
Internet of Things 22 (2023) 100805

A
2
(

R

A
f
H
R
A
a

b

c

2

A

K
I
E
T
M

1

t
i
d
b
c

f
b

h
R

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

esearch article

IDA—A holistic AI-driven networking and processing framework
or industrial IoT applications
amza Chahed a,1, Muhammad Usman a,1, Ayan Chatterjee a,1, Firas Bayram a,
ajat Chaudhary a, Anna Brunstrom a, Javid Taheri a, Bestoun S. Ahmed a,c,
ndreas Kassler a,b,∗

Karlstad University, Computer Science, Universitetsgatan 165188 Karlstad, Sweden
Deggendorf Institute of Technology, Faculty of Computer Science, Dieter-Görlitz Platz 194469 Deggendorf, Germany
Czech Technical University in Prague, Department of Computer Science, Faculty of Electrical Engineering, Karlovo náměstí 1312135 Prague
, Czech Republic

R T I C L E I N F O

eywords:
nternet of Things (IoT)
dge/cloud computing
ime-Sensitive Networks (TSN)
achine Learning

A B S T R A C T

Industry 4.0 is characterized by digitalized production facilities, where a large volume of sensors
collect a vast amount of data that is used to increase the sustainability of the production by
e.g. optimizing process parameters, reducing machine downtime and material waste, and the
like. However, making intelligent data-driven decisions under timeliness constraints requires the
integration of time-sensitive networks with reliable data ingestion and processing infrastructure
with plug-in support of Machine Learning (ML) pipelines. However, such integration is difficult
due to the lack of frameworks that flexibly integrate and program the networking and computing
infrastructures, while allowing ML pipelines to ingest the collected data and make trustworthy
decisions in real time. In this paper, we present AIDA - a novel holistic AI-driven network
and processing framework for reliable data-driven real-time industrial IoT applications. AIDA
manages and configures Time-Sensitive networks (TSN) to enable real-time data ingestion into
an observable AI-powered edge/cloud continuum. Pluggable and trustworthy ML components
that make timely decisions for various industrial IoT applications and the infrastructure itself
are an intrinsic part of AIDA. We introduce the AIDA architecture, demonstrate the building
blocks of our framework and illustrate it with two use cases.

. Introduction

In next-generation industrial environments, a large number of sensors continuously collect data from the shop floor and send them
o the cloud, forming the industrial Internet of Things (I-IoT). Smart Manufacturing and Industry 4.0 aims to utilize such data to make
ntelligent decisions, for example, to improve the manufacturing process, detect machine failures, predict faults, reduce machine
owntime, or reduce material waste. To this end, using Artificial Intelligence (AI) and Machine Learning (ML) based algorithms to
uild/help such Cloud-based data-driven decision-making processes has proven to be very efficient. However, several industrial use
ases require real-time detection of events and rapid decision-making under timeliness constraints. Such real-time stream and event

∗ Corresponding author at: Karlstad University, Computer Science, Universitetsgatan 1, 65188 Karlstad, Sweden.
E-mail addresses: hamza.chahed@kau.se (H. Chahed), muhammad.usman@kau.se (M. Usman), ayan.chatterjee@kau.se (A. Chatterjee),

iras.bayram@kau.se (F. Bayram), rajat.chaudhary@kau.se (R. Chaudhary), anna.brunstrom@kau.se (A. Brunstrom), javid.taheri@kau.se (J. Taheri),
estoun@kau.se (B.S. Ahmed), andreas.kassler@kau.se (A. Kassler).

1 These authors contributed equally to this work.
vailable online 6 May 2023
542-6605/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.iot.2023.100805
eceived 26 October 2022; Received in revised form 6 April 2023; Accepted 2 May 2023

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:hamza.chahed@kau.se
mailto:muhammad.usman@kau.se
mailto:ayan.chatterjee@kau.se
mailto:firas.bayram@kau.se
mailto:rajat.chaudhary@kau.se
mailto:anna.brunstrom@kau.se
mailto:javid.taheri@kau.se
mailto:bestoun@kau.se
mailto:andreas.kassler@kau.se
https://doi.org/10.1016/j.iot.2023.100805
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100805&domain=pdf
https://doi.org/10.1016/j.iot.2023.100805
http://creativecommons.org/licenses/by/4.0/

Internet of Things 22 (2023) 100805H. Chahed et al.

r
f
f
d
o
t
s

t
A
c
c
o

H
s
a
f
c
t
(
c
c

c
i
n
I
c
f
m
o
u

r
r
e
M
c
d
o
i
o

o
i
s

2

i
a
o

processing is complementary to the traditional offline processing of large volumes of data (e.g., collected from factory floors) in
clouds, where Big Data analytical frameworks can be periodically run.

Realizing factory automation where time-critical industrial processes are managed from the edge or cloud implies that real-time
equirements must be supported beyond the network, that is, by the edge and cloud infrastructures and control applications [1]. For
lexibility, scalability, and cost, edge and cloud infrastructures are being realized through lightweight virtualization technologies,
or example, docker containers managed by Kubernetes (K8s). However, when industrial control applications that previously ran on
edicated hardware transform into a collection of containerized microservices and are implemented through flexible service chains
n edge/cloud infrastructures, ensuring real-time guarantees for the entire communication and processing chain is challenging. In
his context, performance monitoring is crucial to understand system performance, detect service violations, and initiate needed
ystem re-configurations and optimizations.

Additionally, challenges arise associated with the compatibility of systems with future platforms as they evolve and with
he reliability and scalability of ML-based decision-making strategies for large platforms. Therefore, having a systematic Quality
ssurance (QA) and testing infrastructure to gauge all reliability aspects (performance, trust, etc.) of such systems in real-time is very
rucial. Ensuring the quality of data-driven decision-making systems is challenging due to the different natures of ML-based systems
ompared to conventional systems. For example, ML-based systems rely on a data-driven programming style to make decisions based
n training data, where the behavior of the program and the quality of its results may change with the arrival of new data.

Industrial IoT applications require proper infrastructure support to make data-driven decisions under timeliness constraints.
owever, a coherent AI-driven networking and processing framework for industrial IoT services is still missing. Traditional AI/ML

oftware automation stacks (e.g. based on open source frameworks such as Apache Airflow or the like [2]) or big-data platform
rchitectures for industrial manufacturing contexts such as [3] aim to exploit the elasticity of the cloud to provide component based
lexible ML-pipelines, where trustworthiness needs to be implemented manually. However, they do not support tight timeliness
onstraints from the networking side and do not integrate with monitoring of the platform to help in their scaling and automatic
roubleshooting. Similarly, several frameworks focus on edge/cloud compute infrastructures, orchestration and resource allocation
e.g., number of millicores) of containerized services that implement e.g. smart city [4] or smart manufacturing use cases combining
oncepts from Network Function Virtualization (NFV) and service decomposition, to provide a factory edge network service offering
loud connectivity [5–8].

Approaches such as FORA [9], which aim to design Fog Computing Platforms for Industrial IoT, integrate with TSN but do not
onsider trustworthiness from the ML-software components perspective. On the other hand, frameworks such as [10,11] aim to
ntegrate edge/fog computing with AI functionality. However, they do not consider the need for reconfigurable converged real-time
etworking infrastructures and cannot provide the required timeliness guarantees from the networking side for distributed Industrial
oT applications. On the networking side, there are also recent efforts to automate the management of virtualized networks and the
reation of Software-Defined Networks (SDN). However, resource management for SDNs in order to provide real-time guarantees
rom the networking side is quite challenging. Adding real-time requirements to network configurations as in TSN makes the resource
anagement problem even more complex [12]. Defining a common reference architecture that encompasses and integrates an

bservable edge/cloud, trustworthy ML-components and pipelines with real-time networks that are flexible and reconfigurable helps
s to understand the behaviors and needs of future platforms and ML services for Industrial IoT.

In this paper, we present the AIDA architecture, which aims to integrate the three pillars (see Fig. 1) required to enable
eliable industrial IoT applications; namely, (1) a converged real-time network infrastructure, which supports flexibility and dynamic
econfiguration using a software-defined approach for Time-Sensitive Network (TSN) Configuration Management (2) an industrial
dge–cloud continuum that integrates flexible observability components using data-driven algorithms, and (3) agile and trustworthy
L/AI algorithms that are embedded in the real-time industrial data stream processing infrastructure deployed in the edge/cloud

ontinuum. Our architecture is driven by real-world industrial use cases. We illustrate key components of the architecture, detail the
esign of the TSN network configuration management, illustrate key aspects for real-time performance monitoring and optimization
f container-based edge microservices and provide a detailed design of the edge/cloud software continuum. Finally, we present the
mplementation details and experimental results in relation to network reconfiguration, fault detection and recovery, monitoring
verhead analysis, and dynamic ML pipeline adaptation for industrial processes.

To present AIDA, we organized our paper as follows. Section 2 covers the background and related work followed by a discussion
f the challenges and motivation in Section 3. The use cases are discussed in Section 4. The proposed AIDA architecture is presented
n Section 5 followed by preliminary results in Section 6, highlighting the three main pillars of AIDA. Finally, Section 7 provides a
ummary and concludes the paper.

. Background and related work

In order to provide trustworthy AI/ML-enabled networked-compute fabric for Industrial IoT, three main components need to
nterwork to meet the required timeliness and reliability constraints that data-driven I-IoT applications may require: (i) a flexible
nd reconfigurable converged real-time network infrastructure; (ii) a real-time enabled edge/cloud continuum that integrates
2

bservability components and (iii) trustworthy AI/ML pipelines.

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 1. The three pillars of the AIDA architecture.

2.1. Time-sensitive networks

The delivery of traffic between various endpoints must respect end-to-end requirements. For industrial automation specif-
ically [13], four traffic categories (time-aware streams, streams, traffic-engineered non-streams, and non-streams) are defined
based on traffic periodicity (cyclic or acyclic), transmission control (time-triggered or not) and delivery requirement (latency or
deadline). However, traditional Ethernet-based networks cannot provide the required timeliness guarantees, which has led to several
proprietary standards. However, the coexistence of multiple services requires converged network infrastructures that can support a
variety of different requirements on the same network.

Time Sensitive Networking (TSN) provides several algorithms and components that extend the Ethernet standard (IEEE 802.1)
with real-time capabilities and support for different traffic types. The 802.1Qcc standard defines three models of network
management: (1) the ‘fully centralized model’ , where the Centralized Network Configuration (CNC) is responsible for managing
the configuration of the bridge and the Centralized User Configuration (CUC) is managing the end-hosts; (2) the ‘centralized
network/distributed user model’ ; and (3) the ‘fully distributed model’.

However, the configuration of the network entities is difficult due to the complexity of the TSN mechanisms and its many
parameters. In addition, when new streams are deployed in the network, a network reconfiguration may be required. The
configuration task is widely studied within the TSN community. [14] used array theory to suggest window-based scheduling and
solved the problem using Optimization Modulo Theories (OMT)/Satisfiability Modulo Theories (SMT) solver. [15] suggested an
Integer Linear Programming (ILP) formulation for joint routing and scheduling. Some other applied heuristics such as [16,17], or
metaheuristics such as [18,19].

Such network configuration optimization along with a dynamic reconfiguration during runtime imposes several challenges on
the design of the CNC and its integration into a coherent edge/cloud continuum.

2.2. Monitoring the network-compute fabric

Monitoring is a process of keeping track of the health of a system using a predefined set of metrics and logs. There are several
techniques, methodologies, and protocols available for monitoring. Among those techniques, a significant functional difference can
be highlighted between System Monitoring (SM) and Application Performance Monitoring (APM) [20].

SM focuses on collecting data that synthesize the status of infrastructure resources, e.g., networking and computing nodes.
However, APM actively measures application metrics and application traffic performance indicators, to highlight the end-user
perspective in terms of Quality of Experience (QoE). For analytical frameworks, traditional schemes are based on statistical
approaches to identify system behavior using the data collected by monitoring probes. These approaches can complement ML-based
schemes to better cope with the exponential growth of collectible data and implicitly trigger AI-based automation to reconfigure
networks [21].

Several solutions are geared towards SM [22–24]. An early-stage study on container monitoring and resource allocation is
proposed in [25]. [26] proposed unified monitoring of physical and virtual resource entities for prompt identification of operational
troubles. It is designed for physical and virtual machines but lacks support for containerized infrastructures. [27] coordinates
highly adaptable monitoring agents and their backends elastically. This solution focuses on metrics data and lacks support for
multi-tenancy.
3

Internet of Things 22 (2023) 100805H. Chahed et al.

K

a

General architectures for the monitoring and automated deployment of cloud-native microservices are studied in [28,29]. The
ubernetes itself comes with autoscalers2 for monitoring and automatically scaling the number of pods3 or the resources used by a

pod, respectively. However, none of these approaches consider performance requirements across a chain of microservices, which has
recently become one of the widely anticipated application architecture patterns for realizing distributed I-IoT applications [30,31].

2.3. Big data stream processing

In order for I-IoT applications to function properly, big data streams must be handled quickly under timeliness constraints. Big
data computing is divided into two types according to processing needs: batch and stream computing [32]. In contrast to batch
computing, where data are initially stored before being analyzed, data in a stream are immediately analyzed. A constant flow of
data challenges the handling, extraction, aggregation, and correlation of data in real-time.

Data Stream Processing (DSP) is essential in Big Data analysis. Data can be sent directly to analysis engines using DSP for quick
processing and interpretation. Several works exist on fog/edge computing DSP applications, fog-oriented run-time systems for DSP
frameworks, and high-level interfaces for fog stream processing [33]. [34] studied the use of fog-based computing resources to
process IoT data streams and presents a typical Industry 4.0 application scenario. They show that low latency or real-time data
analysis is better suited for stream processing applications on the network edge, while batch data analysis is better suited for cloud
computing resources. The paper’s architecture presents a preliminary overview of the integration of fine-grained computational
resources at the network edge.

Choosing suitable software packages to cover various use cases can be challenging when building a stream processing
infrastructure. Therefore, different authors investigated distributed data stream processing frameworks (Storm, Flink, Kafka Streams,
IBM Streams, etc.) from different angles. Isah et al. [35] reflects ongoing research on multilayer streaming analytics architecture
for both enterprises and individuals. Low latency requires DSPs to process messages without keeping them in memory. Additional
research on Big Data Systems is provided [36], and the taxonomy of technologies, products, and services were built based on the
envisaged use cases.

Continuous data streams generated by applications for smart cities, IoT, and infrastructure monitoring require rapid processing
and analysis. Scalable edge–cloud infrastructure is required for future factories. Prior research has failed to account for memory,
CPU, and network capacity constraints in large-scale IoT applications, especially when working with various types of computing
resources. Cloud-edge infrastructure has the difficulty reducing latency due to the location of data sources in IoT devices [37].

3. Challenges and motivation

In this section, we highlight the main challenges and motivations towards building the proposed architecture. While we motivated
the lack of architectural frameworks already in the introduction, we focus here on the configuration of the networked compute fabric,
monitoring, and data-driven decision-making for Industrial IoT applications.

3.1. Lack of orchestrated configuration of the networked-compute fabric

To fulfill real-time constraints, it is essential to allocate a proper amount of resources to the compute infrastructure while
establishing the network configuration along the paths over which real-time streams are to be delivered. Although the configuration
in a virtualized environment is a well-understood problem [38], the need for coordinated efforts in both network and compute
resources to satisfy all required end-to-end requirements is unavoidable. Such coordination requires appropriate interfaces and
frameworks to build and deploy a coherent configuration across compute and networks. Although there are many complex
configuration options for configuring, managing and operating TSN devices, selecting and harmonizing the correct configuration
values for them to guarantee desirable network characteristics is very challenging. This is in addition to the changes needed for end
devices to participate in e.g. time synchronization, packet scheduling, and the configuration of lower-layer parameters.

The configuration of the TSN mechanisms within the TSN elements (which constitute the network) must ensure that high-priority
and time-critical information is forwarded from the sensors towards the AI/ML stream processing pipelines that are hosted in
the virtualized edge–cloud continuum without interference. Thus, communication requirements for all involved devices need to
be known and transformed to them beforehand. To date, this tedious procedure has been performed manually and is typically
performed with the help of various engineering tools; therefore, they occasionally lead to erroneous configurations. The flexibility
of a virtualized edge-compute infrastructure enables a dynamic deployment of new services on top of existing ones. This requires a
re-configuration of the networked-compute fabric, which also may involve the re-routing of streams along with a re-configuration
of TSN mechanisms and parameters, all of which need to be orchestrated properly.

2 https://github.com/kubernetes/autoscaler.
3 A Pod is the smallest deployable computing unit that Kubernetes creates and manages. It is defined as a group of containers with shared resources, as well

s a specification for how the containers should be run.
4

https://github.com/kubernetes/autoscaler

Internet of Things 22 (2023) 100805H. Chahed et al.

o
c
c

r
K
o

K
M
t
a

3

d

s
a
M
b
c
s
I
M

S
a
a
s

4

p
c
i
P
a
i
o

4

T
I
c
I
f
a
t
d
s

3.2. Lack of monitoring and decision making systems for edge platforms

Edge infrastructures are mainly realized using lightweight virtualization technologies and are managed by standard container
rchestration frameworks. When industrial control applications are transformed from dedicated hardware into a collection of
ontainerized microservices, meeting all required real-time guarantees becomes very challenging. Monitoring and analytics are
ritical in this context to understand application and system performance, and initiate system (re)configurations.

For example, Kubernetes which is widely used as an orchestration platform for edge infrastructures offers basic application and
esource performance monitoring by looking at the various objects (e.g., pods, services, and nodes). This monitoring functionality in
ubernetes is not dependent on a single monitoring solution. It uses a resource or full metrics pipeline to collect monitoring statistics
n the Kubernetes cluster.4 The resource metrics pipeline only provides a subset of metrics related to cluster components. The full
metrics pipeline provides access to more detailed metrics than resource metrics pipeline. However, default monitoring approaches in

ubernetes still lack support for adapting measurement intervals, as well as filtering, aggregation, and monitoring data (hereafter
oD) redirection flexibility on selected metrics on worker nodes to detect critical operational issues faster, rather than waiting for

he entire MoD to be collected at a central location and then processed and analyzed. This also requires proper integration of SM
nd APM with analytics for online performance assurance.

.3. Data-driven decision making for industrial IoT

One of the trickiest challenges of any I-IoT software system is the change that the software system may follow in its life-cycle
ue to both changes in the main components of ML software system and up-scaling of ongoing services and processes.

Detecting anomalies on the fly is a common use of ML-Operations (MLOps). In this context, the analysis of abnormal behavior,
uch as sensor faults attached to the edge network, targeted network attacks, and corrupt data [39,40], are well-known examples of
nomaly detection. Detecting anomalies in this environment is a challenge due to the limited amount of available data. While an ML
odel can be pre-trained offline, additional challenges arise such as the need to detect model degradation using a digital twin [41]

ased on historical and real-time data to identify when an ML model requires retraining and/or updating. Model degradation is
aused by factors such as distributional variation in production data over time (a.k.a. training data drift) [42], variation in the
tatistical properties of the target variable (a.k.a. target or concept drift) [43], or a decrease in the quality of the incoming data [44].
n MLOps, a misclassification or an increase in false positives between anomaly and drift can significantly reduce the quality of the
L model in production.

Another closely related challenge is the need to dynamically adapt the software system in scalable industrial processes [45].
calability is one of the main characteristics of modern industries that tend to upgrade their machinery and services. This scalability
spect in industrial processes should be taken into account when building the ML software architecture by incorporating an
daptation mechanism that accommodates the changes. The adaptation mechanism facilitates the process of reusing the built ML
oftware under new conditions and saving the costs of installing a completely new system.

. Use cases

In this section, we provide two use cases that our architecture shall support, which resemble typical scenarios from our industrial
artners. Common to those use cases is that a large volume of sensorial data is produced by industrial sensors/machinery, which
o-exists with other real-time data streams that are needed for online decision-making on the converged networked-compute
nfrastructure within the edge–cloud continuum. While in current deployments, there are separate real-time networks and dedicated
LC hardware devices installed in the factory, we will explore how AIDA can support those use cases using virtualized PLCs that
re deployed in the edge–cloud continuum, where the large volume of sensorial data is processed by agile AI-/ML pipelines that
ngest the heterogeneous data, clean it, observe data problems and model drift and automatically update processing pipelines based
n data and model quality.

.1. Use Case 1 - two industrial control processes over converged infrastructure

Use case 1, see Fig. 2, resembles two industrial control processes that currently are controlled via separate networks and PLCs.
his use case focuses more on the networking and communication aspects of the involved sensors, controllers, and actuators.
t explores, what implications an implementation of such a use case has within the AIDA architecture from the networking
onfiguration challenge. Process one controls the burners of an industrial furnace (called P1-VU8). Currently, there are PLC/CPU,
nput/Output (IO) card modules, and other devices for monitoring and controlling central safety functions in furnace burner systems,
urnace human–machine interface (HMI), all connected through a combination of Profinet [46] switches, IO-link sensors/actuators,
nd dedicated PCs. The PLC is the central component that is bi-directionally connected with the other nodes in the network using
he Profinet IO protocol. The IO module is the actual component where all the sensors and actuators (temperature, control, motion
etector) are connected which plays the role of analog-to-digital (AD) converter that converts the raw voltages/currents to digital
ignals using the Profinet and Profibus protocols. In the network topology, the PLC network is attached to two types of network

4 https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/.
5

https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 2. Reconfiguration use-case: adding TSN streams for controlling a CNC machine requires dynamic configuration updates.

traffic flows, i.e., Profinet traffic and Profibus traffic. The communication of the IO-link for sensors and actuators has real-time
characteristics. The second control process resembles a CNC milling machine industrial control unit. The components of the use
case are an NC-Controller unit, which acts as a PLC with real-time drive control for cyclic traffic, diagnosis traffic using an OPC UA
client and server using acyclic traffic, and monitoring data using a web browser on a separate PC creating best-effort acyclic traffic.

4.2. Use Case 2 - Vacuum pump control

This use case aims to explore how AIDA can provide trustworthiness for I-IoT applications focusing on AI-/ML and data quality
aspects. We consider the Electroslag Remelting (ESR) process for steel industries, which is a long-lasting process. During the ESR,
vacuum pumping or extraction of oxygen (air) is required to generate a vacuum chamber. A vacuum chamber ensures that all
subsequent procedures in the ESR are free of contaminants and gas that could degrade the quality of the steel. Typically, the ESR
process operates once a day (that is, one pumping event per day) and generates about 300 occurrences each year. The ESR pressure
sensors record the minimum pressure in the chamber at the end of each pumping event, which lasts about twenty minutes, and at
the end of the pumping, experts check to see if the quality standards have been satisfied. When the quality requirements are not
met after twenty minutes, the chamber is inspected and re-pumped for an additional twenty minutes. Consequently, ML forecasting
software is utilized to quickly estimate this minimum pressure in the first few minutes of a pumping event and prevent the 20-min
wait. Pressure data from vacuum chamber sensors are collected every second and the first minute of pumping data is taken as input
to the ML software. Using this ML software deployed on the edge node in the AIDA architecture to forecast the obtainable minimum
pressure within the first minute of pumping saves valuable time and provides early detection of pumping issues. As a result, if the
minimum pressure predicted by the ML model is higher than the required threshold, the pumping is stopped early and the inspection
procedure is initiated.

5. The AIDA architecture for data-driven trustworthy I-IoT applications

5.1. Overall AIDA architecture

This section presents an overview of AIDA, an AI-driven networking and processing architecture for data-driven Industrial
IoT applications. Fig. 3 shows the overall architecture with the components and connections. AIDA aims to tightly integrate a
converged network architecture that provides real-time capabilities, with an edge–cloud continuum that automates monitoring
and configuration and an AI-based framework that can be used for data-driven applications and services. AIDA is also used for
decision-making processes in relation to network and edge-compute management and configuration. AIDA leverages principles from
Software-Defined Networking for network configuration and management, service orchestration for edge monitoring, and integrates
ML pipelines using an agile MLOps-driven approach. A prototype implementation of main components of the AIDA architecture is
openly maintained at GitLab.5

AIDA builds upon Time-Sensitive Network elements that form a converged network infrastructure, which glues together the edge-
compute nodes with the industrial IoT sensors and actuators in a reliable manner based on individual data stream requirements.
The configuration of the individual networking entities and the stream routing is managed and automated globally by a CNC,
which is responsible for installing consistent forwarding behavior and resource allocation for time-sensitive streams exploiting the
capabilities of TSN switches. Individual TSN element configuration is performed by the CNC using NetConf/YANG. The required
input to calculate the configuration is collected at the CUC, which acts as a gateway between the endpoints (edge nodes) and
the CNC. The CUC gathers information related to the end-device capabilities, communication entities, latency, and redundancy

5 https://git.cs.kau.se/research/aida.
6

https://git.cs.kau.se/research/aida

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 3. Overall AI-driven networking and processing (AIDA) architecture.

requirements of streams and passes this information to the CNC which synthesizes and deploys the network configuration. The
detailed functionality of the CNC and related entities are elaborated in Section 5.2.

Edge nodes serve as a compute fabric for deploying microservices (i.e., industrial and networking applications) where multiple
microservices collaborate and form processing chains for data stream processing (e.g. virtualized PLC receives sensor data, which
processes it, forwards it to OPC-UA nodes, that transforms the data, sends it to MQTT or Kafka brokers for further processing by the
ML ingestion pipelines). These edge nodes are orchestrated through the Kubernetes platform as a set of worker machines to manage
and operate clusters of containerized applications and services efficiently. The centralized edge node controller (ENC) hosts the
Kubernetes control plane’s components for making global decisions about the cluster (e.g., scheduling) and detecting and responding
to cluster events (e.g., starting up a new pod). To securely and cost-effectively support multiple use case deployments over the same
shared edge infrastructure, groups of resources within a single cluster are isolated from each other using Kubernetes namespaces.
Persistent operation of the compute fabric is ensured through fine-grained monitoring. For simplicity, monitoring services are divided
into two categories. First, configuration and monitoring agents (CMA) are deployed on edge nodes to provide an overview of the
compute fabric status by measuring metrics from the underlying resources. Second, centralized monitoring services (CMS) collect
monitoring data from CMA for further processing and initiating control processes as needed. The detailed description of the AIDA
monitoring architecture is explained in Section 5.3.

Real-time ML pipelines for classification, prediction, QA, and testing for inbound monitoring data from the AIDA edge
infrastructure and networking devices, and application data from industrial IoT sensors, are an essential part of the cloud and
edge-based software architecture. To ensure real-time processing of the ML software, containerized microservices that run on the
network’s edge has been utilized. These microservices enable the ML algorithms to execute on the edge, closer to the data source,
thereby reducing latency and improving real-time decision-making capabilities. By leveraging Docker containers, the ML algorithms
are packaged with their dependencies, making it easy to deploy them across multiple platforms and environments. Furthermore,
containerization allows for scalability, with the ability to add or remove containers as needed to meet changing demands. For
instances where the ML algorithms require more resources than are available on the edge, such as for automatic re-training, drift
and anomaly detection, and deployment of the ML software, processing takes place in the cloud. By offloading this work to the cloud,
the edge devices are freed up to handle real-time processing. A comprehensive overview of this work is detailed in Section 5.4.
7

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 4. Detailed architecture of CNC and related entities.

5.2. Software-defined network configuration for TSNs

Converged network infrastructure with real-time capabilities using IEEE 802.1 Time Sensitive Networking provides the required
connectivity and redundancy between sensors and actuators, as well as edge nodes in the AIDA framework. The configuration of
TSN mechanisms within TSN elements that make up the network must ensure that high-priority and time-critical information is
forwarded without interference. This entails complex procedures to define the proper parameters for the time-aware scheduler and
its reservation of timeslots for Ethernet frames. For automating and optimizing the configuration of TSN elements, we leverage
principles from Software-Defined Networking, where the CNC is the central entity deciding about proper resource allocation to
different application streams and installing the correct forwarding behavior in the network.

The architectural design of the CNC, as presented in Fig. 4, has three main building blocks: (i) the interfaces (i.e., User-Network,
Southbound, Network-Management, Network–Network, and Network-Optimizer), (ii) the database (DB) as storage entity that holds
the repository of configurations and other vital information required by the different entities of the CNC and (iii) the internal
subsystems. Internally, CNC has two subsystems (TSN and Operational) that interact through different interfaces with the ecosystem,
that is, (a) CUC at northbound through the User-Network interface (UNI), (b) TSN bridges at southbound, (c) other technologies
and network-controllers through the Network–network interface (NNI), (d) network optimizer through the network configuration
and optimization interface, and (e) to the human network manager through the network management interface. The functionalities
of all the network entities/sub-entities are detailed below.

5.2.1. Centralized user configuration
The CUC interacts directly with the CNC and TSN end-points (e.g., sensors, actuators, or edge nodes). Here, the CUC

communicates with the CNC using the IEEE 802.1 Qdj interface [47], which specifies the configuration enhancements for TSN using
northbound APIs or the UNI. The CUC receives the configuration requests from the end-points containing the stream requirements
as well as the end-points capabilities and passes the requests to the CNC in terms of TSN streams/non-streams to configure. The
end-point configuration computed by the CNC is returned as a response to the CUC stating the actual configuration of the networking
interfaces that allows the network to keep its promises in terms of timeliness and reliability.

5.2.2. Network optimizer
The network optimizer is responsible for the optimization tools required to optimize the forwarding configuration of the

individual elements and thus the network as a whole. To maintain the CNC generic and independent of the hosting system, the
network optimizer is designed as an external entity that interacts with the CNC using the network configuration optimization
8

interface (NOI), which can be implemented using e.g. web service interface. The network optimizer receives the network topology,

Internet of Things 22 (2023) 100805H. Chahed et al.

t
a
c
r

5

o

m
u
A
s

5

a
m
e

network element capabilities and stream requirements (e.g. maximum latency and jitter) and characteristics (e.g. frame sizes
and periodicity of the data stream) and calculates for each network element the required configuration (e.g. queue and shaper
configuration) in order to respect the timeliness and reliability requirements of the streams.

5.2.3. Other control-plane entities: Engineering tool, 5G control-plane
In an industrial context, the network could potentially include wireless end-points using private 5G networks or other wireless

echnologies. The network could be divided into multiple domains in which one CNC controls a single domain or group of domains
nd needs to interact with other CNCs. In addition, an engineering tool could be used for network planning, etc. In general, inter-
ontroller communication is managed through the network–network interface (NNI), which could be used to mediate or receive the
elevant network configuration information from the engineering tool.

.2.4. Centralized network configuration
The CNC comprises a set of microservices that can be deployed on, for example, an edge data center infrastructure. It is composed

f two subsystems:

• operational sub-system: contains four main entities (Fig. 4): (a) the topology discovery entity is responsible for discovering the
topology, retrieving the capabilities of the devices in the forwarding plane and maintaining an updated network-snapshot, (b)
the sync tree entity is responsible for applying the synchronization policy decided by the TSN subsystem or other higher entities
by establishing a synchronization tree routed at the master node (according to the PTP protocol for time-synchronization of
all entities), (c) network provisioning entity is responsible for establishing and maintaining the policy decided by the TSN
subsystem, which includes managing the configurations of the networking devices (pushing Netconf/YANG messages, verifying,
rolling back, etc.), verifying the configuration state etc. (d) the network monitor entity is responsible for retrieving monitoring
information from TSN devices, collecting statistics, inferring metrics from the state-information and analyzing network events.
The operational sub-system does not take any control decisions; rather, it prepares the required information for the TSN
subsystem and later applies the resulting policy. Therefore, the operational subsystem can be replaced by an SDN controller
or a lower-level controller, in general.

• TSN subsystem: contains three main entities, (a) the path entity, responsible for establishing and maintaining routing paths
within the network, (b) the resource allocation entity, responsible for reserving the network resources, including the resources
for scheduling and QoS establishment in general, (c) the main entity, responsible for coordinating all the operations inside
the CNC and all the communications through the different interfaces. The TSN-subsystem takes all control decisions and
communicates with the operational subsystem using the storage. Therefore, this part of the CNC could be part of an engineering
tool that communicates with the network through an SDN controller.

The CNC keeps all generated, received, and gathered information in a central storage that includes topology DB, resources DB,
etrics DB, flows DB, configuration DB, and events DB. The different microservices of the CNC are prototypically implemented
sing the Go programming language and maintained separately. They communicate internally with each other using gRPC-based
PIs. The network administrator is able to manage the internals of the CNC through the network management interface or, more
pecifically, GUI and CLI Services.

.3. Edge compute monitoring architecture

AIDA contains a monitoring architecture to deal with multiple types of MoD, together with fine-grained visualization support to
ssist operators in efficiently managing an edge infrastructure. More precisely, it is aimed at supporting end-to-end runtime perfor-
ance monitoring with infrastructure, platform, and containerized microservices for I-IoT applications in the AIDA Kubernetes-based

dge compute cluster (hereafter: AIDA-CC). As depicted in Fig. 5, it comprises six types of services. First, Measurement service gathers
end-to-end runtime performance metrics from a number of sources (e.g., CPU). Next, Delivery service is responsible for routing data
among multiple services. Fusion service then integrates the collected data for further analysis (e.g., detecting any anomalies). The
processed data are delivered to the Storage service, which provides data storage capabilities. Next, Visualization service provides
functionalities for transforming MoD into graphical outputs. Finally, Provisioning and Orchestration service manages the deployed
microservices in the AIDA-CC, as well as it triggers CUC service requests for the configuration of networking entities through the
CNC on demand.

5.3.1. Measurement and delivery services
Fine-grained metrics from various sources are essential to allow the monitoring architecture to work with ample data during

analysis. However, selecting the appropriate metrics and measurement intervals for obtaining MoD is a difficult task due to various
complexities. Generally, it is determined based on the factors such as the impact of edge node failures on running applications [48].
To acquire MoD from edge nodes, we use Telegraf.6 It is a metric collection, processing, and aggregation agent, which offers
several plugins for MoD handling. We have selected input plugins targeting edge nodes, Docker containers, and Kubernetes platform

6 https://www.influxdata.com/time-series-platform/telegraf/.
9

https://www.influxdata.com/time-series-platform/telegraf/

Internet of Things 22 (2023) 100805H. Chahed et al.

v
d
n
f
a
J

5

i
o
p
s
i

c
o
f
m
d

Fig. 5. A detailed framework architecture for real-time performance monitoring and optimization of container-based edge microservices.

performance metrics. For Telegraf deployment in AIDA-CC, we create a daemonset, which ensures that at least one Pod per worker
node is executing. The measurement interval of the metrics is initially set to 10 s.

For MoD delivery and collection, reliable data transfer is required to the central location where processing, storage, and
isualization services are hosted. In fact, moving data among different services has several steps, such as copying and integrating
ata with other data sources. A data pipeline consistently integrates all these steps. As the AIDA-CC consists of multiple worker
odes, we searched for a single unified and fault-tolerant platform capable of transferring the MoD. For the reliable transfer of MoD
rom edge nodes to centralized monitoring services (CMS), Apache Kafka [49] is used, which is considered an industry standard for
chieving high performance and reliability. It provides a well-defined set of APIs for various languages, and we mainly leveraged
AVA-based APIs to realize the delivery service.

.3.2. Fusion and storage services
In the context of monitoring, data fusion is the process of observing the incoming MoD to draw conclusions about the operating

nformation contained within the data, primarily with the help of dedicated systems. Depending on the use case, the data under
bservation may consist of historical or real-time records. Typically, most of the effort for advanced analytics is spent upfront on
reparing and integrating the data to produce the desired accurate results. Due to the substantial overlap between the details in this
tage and those in Section 5.4, more details are included in that section to avoid duplication. Additionally, the solutions developed
n Section 5.4 for application data verification will also be adapted for this stage of implementation.

For ensuring a fully operated AIDA-CC, flexible MoD storage and fast access to it are considered essential. MoD storage is
hallenging due to the numerous data types and formats. AIDA monitoring architecture offers flexible storage through the use
f purpose-built optimized datastores. For example, AIDA monitoring architecture utilizes Prometheus [50] time-series database
or storage of metrics. For logs storage, the architecture offers Loki,7 a horizontally scalable, multi-tenant log aggregation system
otivated by Prometheus. Furthermore, this architecture processes and stores traces using Jaeger8 that is a user-friendly and scalable
istributed tracing backend.

7 https://grafana.com/oss/grafana/.
8 https://www.jaegertracing.io/.
10

https://grafana.com/oss/grafana/
https://www.jaegertracing.io/

Internet of Things 22 (2023) 100805H. Chahed et al.

I
a
s
c
t

5

i
d
t
a

5

o
n

a
a
t
p

a
f
t
a
a

d
T
t

5

a
m
d
o

r

(
t
a
t

5.3.3. Visualization and notification services
Visualizations are important for operators who are responsible for taking immediate recovery actions after viewing the MoD.

n particular, it helps to detect patterns visually and to take measures against undesirable operational behaviors. AIDA monitoring
rchitecture utilizes open source Grafana 7 to realize the visualization service and create operational dashboards. It provides native
upport for a number of data sources, including Prometheus which is this architecture’s backend datastore. Alerting is the reactive
omponent of the monitoring architecture that initiates actions when the metric value changes. It includes heartbeat alerts in addition
o threshold-based alerts. It transmits alerts to the Prometheus AlertManager, which handles them through a predefined pipeline.

.3.4. Provisioning and orchestration service
Monitoring architecture’s provisioning and orchestration service is divided into two main categories. First, the deployment service

s responsible for installing and running a specified number of required services on the edge nodes. Because this architecture is
esigned as a containerized service and it is fully managed with native Kubernetes features, Helm [51] and Kubectl [52] are used
o provision all the required services. Second, the configuration service is responsible for taking over generated actions or updated
pplication requests, as well as communicating with the CUC service for the network (re-)configuration when necessary.

.4. Cloud and edge-based software architecture for industrial IoT

The AIDA edge computing architecture includes flexible ML pipelines that ingest and analyze data streams. There are two forms
f data that such pipelines can process: (i) application data and (ii) monitoring and telemetry data from the edge infrastructure and
etworking devices themselves.

Application data are the incoming streams from IoT sensors that are required for day-to-day industrial applications. Monitoring
nd telemetry data represents real-time monitoring information from the edge-compute nodes and the network infrastructure such
s CPU and memory utilization, cache misses, packet loss, streams actual delay and jitter. Using a combination of microservices on
he edge nodes that are executed in near real-time and cloud services for ML training and offline applications, the AIDA architecture
rocesses both types of data.

One important feature of the AIDA architecture is its support for pluggable ML pipelines. This concept involves using modular
nd interchangeable ML components that can be easily swapped in and out of a larger system [53]. This approach provides greater
lexibility and customization for developers, enabling them to choose the best ML components for their specific needs and switch
hem out as their needs change over time. By optimizing their systems for specific edge devices, developers can improve performance
nd reduce resource consumption. Additionally, pluggable ML pipelines can facilitate the development of easily customizable and
daptable AI-driven applications.

Fig. 6 shows the software architecture that runs within the AIDA framework on the edge–cloud continuum supporting bi-
irectional data flows between: (i) data from sensors and actuators through TSN network to edge node, (ii) edge node to the cloud.
his enables real-time decision-making and action through microservices on the edge node, which prevents transmitting all data to
he cloud and back, hence reducing overall latency. The subsequent Sections 5.4.1 and 5.4.2 elaborate on both data transfers.

.4.1. Data flow through TSN network to edge node
In this case, the data flows between sensors and actuators using TSN streams to the edge node. The edge node contains ‘Delivery

nd Collection Services’ which gathers the data and makes a decision whether to pass it forward to the cloud, or to a specific
icroservice for a given UC, or both. The microservices on the edge node are the first point of entry and processing for real-time
ata, prediction applications for a given business application, and identifying the quality of streaming data. If the data is passed to
ne such microservice, the UC microservice runs and the result is then sent to ‘Action Services’ to execute the appropriate action.

Overall, there are three categories of microservices in this architecture that allow for decisions and actions to be taken in
eal-time:

• Delivery and Collection Services for Streaming Data
For the prompt delivery of messages, delivery and collection services are containerized microservices that either forward data
to microservices for UCs or forward it to the cloud API for persistent storage and cloud services.

• Microservices for Use Cases (UCs)
Containers for online ML tasks that identify and predict in real-time collectively form microservices for UCs. This is the core of
the edge node for edge-based software, which supports both network and business applications. They include microservices for
data quality assessment and scoring, ensuring that the ML microservices in production are performing as desired, classifying
or filtering high quality data flowing through the network, and updating degraded ML containers, which can occur due to data
and concept drifts, through action services when needed.

• Action Services
After UC microservices produce the output, action services collect the output, process it, and send suitable actions. The action
is transmitted to actuators for an immediate response on the network or to the cloud API for cloud services, depending on the
application. They enable automated real-time decisions without human actors

We briefly illustrate, how data flows through the AIDA software architecture. Delivery and Collection Services push applications
or also system monitoring data) towards the ML pipelines. The data first goes to Data Quality Metrics, which can be customized for
he given use case (e.g. applying anomaly detection and/or drift detection). The aggregated ground truth data and analytics serve
s inputs for ML containers for the given UC, which processes the data further. Finally, the output of the ML container for UC goes
11

o Action Services.

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 6. The diagram shows the detailed architecture for cloud and edge-based software. The rounded-corner rectangles in the figure indicate containers (like
data quality metrics) and ML software containers for UCs (in purple, pink, and green) run on the edge node with limited resources and time. The sharp-corner
rectangles indicate containers running on the cloud where there are much less resource constraints.

5.4.2. Data flow through edge node to cloud
The second type of data flow is through the edge node to the cloud. Cloud services are intended for long-running processes,

particularly those that require access to complete or historic datasets, are not time-sensitive, and demand more resources than
are accessible on the edge. To facilitate these processes, containerized microservices are deployed on the edge node, enabling
ML software to execute in real time. When an ML container in production on the edge node has degraded, cloud services enable
automatic retraining of the ML container. The retraining of the ML container occurs with access to historical data stored in ‘Persistent
Storage’. Additional QA services help test and improve the retraining process, and when ML software has met the desired level of
software quality, a new version of the software is pushed to the edge node through automated deployment.

Cloud services also contain visualization and data analytics services, which are helpful for day-to-day business objectives
and enable opportunities for human actors to explore new use cases. These services are deployed in a scalable, containerized
microservices architecture, enabling seamless integration with the ML pipelines and other edge node services as shown in Fig. 6. In
12

Internet of Things 22 (2023) 100805H. Chahed et al.

a

6

C

p
a
a
t
F
a
i
n
t

o
u
a

C
r
e
e

c
s
s
t
e

terms of architectural details, our cloud services utilize a distributed, microservices-based architecture, allowing for efficient scaling
and management of resources. The ML software is containerized and deployed using Docker containers, enabling easy portability
across different platforms and environments. AIDA cloud services offer:

• Real-time data quality assessment: Streaming data from various sensors and systems, whether application data or network
monitoring data, is susceptible to external influences, such as missing values, hardware failures, and external attacks. With
real-time microservices and cloud-based applications, we deploy a two-stage scoring mechanism that assesses the quality of
streaming data at both the edge node and in the cloud. The edge node runs a lightweight data quality assessment container
that performs initial data validation, while a more comprehensive assessment is performed in the cloud. This data quality score
is used to exclude bad data from a dataset during ML model training in the cloud, improving the accuracy of the ML model
with good data.

• Real-time ML software testing: Testing ML software is an important objective for MLOps. In AIDA, we incorporate a real-time
testing strategy that evaluates the system’s correctness using automated testing oracles. This strategy ensures that the ML
software is continuously tested in a live environment at both the edge and in the cloud, improving the overall reliability and
accuracy of the system.

• Automated retraining and redeployment of ML components : Changes in streaming data patterns and statistical features can
cause model degradation in ML software. Automated testing and adaption in the cloud can help detect and mitigate this issue.
In AIDA, we utilize cloud-based services to automate the retraining of ML models using historical data stored in ‘Persistent
Storage’. When the retraining is complete and a new version of the ML componets has met the desired level of software quality,
it is pushed to the edge node through automated deployment, ensuring that the system is always up-to-date with the latest
ML models.

6. Preliminary results

In this section, we illustrate how key elements of the architecture can be used in the context of the use cases. Our evaluation
ims to answer the following questions:

• Network Reconfiguration: How does AIDA support the onboarding of new real-time streams by dynamic reconfiguration of
the TSN elements?

• Edge Observability: What is the benefit of AIDAs observability components on the detection of faults inside containers?
• ML Adaptation for Scalable Industrial Processes: How does AIDAs drift handling approach help when onboarding a new service?

.1. Network reconfiguration

In this first experiment, we show how the AIDA architecture can adapt the network configuration of the TSN elements using the
NC to accommodate the dynamic onboarding of new services for better network infrastructure utilization.

We focus on Use Case 1 and assume that control process one (furnace) from Section 4.1 is already onboarded. The onboarding
rocess, as summarized in the sequence diagram of Fig. 7, comprises several steps. It starts by fetching the requirements of the
pplication and the end-hosts capabilities from the ENC. The CUC, then, uses these information to build an add_stream(s) request
nd send it to the CNC. The CNC, together with the help of the network optimizer, calculates the appropriate configuration according
o the usecase requirements, get the network ready to accommodate the new streams and initiate the network state monitoring.
inally, the CNC returns the end-hosts configurations to the CUC and the application can be deployed. At this stage, the network
nd end-host stacks are already configured to support the timeliness constraints. We assume that the PLC is virtualized and deployed
n an AIDA edge node. The monitoring data is used by the CMS to watch the state of the network and trigger reconfiguration if
eeded. The reconfiguration could also be pre-planned in order to onboard another control process, that is when the CUC triggers
he addition of more streams. In case the reconfiguration is pre-planned, the same process depicted by Fig. 7 is used.

In the following evaluation, we dynamically onboard the entities for the second control process for the CNC milling machine
ver the same converged network infrastructure. Fig. 2(a) illustrates the initial networking configuration and Fig. 2(b) illustrates the
pdated configuration (after the CNC milling machine-related TSN streams are deployed in the network). The stream characteristics
re summarized in Table 1.

The streams deployed in the initial setup (furnace use case only) and the updated setup (furnace use case combined with the
NC-machine use case) have different timing requirements reflected by their priorities as shown in Table 1. The stricter the latency
equirement the higher the priority is. For example, the streams exchanged between the vPLC and the IO-cards and the streams
xchanged between the NC and the Drive are hard real-time streams. However, the streams exchanged between the vPLC and the
ncoder are soft real-time.

The onboarding of the new control process requires a network reconfiguration, which impacts the gate control list (GCL)
onfiguration of the switch ports. Fig. 8 depicts both GCL configurations before and after reconfiguration for all involved TSN
witches. As can be seen, the new configuration is slightly different from the old configuration in order to accommodate the new
treams without violating the requirements of existing streams of the first control process. In AIDA, the reconfiguration is triggered
hrough the CUC, which receives the new requirements from the edge node configuration engine, forwarding the new stream
13

ndpoints together with the requirements to the CNC, which calculates a new network configuration. The network optimizer in

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 7. Illustration of the actions triggered for the streams onboarding process.

Fig. 8. Gate control list in the initial setup (before the reconfiguration) and in the updated setup (after the onboarding of new TSN streams necessary for the
CNC machine control).
14

Internet of Things 22 (2023) 100805H. Chahed et al.

s
s
b
s
r

6

r
o
a
p

6

d
(
M
M
a

Table 1
Traffic characteristics of the reconfiguration use-case.
Stream ID Control-process src dst Datasize (Bytes) Priority Traffic type Cycle (ms)

1 Furnace Encoder PLC 60 5 sRT 2
2 Furnace IO1 PLC 109 6 RT 2
3 Furnace IO2 PLC 60 6 RT 2
4 Furnace PLC Encoder 60 5 sRT 2
5 Furnace PLC IO1 60 6 RT 2
6 Furnace PLC IO2 60 6 RT 2
7 Furnace PLC Monitor 60 0 BE 16
8 CNC-machine Drive NC 64 6 RT 1
9 CNC-machine NC Diags Random 18–36 2 BE –
10 CNC-machine NC Drive 88 6 RT 1
11 CNC-machine NC PC Random 18–36 0 BE –

the CNC recalculates the GCLs in order to guarantee that there are enough resources for all streams in the switches for maintaining
the end-to-end latency and jitter under the condition of keeping the requirements of all existing streams and the newly onboarded
streams.

Fig. 9 illustrates latency and jitter histograms for streams 6 and 8 before and after reconfiguration (i.e. stream 6 of Table 1
ourcing from PLC towards IO2) and an example stream that was onboarded through reconfiguration (i.e. stream 8 of Table 1
ourcing from the drive towards NC). By comparing Figs. 9(a) and 9(b), we notice a small latency increase for some frames
ut globally we observe a similar performance for the stream. We observe a similar situation when looking at the jitter of the
tream based on Figs. 9(c) and 9(d). However, after reconfiguration, the network accommodates stream 8. Latency and jitter after
econfiguration can be observed from Figs. 9(e) and 9(f).

.2. Fault detection/recovery and monitoring overhead at edge nodes

This experiment demonstrates how AIDA architecture’s CMS and CMA components can monitor edge-based applications for a
eliable edge infrastructure and continuous application operation with a low monitoring overhead. In particular, proactive detection
f application faults not covered by the default Kubernetes operation policy (i.e., explained in Section 3.2) is targeted for use case
pplications. To address this issue, AIDA extends native Kubernetes monitoring policies by continuously observing the application
rofile to actively monitor the AIDA-CC and generate fault detection and recovery events.

.2.1. Application fault detection and recovery
Fig. 10 shows the AIDA-CC setup used to verify the internal integration of the AIDA monitoring architecture and the ability to

etect operational faults. The cluster comprises the following nodes: One node is hosting Kubernetes cluster control plane services
i.e., ENC), and three are dedicated as worker nodes (Edge Nodes 1–3). Edge nodes 1–2 host use case applications (such as an
QTT broker) in dedicated namespaces using various objects such as pods, while the CMS is hosted on Edge node 3 and collects
oD from all nodes in the cluster via CMA, which is configured to measure metrics at 10 s interval. The applications (App-1–App-4)

re deployed as Kubernetes deployment objects. For this initial version of the AIDA monitoring architecture, CMA is integrated with
our analytics sidecar to monitor metrics of particular interest and criticality, which are pod memory usage and CPU usage. As
resource management for pods and containers in Kubernetes primarily relies on these two metrics, therefore, we have selected these
metrics for operational faults detection.

As shown in Fig. 11, Kubernetes default monitoring reports that all applications are operating in a normal running state. However,
the application (App-1) is not operating correctly, which is noticeable in Figs. 12(a) and 12(b), where resource usage has dropped
almost to zero for both memory and CPU usage metrics. In contrast, other applications with similar profiles have higher CPU usage
values. A manual inspection of the application running inside the pod revealed an exception that caused the application to abort in
the container. Still, Kubernetes detected nothing abnormal, and no recovery action was taken (e.g., restarting the pod). The same
scenario is depicted in Figs. 12(c) and 12(d), but this time with CMA detection and recovery features enabled. This time, at 10:55, an
identical fault to the previous case is detected by CMA analytics sidecar, and an immediate recovery action is automatedly initiated.
A new pod is started around 10:56 by calling the Kubelet service directly via CMA. This recovery process, which consisted of creating
a new pod and removing an existing pod and related objects that were part of the deployment, took less than one minute.

In summary, the experiment illustrates how fine-grained monitoring of how quickly a resource is saturated is of prime importance
to ensure the uninterrupted processing of incoming application data. In particular, monitoring variations in resource consumption
is inevitable for the early discovery of application faults and other connected operational issues.

6.2.2. Low overhead performance monitoring
A monitoring agent introduces a certain overhead because it uses the system resources (e.g., CPU) for performing its tasks.

These measurement agents can be a source of contention, particularly in constrained edge-based infrastructures where hundreds of
performance counters are collected and stored. Because our CMA gathers various types of data, it is critical to ensure it does not
generate excessive overhead. Hence, the impact of CMA overhead is also investigated.
15

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 9. Example Latency and Jitter for streams from initial and updated network configuration.
16

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 10. Monitoring architecture verification setup using a simplified AIDA architecture version to fix use case application faults not natively handled by
Kubernetes.

Fig. 11. Kubernetes showing the pod in normal running conditions.

CMA supports metrics collection, and the overhead caused by these measurements is depicted in Fig. 13. Using eight input
plugins, a total of 88 metrics are first gathered by CMA and then sent via the output plugin for further processing. To observe
metrics overhead, various configurations, such as measurement intervals between 1 s and 10 s, are tested. An identical memory
usage is recorded throughout all these varying intervals, and it remained consistent at around 80 MiB. Compared to memory usage,
a more significant difference is noted in CPU usage when we reduced the measurement interval from 1 s to 10 s. On average CPU
and memory overhead of less than 1% of total available hardware resource capacity is recorded where CMA is configured to utilize
a maximum of 100 ms of CPU and 100 MiB of memory. Please note that Kubernetes’ default monitoring policy uses a measurement
interval that is set to 10 s; whereas, we consider a measurement interval of 1 s as a better choice for time-sensitive applications. A
lower measurement interval will allow faster detection, and this will ultimately allow Kubernetes to schedule/restart a new container
without waiting for a 10 s period. Besides, one must be careful when increasing the measurement interval or the number of metrics
because they will also cause overhead for network resources when these measurements will be moved to the backend services for
further processing.

6.3. ML adaptation for scalable industrial processes

In this section, we present the results of Use Case 2 (see Section 4.2). The experiments are carried out in the situation of adding
a new furnace to the ESR process. The main challenge of introducing a new furnace into the system is the lack of data that can be
used in the prediction task, as pointed out in Section 3.3. A lack of historical data will hinder the forecasting system under new
conditions and delay the delivery of predictive ML software. Thus, an adaptive strategy should be implemented to use the learned
knowledge of the installed software system. The evaluation results demonstrate the application of the adaptive ML software system
that can address the problem of missing data by integrating the new conditions into predictive tasks in scalable industrial processes.

As illustrated in Fig. 14, the ML software is deployed as a microservice on the edge node using a Docker container. Once the
new furnace enters the ESR process, the Docker container will connect to its address and start pulling data from its sensor using
Kafka streams. Subsequently, the forecasting ML software will automatically initialize the learning process using the drift-adaptive
approach. After the ML software makes its predictions, the results are subject to analysis for maintenance purposes, and subsequent
actions are taken based on the outcome of the analysis.
17

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 12. Fault detection and recovery using AIDA monitoring architecture.

Fig. 13. Monitoring architecture CMA overhead caused at edge nodes.
18

Internet of Things 22 (2023) 100805H. Chahed et al.
Fig. 14. Adaptive-ML service workflow.

Table 2
MAPE for furnace A and B - XGBoost and RF.

(a) MAPE for furnace A - XGBoost

60 90 120 150 180

Without Using IW 27.790 14.836 7.804 4.184 2.544
Using IW 26.895 13.624 6.379 2.756 1.081
Improvement 12.726% 21.697% 32.248% 45.788% 61.702%

(b) MAPE for furnace A - RF

60 90 120 150 180

Without Using IW 27.780 14.723 7.840 4.213 2.638
Using IW 26.044 13.482 6.313 2.842 1.572
Improvement 6.248% 8.428% 19.481% 32.556% 40.399%

(c) MAPE for furnace B - XGBoost

60 90 120 150 180

Without Using IW 27.301 15.887 9.070 4.860 2.891
Using IW 26.673 15.266 8.041 4.395 2.059
Improvement 2.301% 3.909% 11.345% 9.568% 28.771%

(d) MAPE for furnace B - RF

60 90 120 150 180

Without Using IW 27.181 15.785 8.936 4.870 2.922
Using IW 26.123 15.086 7.163 3.437 1.970
Improvement 3.894% 4.429% 19.838% 29.422% 32.566%

From a methodological perspective, and to ensure the adaptability property and deliver the ML software solution quickly, we
implemented a drift handling approach that enables us to use the historical data of the old furnace. The drift handling approach is
called importance weighting (IW) [54]. This technique tackles the covariate shift problem, also known as domain adaptation, which
may appear when transferring the data from the source domain and using it in the target domain [55]. To mitigate the distribution
shift between the domains, IW introduces a function 𝑤(𝑥) that estimates the density ratio between the data labeled in the target and
the source domain [56]. It is important to note here that the domains should be related [57]. The weights are then incorporated
into the subsequent learning task by re-weighting the empirical risk according to the density ratio. In our experimental evaluation,
we use the well-known Kullback–Leibler Importance Estimation Procedure (KLIEP) method [58] to find the importance weights.

Table 2 presents the results of implementing two decision tree algorithms, XGBoost [59] and random forests (RF) [60], on the
ESR data. These ML models were trained on the historical data of furnace A in the cloud and tested on both furnace A and the
new furnace, furnace B, in production at the edge. The mean absolute percentage error (MAPE) evaluation metric was used to
measure the performance of the models over different time frames, from the first to the third minute. The results show that using
the importance weighting (IW) technique to re-weight the data distribution of furnace B leads to a persistent improvement in the
MAPE rate.

Specifically, Table 2a and b demonstrate that for furnace A, the MAPE rate improved by approximately 12.7% for XGBoost,
reaching 61.7% after the third minute, and by 6.25% for RF after the first minute, reaching 40.4% after the third minute. Similarly,
for furnace B, Table 2c and d show that the error rate improved by approximately 2.3% for XGBoost after the first minute, reaching
28.77% after the third minute, and by approximately 3.9% for RF after the first minute, reaching 32.56% after the third minute.
19

Internet of Things 22 (2023) 100805H. Chahed et al.

I
a
n
)
f

c
r
m
r
c

c
t
i
f
b

C

R
R
a

c
t
d
c

a
c

D

i
a

D

A

A
B

7. Summary and conclusion

In this paper, we presented the AIDA architecture, which aims to integrate three pillars required to enable reliable industrial
ot applications; namely, (1) a converged real-time network infrastructure, (2) an industrial edge–cloud continuum, and (3) agile
nd trustworthy ML components that are embedded in the industrial data stream processing. AIDA features a flexible converged
etwork architecture based on the TSN standard, where a software-defined control plane automates and optimizes the network (re-
configuration process. The architecture features a flexible monitoring framework for the edge and integrates real-time ML pipelines
or classification, prediction, QA, and testing for inbound application data from industrial IoT sensors.

We illustrated key components of the architecture through prototypical implementations and experimental results of two use
ases. Our evaluation results demonstrated how AIDA supports the onboarding of new real-time data streams by flexible network
econfiguration, where the gate control lists on TSN switches are updated during runtime. Moreover, the extension of the AIDA
onitoring architecture provides a significant advantage over standard Kubernetes monitoring in application fault detection and

ecovery. Also, the application of the adaptive ML software system can address the problem of missing data by integrating the new
onditions into predictive tasks in scalable industrial processes.

For future work, network reconfiguration must also consider the cost for achieving a new configuration in terms of data and
ontrol plane overhead. Here, we aim to model such cost components and find a reconfiguration that achieves a balance between
he optimality of the new configuration and the cost to achieve this. Regarding monitoring architecture, it would be optimized to
mprove fault detection with more key performance metrics at the edge. ML-based data quality algorithms will also be expanded
rom application data to monitoring data. Furthermore, a more comprehensive integration of these three architectural pillars will
e pursued in near future.

RediT authorship contribution statement

Hamza Chahed: Conceived and designed the analysis (For TSN Reconfiguration usecase), Collected the data (For TSN
econfiguration usecase), Contributed data or analysis tools (For TSN Reconfiguration usecase), Performed the analysis (For TSN
econfiguration usecase), Wrote the paper (Writing parts 2.2, 5.2 and 6.1), Other contribution (Participates in AIDA global
rchitecture design and detailed CNC design). Muhammad Usman: Conceived and designed the analysis (For edge compute

monitoring), Collected the data (For edge compute monitoring), Contributed data or analysis tools (For edge compute monitoring),
Performed the analysis (For edge compute monitoring), Wrote the paper (Focus on monitoring platform), Other contribution
(Contributed to the overall design of the AIDA architecture, proposed an edge compute platform with dedicated monitoring
architecture). Ayan Chatterjee: Conceived and designed the analysis (For cloud and edge-based software), Contributed data or
analysis tools (In fault detection using monitoring data), Performed the analysis (In fault detection using monitoring data), Wrote
the paper (With focus on cloud- and edge-based software architecture and data stream processing/ML-related literature), Other
contribution (contributed to the overall design of the AIDA architecture). Firas Bayram: Wrote the paper (Vacuum pumping use
ase, by using drift adaptation technique, Sections 2.1, 3.4 and 6.3), Other contribution (Developed an ML-based approach to address
he scalability of industrial processes). Rajat Chaudhary: Drafted the positioning of AIDA against related work, contributed to the
esign of the TSN Subarchitecture.. Anna Brunstrom:Wrote the paper (Smaller edits and contributions throughout the paper), Other
ontribution (Contributed to the overall design of the AIDA architecture). Javid Taheri: Other contribution (Reviewed and edited

the paper. Also worked closely with Muhammad when designing/proposing his allocated parts). Bestoun S. Ahmed: Conceived and
designed the analysis (Helped in the data drift solution and the proposal of the architecture), Wrote the paper, Other contribution
(Edit the paper, paper structure, worked closely with Ayan to design the global AIDA architecture. Andreas Kassler: Conceived
nd designed the analysis (Proposed the evaluation setup for the TSN reconfiguration part) Wrote the paper (Abstract, introduction,
onclusion, other contributions throughout the paper), Other contribution (Editing the manuscript, project management.

eclaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Andreas Kassler reports financial support was provided by The Knowledge Foundation of Sweden. Andreas Kassler reports
relationship with The Knowledge Foundation of Sweden that includes: funding grants.

ata availability

Data will be made available on request

cknowledgments

This work has been funded by the Knowledge Foundation of Sweden (KKS) through the Synergy Project AIDA - A Holistic
I-driven Networking and Processing Framework for Industrial IoT (Rek:20200067). Additional funding has been provided by the
20

avarian State Ministry of Science and Art through the HighTech Agenda.

Internet of Things 22 (2023) 100805H. Chahed et al.
References

[1] Muhammad Usman, Simone Ferlin, Anna Brunstrom, Javid Taheri, A survey on observability of distributed edge & container-based microservices, IEEE
Access (2022) 86904–86919.

[2] Buvaneswari Ramanan, Lawrence Drabeck, Thomas Woo, Troy Cauble, Anil Rana, pb&j - easy automation of data science/machine learning workflows,
in: 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 361–371, http://dx.doi.org/10.1109/BigData50022.2020.9378128.

[3] Marvin Illian, Simon Althoff, Holger Karl, A process to develop lean big-data platform architectures for industrial manufacturing contexts, in: 2020 25th
IEEE International Conference on Emerging Technologies and Factory Automation, Vol. 1, ETFA, 2020, pp. 993–996, http://dx.doi.org/10.1109/ETFA46521.
2020.9212006.

[4] Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, Atsushi Kitazawa, FogFlow: Easy programming of IoT services over cloud and
edges for smart cities, IEEE Internet Things J. 5 (2) (2018) 696–707, http://dx.doi.org/10.1109/JIOT.2017.2747214.

[5] Daniel Behnke, Marcel Müller, Patrick-Benjamin Bök, José Bonnet, Intelligent network services enabling industrial IoT systems for flexible smart
manufacturing, in: 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2018, pp. 1–4,
http://dx.doi.org/10.1109/WiMOB.2018.8589088.

[6] Marcel Müller, Daniel Behnke, Patrick-Benjamin Bok, Manuel Peuster, Stefan Schneider, Holger Karl, 5G as key technology for networked factories:
Application of vertical-specific network services for enabling flexible smart manufacturing, in: 2019 IEEE 17th International Conference on Industrial
Informatics, Vol. 1, INDIN, 2019, pp. 1495–1500, http://dx.doi.org/10.1109/INDIN41052.2019.8972305.

[7] Marcel Müller, Daniel Behnke, Patrick-Benjamin Bök, Stefan Schneidery, Manuel Peuster, Holger Karl, Putting NFV into reality: Physical smart
manufacturing testbed, in: 2019 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), 2019, pp. 1–6,
http://dx.doi.org/10.1109/NFV-SDN47374.2019.9040133.

[8] Stefan Schneider, Manuel Peuster, Daniel Behnke, Marcel Müller, Patrick-Benjamin Bök, Holger Karl, Putting 5G into production: Realizing a smart
manufacturing vertical scenario, in: 2019 European Conference on Networks and Communications (EuCNC), 2019, pp. 305–309, http://dx.doi.org/10.
1109/EuCNC.2019.8802016.

[9] Paul Pop, Bahram Zarrin, Mohammadreza Barzegaran, Stefan Schulte, Sasikumar Punnekkat, Jan Ruh, Wilfried Steiner, The FORA fog computing platform
for industrial IoT, Inf. Syst. 98 (2021) http://dx.doi.org/10.1016/j.is.2021.101727.

[10] JongGwan An, Wenbin Li, Franck Le Gall, Ernoe Kovac, Jaeho Kim, Tarik Taleb, JaeSeung Song, Eif: Toward an elastic IoT fog framework for AI services,
IEEE Commun. Mag. 57 (5) (2019) 28–33, http://dx.doi.org/10.1109/MCOM.2019.1800215.

[11] Xiaofei Wang, Xiaoxu Ren, Chao Qiu, Yifan Cao, Tarik Taleb, Victor C.M. Leung, Net-in-AI: A computing-power networking framework with adaptability,
flexibility, and profitability for ubiquitous AI, IEEE Netw. 35 (1) (2021) 280–288, http://dx.doi.org/10.1109/MNET.011.2000319.

[12] Sahrish Khan Tayyaba, Munam Ali Shah, Omair Ahmad Khan, Abdul Wahab Ahmed, Software defined network (SDN) based internet of things (IoT) a
road ahead, in: Proceedings of the International Conference on Future Networks and Distributed Systems, 2017, pp. 1–8.

[13] IEEE 802.1 Working Group, et al., IEC/IEEE 60802 TSN profile for industrial automation, 2021.
[14] Ramon Serna Oliver, Silviu S. Craciunas, Wilfried Steiner, IEEE 802.1 qbv gate control list synthesis using array theory encoding, in: 2018 IEEE Real-Time

and Embedded Technology and Applications Symposium, RTAS, IEEE, 2018, pp. 13–24.
[15] Eike Schweissguth, Peter Danielis, Dirk Timmermann, Helge Parzyjegla, Gero Mühl, ILP-based joint routing and scheduling for time-triggered networks,

in: Proceedings of the 25th International Conference on Real-Time Networks and Systems, 2017, pp. 8–17.
[16] Michael Lander Raagaard, Paul Pop, Marina Gutiérrez, Wilfried Steiner, Runtime reconfiguration of time-sensitive networking (TSN) schedules for fog

computing, in: 2017 IEEE Fog World Congress, FWC, IEEE, 2017, pp. 1–6.
[17] Ammad Ali Syed, Serkan Ayaz, Tim Leinmüller, Madhu Chandra, Dynamic scheduling and routing for TSN based in-vehicle networks, in: 2021 IEEE

International Conference on Communications Workshops (ICC Workshops), IEEE, 2021, pp. 1–6.
[18] Voica Gavriluţ, Paul Pop, Scheduling in time sensitive networks (TSN) for mixed-criticality industrial applications, in: 2018 14th IEEE International

Workshop on Factory Communication Systems, WFCS, IEEE, 2018, pp. 1–4.
[19] Voica Gavriluţ, Luxi Zhao, Michael L. Raagaard, Paul Pop, AVB-aware routing and scheduling of time-triggered traffic for TSN, Ieee Access 6 (2018)

75229–75243.
[20] Christos Tselios, George Tsolis, On QoE-awareness through virtualized probes in 5G networks, in: 2016 IEEE 21st International Workshop on Computer

Aided Modelling and Design of Communication Links and Networks, CAMAD, IEEE, 2016, pp. 159–164.
[21] Khaled Al-Gumaei, Kornelia Schuba, Andrej Friesen, Sascha Heymann, Carsten Pieper, Florian Pethig, Sebastian Schriegel, A survey of internet of things

and big data integrated solutions for industrie 4.0, in: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation, ETFA,
1, IEEE, 2018, pp. 1417–1424.

[22] Soeren Becker, Florian Schmidt, Anton Gulenko, Alexander Acker, Odej Kao, Towards AIOps in Edge Computing Environments.
[23] Muhammad Ahmad Rathore, Muhammad Usman, JongWon Kim, Maintaining SmartX multi-view visibility for OF@TEIN+ distributed cloud-native edge

boxes. 32(6):e4101.
[24] Qizhen Zhang, Kelvin K. W. Ng, Charles Kazer, Shen Yan, João Sedoc, Vincent Liu, MimicNet: fast performance estimates for data center networks with

machine learning, in: Proceedings of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, Association for Computing Machinery, pp. 287–304.
[25] Philipp Hoenisch, Ingo Weber, Stefan Schulte, Liming Zhu, Alan Fekete, Four-fold auto-scaling on a contemporary deployment platform using docker

containers, in: Service-Oriented Computing: 13th International Conference, ICSOC 2015, Goa, India, November 16-19, 2015, Proceedings 13, Springer,
2015, pp. 316–323.

[26] Muhammad Usman, JongWon Kim, SmartX Multi-View Visibility Framework for unified monitoring of SDN-enabled multisite clouds, Trans. Emerg.
Telecommun. Technol. 33 (8) (2022) e3819.

[27] Álvaro Brandón, María S Pérez, Jesus Montes, Alberto Sanchez, FMonE: A flexible monitoring solution at the edge, Wirel. Commun. Mob. Comput. 2018
(2018) 1–15.

[28] Xi Zheng, Jiaojiao Jiang, Yuqun Zhang, Yao Deng, Min Fu, Tianlei Zheng, Xiao Liu, SmartVM: A multi-layer microservice-based platform for deploying SaaS,
in: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous
Computing and Communications (ISPA/IUCC), IEEE, 2017, pp. 470–474.

[29] Shashank Shekhar, Aniruddha Gokhale, Dynamic resource management across cloud-edge resources for performance-sensitive applications, in: 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID, IEEE, 2017, pp. 707–710.

[30] Hanbo Yang, SK Ong, AYC Nee, Gedong Jiang, Xuesong Mei, Microservices-based cloud-edge collaborative condition monitoring platform for smart
manufacturing systems, Int. J. Prod. Res. (2022) 1–10.

[31] Atonu Ghosh, Anandarup Mukherjee, Sudip Misra, SEGA: Secured edge gateway microservices architecture for iIoT-based machine monitoring, IEEE Trans.
Ind. Inform. 18 (3) (2021) 1949–1956.

[32] T. Kolajo, Olawande J. Daramola, Ayodele Adebiyi, Big data stream analysis: a systematic literature review, J. Big Data 6 (2019) 1–30.
[33] Valeria Cardellini, Gabriele Mencagli, Domenico Talia, Massimo Torquati, New landscapes of the data stream processing in the era of fog computing,

Future Gener. Comput. Syst. 99 (2019) 646–650.
[34] Thomas Hieß l, Christoph Hochreiner, Stefan Schulte, Towards a framework for data stream processing in the fog, Inform. Spektrum 42 (2019) 256–265.
21

http://refhub.elsevier.com/S2542-6605(23)00128-2/sb1
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb1
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb1
http://dx.doi.org/10.1109/BigData50022.2020.9378128
http://dx.doi.org/10.1109/ETFA46521.2020.9212006
http://dx.doi.org/10.1109/ETFA46521.2020.9212006
http://dx.doi.org/10.1109/ETFA46521.2020.9212006
http://dx.doi.org/10.1109/JIOT.2017.2747214
http://dx.doi.org/10.1109/WiMOB.2018.8589088
http://dx.doi.org/10.1109/INDIN41052.2019.8972305
http://dx.doi.org/10.1109/NFV-SDN47374.2019.9040133
http://dx.doi.org/10.1109/EuCNC.2019.8802016
http://dx.doi.org/10.1109/EuCNC.2019.8802016
http://dx.doi.org/10.1109/EuCNC.2019.8802016
http://dx.doi.org/10.1016/j.is.2021.101727
http://dx.doi.org/10.1109/MCOM.2019.1800215
http://dx.doi.org/10.1109/MNET.011.2000319
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb12
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb12
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb12
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb13
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb14
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb14
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb14
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb15
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb15
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb15
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb16
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb16
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb16
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb17
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb17
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb17
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb18
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb18
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb18
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb19
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb19
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb19
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb20
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb20
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb20
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb21
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb21
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb21
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb21
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb21
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb24
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb24
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb24
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb25
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb25
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb25
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb25
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb25
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb26
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb26
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb26
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb27
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb27
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb27
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb28
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb28
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb28
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb28
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb28
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb29
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb29
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb29
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb30
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb30
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb30
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb31
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb31
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb31
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb32
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb33
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb33
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb33
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb34

Internet of Things 22 (2023) 100805H. Chahed et al.
[35] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla, Farhana Zulkernine, Shahzad Khan, A survey of distributed data stream processing
frameworks, IEEE Access 7 (2019) 154300–154316.

[36] Pekka Pääkkönen, Daniel Pakkala, Reference architecture and classification of technologies, products and services for big data systems, Big Data Res. 2
(4) (2015) 166–186.

[37] Christoph Hochreiner, Michael Vogler, Philipp Waibel, Schahram Dustdar, VISP: An ecosystem for elastic data stream processing for the internet of things,
in: 2016 IEEE 20th International Enterprise Distributed Object Computing Conference, EDOC, IEEE, 2016, pp. 1–11.

[38] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar Raychaudhuri, Robert Ricci, Ivan Seskar, GENI: A federated
testbed for innovative network experiments, Comput. Netw. 61 (2014) 5–23.

[39] Laura Erhan, M Ndubuaku, Mario Di Mauro, Wei Song, Min Chen, Giancarlo Fortino, Ovidiu Bagdasar, Antonio Liotta, Smart anomaly detection in sensor
systems: A multi-perspective review, Inf. Fusion 67 (2021) 64–79.

[40] Redhwan Al-amri, Raja Kumar Murugesan, Mustafa Man, Alaa Fareed Abdulateef, Mohammed A Al-Sharafi, Ammar Ahmed Alkahtani, A review of machine
learning and deep learning techniques for anomaly detection in IoT data, Appl. Sci. 11 (12) (2021) 5320.

[41] Huiyue Huang, Lei Yang, Yuanbin Wang, Xun Xu, Yuqian Lu, Digital twin-driven online anomaly detection for an automation system based on edge
intelligence, J. Manuf. Syst. 59 (2021) 138–150.

[42] Haining Liu, Yuping Wu, Yingchang Cao, Wenjun Lv, Hongwei Han, Zerui Li, Ji Chang, Well logging based lithology identification model establishment
under data drift: A transfer learning method, Sensors 20 (13) (2020) 3643.

[43] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, Guangquan Zhang, Learning under concept drift: A review, IEEE Trans. Knowl. Data Eng. 31 (12)
(2019) 2346–2363.

[44] Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha Guttula, Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal,
Vitobha Munigala, Overview and importance of data quality for machine learning tasks, in: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020, pp. 3561–3562.

[45] Rudrajeet Pal, Yasaman Samie, Armaghan Chizaryfard, Demystifying process-level scalability challenges in fashion remanufacturing: An interdependence
perspective, J. Clean. Prod. 286 (2021) 125498.

[46] Joachim Feld, PROFINET-scalable factory communication for all applications, in: IEEE International Workshop on Factory Communication Systems, 2004.
Proceedings., IEEE, 2004, pp. 33–38.

[47] Paul Pop, Michael Lander Raagaard, Marina Gutierrez, Wilfried Steiner, Enabling fog computing for industrial automation through time-sensitive networking
(TSN), IEEE Commun. Stand. Mag. 2 (2) (2018) 55–61.

[48] Muhammad Usman, Aris Cahyadi Risdianto, Jungsu Han, Jongwon Kim, Interactive visualization of SDN-enabled multisite cloud playgrounds leveraging
SmartX MultiView visibility framework, Comput. J. 62 (6) (2019) 838–854.

[49] Han Wu, Zhihao Shang, Katinka Wolter, Trak: A testing tool for studying the reliability of data delivery in apache kafka, IEEE, 2019, pp. 394–397.
[50] James Turnbull, Monitoring with Prometheus, Turnbull Press, 2018.
[51] Shivani Gokhale, Reetika Poosarla, Sanjeevani Tikar, Swapnali Gunjawate, Aparna Hajare, Shilpa Deshpande, Sourabh Gupta, Kanchan Karve, Creating helm

charts to ease deployment of enterprise application and its related services in kubernetes, in: 2021 International Conference on Computing, Communication
and Green Engineering, CCGE, 2021, pp. 1–5.

[52] Philippe Martin, Accessing the cluster, in: Kubernetes, Springer, 2021, pp. 15–18.
[53] Mengyuan Hou, Hui Xu, Legoai: Towards building reliable AI software for real-world applications, in: 2022 IEEE International Symposium on Software

Reliability Engineering Workshops, ISSREW, 2022, pp. 122–123, http://dx.doi.org/10.1109/ISSREW55968.2022.00052.
[54] Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, Motoaki Kawanabe, Direct importance estimation for covariate shift

adaptation, Ann. Inst. Statist. Math. 60 (4) (2008) 699–746.
[55] Masashi Sugiyama, Motoaki Kawanabe, Machine Learning in Non-Stationary Environments: Introduction To Covariate Shift Adaptation, MIT Press, 2012.
[56] Masashi Sugiyama, Matthias Krauledat, Klaus-Robert Müller, Covariate shift adaptation by importance weighted cross validation., J. Mach. Learn. Res. 8

(5) (2007).
[57] Petar Stojanov, Mingming Gong, Jaime Carbonell, Kun Zhang, Low-dimensional density ratio estimation for covariate shift correction, in: The 22nd

International Conference on Artificial Intelligence and Statistics, PMLR, 2019, pp. 3449–3458.
[58] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, Motoaki Kawanabe, Direct importance estimation with model selection and its

application to covariate shift adaptation, Adv. Neural Inf. Process. Syst. 20 (2007).
[59] Tianqi Chen, Carlos Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge

Discovery and Data Mining, 2016, pp. 785–794.
[60] Leo Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
22

http://refhub.elsevier.com/S2542-6605(23)00128-2/sb35
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb35
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb35
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb36
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb36
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb36
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb37
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb37
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb37
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb38
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb38
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb38
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb39
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb39
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb39
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb40
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb40
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb40
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb41
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb41
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb41
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb42
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb42
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb42
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb43
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb43
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb43
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb44
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb44
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb44
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb44
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb44
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb45
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb45
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb45
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb46
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb46
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb46
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb47
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb47
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb47
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb48
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb48
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb48
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb49
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb50
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb51
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb51
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb51
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb51
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb51
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb52
http://dx.doi.org/10.1109/ISSREW55968.2022.00052
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb54
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb54
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb54
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb55
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb56
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb56
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb56
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb57
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb57
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb57
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb58
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb58
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb58
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb59
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb59
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb59
http://refhub.elsevier.com/S2542-6605(23)00128-2/sb60

	AIDA—A holistic AI-driven networking and processing framework for industrial IoT applications
	Introduction
	Background and Related Work
	Time-Sensitive Networks
	Monitoring the Network-Compute Fabric
	Big Data Stream Processing

	Challenges and Motivation
	Lack of orchestrated configuration of the Networked-Compute Fabric
	Lack of monitoring and decision making systems for edge platforms
	Data-driven decision making for Industrial IoT

	Use Cases
	Use Case 1 - two industrial control processes over converged infrastructure
	Use Case 2 - Vacuum Pump Control

	The AIDA Architecture for data-driven trustworthy I-IoT Applications
	Overall AIDA Architecture
	Software-Defined Network Configuration for TSNs
	Centralized User Configuration
	Network Optimizer
	Other control-plane entities: Engineering Tool, 5G control-plane
	Centralized Network Configuration

	Edge Compute Monitoring Architecture
	Measurement and Delivery Services
	Fusion and Storage Services
	Visualization and Notification Services
	Provisioning and Orchestration Service

	Cloud and Edge-Based Software Architecture for Industrial IoT
	Data flow through TSN network to edge node
	Data flow through edge node to cloud

	Preliminary Results
	Network Reconfiguration
	Fault Detection/Recovery and Monitoring Overhead at Edge Nodes
	Application fault detection and recovery
	Low overhead performance monitoring

	ML Adaptation for Scalable Industrial Processes

	Summary and Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

