$\left(H_{p}-L_{p}\right)$-Type inequalities for subsequences of Nörlund means of Walsh-Fourier series

David Baramidze ${ }^{1,2}$, Lars-Erik Persson ${ }^{2,3}$, Kristoffer Tangrand ${ }^{2{ }^{*}}$ and George Tephnadze ${ }^{1}$

"Correspondence:
ktangrand@gmail.com
${ }^{2}$ Department of Computer Science and Computational Engineering, UiT The Arctic University of Norway, P.O. Box 385, N-8505, Narvik, Norway Full list of author information is available at the end of the article

Abstract

We investigate the subsequence $\left\{t_{2^{n}} f\right\}$ of Nörlund means with respect to the Walsh system generated by nonincreasing and convex sequences. In particular, we prove that a large class of such summability methods are not bounded from the martingale Hardy spaces H_{p} to the space weak $-L_{p}$ for $0<p<1 /(1+\alpha)$, where $0<\alpha<1$. Moreover, some new related inequalities are derived. As applications, some well-known and new results are pointed out for well-known summability methods, especially for Nörlund logarithmic means and Cesàro means.

MSC: 26015; 42C10; 42B30
Keywords: Walsh system; Nörlund means; Cesàro means; Nörlund logarithmic means; Martingale Hardy space; Convergence; Divergence; Inequalities

1 Introduction

The terminology and notations used in this introduction can be found in Sect. 2.
The fact that the Walsh system is the group of characters of a compact abelian group connects Walsh analysis with abstract harmonic analysis was discovered independently by Fine [7] and Vilenkin [28]. For general references to the Haar measure and harmonic analysis on groups see Pontryagin [22], Rudin [23], and Hewitt and Ross [14]. In particular, Fine investigated the group G, which is a direct product of the additive groups $Z_{2}=:\{0,1\}$ and introduced the Walsh system $\left\{w_{j}\right\}_{j=0}^{\infty}$.
It is well known (for details see, e.g., the books [21, 24], and [29]) that Walsh systems do not form bases in the space L_{1}. Moreover, there exists a martingale $f \in H_{p}(0<p \leq 1)$, such that $\sup _{n \in \mathbb{N}}\left\|S_{2^{n}+1} f\right\|_{p}=\infty$. On the other hand, by the definition of Hardy spaces, the subsequence $\left\{S_{2^{n}}\right\}$ of partial sums is bounded from the space H_{p} to the space H_{p}, for all $p>0$.

Weisz [30] proved that the Fejér means of Vilenkin-Fourier series are bounded from the martingale Hardy space H_{p} to the space H_{p}, for $p>1 / 2$. Goginava [11] (see also [19]) proved that there exists a martingale $f \in H_{1 / 2}$ such that

```
sup}|\mp@subsup{\sigma}{n}{}f\mp@subsup{|}{1/2}{}=+\infty
n\in\mathbb{N}
```

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

However, Weisz [30] (see also [18]) proved that for every $f \in H_{p}$, there exists an absolute constant c_{p}, such that the following inequality holds:

$$
\begin{equation*}
\left\|\sigma_{2^{n}} f\right\|_{H_{p}} \leq c_{p}\|f\|_{H_{p}}, \quad n \in \mathbb{N}, p>0 . \tag{1}
\end{equation*}
$$

Móricz and Siddiqi [17] investigated the approximation properties of some special Nörlund means of Walsh-Fourier series of L_{p} functions in norm. Approximation properties for general summability methods can be found in [3, 4]. Fridli, Manchanda, and Siddiqi [8] improved and extended the results of Móricz and Siddiqi [17] to martingale Hardy spaces. The case when $\left\{q_{k}=1 / k: k \in \mathbb{N}\right\}$ was excluded, since the methods are not applicable to Nörlund logarithmic means. In [9] Gát and Goginava proved some convergence and divergence properties of the Nörlund logarithmic means of functions in the Lebesgue space L_{1}. In particular, they proved that there exists a function f in the space L_{1}, such that $\sup _{n \in \mathbb{N}}\left\|L_{n} f\right\|_{1}=\infty$. In [1] it was proved that there exists a martingale $f \in H_{p},(0<p<1)$ such that

$$
\sup _{n \in \mathbb{N}}\left\|L_{2^{n}} f\right\|_{p}=\infty
$$

A counterexample for $p=1$ was proved in [20]. However, Goginava [10] proved that for every $f \in H_{1}$, there exists an absolute constant c, such that the following inequality holds:

$$
\begin{equation*}
\left\|L_{2^{n}} f\right\|_{1} \leq c\|f\|_{H_{1}}, \quad n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

The convergence of subsequences of Nörlund logarithmic means of Walsh-Fourier series in martingale Hardy spaces was investigated by Goginava [13] and Memić [16].

In [19] it was proved that for any nondecreasing sequence $\left(q_{k}, k \in \mathbb{N}\right)$ satisfying the conditions

$$
\begin{equation*}
\frac{1}{Q_{n}}=O\left(\frac{1}{n^{\alpha}}\right), \quad \text { where } Q_{n}=\sum_{k=0}^{n-1} q_{k} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{n}-q_{n+1}=O\left(\frac{1}{n^{2-\alpha}}\right), \quad \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

then, for every $f \in H_{p}$, where $p>1 /(1+\alpha)$, there exists an absolute constant c_{p}, depending only on p, such that the following inequality holds:

$$
\begin{equation*}
\left\|t_{n} f\right\|_{H_{p}} \leq c_{p}\|f\|_{H_{p}}, \quad n \in \mathbb{N} \tag{5}
\end{equation*}
$$

Boundedness does not hold from H_{p} to weak $-L_{p}$, for $0<p<1 /(1+\alpha)$. As a consequence, (for details see [31]) we obtain that the Cesàro means σ_{n}^{α} is bounded from H_{p} to L_{p}, for $p>1 /(1+\alpha)$, but they are not bounded from H_{p} to weak $-L_{p}$, for $0<p<1 /(1+\alpha)$. In the endpoint case $p=1 /(1+\alpha)$, Weisz and Simon [26] (see also [25]) proved that the maximal operator $\sigma^{\alpha, *}$ of Cesàro means defined by

$$
\sigma^{\alpha, *} f:=\sup _{n \in \mathbb{N}}\left|\sigma_{n}^{\alpha} f\right|
$$

is bounded from the Hardy space $H_{1 /(1+\alpha)}$ to the space weak- $L_{1 /(1+\alpha)}$. Goginava [12] gave a counterexample, which shows that boundedness does not hold for $0<p \leq 1 /(1+\alpha)$.
In this paper we develop some methods considered in $[1,2,15]$ (see also the new book [21]) and prove that for any $0<p<1$, there exists a martingale $f \in H_{p}$ such that

$$
\sup _{n \in \mathbb{N}}\left\|t_{2^{n}} f\right\|_{\text {weak- } L_{p}}=\infty
$$

Moreover, we prove that a class of subsequence $\left\{t_{2^{n}} f\right\}$ of Nörlund means with respect to the Walsh system generated by nonincreasing and convex sequences are not bounded from the martingale Hardy spaces H_{p} to the space weak $-L_{p}$ for $0<p<1 /(1+\alpha)$, where $0<\alpha<1$. Moreover, some new related inequalities are derived. As applications, some wellknown and new results are pointed out for well-known summability methods, especially for Nörlund logarithmic means and Cesàro means.

The main results in this paper are presented and proved in Sect. 4. Section 3 is used to present some auxiliary results, where, in particular, Lemma 2 is new and of independent interest. In order not to disturb our discussions later some definitions and notations are given in Sect. 2.

2 Definitions and notations

Let \mathbb{N}_{+}denote the set of the positive integers, $\mathbb{N}:=\mathbb{N}_{+} \cup\{0\}$. Denote by Z_{2} the discrete cyclic group of order 2 , that is $Z_{2}:=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on Z_{2} is given so that the measure of a singleton is $1 / 2$.

Define the group G as the complete direct product of the group Z_{2}, with the product of the discrete topologies of Z_{2} s.
The elements of G are represented by sequences

$$
x:=\left(x_{0}, x_{1}, \ldots, x_{j}, \ldots\right), \quad \text { where } x_{k}=0 \vee 1
$$

It is easy to give a base for the neighborhood of $x \in G$ namely:

$$
I_{0}(x):=G, \quad I_{n}(x):=\left\{y \in G: y_{0}=x_{0}, \ldots, y_{n-1}=x_{n-1}\right\} \quad(n \in \mathbb{N}) .
$$

Denote $I_{n}:=I_{n}(0), \overline{I_{n}}:=G \backslash I_{n}$ and

$$
e_{n}:=\left(0, \ldots, 0, x_{n}=1,0, \ldots\right) \in G, \quad \text { for } n \in \mathbb{N} .
$$

If $n \in \mathbb{N}$, then every n can be uniquely expressed as $n=\sum_{k=0}^{\infty} n_{j} 2^{j}$, where $n_{j} \in Z_{2}(j \in \mathbb{N})$ and only a finite number of n_{j} s differ from zero. Let

$$
|n|:=\max \left\{k \in \mathbb{N}: n_{k} \neq 0\right\} .
$$

The norms (or quasinorms) of the spaces $L_{p}(G)$ and weak- $L_{p}(G),(0<p<\infty)$ are, respectively, defined by

$$
\|f\|_{p}^{p}:=\int_{G}|f|^{p} d \mu \quad \text { and } \quad\|f\|_{\text {weak }-L_{p}}^{p}:=\sup _{\lambda>0} \lambda^{p} \mu(f>\lambda) .
$$

The k th Rademacher function is defined by

$$
r_{k}(x):=(-1)^{x_{k}} \quad(x \in G, k \in \mathbb{N}) .
$$

Now, define the Walsh system $w:=\left(w_{n}: n \in \mathbb{N}\right)$ on G as:

$$
w_{n}(x):=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x)=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{k}} \quad(n \in \mathbb{N})
$$

It is well known that (see, e.g., [24]) the Walsh system is orthonormal and complete in $L_{2}(G)$. Moreover, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
w_{n}(x+y)=w_{n}(x) w_{n}(y) . \tag{6}
\end{equation*}
$$

If $f \in L_{1}(G)$ we define the Fourier coefficients, partial sums, and Dirichlet kernel by

$$
\begin{aligned}
& \widehat{f}(k):=\int_{G} f w_{k} d \mu \quad(k \in \mathbb{N}), \\
& S_{n} f:=\sum_{k=0}^{n-1} \widehat{f}(k) w_{k}, \quad D_{n}:=\sum_{k=0}^{n-1} w_{k} \quad\left(n \in \mathbb{N}_{+}\right) .
\end{aligned}
$$

Recall that (for details see, e.g., [24]):

$$
D_{2^{n}}(x)= \begin{cases}2^{n}, & \text { if } x \in I_{n} \tag{7}\\ 0, & \text { if } x \notin I_{n}\end{cases}
$$

and

$$
\begin{equation*}
D_{n}=w_{n} \sum_{k=0}^{\infty} n_{k} r_{k} D_{2^{k}}=w_{n} \sum_{k=0}^{\infty} n_{k}\left(D_{2^{k+1}}-D_{2^{k}}\right), \quad \text { for } n=\sum_{i=0}^{\infty} n_{i} 2^{i} . \tag{8}
\end{equation*}
$$

Let $\left\{q_{k}, k \geq 0\right\}$ be a sequence of nonnegative numbers. The Nörlund means for the Fourier series of f are defined by

$$
t_{n} f:=\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{n-k} S_{k} f, \quad \text { where } Q_{n}:=\sum_{k=0}^{n-1} q_{k} .
$$

In this paper we consider convex $\left\{q_{k}, k \geq 0\right\}$ sequences, that is

$$
q_{n-1}+q_{n+1}-2 q_{n} \geq 0, \quad \text { for all } n \in \mathbb{N} .
$$

If the function $\psi(x)$ is any real-valued and convex function (for example $\psi(x)=x^{\alpha-1}$, $0 \leq \alpha \leq 1)$, then the sequence $\{\psi(n), n \in \mathbb{N}\}$ is convex.

Since $q_{n-2}-q_{n-1} \geq q_{n-1}-q_{n} \geq q_{n}-q_{n+1} \geq q_{n+1}-q_{n+2}$ we find that

$$
q_{n-2}+q_{n+2} \geq q_{n-1}+q_{n+1}
$$

and we also obtain that

$$
\begin{equation*}
q_{n-2}+q_{n+2}-2 q_{n} \geq 0, \quad \text { for all } n \in \mathbb{N} . \tag{9}
\end{equation*}
$$

In the special case when $\left\{q_{k}=1, k \in \mathbb{N}\right\}$, we have the Fejér means

$$
\sigma_{n} f:=\frac{1}{n} \sum_{k=1}^{n} S_{k} f .
$$

Moreover, if $q_{k}=1 /(k+1)$, then we obtain the Nörlund logarithmic means:

$$
\begin{equation*}
L_{n} f:=\frac{1}{l_{n}} \sum_{k=1}^{n} \frac{S_{k} f}{n+1-k}, \quad \text { where } l_{n}:=\sum_{k=1}^{n} \frac{1}{k} . \tag{10}
\end{equation*}
$$

The Cesàro means σ_{n}^{α} (sometimes also denoted (C, α)) is also a well-known example of Nörlund means defined by

$$
\sigma_{n}^{\alpha} f=: \frac{1}{A_{n}^{\alpha}} \sum_{k=1}^{n} A_{n-k}^{\alpha-1} S_{k} f,
$$

where

$$
A_{0}^{\alpha}:=0, \quad A_{n}^{\alpha}:=\frac{(\alpha+1) \ldots(\alpha+n)}{n!}, \quad \alpha \neq-1,-2, \ldots .
$$

It is well known that

$$
\begin{equation*}
A_{n}^{\alpha}=\sum_{k=0}^{n} A_{n-k}^{\alpha-1}, \quad A_{n}^{\alpha}-A_{n-1}^{\alpha}=A_{n}^{\alpha-1} \quad \text { and } \quad A_{n}^{\alpha} \sim n^{\alpha} . \tag{11}
\end{equation*}
$$

We also define U_{n}^{α} means as

$$
U_{n}^{\alpha} f:=\frac{1}{Q_{n}} \sum_{k=1}^{n}(n+1-k)^{(\alpha-1)} S_{k} f, \quad \text { where } Q_{n}:=\sum_{k=1}^{n} k^{\alpha-1} .
$$

Let us also define V_{n}^{α} means as

$$
V_{n} f:=\frac{1}{Q_{n}} \sum_{k=1}^{n} \ln (n+1-k) S_{k} f, \quad \text { where } Q_{n}:=\sum_{k=1}^{n} \frac{1}{\ln (k+1)} .
$$

The σ-algebra generated by the intervals $\left\{I_{n}(x): x \in G\right\}$ will be denoted by $\digamma_{n}(n \in \mathbb{N})$. Denote by $f:=\left(f^{(n)}, n \in \mathbb{N}\right)$ the martingale with respect to $\digamma_{n}(n \in \mathbb{N})$ (for details see, e.g., [29]).
We say that this martingale belongs to the Hardy martingale spaces $H_{p}(G)$, where $0<$ $p<\infty$, if

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty, \quad \text { with } f^{*}:=\sup _{n \in \mathbb{N}}\left|f^{(n)}\right| .
$$

When $f \in L_{1}(G)$, the maximal functions are also given by

$$
M(f)(x):=\sup _{n \in \mathbb{N}}\left(\frac{1}{\mu\left(I_{n}(x)\right)}\left|\int_{I_{n}(x)} f(u) d \mu(u)\right|\right)
$$

If $f \in L_{1}(G)$, then it is easy to show that the sequence $F=\left(S_{2^{n}} f: n \in \mathbb{N}\right)$ is a martingale and $F^{*}=M(f)$.
If $f=\left(f^{(n)}, n \in \mathbb{N}\right)$ is a martingale, then the Walsh-Fourier coefficients must be defined in a slightly different manner:

$$
\widehat{f}(i):=\lim _{k \rightarrow \infty} \int_{G} f^{(k)}(x) w_{i}(x) d \mu(x)
$$

A bounded measurable function a is p-atom, if there exists an interval I, such that

$$
\operatorname{supp}(a) \subset I, \quad \int_{I} a d \mu=0 \quad \text { and } \quad\|a\|_{\infty} \leq \mu(I)^{-1 / p}
$$

3 Auxiliary results

The Hardy martingale space $H_{p}(G)$ has an atomic characterization (see Weisz [29, 30]):

Lemma 1 A martingale $f=\left(f^{(n)}, n \in \mathbb{N}\right)$ is in $H_{p}(0<p \leq 1)$ if and only if there exist a sequence $\left(a_{k}, k \in \mathbb{N}\right)$ of p-atoms and a sequence $\left(\mu_{k}, k \in \mathbb{N}\right)$ of real numbers such that for every $n \in \mathbb{N}$:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}} a_{k}=f^{(n)}, \quad \text { where } \sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty \tag{12}
\end{equation*}
$$

Moreover, the following two-sided inequality holds

$$
\|f\|_{H_{p}} \backsim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p}
$$

where the infimum is taken over all decompositions off of the form (12).

We also state and prove the following new lemma of independent interest:

Lemma 2 Let $k \in \mathbb{N},\left\{q_{k}: k \in \mathbb{N}\right\}$ be any convex and nonincreasing sequence and $x \in I_{2}\left(e_{0}+\right.$ $\left.e_{1}\right) \in I_{0} \backslash I_{1}$. Then, for any $\left\{\alpha_{k}\right\}$, the following inequality holds:

$$
\left|\sum_{j=2^{2 \alpha_{k}}}^{2 \alpha_{k}+1} q_{2^{2 \alpha_{k}+1}-j} D_{j}\right| \geq q_{1}-\frac{3}{2} q_{3} .
$$

Proof Let $x \in I_{2}\left(e_{0}+e_{1}\right) \in I_{0} \backslash I_{1}$. According to (7) and (8) we obtain that

$$
D_{j}(x)= \begin{cases}-w_{j}, & \text { if } j \text { is an odd number } \\ 0, & \text { if } j \text { is an even number }\end{cases}
$$

and

$$
\sum_{j=2^{2 \alpha_{k}}}^{2^{2 \alpha_{k}+1}-1} q_{2^{2 \alpha_{k}+1}-j} D_{j}=-\sum_{j=2^{2 \alpha_{k}-1}}^{2^{2 \alpha_{k}-1}} q_{2^{2 \alpha_{k}+1}-2 j-1} w_{2 j+1}=-w_{1} \sum_{j=2^{2 \alpha_{k}-1}}^{2^{2 \alpha_{k}-1}} q_{2^{2 \alpha_{k}+1}-2 j-1} w_{2 j} .
$$

By using (9) we find that

$$
\begin{aligned}
& \sum_{j=2^{2 \alpha_{k}-2}+1}^{2^{2 \alpha_{k}-1}-1}\left|q_{2^{2 \alpha_{k}+1}-4 j+3}-q_{2^{2 \alpha_{k}+1}-4 j_{j}}\right| \\
&= \sum_{j=2^{2 \alpha_{k}-2}+1}^{2^{2 \alpha_{k}-1}-1}\left(q_{2^{2 \alpha_{k}+1}-4 j_{+1}}-q_{2^{2 \alpha_{k}+1}-4 j_{+3}}\right) \\
&=\left(q_{2^{2 \alpha_{k-3}}}-q_{2^{2 \alpha_{k-1}}}\right)+\left(q_{2^{2 \alpha_{k-7}}}-q_{2^{2 \alpha_{k-5}}}\right)+\cdots+\left(q_{5}-q_{7}\right) \\
& \leq \frac{1}{2}\left(q_{2^{2 \alpha_{k-3}}}-q_{2^{2 \alpha_{k-1}}}\right)+\frac{1}{2}\left(q_{2^{2 \alpha_{k-5}}}-q_{2^{2 \alpha_{k-3}}}\right) \\
& \quad+\frac{1}{2}\left(q_{2^{2 \alpha_{k-7}}}-q_{2^{2 \alpha_{k-5}}}\right)+\frac{1}{2}\left(q_{2^{2 \alpha_{k-9}}}-q_{2^{2 \alpha_{k-7}}}\right) \\
& \quad+\ldots+\frac{1}{2}\left(q_{5}-q_{7}\right)+\frac{1}{2}\left(q_{3}-q_{5}\right) \leq \frac{1}{2} q_{3}-\frac{1}{2} q_{2^{2 \alpha_{k-1}}}
\end{aligned}
$$

Hence, if we apply

$$
w_{4 k+2}=w_{2} w_{4 k}=-w_{4 k}, \quad \text { for } x \in I_{2}\left(e_{0}+e_{1}\right)
$$

we find that

$$
\begin{aligned}
& \left|\sum_{j=2^{2 \alpha_{k}}}^{2^{2 \alpha_{k}+1}-1} q_{2^{2 \alpha_{k}+1}-j} D_{j}\right| \\
& \quad=\left|q_{1} w_{2^{2 \alpha_{k}+1}-2}+q_{3} w_{2^{2 \alpha_{k}+1}-4}+\sum_{j=2^{2 \alpha_{k}-1}}^{2^{2 \alpha_{k}-3}} q_{2^{2 \alpha_{k}+1}-2 j-1} w_{2 j}\right| \\
& \quad=\left|\left(q_{3}-q_{1}\right) 2 w_{2^{2 \alpha_{k}+1}-4}+\sum_{j=2^{2 \alpha_{k}-2}+1}^{2^{2 \alpha_{k}-1}-1}\left(q_{2^{2 \alpha_{k}+1}-4 j+3} w_{4 j-4}-q_{2^{2 \alpha_{k}+1}-4 j+1} w_{4 j-4}\right)\right| \\
& \quad \geq q_{1}-q_{3}-\sum_{j=2^{2 \alpha_{k}-2}+1}^{2^{2 \alpha_{k}-1}-1}\left|q_{2^{2 \alpha_{k}+1}-4 j+3}-q_{2^{2 \alpha_{k}+1}-4 j+1}\right| \\
& \geq q_{1}-q_{3}-\frac{1}{2}\left(q_{3}-q_{2^{2 \alpha_{k}}}\right) \geq q_{1}-\frac{3}{2} q_{3} .
\end{aligned}
$$

The proof is complete.

4 The main result

In previous sections we have discussed a number of inequalities and sometimes their sharpness. Our main result is the following new sharpness result:

Theorem 1 Let $0 \leq \alpha \leq 1, \beta$ be any nonnegative real number and t_{n} be Nörlund means with a convex and nonincreasing sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$ satisfying the condition

$$
\begin{equation*}
\frac{q_{1}-(3 / 2) q_{3}}{Q_{n}} \geq \frac{C}{n^{\alpha} \ln ^{\beta} n} \tag{13}
\end{equation*}
$$

for some positive constant C. Then, for any $0<p<1 /(1+\alpha)$ there exists a martingale $f \in H_{p}$ such that

$$
\sup _{n \in \mathbb{N}}\left\|t_{2^{n}} f\right\|_{\text {weak }-L_{p}}=\infty
$$

Proof Let $0<p<1 /(1+\alpha)$. Under condition (13) there exists a sequence $\left\{n_{k}: k \in \mathbb{N}\right\}$ such that

$$
\frac{2^{2 n_{k}(1 / p-1)}}{n_{k} Q_{2^{2 n_{k}+1}}} \geq \frac{2^{2 n_{k}(1 / p-1-\alpha)}}{n_{k}^{\beta+1}} \rightarrow \infty, \quad \text { as } k \rightarrow \infty
$$

Let $\left\{\alpha_{k}: k \in \mathbb{N}\right\} \subset\left\{n_{k}: k \in \mathbb{N}\right\}$ be an increasing sequence of positive integers such that

$$
\begin{align*}
& \sum_{k=0}^{\infty} \alpha_{k}^{-p / 2}<\infty \tag{14}\\
& \sum_{\eta=0}^{k-1} \frac{\left(2^{2 \alpha_{\eta}}\right)^{1 / p}}{\sqrt{\alpha_{\eta}}}<\frac{\left(2^{2 \alpha_{k}}\right)^{1 / p}}{\sqrt{\alpha_{k}}} \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\left(2^{2 \alpha_{k-1}}\right)^{1 / p}}{\sqrt{\alpha_{k-1}}}<\frac{q_{1}-(3 / 2) q_{3}}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k}(1 / p-1)-3}}{\alpha_{k}} . \tag{16}
\end{equation*}
$$

Let

$$
f^{(n)}:=\sum_{\left\{k ; 2 \alpha_{k}<n\right\}} \lambda_{k} a_{k},
$$

where

$$
\lambda_{k}=\frac{1}{\sqrt{\alpha_{k}}} \quad \text { and } \quad a_{k}=2^{2 \alpha_{k}(1 / p-1)}\left(D_{2^{2 \alpha_{k}+1}}-D_{2^{2 \alpha_{k}}}\right) .
$$

From (14) and Lemma 1 we find that $f \in H_{p}$.
It is easy to prove that

$$
\widehat{f}(j)= \begin{cases}\frac{2^{2 \alpha_{k}(1 / p-1)}}{\sqrt{\alpha_{k}}}, & \text { if } j \in\left\{2^{2 \alpha_{k}}, \ldots, 2^{2 \alpha_{k}+1}-1\right\}, k \in \mathbb{N}, \tag{17}\\ 0, & \text { if } j \notin \bigcup_{k=1}^{\infty}\left\{2^{2 \alpha_{k}}, \ldots, 2^{2 \alpha_{k}+1}-1\right\} .\end{cases}
$$

Moreover,

$$
\begin{align*}
& t_{2^{2 \alpha_{k}+1}} f \tag{18}\\
& \quad=\frac{1}{Q_{2^{2 \alpha_{k}+1}}} \sum_{j=1}^{2^{2 \alpha_{k-1}}} q_{2^{2 \alpha_{k}+1}-j} S_{j} f+\frac{1}{Q_{2^{2 \alpha_{k}+1}}} \sum_{j=2^{2 \alpha_{k}}}^{2^{2 \alpha_{k}+1}} q_{2^{2 \alpha_{k}+1}-j} S_{j} f \\
& \quad:=I+I I .
\end{align*}
$$

Let $j<2^{2 \alpha_{k}}$. By combining (15), (16), and (17) we can conclude that

$$
\begin{aligned}
\left|S_{j} f\right| & \leq \sum_{\eta=0}^{k-1} \sum_{\nu=2^{2 \alpha_{\eta}}}^{2^{2 \alpha_{\eta}+1}-1}|\widehat{f}(v)| \\
& \leq \sum_{\eta=0}^{k-1} \sum_{\nu=2^{2 \alpha_{\eta}}}^{2^{2 \alpha_{\eta}+1}-1} \frac{2^{2 \alpha_{\eta}(1 / p-1)}}{\sqrt{\alpha_{\eta}}} \leq \sum_{\eta=0}^{k-1} \frac{2^{2 \alpha_{\eta} / p}}{\sqrt{\alpha_{\eta}}} \leq \frac{2^{2 \alpha_{k-1} / p}}{\sqrt{\alpha_{k-1}}}
\end{aligned}
$$

Hence,

$$
\begin{align*}
|I| & \leq \frac{1}{Q_{2^{2 \alpha_{k}+1}}} \sum_{j=1}^{2^{2 \alpha_{k-1}}} q_{2^{2 \alpha_{k}+1}-j}\left|S_{j} f\right| \tag{19}\\
& \leq \frac{1}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k-1} / p}}{\sqrt{\alpha_{k-1}}} \sum_{j=0}^{2^{2 \alpha_{k}+1}-1} q_{j} \leq \frac{2^{2 \alpha_{k-1} / p}}{\sqrt{\alpha_{k-1}}} .
\end{align*}
$$

Let $2^{2 \alpha_{k}} \leq j \leq 2^{2 \alpha_{k}+1}$. Since

$$
\begin{aligned}
S_{j} f & =\sum_{\eta=0}^{k-1} \sum_{v=2^{2 \alpha_{\eta}}}^{2^{2 \alpha_{\eta}+1}-1} \widehat{f}(v) w_{v}+\sum_{v=2^{2 \alpha_{k}}}^{j-1} \widehat{f}(v) w_{v} \\
& =\sum_{\eta=0}^{k-1} \frac{2^{2 \alpha_{\eta}(1 / p-1)}}{\sqrt{\alpha_{\eta}}}\left(D_{2^{2 \alpha_{\eta}+1}}-D_{2^{2 \alpha_{\eta}}}\right)+\frac{2^{2 \alpha_{k}(1 / p-1)}}{\sqrt{\alpha_{k}}}\left(D_{j}-D_{2^{2 \alpha_{k}}}\right),
\end{aligned}
$$

for $I I$ we can conclude that

$$
\begin{align*}
I I= & \frac{1}{Q_{2^{2 \alpha_{k}+1}}} \sum_{j=2^{2 \alpha_{k}}}^{2^{2 \alpha_{k}+1}} q_{2^{2 \alpha_{k}+1}-j}\left(\sum_{\eta=0}^{k-1} \frac{2^{2 \alpha_{\eta}(1 / p-1)}}{\sqrt{\alpha_{\eta}}}\left(D_{2^{2 \alpha_{\eta}+1}}-D_{2^{2 \alpha_{\eta}}}\right)\right) \tag{20}\\
& +\frac{1}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k}(1 / p-1)}}{\sqrt{\alpha_{k}}} \sum_{j=2^{2 \alpha_{k}}}^{2^{2 \alpha_{k}+1}} q_{2^{2 \alpha_{k}+1}-j}\left(D_{j}-D_{2^{2 \alpha_{k}}}\right) .
\end{align*}
$$

Let $x \in I_{2}\left(e_{0}+e_{1}\right) \in I_{0} \backslash I_{1}$. According to the fact that $\alpha_{0} \geq 1$ we obtain that $2 \alpha_{k} \geq 2$, for all $k \in \mathbb{N}$ and if we use (7) we obtain that $D_{2^{2 \alpha_{k}}}=0$ and if we use Lemma 2 we can also conclude that

$$
\begin{equation*}
|I I|=\frac{1}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k}(1 / p-1)}}{\sqrt{\alpha_{k}}} \sum_{j=2^{2 \alpha_{k}}}^{2^{2 \alpha_{k}+1}} q_{2^{2 \alpha_{k}+1}-j} D_{j} \tag{21}
\end{equation*}
$$

$$
\geq \frac{q_{1}-(3 / 2) q_{3}}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k}(1 / p-1)}}{\sqrt{\alpha_{k}}} .
$$

By combining (16), and (18)-(21) for $x \in I_{2}\left(e_{0}+e_{1}\right)$ we have that

$$
\begin{aligned}
\left|t_{2^{2 \alpha_{k}+1}} f(x)\right| & \geq|I I|-|I| \\
& \geq \frac{q_{1}-(3 / 2) q_{3}}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k}(1 / p-1)}}{\sqrt{\alpha_{k}}}-\frac{q_{1}-(3 / 2) q_{3}}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k}(1 / p-1)-3}}{\alpha_{k}} \\
& \geq \frac{q_{1}-(3 / 2) q_{3}}{Q_{2^{2 \alpha_{k}+1}}} \frac{2^{2 \alpha_{k}(1 / p-1)-3}}{\sqrt{\alpha_{k}}} \geq \frac{C 2^{2 \alpha_{k}(1 / p-1-\alpha)-3}}{\left(\ln 2^{2 \alpha_{k}+1}+1\right)^{\beta} \sqrt{\alpha_{k}}} \\
& \geq \frac{C 2^{2 \alpha_{k}(1 / p-1-\alpha)-3}}{\alpha_{k}^{\beta+1}} .
\end{aligned}
$$

Hence, we can conclude that

$$
\begin{aligned}
& \left\|t_{2^{2 \alpha_{k}+1}} f\right\|_{\text {weak-Lp }} \\
& \quad \geq \frac{C 2^{2 \alpha_{k}(1 / p-1-\alpha)-3}}{\alpha_{k}^{\beta+1}} \mu\left\{x \in G:\left|t_{2^{2 \alpha_{k}+1}} f\right| \geq \frac{C 2^{2 \alpha_{k}(1 / p-1)-3}}{\alpha_{k}^{\beta+1}}\right\}^{1 / p} \\
& \quad \geq \frac{C 2^{2 \alpha_{k}(1 / p-1-\alpha)-3}}{\alpha_{k}^{\beta+1}} \mu\left\{x \in I_{2}\left(e_{0}+e_{1}\right):\left|t_{2^{2 \alpha_{k}+1}} f\right| \geq \frac{C 2^{2 \alpha_{k}(1 / p-1)-3}}{\alpha_{k}^{\beta+1}}\right\}^{1 / p} \\
& \quad \geq \frac{C 2^{2 \alpha_{k}(1 / p-1-\alpha)-3}}{\alpha_{k}^{\beta+1}}\left(\mu\left(I_{2}\left(e_{0}+e_{1}\right)\right)\right)^{1 / p} \\
& \quad>\frac{c 2^{2 \alpha_{k}(1 / p-1-\alpha)}}{\alpha_{k}^{\beta+1}} \rightarrow \infty, \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

The proof is complete.

In an actual case we obtain a result for Nörlund logarithmic means $\left\{L_{n}\right\}$ proved in [1]:

Corollary 1 Let $0<p<1$. Then, there exists a martingale $f \in H_{p}$ such that

$$
\sup _{n \in \mathbb{N}}\left\|L_{2^{n}} f\right\|_{\text {weak }-L_{p}}=\infty
$$

Proof It is easy to show that

$$
q_{1}-(3 / 2) q_{3}=\frac{1}{2}-\frac{3}{2} \cdot \frac{1}{4}=\frac{1}{8}>0,
$$

and condition (13) holds true for $\alpha=\beta=0$.

We also obtain a similar new result for the V_{n} means:

Corollary 2 Let $0<p<1$. Then, there exists a martingale $f \in H_{p}$ such that
$\sup _{n \in \mathbb{N}}\left\|V_{2^{n}} f\right\|_{\text {weak- }-L_{p}}=\infty$.

Proof It is easy to show that

$$
q_{1}-(3 / 2) q_{3}=\frac{1}{\ln 2}-\frac{3}{2} \cdot \frac{1}{\ln 4}=\log _{2}^{e}-(3 / 2) \frac{\log _{2}^{e}}{\log _{2}^{4}}=\log _{2}^{e}\left(1-\frac{3}{4}\right)>0
$$

and condition (13) holds true for $\alpha=\beta=0$.

We also obtain a corresponding new result for the Cesàro means $\sigma_{2^{n}}^{\alpha}$.

Corollary 3 Let $0<p<1 /(1+\alpha)$, for some $0<\alpha \leq 0.56$. Then, there exists a martingale $f \in H_{p}$ such that

$$
\sup _{n \in \mathbb{N}}\left\|\sigma_{2 n}^{\alpha} f\right\|_{\text {weak-L-Lp}}=\infty
$$

Proof By a routine calculation we find that

$$
q_{1}-(3 / 2) q_{3}=\alpha-\frac{\alpha(\alpha+1)(\alpha+2)}{4}=\alpha \cdot \frac{2-3 \alpha-\alpha^{2}}{4} .
$$

It is easy to show that when $0<\alpha<0.56$ this expression is positive. Hence, condition (13) holds true for $\beta=0$ and $0<\alpha<1$.

Corollary 4 Let $0<p<1 /(1+\alpha)$, for some $0<\alpha \leq 0.41$. Then, there exists a martingale $f \in H_{p}$ such that

$$
\sup _{n \in \mathbb{N}}\left\|U_{2^{n}}^{\alpha} f\right\|_{\text {weak- } L_{p}}=\infty
$$

Proof By a straightforward calculation, we find that

$$
q_{1}-(3 / 2) q_{3}=2^{\alpha-1}-(3 / 2) 4^{\alpha-1}=2^{\alpha-1}\left(1-3 / 2^{2-\alpha}\right) .
$$

It is easy to show that when $0<\alpha<0.41$ this expression is positive. Hence, condition (13) holds true for $\beta=0$ and $0<\alpha<1$.

5 Open questions and final remarks

Remark 1 This article can be regarded as a complement to the new book [21]. In this book a number of open problems are also raised. Also, this new investigation implies some corresponding open questions.

Open Problem 1 Let $0<p<1 /(1+\alpha)$, for some $0.56<\alpha<1$. Does there exist a martingale $f \in H_{p}$ such that

$$
\sup _{n \in \mathbb{N}}\left\|\sigma_{2^{n}}^{\alpha} f\right\|_{\text {weak- } L_{p}}=\infty ?
$$

Open Problem 2 Let $0<p<1 /(1+\alpha)$, for some $0.41<\alpha<1$. Does there exist a martingale $f \in H_{p}$ such that

$$
\sup _{n \in \mathbb{N}}\left\|U_{2^{n}}^{\alpha} f\right\|_{\text {weak }-L_{p}}=\infty ?
$$

We also can investigate similar problems for more general summability methods:

Open Problem 3 Let $0<p<1 /(1+\alpha)$, for some $0.56<\alpha<1$ and t_{n} be Nörlund means of Walsh-Fourier series with nonincreasing and convex sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$, satisfying the condition (13).

Does there exist a martingale $f \in H_{1 /(1+\alpha)}(0<p<1)$, such that

$$
\sup _{n \in \mathbb{N}}\left\|t_{2^{n}} f\right\|_{H_{1 /(1+\alpha)}}=\infty ?
$$

Open Problem 4 Let $f \in H_{1 /(1+\alpha)}$, where $0<\alpha<1$. Does there exist an absolute constant C_{α}, such that the following inequality holds

$$
\left\|\sigma_{2^{n}}^{\alpha} f\right\|_{1 /(1+\alpha)} \leq C_{\alpha}\|f\|_{H_{1 /(1+\alpha)}} ?
$$

Open Problem 5 Let $f \in H_{1 /(1+\alpha)}$, where $0<\alpha<1$. Does there exist an absolute constant C_{α}, such that the following inequality holds

$$
\left\|U_{2 n}^{\alpha} f\right\|_{1 /(1+\alpha)} \leq C_{\alpha}\|f\|_{H_{1 /(1+\alpha)}} ?
$$

Open Problem 6 Let $f \in H_{1 /(1+\alpha)}$, where $0<\alpha<1$ and t_{n} are Nörlund means of WalshFourier series with a nonincreasing and convex sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$, satisfying the condition (13). Does there exist an absolute constant C_{α}, such that the following inequality holds

$$
\left\|t_{2}^{\alpha} f\right\|_{1 /(1+\alpha)} \leq C_{\alpha}\|f\|_{H_{1 /(1+\alpha)}} ?
$$

Remark 2 There is an important relation between Walsh-Fourier series and wavelet theory, see, e.g., [21] and the papers [5] and [6]. This is of special interest also for applications as described in the recent PhD thesis of K . Tangrand [27].

Acknowledgements

The work of Davit Baramidze was supported by Shota Rustaveli National Science Foundation grant PHDF-21-1702. The publication charges for this article were funded by a grant from the publication fund of UiT The Arctic University of Norway.
We also thank both reviewers for their helpful suggestions that have improved the final version of this paper.

Funding

The publication charges for this manuscript were supported by the publication fund at UiT The Arctic University of Norway under code IN-1096130. Open Access funding provided by UiT The Arctic University of Norway (incl University Hospital of North Norway).

Availability of data and materials

Not applicable.

Declarations

Competing interests

The authors declare no competing interests.

Author contributions

$D B$ and GT gave the idea and initiated the writing of this paper. LEP and KT followed up this with some complementary ideas. All authors read and approved the final manuscript.

Author details

${ }^{1}$ School of Science and Technology, The University of Georgia, 77a Merab Kostava St, Tbilisi 0128, Georgia. ${ }^{2}$ Department of Computer Science and Computational Engineering, UiT The Arctic University of Norway, P.O. Box 385, N-8505, Narvik, Norway. ${ }^{3}$ Department of Mathematics and Computer Science, Karlstad University, 65188 Karlstad, Sweden.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 7 September 2022 Accepted: 18 March 2023 Published online: 07 April 2023

References

1. Baramidze, D., Persson, L.-E.., Singh, H., Tephnadze, G.: Some new results and inequalities for subsequences of Nörlund logarithmic means of Walsh-Fourier series. J. Inequal. Appl. 2022(1), 30 (2022). https://doi.org/10.1186/s13660-022-02765-5
2. Baramidze, L., Persson, L.E., Tephnadze, G., Wall, P.: Sharp $H_{p}-L_{p}$ type inequalities of weighted maximal operators of Vilenkin-Nörlund means and its applications. J. Inequal. Appl. 2016(1), 242 (2016). https://doi.org/10.1186/s13660-016-1182-1
3. Blahota, I., Nagy, K.: Approximation by Θ-means of Walsh-Fourier series. Anal. Math. 44(1), 57-71 (2018)
4. Blahota, I., Nagy, K., Tephnadze, G.: Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series. Math. Inequal. Appl. 22(3), 837-853 (2019)
5. Farkov, Y., Goginava, U., Kopaliani, T.: Unconditional convergence of wavelet expansion on the Cantor dyadic group. Jaen J. Approx. 1(3), 117-133 (2011)
6. Farkov, Y., Lebedeva, E.A., Skopina, M.: Wavelet frames on Vilenkin groups and their approximation properties. Int. J. Wavelets Multiresolut. Inf. Process. 13(5), 1-19 (2015)
7. Fine, N.J.: On the Walsh functions. Trans. Am. Math. Soc. 65, 372-414 (1949)
8. Fridli, S., Manchanda, P., Siddiqi, A.H.: Approximation by Walsh-Nörlund means. Acta Sci. Math. 74(3-4), 593-608 (2008)
9. Gàt, G., Goginava, U.: Uniform and L-convergence of logarithmic means of Walsh-Fourier series. Acta Math. Sin. 22(2), 497-506 (2006)
10. Goginava, U.: Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series. Acta Math. Acad. Paedagog. Nyházi. 21, 169-175 (2005)
11. Goginava, U.: The maximal operator of the (C, α) means of the Walsh-Fourier series. Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Comput. 26, 127-135 (2006)
12. Goginava, U.: The maximal operator of the (C, α) means of the Walsh-Fourier series. Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Comput. 26, 127-135 (2006)
13. Goginava, U.: Maximal operators of logarithmic means of one-dimensional Walsh-Fourier series (English summary). Rend. Circ. Mat. Palermo (2) Suppl. 82, 345-357 (2010)
14. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I, Structure of Topological Groups. Integration Theory, Group Representations. Springer, Berlin (2013)
15. Lukkassen, D., Persson, L.E., Tephnadze, G., Tutberidze, G.: Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series. J. Inequal. Appl. 2020, 79 (2020). https://doi.org/10.1186/s13660-020-02342-8
16. Memić, N.: An estimate of the maximal operator of the Nörlund logarithmic means with respect to the character system of the group of 2-adic integers on the Hardy space H_{1}. Bull. Iran. Math. Soc. 48(6), 3381-3391 (2022)
17. Móricz, F., Siddiqi, A.: Approximation by Nörlund means of Walsh-Fourier series. J. Approx. Theory 70(3), 375-389 (1992)
18. Persson, L.E., Tephnadze, G.: A sharp boundedness result concerning some maximal operators of Vilenkin-Fejér means. Mediterr. J. Math. 13(4), 1841-1853 (2016)
19. Persson, L.E., Tephnadze, G., Wall, P.: Maximal operators of Vilenkin-Nörlund means. J. Fourier Anal. Appl. 21(1), 76-94 (2015)
20. Persson, L.E., Tephnadze, G., Wall, P.: On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space H_{1}. Acta Math. Hung. 154(2), 289-301 (2018)
21. Persson, L.E., Tephnadze, G., Weisz, F.: Martingale Hardy spaces and summability of one-dimenional Vilenkin-Fourier series. Book manuscript, Birkhäuser/Springer (2023)
22. Pontryagin, L.: Topological Groups, 2nd edn. Gordon \& Breach, New York (1966). Princeton Univ. Press
23. Rudin, W.: Fourier Analysis on Groups. Wiley Online Library (1962)
24. Schipp, F., Wade, W.R., Simon, P., Pál, J.: Walsh Series, an Introduction to Dyadic Harmonic Analysis. Akad. Kiadó, Budapest (1990)
25. Simon, P.: Strong convergence theorem for Vilenkin-Fourier series. J. Math. Anal. Appl. 245, 52-68 (2000)
26. Simon, P., Weisz, F:: Weak inequalities for Cesáro and Riesz summability of Walsh-Fourier series. J. Approx. Theory 151(1), 1-19 (2008)
27. Tangrand, K.: Some new contributions to neural networks and wavelets with applications. PhD thesis, UiT The Arctic University of Norway (2023)
28. Vilenkin, N.Y.: On a class of complete orthonormal systems. Izv. Akad. Nauk SSSR, Ser. Mat. 11, 363-400 (1947)
29. Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Springer, Berlin (1994)
30. Weisz, F.: Hardy spaces and Cesàro means of two-dimensional Fourier series. In: Bolyai Soc. Math. Studies, pp. 353-367 (1996)
31. Weisz, F.: (C, α) summability of Walsh-Fourier series. Anal. Math. 27, 141-156 (2001)
