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Abstract
In this paper, we study a stochastic parabolic problem that emerges in the model-
ing and control of an electrically actuated MEMS (micro-electro-mechanical system)
device. The dynamics under consideration are driven by an one dimensional fractional
Brownian motion with Hurst index H > 1/2. We derive conditions under which the
resulting SPDE has a global in time solution, and we provide analytic estimates for
certain statistics of interest, such as quenching times and the corresponding quenching
probabilities. Our results demonstrate the non-trivial impact of the fractional noise on
the dynamics of the system. Given the significance of MEMS devices in biomedi-
cal applications, such as drug delivery and diagnostics, our results provide valuable
insights into the reliability of these devices in the presence of positively correlated
noise.
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1 Introduction

In this paper, we consider the following stochastic semilinear parabolic problem

du =
(

�u + λ

(1 − u)2

)
dt + κ(1 − u)d B H

t , x ∈ D, t > 0, (1)

∂u

∂ν
+ βu = βc, x ∈ ∂ D, t > 0, (2)

0 ≤ u(x, 0) = u0(x) < 1, x ∈ D, (3)

alongwith some of its variations. Here, λ, κ , β, and βc are given positive constants, and
D is a bounded subset of Rd , d = 1, 2, 3, with a smooth boundary. For any x ∈ ∂ D,
ν = ν(x) denotes the outward normal vector to ∂ D. Moreover, B H

t stands for an one-
dimensional, real-valued fractional Brownian motion, defined on a stochastic basis
{�, F , Ft , P} with filtration (Ft )t∈[0,T ] and Hurst index 1

2 < H < 1 (see, e.g.,
Mishura 2008). Recall that the Hurst index is a measure of the increment correlations
(and hence the path-wise regularity) of the resulting stochastic process. Values of H
greater than 1/2 indicate the presence of positive correlations and result in smoother
realizations (Mishura 2008). Then, κ(1− u)d B H

t is a multiplicative (fractional) noise
term, reflecting the occurrence of correlated fluctuations in the physical parameters of
the MEMS (micro-electro-mechanical system) device modeled by (1)–(3), cf. Sect. 2.
As discussed in the next section, MEMS devices are commonly employed as actuators
in implantable biomedical devices andmicromachined drug delivery systems (Ghazali
et al. 2020).

Towards the limit κ → 0+, problem (1)–(3) is reduced to its deterministic version,

∂u

∂t
= �u + λ

(1 − u)2
, x ∈ D, t > 0, (4)

∂u

∂ν
+ βu = βc, x ∈ ∂ D, t > 0, (5)

0 ≤ u(x, 0) = u0(x) < 1, x ∈ D, (6)

which has been extensively studied in Esposito et al. (2010), Flores et al. (2006/07),
Ghoussoub and Guo (2008), Kavallaris et al. (2008), Kavallaris and Suzuki (2018).
Hyperbolic variations of (4)–(6) have been investigated in Flores (2014), Guo (2010),
Kavallaris et al. (2015). Non-local parabolic and hyperbolic problems, arising in the
modeling and control ofMEMS devices, have been analyzed in Drosinou et al. (2021),
Duong and Zaag (2019), Guo et al. (2009), Guo et al. (2020), Guo and Kavallaris
(2012), Kavallaris et al. (2011), Kavallaris et al. (2016), Kavallaris and Suzuki (2018),
Miyasita (2017a), Miyasita (2017b), Miyasita (2015). Furthermore, a special case of
(1)–(3) for H = 1/2, i.e., when then dynamics are driven by Brownian motion, has
been previously investigated in Drosinou et al. (2022), Kavallaris (2018).

Remarkably, due to the presence of the nonlinear term f (u) := 1
(1−u)2

in (4)–(6), the
occurrence of a singular behaviour, called quenching, is observed when maxx∈D u →
1 as t → Tq for a quenching time Tq < ∞. Such a singular behaviour is closely
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associated with the mechanical phenomenon of touching down, which is described in
detail in the following section and is of operational significance as it can potentially
lead to the destruction of the device.

It is worth investigating whether the stochastic problem (1)–(3), which can be
derived by (4)–(6) via a random perturbation of the tuning parameter λ (cf. Sect. 2),
exhibits an analogous singular (quenching) behavior. Indeed, the aim of the present
paper is twofold; first we examine the conditions under which quenching occurs in the
stochastic problem (1)–(3). Secondly, we obtain analytic estimates of the quenching
probability as well as of the quenching time, which is a stopping time of (1)–(3). To
the best of our knowledge, this is the first time that this second approach has been
considered in the context of MEMS devices subjected to fractional noise (for the spe-
cial case of Brownian motion, see Drosinou et al. 2022; Kavallaris 2018). Provided
the significance of those devices in biomedical applications, such as drug delivery
and diagnostics (Chirkov and Grumezescu 2022; Nuxoll 2013; Yager et al. 2006),
our analysis offers valuable insights into their operational characteristics in the pres-
ence of positively correlated noise. Moreover, apart from their practical implications,
such considerations have their own theoretical importance in the context of singular
stochastic PDEs (SPDEs).

The layout of the paper is as follows: in the next section we consider the physical
aspects of the MEMS device modeled by equations (1)–(3). In Sect. 3, we investigate
the quenching probability for the model described in Sect. 2, and we prove a local
existence and uniqueness result. As remarked in Sect. 3, our results demonstrate that
the impact of the fractional noise on the dynamics of the model is vital. Section4
addresses the question of whether the system is eventually led to quenching even in
the presence of forces that oppose the inverse-quadratic (electrostatic) force appearing
in the original model. We estimate the relevant probabilities and conclude the paper by
identifying conditions under which the model under investigation has global in time
solutions.

2 Themathematical model

Equations (1)–(3) model the operation of certain types of micro-electro-mechanical
systems (MEMS). These are precision devices which integrate mechanical processes
with electrical circuits.MEMSdevices range in size frommillimeters down tomicrons,
and involve precision mechanical components which can be constructed using semi-
conductor manufacturing technologies (Kavallaris and Suzuki 2018; Pelesko and
Bernstein 2002; Younis 2011).MEMS devices are commonly employed in biomedical
engineering applications, including the design of micro-scale drug delivery devices
and the development of micropumps for microfluidic diagnostic tools, among others
(Chirkov and Grumezescu 2022; Nuxoll 2013; Yager et al. 2006).

MEMS-baseddrugdelivery systems are implantable devices comprisedof (i)micro-
reservoirs, which store liquid-phase drugs, and (ii) micro-actuators that control drug
ejection out of the micro-reservoirs and into the tissues of interest (Ghazali et al.
2020). These minimally invasive technologies enable patient-specific dosing while
improving the bioavailability of drugs for diseases such as cancer, diabetes, and osteo-
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Fig. 1 Schematic representation of a MEMS device

porosis (Chirkov and Grumezescu 2022; Ghazali et al. 2020). Especially due to their
miniaturized features, bio-MEMS technologies are enabling new functionalities in
biomedical devices, significantly extending their original use as sensors detecting
electrical phenomena in the body (Geddes 1972). In this paper, we primarily focus on
one of the simplest possible designs for MEMS actuation that is commonly employed
as an element of MEMS-based drug delivery systems (Algamili et al. 2021; Allen
2005).

The key part of such an electrostatically actuated MEMS device usually consists
of an elastic plate (or membrane) suspended above a rigid ground one. Regularly the
elastic plate is held fixed at two ends while the other two edges remain free to move
(see Fig. 1). A potential difference V is applied between the elastic membrane and
the rigid ground plate, leading to a deflection of the membrane towards the plate.
Considering the width d of the intermediate gap, i.e the gap between the membrane
and the bottom plate, to be small compared to the device length L , then the defor-
mation of the elastic membrane u, after proper scaling, is given by the dimensionless
equation

∂u

∂t
= �u + λ̃ h(x)

(1 − u)2
, x ∈ D, t > 0, (7)

see Kavallaris and Suzuki (2018), Pelesko and Bernstein (2002), Pelesko and Triolo
(2001).Here, the term h(x) describes the varying dielectric properties of themembrane
and for some elastic materials can be taken to be constant; for simplicity, henceforth
we assume that h(x) ≡ 1. Furthermore, the parameter λ̃ appearing in (7) equals
to

λ̃ = V 2L2ε0

2T 
3
,
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Fig. 2 Schematic representation
of a MEMS device with
non-ideal support and subject to
external forces

and is the tuning parameter of the device. Note that T stands for the tension of
the elastic membrane, 
 is the characteristic width of the gap between the mem-
brane and the fixed ground plate (electrode), whilst ε0 is the permittivity of free
space.

MEMS engineers are commonly interested in identifying the conditions under
which the elastic membrane can touch the rigid plate, a mechanical phenomenon
usually referred to as touching down and one that can potentially lead to the destruc-
tion of the device. Touching down can be described via model (7), and it corresponds
to the case when the deformation u reaches the value 1; such a situation is known as
quenching (or extinction) in the mathematical literature.

Experimental observations (seeYounis 2011) show a significant uncertainty regard-
ing the values of V and T . More specifically, V fluctuates around an average value
V0, corresponding to some λ > 0. Hence, one may assume that λ̃ = λ + σ η(t)
where σ > 0 is a coefficient measuring the intensity of the fluctuations (noise
term) η(t). A feasible choice is σ ≡ σ(u), whereas the noise term can be defined
in terms of the stochastic differential of fractional Brownian motion with Hurst
index 1

2 < H < 1 (see, e.g., Mishura 2008), i.e., η(t) = d B H
t , and thus we take

λ̃ = λ + σ(u)d B H
t . Many reasonable functional forms can be hypothesized for σ(u),

including σ(u) = κ(1 − u)ϑ , measuring the distance to quenching (touching down),
where the positive constant κ is chosen to be small enough to ensure the positivity of
λ̃. In the following sections, we choose ϑ = 3, so that

λ̃

(1 − u)2
= λ

(1 − u)2
+ κ(1 − u)d B H

t ,

see also Drosinou et al. (2022), Kavallaris (2018). Hence, the above discussion illus-
trates how a specific uncertaintymodel for the tuning parameter of (7) yields the SPDE
model given by (1).

Regarding the boundary condition in (2), we consider a design where the two edges
of the membrane are attached to a pair of torsional and translational springs, modeling
a flexible, non-ideal support (Drosinou et al. 2021; Younis 2011) (see Fig. 2). Then,
homogeneous boundary conditions of the form (2), with βc = 0, are imposed along
with the stochastic equation for the deformation u and the initial condition (3). The
case of a positive constant βc arises when the support or cantilever of the device may
be flexible and subjected to an external force, e.g., due to gravity, cf. Younis (2011).
This latter consideration results in a boundary condition of the form ∂u

∂ν
= −βu + βc,
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where βc stands for the external force. For the sake of simplicity, in what follows,
we assume that βc = β, and we consider the non-homogeneous Robin boundary
condition ∂u

∂ν
+ βu = β.

3 Inverse-quadratic force

In this section, we estimate the quenching probability associatedwith problem (1)–(3).
For the sake of simplicity, we introduce a new variable z = 1− u, and rewrite (1)–(3)
as:

dz = (�z − λz−2)dt − κzd B H
t , x ∈ D, t > 0, (8)

∂z

∂ν
+ βz = 0, x ∈ ∂ D, t > 0, (9)

0 < z(x, 0) = z0(x) ≤ 1, x ∈ D. (10)

As before, the process {B H
t }t≥0 driving the system is assumed to be a (real-valued,

one-dimensional) fractional Brownian motion with Hurst index H > 1/2.
Throughout this work, we will use the Banach space Bα,2

(
[0, t] , L2(D)

)
, which

consists of all measurable functions z : [0, t] → L2(D) for which the norm ‖ · ‖α,2 is
defined, i.e.,

‖z‖2α,2 =
(
ess sup
s∈[0,t]

‖z(·, s)‖2
)2

+
∫ t

0

(∫ s

0

‖z(·, s) − z(·, r)‖2
(s − r)α+1 dr

)2

ds < +∞,

where ‖ · ‖2 is the usual norm in L2(D), cf. Maslowski and Nualart (2003), Mishura
(2008), Zähle (2001).

We start by providing a precise definition of the notion of quenching time that was
alluded to in the introduction.

Definition 1 A stopping time τ : � → (0,∞)with respect to the filtration {Ft , t ≥ 0}
is a quenching time of a solution z of (8)–(10) if

lim
t→τ

inf
x∈D

|z(x, t)| = 0, a.s. on the event {τ < ∞}, (11)

or equivalently

P

[
inf

(x,t)∈D×[0,τ )
|z(x, t)| > 0

]
= 1, a.s. on the event {τ < ∞}. (12)

We will write τ = +∞ if τ > t for all t > 0.

We now define the notions of weak and mild solutions used in the paper.

123



A stochastic parabolic model of MEMS driven… Page 7 of 25    73 

Definition 2 An L2(D)-valued randomfield {z( ·, t)}t≥0 is a weak solution of problem
(8)–(10) over the time interval (0, τ ) if for some a ∈ (1 − H , 1/2),

z ∈ L2
(
[0, τ ], W 1,2(D)

)
∩ Bα,2

(
[0, τ ], L2(D)

)
, P − a.s.,

and

∫
D

z(x, t)φ(x)dx =
∫

D
z0(x)φ(x)dx +

∫ t

0

∫
D

z(x, s)�φ(x)dxds

+
∫ t

0

∫
∂ D

(
φ(x)

∂z(x, s)

∂ν
− z(x, s)

∂φ(x)

∂ν

)
dx ds

−λ

∫ t

0

∫
D

z−2(x, s)φ(x)dxds

−κ

∫ t

0

∫
D

z(x, s)φ(x)dxd B H
s , (13)

P − a.s. for all t ∈ (0, τ ) and all test functions φ ∈ H2(D).

Remark 1 The requirement that z ∈ Bα,2
([0, τ ], L2(D)

)
for some a ∈ (1 − H , 1/2)

ensures that the stochastic integral with respect to B H
t in (13) exists as a generalized

Stieltjes integral in the sense of Zähle (2001); see also Nualart and Vuillermot (2006,
Proposition 1). Note also that the boundary condition (9) can be assumed to be held in a
weak sense–and hence the boundary term in (13) is well defined–by virtue of the trace
theorem, cf. Evans (2010, Theorem 1, p. 272). Furthermore, the boundary condition
also holds in the classical (strong) sense for smooth initial data. This is due to the fact
that the required regularity for the solution z can be obtained by an approach similar
to Kavallaris and Yan (2020, Theorem 4.1) for Hölder continuous initial data, which
also guarantees the Hölder continuity of the solution in terms of the time variable.

Definition 3 An L2(D)-valued random field {z( ·, t)}t≥0 is a mild solution of problem
(8)–(10) over the time interval (0, τ ) if for some a ∈ (1 − H , 1/2),

z ∈ L2
(
[0, τ ], W 1,2(D)

)
∩ Bα,2

(
[0, τ ], L2(D)

)
, P − a.s.,

and

z(x, t) = St z0(x) − λ

∫ t

0
St−r

(
z−2(·, r)

)
(x) dr − κ

∫ t

0
St−r (z(·, r)) (x) d B H

r ,

P−a.s. for all t ∈ (0, τ ) and x−a.e. in D.Here, St stands for the semigroup generated
by the operator A = −�R, i.e., the Laplace operator associated with homogeneous
Robin conditions (see e.g., Pazy 1983, Chap. IV) and domain D(A) = W 2,2(D) ∩
W 1,2(D).
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Remark 2 Notably, theweak andmild solutions are equivalent for semilinear parabolic
problems involving drift and diffusion terms that satisfy a Lipschitz condition, see e.g.
Garrido-Atienza et al. (2016, Theorem 2.5). Moreover, in Sanz-Solé and Vuillermot
(2003, Theorem 2.3) the equivalence of weak and mild solutions is proven for a
fractional (possibly infinite-dimensional) Brownian motion and when the Hurst index
is constrained so that H ∈ ( 4d+1

4d+2 , 1
)
and a ∈ (

1 − H , 1
4d+2

)
. Finally, as proven

in Theorem 1 below, since the nonlinearity f (s) = s−2 is locally Lipschitz, for any
z ∈ L2

([0, τ ], W 1,2(D)
)∩Bα,2

([0, τ ], L2(D)
)
,P−a.s., bothmild andweak solutions

are well defined.

We now derive the local existence and uniqueness of a solution to problem (8)–(10).

Theorem 1 Assume that

H ∈
(
1

2
, 1

)
and a ∈ (1 − H , 1) . (14)

Then, for any realization ω ∈ � and any initial data z0 ∈ L2(�,D(A)) such that
0 < z0 ≤ 1 almost surely, there exists τ(ω) = τ > 0 such that problem (8)–(10) has
a unique mild (weak) solution in [0, τ ).

Proof First, note that f̃ (z) := − λ
z2

is not (globally) Lipshcitz continuous, and thus
known existence and uniqueness results, cf. Garrido-Atienza et al. (2016, Theorem
2.4), are not directly applicable to problem (8)–(10). To overcome this difficulty, we
define:

f̃n(z) := − λ

(max{z, 1
n })2 ,

which is Lipschitz continuous, and we set τn to be the first time t for which
infx∈D |z(x, t)| ≤ 1

n , see also Drosinou et al. (2022). It is readily seen that {τn}∞n=1 is
a decreasing sequence. Then, Garrido-Atienza et al. (2016, Theorem 2.4) implies that
the Itô problem

dzn
t = (

�zn
t + f̃ (zn

t )dt
)− κzn

t d B H
t , x ∈ D, t > 0,

0 < zn
0 = z0 ≤ 1, a.s. x ∈ D ,

has a unique mild solution

zn(x, t) = St z
n
0(x) +

∫ t

0
St−r

(
f̃ (zn(·, r))

)
(x) dr − κ

∫ t

0
St−r

(
zn(·, r)

)
(x) d B H

r ,

for any n = 1, 2, . . . , which remains bounded within its interval of existence.
However, since f̃ (z) = − λ

z2
for z ≥ 1

n , we have that z(x, t) = zn(x, t) for t ≤ τn,

where z is any solution of the Itô problem (8)–(10). Now, set τ := limn→∞ τn and
observe that 0 < τ < ∞, since the initial data z0 is strictly positive almost surely.
Hence, we infer the existence and uniqueness of a mild solution for (8)–(10) over the
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time interval [0, τ ). Finally, due to assumption (14), the derived mild solution is also
a weak solution, see Remark 2. 
�
Remark 3 Theorem 1 ensures that the stopping time τ for (8)–(10) in Definition 1 is
positive a.s.

Remark 4 Throughout this work, we assume that condition (14) holds true.

Having derived a local existence and uniqueness result, we are now in a position to
state and prove the main result of this section.

Theorem 2 The weak solution of problem (8)–(10) quenches in finite time with proba-
bility one, i.e. almost surely, regardless of the size of the initial condition or the value
of the parameter λ.

Proof First, we define a new stochastic process by the following transformation

v(x, t) = eκ B H
t z(x, t), x ∈ D, 0 ≤ t < τ. (15)

Notice that (15) and the a.s. path continuity of B H
t imply that z and v quench at

the same time τ, cf. Dozzi et al. (2020). Applying Itô’s formula (see Mishura 2008,
Lemma 2.7.1) to the Itô process defined by (15), we obtain

eκ B H
t = 1 + κ

∫ t

0
eκ B H

s d B H
s ,

or in a differential form

d
(

eκ B H
t

)
= κeκ B H

t d B H
t , t > 0, (16)

eκ B H
0 = 1. (17)

In the following, for the sake of simplicity, we denote

g(t, ψ) =
∫

D
g(x, t)ψ(x)dx,

for all functions g(·, t) ∈ L2(D) and ψ ∈ L2(D).

Applying now the integration by parts formula, which is a special case of the two-
dimensional Itô formula (see page 184 inMishura 2008), we get the weak formulation
for the v-problem

v(t, φ) = v(0, φ) +
∫ t

0
eκ B H

s dz(s, φ) +
∫ t

0
z(s, φ)d

(
eκ B H

s

)
.

Using the weak formulation (13), formulas (16) and (17), as well as the stochastic
Fubini theorem, cf. Da Prato and Zabczyk (2014, Theorem 4.33), we derive

v(t, φ) = v(0, φ) +
∫ t

0
eκ B H

s

[
z(s,�φ) − λz−2(s, φ)

]
ds

123
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+
∫ t

0

∫
∂ D

eκ B H
s

(
φ(x)

∂z(x, s)

∂ν
− z(x, s)

∂φ(x)

∂ν

)
dx ds

−κ

∫ t

0
eκ B H

s z(s, φ)d B H
s + κ

∫ t

0
eκ B H

s z(s, φ)d B H
s

= v(0, φ) +
∫ t

0
v(s,�φ)ds − λ

∫ t

0
eκ B H

s

(
e2κ B H

s v−2(s, φ)
)

ds

+
∫ t

0

∫
∂ D

(
φ(x)

∂v(x, s)

∂ν
− v(x, s)

∂φ(x)

∂ν

)
dx ds, (18)

since

z−2(t, φ) :=
∫

D
z−2(x, t)φ(x) dx = e2κ B H

t

∫
D

v−2(x, t)φ(x) dx := e2κ B H
t v−2(s, φ)

by virtue of (15).
Now, we choose as test function φ in (18) the first eigenfunction φ1 of the Lalpace

operator associated with Robin conditions, i.e., φ1 satisfies:

−�φ1 = λ1φ1, x ∈ D, (19)
∂φ1

∂ν
+ βφ1 = 0, x ∈ ∂ D, (20)

where λ1 is the principal eigenvalue. Also φ1 is normalized so that

∫
D

φ1(x)dx = 1. (21)

It is well known that φ1 has a constant sign, cf. Amann (1976), and so we consider
φ1 > 0.

Thus, under the above choice for the test function, the boundary term in (18) van-
ishes, and thus v(t, φ1) satisfies the integral equation

v(t, φ1) = v(0, φ1) −
∫ t

0
λ1v(s, φ1)ds − λ

∫ t

0
e3κ B H

s v−2(s, φ1)ds. (22)

From (22) we obtain, for any ε > 0,

v(t + ε, φ1) − v(t, φ1)

ε
= 1

ε

(
−
∫ t+ε

t
λ1v(s, φ1)ds − λ

∫ t+ε

t
e3κ B H

s v−2(s, φ1)ds

)

≤ 1

ε

(
−
∫ t+ε

t
λ1v(s, φ1)ds − λ

∫ t+ε

t
e3κ B H

s
1

[v(s, φ1)]2 ds

)
, (23)

where the last inequality follows from Jensen’s inequality, taking also into account
(21), that is

v−2(s, φ1) :=
∫

D
v−2(x, s)φ1(x)dx ≥

[∫
D

v(x, s)φ1(x)dx

]−2

= 1

[v(s, φ1)]2 . (24)
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Letting now ε → 0 into (23), and using the time regularity of v, cf. Remark 1, as
well as the fact that f (s) = s−2 is locally Lipschitz, yields

d

dt
v(t, φ1) ≤ −λ1v(t, φ1) − λe3κ B H

t

[v(t, φ1)]2 .

Hence, via comparison, we obtain v(t, φ1) ≤ I (t), where I (·) solves

d I

dt
= −λ1 I (t) − λe3κ B H

t

I 2(t)
,

I (0) := I0 = v(0, φ1).

The latter is a Bernoulli differential equation with solution

I (t) = e−λ1t
[

I 3(0) − 3λ
∫ t

0
e3
(
λ1s+κ B H

s
)
ds

]1/3
, (25)

where 0 ≤ t ≤ τ1. This, in turn, yields that the stopping time τ1 is given by

τ1 := inf

{
t ≥ 0 :

∫ t

0
e3
(
λ1s+κ B H

s
)
≥ 1

3λ
I 30

}
.

Thus, I (t) hits 0 (quenches) in finite time on the event {τ1 < +∞} . Since I (t) ≥
v(t, φ1), τ1 is an upper bound for the quenching (stopping) time τ of v(t, φ1).

Moreover, the probability of global in time existence for the random function I (t)
is provided by

P[τ1 = +∞] = P

[∫ t

0
e3
(
λ1s+κ B H

s
)
ds <

1

3λ
I 30 for all t > 0

]

= P

[∫ +∞

0
e3
(
λ1s+κ B H

s
)
ds ≤ 1

3λ
I 30

]
.

Then, by the law of the iterated logarithm for B H
t , cf. Orey (1972, Theorem 1.1), that

is

lim inf
t→+∞

B H
t

t1/2
√
2 log(log t)

= −1, P − a.s. , (26)

and

lim sup
t→+∞

B H
t

t1/2
√
2 log(log t)

= +1, P − a.s. , (27)

we deduce that for any sequence tn → +∞,

B H
tn ∼ αnt1/2n

√
2 log(log tn),
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with αn ∈ [−1, 1], and thus

∫ +∞

0
e3
(
λ1s+κ B H

s
)
ds = +∞,

see also Dozzi et al. (2020, Lemma 1). This yields

P[τ1 = +∞] = P

[∫ +∞

0
e3
(
λ1s+κ B H

s
)
ds ≤ 1

3λ
I 30

]
= 0,

and hence

P [τ1 < +∞] = 1 − P[τ1 = +∞] = 1.

Therefore, the random function I (t) and consequently v(t, φ1) both quench almost
surely (a.s.), which in turn implies that z(t, φ1) quenches a.s. as well. Due to (21), the
latter entails that

z(t, φ1) =
∫

D
z(x, t)φ1(x) dx ≥ inf

x∈D
|z(x, t)|,

and thus,

lim sup
t→τ

inf
x∈D

|z(x, t)| = 0,

for some τ ≤ τ1 < +∞, independently of the initial condition z0 and the parameter
value λ. 
�
Remark 5 Theorem 2 shows that the impact of the noise term on the dynamics of
problem (8)–(10) is vital. Indeed, the nonlinear term f (z) = z−2 forces the solution
towards quenching almost surely. In contrast, the correspondingdeterministic problem,
i.e. when κ = 0, only quenches for large initial data or large values of the parameter
λ, cf. Kavallaris et al. (2008), Kavallaris and Suzuki (2018). A similar result has also
been derived in the case of standard Brownian motion, i.e. when H = 1

2 , cf. Drosinou
et al. (2022, Theorem 5.1).

Remark 6 The relatively simple form of the multiplicative noise term in (1)–(3), or
equivalently in (8)–(10), allows for the path-wise analysis of quenching. This is to be
contrasted with weaker notions of quenching, such as the quenching of the moments
of the solution, which is discussed in Kavallaris (2018).

4 Inverse-quadratic force in the presence of a linear opposing force

4.1 Estimation of quenching probability

A question that arises naturally from the analysis of Sect. 3 is whether the system is
eventually led to quenching even in the presence of forces that oppose the inverse-
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quadratic (electrostatic) force appearing in (8). Specifically, in this section,we consider
the following generalization of system (8)–(10):

dz = (�z + γ z − λz−2)dt − κzd B H
t , x ∈ D, t > 0, (28)

∂z

∂ν
+ βz = 0, x ∈ ∂ D, t > 0, (29)

0 < z(x, 0) = z0(x) ≤ 1, x ∈ D. (30)

The additional parameter γ is assumed to be positive, so that the corresponding term
counteracts the (negative) inverse-quadratic term. The main result of this section is
the identification of constraints on γ under which the system avoids quenching with
positive probability. Notice that a stopping time τ < ∞ for problem (28)–(30) can
be defined analogously to Definition 1, and it is ensured to be positive by arguments
similar to those in Sect. 3 and an analogous result to Theorem 1. In particular, for any
solution z to (28)–(30), we have

0 < z(x, t) ≤ 1, for any x ∈ D, 0 ≤ t < τ. (31)

Definition 4 An L2(D)-valued random field {z( ·, t)}t≥0 is a variational (weak) solu-
tion of problem (28)–(30) over the time interval (0, τ ) if for some a ∈ (1− H , 1/2),

z ∈ L2
(
[0, τ ], W 1,2(D)

)
∩ Bα,2

(
[0, τ ], L2(D)

)
, P − a.s.,

and

∫
D

z(x, t)φ(x)dx =
∫

D
z0(x)φ(x)dx +

∫ t

0

∫
D

z(x, s)�φ(x)dx ds

+
∫ t

0

∫
∂ D

(
φ(x)

∂z(x, s)

∂ν
− z(x, s)

∂φ(x)

∂ν

)
dx ds

+γ

∫ t

0

∫
D

z(x, s)φ(x)dxds

−λ

∫ t

0

∫
D

z−2(x, s)φ(x)dxds − κ

∫ t

0

∫
D

z(x, s)φ(x)dxd B H
s ,

(32)

P − a.s. for all t ∈ (0, τ ) and all test functions φ ∈ H2(D).

Definition 5 An L2(D)-valued random field {z( ·, t)}t≥0 is a mild solution of problem
(28)–(30) over the time interval (0, τ ) if for some a ∈ (1 − H , 1/2),

z ∈ L2
(
[0, τ ], W 1,2(D)

)
∩ Bα,2

(
[0, τ ], L2(D)

)
, P − a.s.,
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and

z(x, t) = St z0(x) + γ

∫ t

0
St−r (z(·, r)) (x) dr

−λ

∫ t

0
St−r

(
z−2(·, r)

)
(x) dr − κ

∫ t

0
St−r (z(·, r)) (x) d B H

r ,

P − a.s. for all t ∈ (0, τ ) and x−a.e. in D. Here, St is the operator semigroup given
in Definition 3.

We again define a new stochastic process v(x, t) via (15) where now z(x, t) solves
problem (28)–(30). Making use of the integration by parts formula, we deduce the
weak formulation for v(x, t) = eκ B H

t z(x, t),

v(t, φ) = v(0, φ) +
∫ t

0
eκ B H

s dz(s, φ) +
∫ t

0
z(s, φ)d

(
eκ B H

s

)
,

which by (32), Itô’s formula, and the stochastic Fubini theorem, reads as follows:

v(t, φ) = v(0, φ) +
∫ t

0
eκ B H

s
[
z(s,�φ) + γ z(s, φ) − λz−2(s, φ)

]
ds

−κ

∫ t

0
eκ B H

s z(s, φ)d B H
s + κ

∫ t

0
eκ B H

s z(s, φ)d B H
s

+
∫ t

0

∫
∂ D

eκ B H
s

(
φ(x)

∂z(x, s)

∂ν
− z(x, s)

∂φ(x)

∂ν

)
dx ds

= v(0, φ) +
∫ t

0
v(s,�φ)ds + γ

∫ t

0
v(s, φ)ds − λ

∫ t

0
eκ B H

s (e−κ B H
s v(s, φ))−2ds

+
∫ t

0

∫
∂ D

eκ B H
s

(
φ(x)

∂z(x, s)

∂ν
− z(x, s)

∂φ(x)

∂ν

)
dx ds

+
∫ t

0

∫
∂ D

eκ B H
s

(
φ(x)

∂z(x, s)

∂ν
− z(x, s)

∂φ(x)

∂ν

)
dx ds

= v(0, φ) +
∫ t

0
v(s,�φ)ds + γ

∫ t

0
v(s, φ)ds − λ

∫ t

0
e3κ B H

s v−2(s, φ)ds

+
∫ t

0

∫
∂ D

eκ B H
s

(
φ(x)

∂z(x, s)

∂ν
− z(x, s)

∂φ(x)

∂ν

)
dx ds. (33)

Therefore, v(x, t) satisfies the weak (variational) formulation of the following random
PDE problem:

∂v

∂t
(x, t) = �v(x, t) + γ v(x, t) − λe3κ B H

t

v2(x, t)
, x ∈ D, 0 ≤ t < τ, (34)

∂v(x, t)

∂ν
+ βv(x, t) = 0, x ∈ ∂ D, 0 ≤ t < τ, (35)

0 < v(x, 0) = v0(x) = z0(x) ≤ 1, x ∈ D. (36)
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The solution to problem (34)–(36) is defined in a path-wise manner. Therefore,
classical results for partial differential equations of parabolic type can be employed
to guarantee the existence and uniqueness of a weak solution v(x, t) up to eventual
quenching, cf. Friedman (1983, Chap. 7, Theorem 4’, p. 213). This approach can be
employed to derive a unique local solution of (28)–(30) by virtue of the transformation
v(x, t) = eκ B H

t z(x, t).
Similarly, an analogous random problem can be formulated for equations (8)–(10),

and hence Theorem 1 can be recovered via classical PDE theory, e.g. Friedman (1983,
Chap. 7, Theorem 4’, p. 213). In what follows, the above weak formulation is used to
derive an upper bound for the quenching (stopping) time of v and z.

By choosing as test function the eigenfunctionφ1 satisfying (19)–(21), the boundary
term in (33) vanishes, and thus we obtain

v(t, φ1) = v(0, φ1) + (γ − λ1)

∫ t

0
v(s, φ1)ds − λ

∫ t

0
e3κ B H

s v−2(s, φ1)ds. (37)

Next, using (24) and similar arguments to those in Sect. 3, (37) yields

d

dt
v(t, φ1) ≤ (γ − λ1)v(t, φ1) − λe3κ B H

t

[v(t, φ1)]2 .

So, v(t, φ) ≤ Ĩ (t), and thus τ ≤ τ ∗, where τ ∗ is the stopping time of the process Ĩ (·)
solving

d Ĩ

dt
= (γ − λ1) Ĩ (t) − λe3κ B H

t Ĩ −2(t),

Ĩ (0) := Ĩ0 = v(0, φ1).

The latter initial-value problem has the solution:

Ĩ (t) = e−λ1t
[

Ĩ 3(0) − 3λ
∫ t

0
e3
[
(λ1−γ )s+κ B H

s
]
ds

]1/3
, (38)

for 0 ≤ t ≤ τ ∗, and the stopping time τ ∗ is given by

τ ∗(ω) = τ ∗ := inf

{
t ≥ 0 :

∫ t

0
e3
[
(λ1−γ )s+κ B H

s
]
ds ≥ 1

3λ
Ĩ 30

}
. (39)

Moreover, 0 < τ ≤ τ ∗ for any realization ω ∈ �. That is, if τ ∗ < +∞, then τ ∗ is an
upper bound of the quenching time for the random functions v and z.

We are now in a position to provide an estimate on the quenching probability:

Theorem 3 The following hold true.

(i) If 0 < γ ≤ λ1 then the weak solution to problem (28)–(30) quenches in finite time
with probability 1, i.e., almost surely.
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(ii) If γ > λ1 + H
3 , the probability of finite-time quenching for a solution to problem

(28) – (30) is bounded below by

P [τ < +∞] ≥ P
[
τ ∗ < +∞]

≥ 1 − exp

(
− 1

18κ2

(
α

α − H

)2− 2H
α

(
ln

(
1

3λ
Ĩ 30 + 1

))2− 2H
α

(m0(α) − 1)2
)

, (40)

where m0(α) is given by (42) and α = 3 (γ − λ1) .

Proof (i) Assume that 0 < γ ≤ λ1. Then,

P
[
τ ∗ = +∞] = P

[∫ t

0
e3
[
(λ1−γ )s+κ B H

s
]
ds <

1

3λ
Ĩ 30 for all t > 0

]

= P

[∫ ∞

0
e3
[
(λ1−γ )s+κ B H

s
]
ds <

1

3λ
Ĩ 30

]
= 0,

since

∫ ∞

0
e3
[
(λ1−γ )s+κ B H

s
]
ds = +∞,

which follows by a similar argument to the one in Sect. 3 and the law of the iter-
ated logarithm (27)–(27). Therefore, P

[
τ ∗ < +∞] = 1, which then implies that

P [τ < +∞] = 1.
(ii) Alternatively, when γ > λ1 + H

3 we appeal to the following estimate, cf. Dung
(2019, Theorem 4.1),

P

[∫ ∞

0
e−αs+δB H

s ds < x

]

≤ exp

(
− 1

2δ2

(
α

α − H

)2− 2H
α

(ln(x + 1))2−
2H
α (mx (α) − 1)2

)
, (41)

for any α > H and δ > 0 where

mx (α) := E

⎡
⎢⎢⎣sup

t≥0

ln

(∫ t
0 e−αs− δ2

2 s2H +δB H
s ds + 1

)
+ tα

ln(x + 1) + tα

⎤
⎥⎥⎦ .
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Then, if we set α = 3 (γ − λ1) > H , δ = 3κ, and x = 1
3λ Ĩ 30 in (41), we obtain

the estimate:

P
[
τ ∗ = +∞] = P

[∫ ∞

0
e3
[
(λ1−γ )s+κ B H

s
]
<

1

3λ
Ĩ 30

]

≤ exp

[
− 1

18κ2

(
α

α − H

)2− 2H
α
(
ln

(
1

3λ
Ĩ 30 + 1

))2− 2H
α

(m0(α) − 1)2
]

,

where

m0(α) := E

⎡
⎢⎢⎣sup

t≥0

ln

(∫ t
0 e3(λ1−γ )s− 9κ2

2 s2H +3κ B H
s ds + 1

)
+ tα

ln
( 1
3λ Ĩ 30 + 1

)+ tα

⎤
⎥⎥⎦ . (42)


�
We remark that the case γ > λ1 + H

3 in Theorem 3 offers the possibility of a
global in time solution. Indeed, in the following section, we will show that under
some special choice of initial data 0 < z0(x) ≤ 1, problem (28)–(30) admits a global
in time solution, and thus P [τ < +∞] = 0.

Remark 7 It is worth noting that Theorem 3 fails to provide an estimate of the quench-
ing probability in the range (λ1, λ1+ H

3 ). In the case of standard Brownianmotion, i.e.,
when H = 1

2 , an estimate of the quenching probability can be derived for any value of
the positive parameter γ (Drosinou et al. 2022). In that case, the threshold governing
the transition from almost sure quenching to a possible global in time solution is given
by γ ∗ = λ1 + κ2

2 , and the lower estimate of the quenching probability is sharper than
the one provided in (40), cf. Drosinou et al. (2022, Theorem 5.3).

4.2 Global existence of solutions

Any mild solution of problem (34)–(36) satisfies the integral representation

v(x, t) = eγ tStv0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r St−r

(
v−2(·, r)

)
(x) dr ,

where St is the operator semigroup given in Definition 1. Notably, the weak and mild
solutions are equivalent for problem (34)–(36), cf. Dozzi et al. (2020), and thus in
this section we will use the concept of a mild solution to derive lower bounds for
the quenching (stopping) time for v and z. To this end, in the sequel we follow the
approach introduced in Dozzi and López-Mimbela (2010) (see also Dozzi et al. 2014)
to derive an estimate for the probability of global existence of any local solution to
problem (28)–(30). It is worth noting that this is the first time that such an estimate
for a MEMS model is attained.

Our first result towards establishing global in time solutions to problem (28)–(30)
is the following:
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Theorem 4 Let G(t) be defined by

0 < G(t) :=
[
1 − 4λ

∫ t

0
e3κ B H

r μ−3(r) dr

]1/4
< 1, 0 ≤ t < τ∗, (43)

where μ(t) := infx∈D eγ tStv0(x) > 0 due to the initial condition (36), and

τ∗ := inf

{
t > 0 :

∫ t

0
e3κ B H

r μ−3(r) dr ≥ 1

4λ

}
, (44)

is a stopping time for the stochastic process G(t), i.e., G(t) is positive for 0 ≤ t < τ∗
and it hits zero at τ∗. Then, problem (28)–(30) admits a solution z(x, t) that satisfies

0 < F(x, t)G(t) ≤ z(x, t) ≤ min {1,F(x, t)} ≤ 1, x ∈ D, 0 ≤ τ∗ ≤ τ ≤ ∞, (45)

where F(x, t) := eγ t−κ B H
t Stv0(x).

Proof Note that G(0) = 1. By differentiating (43), we obtain:

G′(t) := −λe3κ B H
t G−3(t)μ−3(t),

and thus

G(t) = 1 − λ

∫ t

0
e3κ B H

r G−3(r)μ−3(r) dr .

Set

R(U )(x, t) := eγ tStv0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r St−r

(
U−2

r

)
(x) dr , (46)

for x ∈ D, t ≥ 0, where (t, x) �→ Ut (x) is any nonnegative function such that
Ut (·) ∈ C0(D), t ≥ 0, and

eγ tStv0(x)G(t) ≤ |Ut (x)| ≤ eγ tStv0(x), 0 ≤ t < τ ∗, x ∈ D. (47)

Then, (46) implies that R(U )(x, t) ≤ eγ tStv0(x) and by virtue of (47) we get

R(U )(x, t) = eγ tSt v0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r St−r
(
U−3

r Ur
)
(x) dr

≥ eγ tSt v0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r St−r
(|Ur |−3|Ur |

)
(x) dr

≥ eγ tSt v0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r St−r
(G−3(r)e−3γ r (Sr v0)

−3|Ur |
)
(x) dr .

(48)
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Next, using once more (47) and applying the semigroup property (Pazy 1983, Defini-
tion 2.3, page 106) into the last inequality of (48) reads

R(U )(x, t) ≥ eγ tStv0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r G−3(r)μ−3(r)St−r
(
eγ rSrv0

)
(x) dr

= eγ tStv0(x) − λ

∫ t

0
eγ t e3κ B H

r G−3(r)μ−3(r)Stv0(x) dr

= eγ tStv0(x)

[
1 − λ

∫ t

0
e3κ B H

r G−3(r)μ−3(r) dr

]

= eγ tStv0(x)G(t). (49)

Accordingly,

eγ tStv0(x)G(t) ≤ R(U )(x, t) ≤ eγ tStv0(x), 0 ≤ t < τ ∗, x ∈ D. (50)

Next, we consider the iteration scheme

v0(x, t) := eγ tStv0(x) and vn+1(x, t) = R(vn)(x, t), n = 0, 1, 2, . . . .

Due to (50), v0(x, t) ≥ R(v0)(x, t) = v1(x, t). If we assume that vn−1(x, t) ≥
vn(x, t) for some n ≥ 1 and for every x ∈ D and t ≥ 0, then

vn+1(x, t) = R(vn)(x, t)

= eγ tStv0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r St−r

(
v−2

n

)
(x) dr

≤ eγ tStv0(x) − λ

∫ t

0
eγ (t−r)e3κ B H

r St−r

(
v−2

n−1

)
(x) dr

= R(vn−1)(x, t)

= vn(x, t).

The latter implies by induction that {vn}∞n=0 is a decreasing sequence of non-negative
functions. Therefore, the limit

ṽ(x, t) = lim
n→∞ vn(x, t)

exists for every x ∈ D and all 0 ≤ t < τ∗.
Consequently, the version of the monotone convergence theorem for decreasing

sequences yields

ṽ(x, t) = R(̃v)(x, t) for x ∈ D and 0 ≤ t < τ∗,

123



   73 Page 20 of 25 O. Drosinou et al.

and hence ṽ(x, t) coincides with the unique solution v(x, t) of problem (34)–(36).
Furthermore, by virtue of (43) and (49),

0 < eγ tStv0(x)G(t) ≤ v(x, t) ≤ eγ tStv0(x) < ∞, x ∈ D, 0 ≤ τ∗ ≤ τ ≤ ∞. (51)

Now, (45) is an immediate consequence of (31), (51), and the relation v(z, t) =
z(x, t)eκ B H

t . 
�
Given Theorem 4, we are now in a position to provide a condition under which

problem (28)–(30) has a global in time solution with probability 1.

Corollary 5 Consider initial data 0 < z0(x) ≤ 1 such that

∫ ∞

0
e3κ B H

r μ−3(r) dr <
1

4λ
. (52)

Then, with probability 1, problem (28)–(30) admits a global in time solution satisfying

0 < eγ t−κ B H
t Stv0(x)G(t) ≤ z(x, t) ≤ min

{
1, eγ t−κ B H

t Stv0(x)
}

≤ 1, x ∈ D,

(53)

for any t ≥ 0.

Proof Thanks to (52), we obtain via (44) that τ∗ = ∞, and thus the desired rela-
tion (53) is valid, since by (45) in the statement of Theorem 4 we also deduce that
τ = ∞. 
�
Remark 8 The above analysis also implies that the quenching time for problem (34)–
(36) is bounded below by the random variable τ∗ given by (44), cf. (45).

We will now derive a sufficient condition for (52) to be valid. Such a condition
will be given in terms of the normalized principal eigenpair (λ1, φ1) of the Laplace
operator associated with homogeneous Robin boundary conditions, i.e., a function φ1
satisfying the normalized eigenvalue problem (19)–(21).

To this end, we consider initial data 0 < z0(x) = v0(x) ≤ 1, such that

0 < K1Sηφ1(x) ≤ z0(x) = v0(x) ≤ 1, x ∈ D, (54)

for some fixed η ≥ 1 and some constant K1 > 0 to be specified in the sequel.
Remarkably, by virtue of Jentsch’s Theorem (see Schaefer 1974, Theorem V.6.6), we
obtain Stφ1(x) = e−λ1tφ1(x) for any t ≥ 0, and thus (54) implies

0 < K1e−λ1ηφ1(x) ≤ z0(x) = v0(x) ≤ 1, x ∈ D. (55)

By setting χ := inf x∈D φ1 > 0, (55) yields

Stv0(x) ≥ K1St+η (φ1(x))
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= K1

(
e−λ1(t+η)φ1(x)

)

≥ K1χe−λ1(t+η), for any x ∈ D, t ≥ 0, (56)

where the lower bound in (56) is independent of the spatial variable x .

Since the function (x, t) �→ Stφ1(x) is uniformly bounded in x, (56) implies that

μ(t) ≥ K1χe−λ1ηe(γ−λ1)t for any t ≥ 0,

and thus condition (52) is satisfied provided that

(
K1χe−λ1η

)−3
∫ ∞

0
e3
[
(λ1−γ )s+κ B H

s
]
ds <

1

4λ

or

∫ ∞

0
e3
[
(λ1−γ )s+κ B H

s
]
ds <

(
K1χe−λ1η

)3
4λ

= K2

4λ
, (57)

for K2 := (
K1χe−λ1η

)3
.

We can now deduce the following global existence result.

Theorem 6 Assume that λ1 < γ and consider initial data z0(x) such that condition
(54) is satisfied. Also, assume that (57) holds true for some η ≥ 1 and K1 > 0. Then,
problem (28)–(30) has a global in time solution almost surely.

Proof Conditions (54) and (57) guarantee that (59) is also fulfilled, and the result
follows from Corollary 5. 
�
Remark 9 Note that if λ1 ≥ γ, then

∫ ∞

0
e3
[
(λ1−γ )s+κ B H

s
]
ds = ∞ a.s.,

and thus (57) cannot be satisfied. If λ1 < γ, then (57) holds true when the parameter
λ is sufficiently small; alternatively, if we fix λ, then the constant K1 should be chosen
sufficiently large.

Remark 10 As can be seen by (39) and (45), the random variables τ∗ and τ ∗, which
were defined by (44) and (39), respectively, provide lower and upper bounds for the
quenching time τ of the solution to (28)–(30). Consider now v0(x) = K1e−λ1ηφ1(x)

for some constants η ≥ 1 and K1 > 0. Then, τ∗ and τ ∗ are expressed in terms of the
same exponential function of fractional Brownian motion. Indeed, under our choice
for the initial data, we have:

μ(t) = K1e(γ−λ1)t e−λ1ηχ,
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and

Ĩ0 = K1e−λ1η

∫
D

φ2
1(x) dx .

Then, due to (44) and (39), we deduce that

τ∗ := inf

{
t > 0 :

∫ t

0
e3
[
(λ1−γ )s+κ B H

s
]
ds ≥ K 3

1χ
3e−3λ1η

4λ

}
,

and

τ ∗ := inf

{
t > 0 :

∫ t

0
e3
[
(λ1−γ )s+κ B H

s
]
ds ≥ K 3

1e−3λ1η
(∫

D φ2
1(x) dx

)3
3λ

}
,

which implies that τ∗ ≤ τ ∗, provided that

3

4
χ := 3

4

(
inf
x∈D

φ1(x)

)3

≤
(∫

D
φ2
1(x) dx

)3

.

The latter relation is readily seen to be always true, given that
∫

D φ1(x) dx = 1.

5 Discussion

As discussed in Sect. 2, MEMS-based drug delivery systems are implantable devices
comprised of micro-reservoirs and micro-actuators, which control liquid-phase drug
ejection out of themicro-reservoirs and into the tissues of interest (Ghazali et al. 2020).
Theseminimally invasive technologies enable patient-specific dosingwhile improving
the bioavailability of drugs for diseases such as cancer, diabetes, and osteoporosis
(Chirkov and Grumezescu 2022; Ghazali et al. 2020). Our primary focus here has
been on one of the simplest possible designs for MEMS actuation that is commonly
employed as an element of such drug delivery systems (Algamili et al. 2021; Allen
2005).

Specifically, we investigated the behavior of certain stochastic partial differential
equations, which model such MEMS-based actuators. The dynamics were driven by
a fractional Brownian motion with Hurst index H > 1/2, i.e., the increments of the
driving stochastic process were assumed to be positively correlated. Our theoretical
analysis enabled us to provide lower bounds for the probability of quenching in the
MEMS designs under consideration. Recall that the phenomenon of quenching cor-
responds to the touching down of the elastic plate of the device (see Fig. 1), leading
to the potential destruction of the actuator. Moreover, we estimated the probability of
normal operation in the long run for MEMS designs that counteract the electrostatic
force on the elastic plate through the action of a linear opposing force (see Sect. 4).

Our results are of interest for MEMS control since they illustrate the significant
impact of the underlying noise on the dynamics of these devices. As alluded to in
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Theorem 2, the nonlinear term f (z) = z−2 in problem (8)–(10) forces the solution
towards quenching almost surely. This is in stark contrast with the dynamics of the
corresponding deterministic system. Indeed, when κ = 0 the system only quenches for
large initial data or large values of the parameter λ (Kavallaris et al. 2008; Kavallaris
and Suzuki 2018).

It is also worth emphasizing the differences between the results in this paper for
actuators driven by positively correlated noise (i.e., when H > 1/2) with existing
literature focusing on the dynamics of the same systems when they are driven by
standard Brownian motion; for more information on standard Brownian motion see
Friedman (2006), Karatzas and Shreve (1991). It is of interest that Theorem 3 fails to
provide an estimate of the quenching probability in the range (λ1, λ1 + H

3 ). However,
in the case of standard Brownian motion, an estimate of the quenching probability can
be derived for any value of the positive parameter γ (Drosinou et al. 2022). In that case,
the threshold governing the transition from almost sure quenching to a possible global
in time solution is given by γ ∗ = λ1 + κ2

2 , and the lower estimate of the quenching
probability is sharper than the one provided in (40), cf. Drosinou et al. (2022, Theorem
5.3).
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