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Abstract
We investigate the subsequence {t2n f } of Nörlund means with respect to the Walsh
system generated by nonincreasing and convex sequences. In particular, we prove
that a large class of such summability methods are not bounded from the martingale
Hardy spaces Hp to the space weak–Lp for 0 < p < 1/(1 + α), where 0 < α < 1.
Moreover, some new related inequalities are derived. As applications, some
well-known and new results are pointed out for well-known summability methods,
especially for Nörlund logarithmic means and Cesàro means.
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1 Introduction
The terminology and notations used in this introduction can be found in Sect. 2.

The fact that the Walsh system is the group of characters of a compact abelian group
connects Walsh analysis with abstract harmonic analysis was discovered independently
by Fine [7] and Vilenkin [28]. For general references to the Haar measure and harmonic
analysis on groups see Pontryagin [22], Rudin [23], and Hewitt and Ross [14]. In particular,
Fine investigated the group G, which is a direct product of the additive groups Z2 =: {0, 1}
and introduced the Walsh system {wj}∞j=0.

It is well known (for details see, e.g., the books [21, 24], and [29]) that Walsh systems
do not form bases in the space L1. Moreover, there exists a martingale f ∈ Hp (0 < p ≤ 1),
such that supn∈N ‖S2n+1f ‖p = ∞. On the other hand, by the definition of Hardy spaces, the
subsequence {S2n} of partial sums is bounded from the space Hp to the space Hp, for all
p > 0.

Weisz [30] proved that the Fejér means of Vilenkin–Fourier series are bounded from
the martingale Hardy space Hp to the space Hp, for p > 1/2. Goginava [11] (see also [19])
proved that there exists a martingale f ∈ H1/2 such that

sup
n∈N

‖σnf ‖1/2 = +∞.
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However, Weisz [30] (see also [18]) proved that for every f ∈ Hp, there exists an absolute
constant cp, such that the following inequality holds:

‖σ2n f ‖Hp ≤ cp‖f ‖Hp , n ∈N, p > 0. (1)

Móricz and Siddiqi [17] investigated the approximation properties of some special Nör-
lund means of Walsh–Fourier series of Lp functions in norm. Approximation properties
for general summability methods can be found in [3, 4]. Fridli, Manchanda, and Siddiqi
[8] improved and extended the results of Móricz and Siddiqi [17] to martingale Hardy
spaces. The case when {qk = 1/k : k ∈ N} was excluded, since the methods are not appli-
cable to Nörlund logarithmic means. In [9] Gát and Goginava proved some convergence
and divergence properties of the Nörlund logarithmic means of functions in the Lebesgue
space L1. In particular, they proved that there exists a function f in the space L1, such that
supn∈N ‖Lnf ‖1 = ∞. In [1] it was proved that there exists a martingale f ∈ Hp, (0 < p < 1)
such that

sup
n∈N

‖L2n f ‖p = ∞.

A counterexample for p = 1 was proved in [20]. However, Goginava [10] proved that for
every f ∈ H1, there exists an absolute constant c, such that the following inequality holds:

‖L2n f ‖1 ≤ c‖f ‖H1 , n ∈N. (2)

The convergence of subsequences of Nörlund logarithmic means of Walsh–Fourier series
in martingale Hardy spaces was investigated by Goginava [13] and Memić [16].

In [19] it was proved that for any nondecreasing sequence (qk , k ∈ N) satisfying the con-
ditions

1
Qn

= O
(

1
nα

)
, where Qn =

n–1∑
k=0

qk (3)

and

qn – qn+1 = O
(

1
n2–α

)
, as n → ∞, (4)

then, for every f ∈ Hp, where p > 1/(1 + α), there exists an absolute constant cp, depending
only on p, such that the following inequality holds:

‖tnf ‖Hp ≤ cp‖f ‖Hp , n ∈N. (5)

Boundedness does not hold from Hp to weak–Lp, for 0 < p < 1/(1 + α). As a consequence,
(for details see [31]) we obtain that the Cesàro means σα

n is bounded from Hp to Lp, for
p > 1/(1 + α), but they are not bounded from Hp to weak–Lp, for 0 < p < 1/(1 + α). In the
endpoint case p = 1/(1 + α), Weisz and Simon [26] (see also [25]) proved that the maximal
operator σα,∗ of Cesàro means defined by

σα,∗f := sup
n∈N

∣∣σα
n f

∣∣
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is bounded from the Hardy space H1/(1+α) to the space weak–L1/(1+α). Goginava [12] gave
a counterexample, which shows that boundedness does not hold for 0 < p ≤ 1/(1 + α).

In this paper we develop some methods considered in [1, 2, 15] (see also the new book
[21]) and prove that for any 0 < p < 1, there exists a martingale f ∈ Hp such that

sup
n∈N

‖t2n f ‖weak–Lp = ∞.

Moreover, we prove that a class of subsequence {t2n f } of Nörlund means with respect
to the Walsh system generated by nonincreasing and convex sequences are not bounded
from the martingale Hardy spaces Hp to the space weak–Lp for 0 < p < 1/(1 + α), where
0 < α < 1. Moreover, some new related inequalities are derived. As applications, some well-
known and new results are pointed out for well-known summability methods, especially
for Nörlund logarithmic means and Cesàro means.

The main results in this paper are presented and proved in Sect. 4. Section 3 is used to
present some auxiliary results, where, in particular, Lemma 2 is new and of independent
interest. In order not to disturb our discussions later some definitions and notations are
given in Sect. 2.

2 Definitions and notations
Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Denote by Z2 the discrete
cyclic group of order 2, that is Z2 := {0, 1}, where the group operation is the modulo 2
addition and every subset is open. The Haar measure on Z2 is given so that the measure
of a singleton is 1/2.

Define the group G as the complete direct product of the group Z2, with the product of
the discrete topologies of Z2s.

The elements of G are represented by sequences

x := (x0, x1, . . . , xj, . . .), where xk = 0 ∨ 1.

It is easy to give a base for the neighborhood of x ∈ G namely:

I0(x) := G, In(x) := {y ∈ G : y0 = x0, . . . , yn–1 = xn–1} (n ∈ N).

Denote In := In(0), In := G\In and

en := (0, . . . , 0, xn = 1, 0, . . .) ∈ G, for n ∈N.

If n ∈ N, then every n can be uniquely expressed as n =
∑∞

k=0 nj2j, where nj ∈ Z2 (j ∈ N)
and only a finite number of njs differ from zero. Let

|n| := max{k ∈N : nk 
= 0}.

The norms (or quasinorms) of the spaces Lp(G) and weak–Lp(G), (0 < p < ∞) are, re-
spectively, defined by

‖f ‖p
p :=

∫
G

|f |p dμ and ‖f ‖p
weak–Lp

:= sup
λ>0

λpμ(f > λ).
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The kth Rademacher function is defined by

rk(x) := (–1)xk (x ∈ G, k ∈N).

Now, define the Walsh system w := (wn : n ∈N) on G as:

wn(x) :=
∞∏

k=0

rnk
k (x) = r|n|(x)(–1)

∑|n|–1
k=0 nk xk (n ∈ N).

It is well known that (see, e.g., [24]) the Walsh system is orthonormal and complete in
L2(G). Moreover, for any n ∈N,

wn(x + y) = wn(x)wn(y). (6)

If f ∈ L1(G) we define the Fourier coefficients, partial sums, and Dirichlet kernel by

f̂ (k) :=
∫

G
fwk dμ (k ∈ N),

Snf :=
n–1∑
k=0

f̂ (k)wk , Dn :=
n–1∑
k=0

wk (n ∈N+).

Recall that (for details see, e.g., [24]):

D2n (x) =

⎧⎨
⎩

2n, if x ∈ In,

0, if x /∈ In
(7)

and

Dn = wn

∞∑
k=0

nkrkD2k = wn

∞∑
k=0

nk(D2k+1 – D2k ), for n =
∞∑
i=0

ni2i. (8)

Let {qk , k ≥ 0} be a sequence of nonnegative numbers. The Nörlund means for the
Fourier series of f are defined by

tnf :=
1

Qn

n∑
k=1

qn–kSkf , where Qn :=
n–1∑
k=0

qk .

In this paper we consider convex {qk , k ≥ 0} sequences, that is

qn–1 + qn+1 – 2qn ≥ 0, for all n ∈N.

If the function ψ(x) is any real-valued and convex function (for example ψ(x) = xα–1,
0 ≤ α ≤ 1), then the sequence {ψ(n), n ∈ N} is convex.

Since qn–2 – qn–1 ≥ qn–1 – qn ≥ qn – qn+1 ≥ qn+1 – qn+2 we find that

qn–2 + qn+2 ≥ qn–1 + qn+1
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and we also obtain that

qn–2 + qn+2 – 2qn ≥ 0, for all n ∈N. (9)

In the special case when {qk = 1, k ∈N}, we have the Fejér means

σnf :=
1
n

n∑
k=1

Skf .

Moreover, if qk = 1/(k + 1), then we obtain the Nörlund logarithmic means:

Lnf :=
1
ln

n∑
k=1

Skf
n + 1 – k

, where ln :=
n∑

k=1

1
k

. (10)

The Cesàro means σα
n (sometimes also denoted (C,α)) is also a well-known example of

Nörlund means defined by

σα
n f =:

1
Aα

n

n∑
k=1

Aα–1
n–k Skf ,

where

Aα
0 := 0, Aα

n :=
(α + 1) . . . (α + n)

n!
, α 
= –1, –2, . . . .

It is well known that

Aα
n =

n∑
k=0

Aα–1
n–k , Aα

n – Aα
n–1 = Aα–1

n and Aα
n ∼ nα . (11)

We also define Uα
n means as

Uα
n f :=

1
Qn

n∑
k=1

(n + 1 – k)(α–1)Skf , where Qn :=
n∑

k=1

kα–1.

Let us also define V α
n means as

Vnf :=
1

Qn

n∑
k=1

ln(n + 1 – k)Skf , where Qn :=
n∑

k=1

1
ln(k + 1)

.

The σ -algebra generated by the intervals {In(x) : x ∈ G} will be denoted by �n (n ∈ N).
Denote by f := (f (n), n ∈ N) the martingale with respect to �n (n ∈ N) (for details see, e.g.,
[29]).

We say that this martingale belongs to the Hardy martingale spaces Hp(G), where 0 <
p < ∞, if

‖f ‖Hp :=
∥∥f ∗∥∥

p < ∞, with f ∗ := sup
n∈N

∣∣f (n)∣∣.
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When f ∈ L1(G), the maximal functions are also given by

M(f )(x) := sup
n∈N

(
1

μ(In(x))

∣∣∣∣
∫

In(x)
f (u) dμ(u)

∣∣∣∣
)

.

If f ∈ L1(G), then it is easy to show that the sequence F = (S2n f : n ∈ N) is a martingale
and F∗ = M(f ).

If f = (f (n), n ∈ N) is a martingale, then the Walsh–Fourier coefficients must be defined
in a slightly different manner:

f̂ (i) := lim
k→∞

∫
G

f (k)(x)wi(x) dμ(x).

A bounded measurable function a is p-atom, if there exists an interval I , such that

supp(a) ⊂ I,
∫

I
a dμ = 0 and ‖a‖∞ ≤ μ(I)–1/p.

3 Auxiliary results
The Hardy martingale space Hp(G) has an atomic characterization (see Weisz [29, 30]):

Lemma 1 A martingale f = (f (n), n ∈ N) is in Hp (0 < p ≤ 1) if and only if there exist a
sequence (ak , k ∈ N) of p-atoms and a sequence (μk , k ∈ N) of real numbers such that for
every n ∈ N:

∞∑
k=0

μkS2n ak = f (n), where
∞∑

k=0

|μk|p < ∞. (12)

Moreover, the following two-sided inequality holds

‖f ‖Hp � inf

( ∞∑
k=0

|μk|p
)1/p

,

where the infimum is taken over all decompositions of f of the form (12).

We also state and prove the following new lemma of independent interest:

Lemma 2 Let k ∈N, {qk : k ∈N} be any convex and nonincreasing sequence and x ∈ I2(e0 +
e1) ∈ I0\I1. Then, for any {αk}, the following inequality holds:

∣∣∣∣∣
22αk +1∑
j=22αk

q22αk +1–jDj

∣∣∣∣∣ ≥ q1 –
3
2

q3.

Proof Let x ∈ I2(e0 + e1) ∈ I0\I1. According to (7) and (8) we obtain that

Dj(x) =

⎧⎨
⎩

–wj, if j is an odd number,

0, if j is an even number
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and

22αk +1–1∑
j=22αk

q22αk +1–jDj = –
22αk –1∑

j=22αk –1

q22αk +1–2j–1w2j+1 = –w1

22αk –1∑
j=22αk –1

q22αk +1–2j–1w2j.

By using (9) we find that

22αk –1–1∑
j=22αk –2+1

|q22αk +1–4j+3 – q22αk +1–4j+1|

=
22αk –1–1∑

j=22αk –2+1

(q22αk +1–4j+1 – q22αk +1–4j+3)

= (q22αk –3 – q22αk –1) + (q22αk –7 – q22αk –5) + · · · + (q5 – q7)

≤ 1
2

(q22αk –3 – q22αk –1) +
1
2

(q22αk –5 – q22αk –3)

+
1
2

(q22αk –7 – q22αk –5) +
1
2

(q22αk –9 – q22αk –7)

+ . . . +
1
2

(q5 – q7) +
1
2

(q3 – q5) ≤ 1
2

q3 –
1
2

q22αk –1.

Hence, if we apply

w4k+2 = w2w4k = –w4k , for x ∈ I2(e0 + e1),

we find that

∣∣∣∣∣
22αk +1–1∑

j=22αk

q22αk +1–jDj

∣∣∣∣∣

=

∣∣∣∣∣q1w22αk +1–2 + q3w22αk +1–4 +
22αk –3∑

j=22αk –1

q22αk +1–2j–1w2j

∣∣∣∣∣

=

∣∣∣∣∣(q3 – q1)2w22αk +1–4 +
22αk –1–1∑

j=22αk –2+1

(q22αk +1–4j+3w4j–4 – q22αk +1–4j+1w4j–4)

∣∣∣∣∣

≥ q1 – q3 –
22αk –1–1∑

j=22αk –2+1

|q22αk +1–4j+3 – q22αk +1–4j+1|

≥ q1 – q3 –
1
2

(q3 – q22αk –1) ≥ q1 –
3
2

q3.

The proof is complete. �

4 The main result
In previous sections we have discussed a number of inequalities and sometimes their
sharpness. Our main result is the following new sharpness result:
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Theorem 1 Let 0 ≤ α ≤ 1, β be any nonnegative real number and tn be Nörlund means
with a convex and nonincreasing sequence {qk : k ∈N} satisfying the condition

q1 – (3/2)q3

Qn
≥ C

nα lnβ n
, (13)

for some positive constant C. Then, for any 0 < p < 1/(1 +α) there exists a martingale f ∈ Hp

such that

sup
n∈N

‖t2n f ‖weak–Lp = ∞.

Proof Let 0 < p < 1/(1 + α). Under condition (13) there exists a sequence {nk : k ∈ N} such
that

22nk (1/p–1)

nkQ22nk +1
≥ 22nk (1/p–1–α)

nβ+1
k

→ ∞, as k → ∞.

Let {αk : k ∈N} ⊂ {nk : k ∈N} be an increasing sequence of positive integers such that

∞∑
k=0

α
–p/2
k < ∞, (14)

k–1∑
η=0

(22αη )1/p

√
αη

<
(22αk )1/p

√
αk

(15)

and

(22αk–1 )1/p
√

αk–1
<

q1 – (3/2)q3

Q22αk +1

22αk (1/p–1)–3

αk
. (16)

Let

f (n) :=
∑

{k;2αk<n}
λkak ,

where

λk =
1√
αk

and ak = 22αk (1/p–1)(D22αk +1 – D22αk ).

From (14) and Lemma 1 we find that f ∈ Hp.
It is easy to prove that

f̂ (j) =

⎧⎨
⎩

22αk (1/p–1)√
αk

, if j ∈ {22αk , . . . , 22αk +1 – 1}, k ∈N,

0, if j /∈ ⋃∞
k=1{22αk , . . . , 22αk +1 – 1}.

(17)
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Moreover,

t22αk +1 f (18)

=
1

Q22αk +1

22αk –1∑
j=1

q22αk +1–jSjf +
1

Q22αk +1

22αk +1∑
j=22αk

q22αk +1–jSjf

:= I + II.

Let j < 22αk . By combining (15), (16), and (17) we can conclude that

|Sjf | ≤
k–1∑
η=0

22αη+1–1∑
v=22αη

∣∣̂f (v)
∣∣

≤
k–1∑
η=0

22αη+1–1∑
v=22αη

22αη(1/p–1)

√
αη

≤
k–1∑
η=0

22αη/p

√
αη

≤ 22αk–1/p
√

αk–1
.

Hence,

|I| ≤ 1
Q22αk +1

22αk –1∑
j=1

q22αk +1–j|Sjf | (19)

≤ 1
Q22αk +1

22αk–1/p
√

αk–1

22αk +1–1∑
j=0

qj ≤ 22αk–1/p
√

αk–1
.

Let 22αk ≤ j ≤ 22αk +1. Since

Sjf =
k–1∑
η=0

22αη+1–1∑
v=22αη

f̂ (v)wv +
j–1∑

v=22αk

f̂ (v)wv

=
k–1∑
η=0

22αη(1/p–1)

√
αη

(D22αη+1 – D22αη ) +
22αk (1/p–1)

√
αk

(Dj – D22αk ),

for II we can conclude that

II =
1

Q22αk +1

22αk +1∑
j=22αk

q22αk +1–j

( k–1∑
η=0

22αη(1/p–1)

√
αη

(D22αη+1 – D22αη )

)
(20)

+
1

Q22αk +1

22αk (1/p–1)
√

αk

22αk +1∑
j=22αk

q22αk +1–j(Dj – D22αk ).

Let x ∈ I2(e0 + e1) ∈ I0\I1. According to the fact that α0 ≥ 1 we obtain that 2αk ≥ 2, for
all k ∈ N and if we use (7) we obtain that D22αk = 0 and if we use Lemma 2 we can also
conclude that

|II| =
1

Q22αk +1

22αk (1/p–1)
√

αk

22αk +1∑
j=22αk

q22αk +1–jDj (21)
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≥ q1 – (3/2)q3

Q22αk +1

22αk (1/p–1)
√

αk
.

By combining (16), and (18)–(21) for x ∈ I2(e0 + e1) we have that

∣∣t22αk +1 f (x)
∣∣ ≥ |II| – |I|

≥ q1 – (3/2)q3

Q22αk +1

22αk (1/p–1)
√

αk
–

q1 – (3/2)q3

Q22αk +1

22αk (1/p–1)–3

αk

≥ q1 – (3/2)q3

Q22αk +1

22αk (1/p–1)–3
√

αk
≥ C22αk (1/p–1–α)–3

(ln 22αk +1 + 1)β√
αk

≥ C22αk (1/p–1–α)–3

α
β+1
k

.

Hence, we can conclude that

‖t22αk +1 f ‖weak–Lp

≥ C22αk (1/p–1–α)–3

α
β+1
k

μ

{
x ∈ G : |t22αk +1 f | ≥ C22αk (1/p–1)–3

α
β+1
k

}1/p

≥ C22αk (1/p–1–α)–3

α
β+1
k

μ

{
x ∈ I2(e0 + e1) : |t22αk +1 f | ≥ C22αk (1/p–1)–3

α
β+1
k

}1/p

≥ C22αk (1/p–1–α)–3

α
β+1
k

(
μ

(
I2(e0 + e1)

))1/p

>
c22αk (1/p–1–α)

α
β+1
k

→ ∞, as k → ∞.

The proof is complete. �

In an actual case we obtain a result for Nörlund logarithmic means {Ln} proved in [1]:

Corollary 1 Let 0 < p < 1. Then, there exists a martingale f ∈ Hp such that

sup
n∈N

‖L2n f ‖weak–Lp = ∞.

Proof It is easy to show that

q1 – (3/2)q3 =
1
2

–
3
2

· 1
4

=
1
8

> 0,

and condition (13) holds true for α = β = 0. �

We also obtain a similar new result for the Vn means:

Corollary 2 Let 0 < p < 1. Then, there exists a martingale f ∈ Hp such that

sup
n∈N

‖V2n f ‖weak–Lp = ∞.
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Proof It is easy to show that

q1 – (3/2)q3 =
1

ln 2
–

3
2

· 1
ln 4

= loge
2 –(3/2)

loge
2

log4
2

= loge
2

(
1 –

3
4

)
> 0,

and condition (13) holds true for α = β = 0. �

We also obtain a corresponding new result for the Cesàro means σα
2n .

Corollary 3 Let 0 < p < 1/(1 + α), for some 0 < α ≤ 0.56. Then, there exists a martingale
f ∈ Hp such that

sup
n∈N

∥∥σα
2n f

∥∥
weak–Lp

= ∞.

Proof By a routine calculation we find that

q1 – (3/2)q3 = α –
α(α + 1)(α + 2)

4
= α · 2 – 3α – α2

4
.

It is easy to show that when 0 < α < 0.56 this expression is positive. Hence, condition (13)
holds true for β = 0 and 0 < α < 1. �

Corollary 4 Let 0 < p < 1/(1 + α), for some 0 < α ≤ 0.41. Then, there exists a martingale
f ∈ Hp such that

sup
n∈N

∥∥Uα
2n f

∥∥
weak–Lp

= ∞.

Proof By a straightforward calculation, we find that

q1 – (3/2)q3 = 2α–1 – (3/2)4α–1 = 2α–1(1 – 3/22–α
)
.

It is easy to show that when 0 < α < 0.41 this expression is positive. Hence, condition (13)
holds true for β = 0 and 0 < α < 1. �

5 Open questions and final remarks
Remark 1 This article can be regarded as a complement to the new book [21]. In this
book a number of open problems are also raised. Also, this new investigation implies some
corresponding open questions.

Open Problem 1 Let 0 < p < 1/(1+α), for some 0.56 < α < 1. Does there exist a martingale
f ∈ Hp such that

sup
n∈N

∥∥σα
2n f

∥∥
weak–Lp

= ∞?

Open Problem 2 Let 0 < p < 1/(1+α), for some 0.41 < α < 1. Does there exist a martingale
f ∈ Hp such that

sup
n∈N

∥∥Uα
2n f

∥∥
weak–Lp

= ∞?
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We also can investigate similar problems for more general summability methods:

Open Problem 3 Let 0 < p < 1/(1 + α), for some 0.56 < α < 1 and tn be Nörlund means of
Walsh–Fourier series with nonincreasing and convex sequence {qk : k ∈N}, satisfying the
condition (13).

Does there exist a martingale f ∈ H1/(1+α) (0 < p < 1), such that

sup
n∈N

‖t2n f ‖H1/(1+α) = ∞?

Open Problem 4 Let f ∈ H1/(1+α), where 0 < α < 1. Does there exist an absolute constant
Cα , such that the following inequality holds

∥∥σα
2n f

∥∥
1/(1+α) ≤ Cα‖f ‖H1/(1+α) ?

Open Problem 5 Let f ∈ H1/(1+α), where 0 < α < 1. Does there exist an absolute constant
Cα , such that the following inequality holds

∥∥Uα
2n f

∥∥
1/(1+α) ≤ Cα‖f ‖H1/(1+α) ?

Open Problem 6 Let f ∈ H1/(1+α), where 0 < α < 1 and tn are Nörlund means of Walsh–
Fourier series with a nonincreasing and convex sequence {qk : k ∈ N}, satisfying the con-
dition (13). Does there exist an absolute constant Cα , such that the following inequality
holds

∥∥tα
2n f

∥∥
1/(1+α) ≤ Cα‖f ‖H1/(1+α) ?

Remark 2 There is an important relation between Walsh–Fourier series and wavelet the-
ory, see, e.g., [21] and the papers [5] and [6]. This is of special interest also for applications
as described in the recent PhD thesis of K. Tangrand [27].
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