4

17574 Neural Computing and Applications (2023) 35:17555–17577

123

Acknowledgements This work has been funded by the Knowledge

Foundation of Sweden (KKS) through the Synergy Project AIDA - A

Holistic AI-driven Networking and Processing Framework for

Industrial IoT (Rek:20200067).

Funding Open access funding provided by Karlstad University.

Data availibility The datasets generated during and/or analyzed dur-

ing the current study are not publicly available currently. However,

the authors are willing to provide the data per request.

Declarations

Conflict of interest The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. L’heureux A, Grolinger K, Elyamany HF, Capretz MA (2017)

Machine learning with big data, challenges and approaches. IEEE

Access 5:7776–7797

2. Witten IH, Frank E, Hall MA, Pal CJ (2017) Probabilistic

methods. In: Witten IH, Frank E, Hall MA, Pal CJ (eds.) Data

mining (Fourth Edition), Fourth edition edn., pp 335–416. Mor-

gan Kaufmann, San Francisco, CA, USA

3. Brownlee J (2019) Probability for machine learning: discover

how to harness uncertainty with Python

4. Gama Ja, Žliobaitundefined I, Bifet A, Pechenizkiy M, Boucha-

chia A (2014) A survey on concept drift adaptation. ACM

Comput Surv 46(4)

5. Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2019) Learning

under concept drift: a review. IEEE Trans Knowl Data Eng

31(12):2346–2363

6. Moreno-Torres JG, Raeder T, Alaiz-Rodrı́guez R, Chawla NV,

Herrera F (2012) A unifying view on dataset shift in classifica-

tion. Pattern Recogn 45(1):521–530

7. Raza H, Prasad G, Li Y (2015) EWMA model based shift-de-

tection methods for detecting covariate shifts in non-stationary

environments. Pattern Recogn 48(3):659–669

8. Bayram F, Ahmed BS, Kassler A (2022) From concept drift to

model degradation: an overview on performance-aware drift

detectors. Knowl-Based Syst 245:108632

9. Shimodaira H (2000) Improving predictive inference under

covariate shift by weighting the log-likelihood function. J Stat

Plann Inf 90(2):227–244

Table 7 Summary of quartile values for test-to-training density ratios in the two-dimensional experiments

Experiment 0 25 50 75% 100%

Exp1.1 7.893e-04 3.550e-01 1.002e?00 1.126e?02 4.159e?04

Exp1.2 7.798e-04 3.685e-01 1.003e?00 1.187e?02 4.272e?04

Exp1.3 8.932e-04 3.779e-01 1.002e?00 1.971e?02 1.046e?05

Exp1.4 6.042e-04 3.587e-01 1.001e?00 1.876e?02 9.802e?04

Exp1.5 5.000e-01 5.852e-01 1.001e?00 3.749e?00 1.971e?03

Exp1.6 5.000e-01 5.811e-01 1.002e?00 3.698e?00 1.670e?03

Exp1.7 4.083e-01 5.922e-01 1.003e?00 2.781e?00 1.910e?02

Exp1.8 4.083e-01 5.961e-01 1.004e?00 2.821e?00 2.043e?02

Exp1.9 2.611e-02 2.942e-01 1.002e?00 2.958e?02 4.480e?08

Exp1.10 2.618e-02 3.024e-01 1.001e?00 2.838e?02 4.531e?08

Exp1.11 6.460e-03 2.264e-01 1.005e?00 1.150e?04 6.803e?12

Exp1.12 6.009e-03 2.405e-01 1.005e?00 1.204e?04 5.318e?12

Table 8 Summary of quartile values for test-to-training density ratios in the four-dimensional experiments

Experiment 0% 25% 50% 75% 100%

Exp2.1 1.789e-03 4.076e-01 1.001e?00 2.818e?01 3.185e?03

Exp2.2 1.333e-03 4.001e-01 1.002e?00 2.863e?01 3.180e?03

Exp2.3 1.683e-01 4.952e-01 1.002e?00 5.169e?00 1.832e?03

Exp2.4 1.682e-01 4.875e-01 1.002e?00 5.284e?00 1.408e?03

Exp2.5 2.087e-02 3.180e-01 1.001e?00 7.914e?01 4.845e?06

Exp2.6 1.875e-02 3.291e-01 1.001e?00 8.119e?01 5.672e?06

Neural Computing and Applications (2023) 35:17555–17577 17575

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

10. Sugiyama M, Kawanabe M (2012) Machine learning in non-

stationary environments: introduction to covariate shift adapta-

tion. The MIT Press, Cambridge

11. Tsymbal A (2004) The problem of concept drift: definitions and

related work. Computer Science Department. Trinity College,

Dublin

12. Tasche D (2017) Fisher consistency for prior probability shift.

J Mach Learn Res 18(1):3338–3369

13. Li F, Lam H, Prusty S (2020) Robust importance weighting for

covariate shift. In: International conference on artificial intelli-

gence and statistics, pp 352–362. PMLR

14. Subbaswamy A, Saria S (2020) From development to deploy-

ment: dataset shift, causality, and shift-stable models in health ai.

Biostatistics 21(2):345–352

15. Schneider S, Rusak E, Eck L, Bringmann O, Brendel W, Bethge

M (2020) Improving robustness against common corruptions by

covariate shift adaptation. Adv Neural Inf Process Syst

33:11539–11551

16. Duchi JC, Hashimoto T, Namkoong, H (2019) Distributionally

robust losses against mixture covariate shifts. Under Rev 2

17. Fei G, Liu B (2015) Social media text classification under neg-

ative covariate shift. In: Proceedings of the 2015 conference on

empirical methods in natural language processing, pp 2347–2356

18. He H, Zha S, Wang H (2019) Unlearn dataset bias in natural

language inference by fitting the residual. arXiv preprint arXiv:

1908.10763

19. Wiemann PF, Klein N, Kneib T (2022) Correcting for sample

selection bias in Bayesian distributional regression models.

Comput Stat Data Anal 168:107382

20. Tsuboi Y, Kashima H, Hido S, Bickel S, Sugiyama M (2009)

Direct density ratio estimation for large-scale covariate shift

adaptation. J Inf Process 17:138–155

21. Sugiyama M, Krauledat M, Müller K-R (2007) Covariate shift

adaptation by importance weighted cross validation. J Mach

Learn Res 8(5)

22. Subbaswamy A, Adams R, Saria S (2021) Evaluating model

robustness and stability to dataset shift. In: International confer-

ence on artificial intelligence and statistics, pp 2611–2619. PMLR

23. Liu H, Wu Y, Cao Y, Lv W, Han H, Li Z, Chang J (2020) Well

logging based lithology identification model establishment under

data drift: a transfer learning method. Sensors 20(13):3643

24. Sakai T, Shimizu N (2019) Covariate shift adaptation on learning

from positive and unlabeled data. In: Proceedings of the AAAI

conference on artificial intelligence, vol 33, pp 4838–4845

25. Quionero-Candela J, Sugiyama M, Schwaighofer A, Lawrence

ND (2009) Dataset shift in machine learning. The MIT Press,

Cambridge

26. Huang J, Gretton A, Borgwardt K, Schölkopf B, Smola A (2006)

Correcting sample selection bias by unlabeled data. Adv Neural

Inf Process Syst 19

27. Sugiyama M, Nakajima S, Kashima H, Buenau P, Kawanabe M

(2007) Direct importance estimation with model selection and its

application to covariate shift adaptation. Adv Neural Inf Process

Syst 20

28. Kanamori T, Hido S, Sugiyama M (2009) A least-squares

approach to direct importance estimation. J Mach Learn Res

10:1391–1445

29. Sugiyama M, Suzuki T, Nakajima S, Kashima H, von Bünau P,

Kawanabe M (2008) Direct importance estimation for covariate

shift adaptation. Ann Inst Stat Math 60(4):699–746

30. Chapaneri SV, Jayaswal DJ (2019) Covariate shift adaptation for

structured regression with Frank–Wolfe algorithms. IEEE Access

7:73804–73818

31. Alaiz-Rodrı́guez R, Japkowicz N (2008) Assessing the impact of

changing environments on classifier performance. In: Conference

of the Canadian society for computational studies of intelligence,

pp 13–24. Springer

32. Abbasian H, Drummond C, Japkowicz N, Matwin S (2010)

Robustness of classifiers to changing environments. In: Canadian

conference on artificial intelligence, pp 232–243. Springer

33. Chen M, Goel K, Sohoni NS, Poms F, Fatahalian K, Ré C (2021)

Mandoline: Model evaluation under distribution shift. In: Inter-

national conference on machine learning, pp 1617–1629. PMLR

34. Sagawa S, Koh PW, Hashimoto TB, Liang, P (2019) Distribu-

tionally robust neural networks for group shifts: On the impor-

tance of regularization for worst-case generalization. arXiv

preprint arXiv:1911.08731

35. Garg S, Balakrishnan S, Lipton ZC, Neyshabur B, Sedghi H

(2022) Leveraging unlabeled data to predict out-of-distribution

performance. In: ICLR

36. Guillory D, Shankar V, Ebrahimi S, Darrell T, Schmidt L (2021)

Predicting with confidence on unseen distributions. In: Proceed-

ings of the IEEE/CVF international conference on computer

vision, pp 1134–1144

37. Deng W, Zheng L (2021) Are labels always necessary for clas-

sifier accuracy evaluation? In: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition,

pp 15069–15078

38. Recht B, Roelofs R, Schmidt L, Shankar V (2019) Do imagenet

classifiers generalize to imagenet? In: International conference on

machine learning, pp 5389–5400. PMLR

39. Taori R, Dave A, Shankar V, Carlini N, Recht B, Schmidt L

(2020) Measuring robustness to natural distribution shifts in

image classification. Adv Neural Inf Process Syst

33:18583–18599

40. Miller JP, Taori R, Raghunathan A, Sagawa S, Koh PW, Shankar

V, Liang P, Carmon Y, Schmidt L (2021) Accuracy on the line:

on the strong correlation between out-of-distribution and in-dis-

tribution generalization. In: International conference on machine

learning, pp 7721–7735. PMLR

41. Yadav C, Bottou L (2019) Cold case: The lost mnist digits. Adv

Neural Inf Process Syst 32

42. Miller J, Krauth K, Recht B, Schmidt L (2020) The effect of

natural distribution shift on question answering models. In:

International conference on machine learning, pp 6905–6916.

PMLR

43. Rajpurkar P, Zhang J, Lopyrev K, Liang P (2016) Squad:

100,000? questions for machine comprehension of text. arXiv

preprint arXiv:1606.05250

44. Sugiyama M, Krauledat M, Müller K-R (2007) Covariate shift

adaptation by importance weighted cross validation. J Mach

Learn Res 8(5):1–21

45. Hachiya H, Sugiyama M, Ueda N (2012) Importance-weighted

least-squares probabilistic classifier for covariate shift adaptation

with application to human activity recognition. Neurocomputing

80:93–101

46. Almeida PR, Oliveira LS, Britto AS Jr, Sabourin R (2018)

Adapting dynamic classifier selection for concept drift. Expert

Syst Appl 104:67–85

47. Khamassi I, Mouchaweh MS, Hammami M, Ghédira K (2018)

Discussion and review on evolving data streams and concept drift

adapting. Evol Syst 9:1–23

48. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

49. Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The

elements of statistical learning: data mining, inference, and pre-

diction, vol 2. Springer, New York

50. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

51. Bishop CM, Nasrabadi NM (2006) Pattern recognition and

machine learning, vol 4. Springer, New York

17576 Neural Computing and Applications (2023) 35:17555–17577

123

http://arxiv.org/abs/1908.10763
http://arxiv.org/abs/1908.10763
http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1606.05250

52. Hand DJ (2007) Principles of data mining. Drug Saf

30(7):621–622

53. Ovadia Y, Fertig E, Ren J, Nado Z, Sculley D, Nowozin S, Dillon

J, Lakshminarayanan B, Snoek J (2019) Can you trust your

model’s uncertainty? Evaluating predictive uncertainty under

dataset shift. Adv Neural Inf Process Syst 32

54. Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané

D (2016) Concrete problems in AI safety. arXiv preprint arXiv:

1606.06565

55. Lesch S, Kleinbauer T, Alexandersson J (2005) A new metric for

the evaluation of dialog act classification. In: Proceedings of the

9th workshop on the semantics and pragmatics of dialogue

(SEMDIAL: DIALOR), Nancy, France, pp 143–6. Citeseer

56. Rabanser S, Günnemann S, Lipton Z (2019) Failing loudly: an

empirical study of methods for detecting dataset shift. Adv

Neural Inf Process Syst 32

57. Clark C, Yatskar M, Zettlemoyer L (2019) Don’t take the easy

way out: ensemble based methods for avoiding known dataset

biases. arXiv preprint arXiv:1909.03683

58. Shafieezadeh Abadeh S, Mohajerin Esfahani PM, Kuhn D (2015)

Distributionally robust logistic regression. Adv Neural Inf Pro-

cess Syst 28

59. Atashpaz-Gargari E, Sima C, Braga-Neto UM, Dougherty ER

(2013) Relationship between the accuracy of classifier error

estimation and complexity of decision boundary. Pattern Recogn

46(5):1315–1322

60. Cortes C, Mohri M (2014) Domain adaptation and sample bias

correction theory and algorithm for regression. Theoret Comput

Sci 519:103–126

61. Micevska S, Awad A, Sakr S (2021) SDDM: an inter-

pretable statistical concept drift detection method for data

streams. J Intell Inf Syst 56(3):459–484

62. Lima M, A Fagundes R.A.d (2021) A comparative study on

concept drift detectors for regression. In: Brazilian conference on

intelligent systems, pp 390–405. Springer

63. Cano A, Krawczyk B (2020) Kappa updated ensemble for drifting

data stream mining. Mach Learn 109:175–218

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:17555–17577 17577

123

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1909.03683

	A domain-region based evaluation of ML performance robustness to covariate shift
	Abstract
	Introduction
	Background and related work
	Problem formulation and notation
	Covariate shift adaptation
	Measuring robustness to distribution shift

	Experimental settings
	Drift simulated by translation
	Drift simulated by scaling
	Drift simulated by translation and scaling
	Drift simulated by translation, scaling and rotation

	Evaluation methodology
	ML models
	Evaluation metrics
	PDF domain region decomposition

	Empirical results and analysis
	Degradation rate in evaluation metrics
	Model-wise analysis
	Region-based performance evaluation

	Threats to validity
	Conclusion
	Appendix A Summary of experimental settings
	Appendix B Summary of quartile values for test-to-training density ratios
	Data availibility
	References

