Testing data logging tools in
DataOps for Digital Twins

Testning av loggningsverktyg i DataOps for Digitala Tvillingar

Adrian Bakken Sundmoen
<Adrian.basu@hotmail.com>

Faculty of Health, Science and Technology

Master thesis in Computer Science

Second Cycle, 30 hp (ECTS)

Supervisor: Dr. Bestoun S. Ahmed, Karlstad University, bestoun@kau.se

Examiner: Prof. Dr. Andreas J. Kassler, Karlstad University, andreas.kassler@kau.se

Karlstad, February 27th, 2023

Abstract

Industry 4.0 and a global trend in digital transformation have brought new ideas and
emerging technologies to the surface. Data has become a key asset for businesses, and
streamlining data and automating data life cycles have become increasingly important.
This industrial revolution is centered around cyber-physical systems, and it sets forth
that new technologies will change how a business traditionally operates. However, the
problem is a lack of tools, systems, and methods to realize this revolution. Thus, there
is a strong demand for finding solutions that move businesses toward Industry 4.0. A
new technology known as Digital Twin (DT) has emerged from this. This technology
aims to improve the business value of big data by digitally representing physical
entities. To operate successfully with this technology, other enabling technologies
and tools are needed, providing DTs with high-quality data that accurately represent
the system in which the twin models are used. This can be a problem as the data
might originate from different sources and often do not follow the same format and
standards. Furthermore, data must also be readily collected in a timely manner. To
deal with problems such as these, a new term known as Data Operations (DataOps)
has surfaced. DataOps is a set of practices and processes that aims to improve the
communication, integration, and automation of data flow within data landscapes
and organizations. This thesis introduces a methodology to investigate whether a
standardized data logging tool can be used as a DataOps solution to collect, process,
and make data available for DTs. This is done by investigating the current literature
and applying testing methodologies to the tool. More specifically, a combination of
load, performance, and stress tests are performed to assess the ability of the tool to
collect large amounts of data. The focus is on investigating whether this can be done
in a timely manner. It is concluded that the tool does posses features that are of
importance for DataOps and DTs, and that it could be a viable option for data gathering
to certain DTs on its own. However; as a result of internal mechanics of the tool, it is
not timely enough for use as a DataOps solution in general. Further research regarding
improvements of its timeliness, other similar tools, and testing in a real environment
consisting of a real DT is proposed and motivated.

Keywords

Master’s Thesis, DataOps, Digital Twin, Logging Tools, Testing Methodology

iii

Sammanfattning

Industri 4.0 och en global trend inom digital transformation har resulterat i att nya
idéer och teknologier dykt upp. Data har blivit en allt mer viktig tillgang for foretag
och samhalle, och en effektivisering samt automation av datas livscykler ar av okat
intresse. Denna industriella revolution ar centrerad kring cyber-fysiska system och
innebar att mojliggorande teknologier i grunden kommer att fordndra hur foretag
traditionellt fungerar. Trots detta s saknas tillforlitliga verktyg, system och metoder
for att fullt ut forverkliga denna revolution. Till foljd av detta har nya termer och
teknologier dykt upp. Tva av dessa ar Data Operations (DataOps) och den digitala
tvillingen (DT). For att tekniker som den digitala tvillingen ska fungera optimalt
maste den ha tillgang till hogkvalitativ data som tillrackligt noggrant representerar
systemet den modellerar. Detta dr ofta ett problem da data kan harstamma fran
manga olika system, som foljer olika format och standarder. Det finns oftast ocksa
krav pa att datat skall processeras och goras tillganglig for tvillingen tillrackligt snabbt.
Detta examensarbete undersoker om ett standardiserat loggningsverktig kan anviandas
som en DataOps losning for att samla in, processera, och gora data tillganglig for
digitala tvillingar. Detta gors genom att undersoka nuvarande litteratur, och genom
att applicera diverse testningsmetodologier pa verktyget. Testningen undersoker
verktygets formaga att samla in stora mangder data, och fokuserar pa om detta kan
goras tidsenligt. Undersokningen visar att verktyget har egenskaper som relaterar
val till de kvalitéer som onskas hos ett DataOps verktyg, och de krav som stills
pa Digitala Tvillingar. Testningen visar att verktyget kan processera data med ett
konsekvent resultat, men att verktyget har begransningar som resulterar i att data
inte kan processeras i realtid. Sammanfattningsvis visar undersokningen att verktyget
kan vara ett lampligt verktyg for vissa Digitala Tvillingar i sig sjalvt, men inte som
en DataOps losning generellt. Ytterligare forskning géllande forbattring av verktygets
tidsenlighet, andra liknande verktyg, och testning i en verklig miljo foreslas.

Nyckelord

Master Examensarbete, DataOps, Digital Tvilling, Loggningsverktyg,
Testmetoder

v

Acknowledgements

Firstly, I would like to express my gratitude to Kazoku IT AB and all their very talented
colleagues for giving me the opportunity, tools, and material to do this thesis. Special
thanks to Robert Mayer, Do Hellbom, and Ingemar Elefant for their persistent help
and patience throughout the process.

I also wish to express my sincere gratitude and a big thank you to my supervisor
Bestoun S. Ahmed for his persistent and insightful advice, help, and critique
throughout the completion of this thesis. Without his knowledge and experience, this
work would not have been possible. Also, a big thank you to Karlstad University; not
only for the opportunity to write this thesis, but also for providing me with invaluable
knowledge and professional reception over the past five years of my education.

Acronyms

DT Digital Twin

DataOps Data Operations

SUT System Under Test

psutil python-system-and-process-utilities
REST Representational state transfer
HTTP Hypertext Transfer Protocol

WCF Windows Communication Foundation

Contents

1

Introduction 1
1.1 Background e 1
1.2 Problem Description 2
1.3 Thesis Objective 2
14 ThesisGoals e 2
1.5 Ethics and Sustainability, 3
1.6 Methodology e e 3
1.7 Stakeholders e 3
1.8 Delimitations e 3
1.9 Outline e e 4
Background and Related Work 5
2.1 DataOps o i e e e e e e 5
2.1.1 Definitionsof DataOps 5
2.1.2 DataOps in an industrial environment 6
213 TowardsDataOps 8
2.2 Digital Twins e e e e e 9
221 Definitions 10
2.2.2 Data requirements, principles and enabling technologies for
Digital Twins e 11
2.3 Load, Performance, and Stress Testing 12
24 RelatedWork e e e 13
25 ConclusionaryRemarks 0., 14
251 DataOps e e 14
252 DigitalTwins e 15
The Logging Tool 16
3.1 Introduction 16
3.2 The Logging Serviceand LogAPI 16
3.3 SearchFields. e 18
Design and implementation 20
41 Testbed o e e 20
4.2 Loggingand MeasuringSetup 21
4.3 The Logs and Testing Variables 23
44 NodiniteSetup e 24

CONTENTS

5 Evaluation and Result 27
5.1 Results from the Literature Study 27
5.2 Testingresults e 28

5.21 Load and Performance Testing 28
522 StressTest e 33
5.2.3 Improving Processing Times 34
5.3 Evaluation e e 35
5.3.1 Evaluationof TestingResults 36
5.3.2 Logging tools as a DataOps solution for Digital Twins 39
5.3.3 The timeliness of the System Under Test (SUT) 40
5.3.4 Proposed Improvements For The SUT 40
5.4 Limitationsofthe Thesis. 41

6 Conclusion and Future Work 42
6.1 Conclusion e e e e e e 42
6.2 Future Work e 43

References 45

viii

List of Figures

2.1.1 Phases [10] of moving from ad-hoc data analysis to DataOps 8
3.2.1JSON Log Eventdetails. 17
3.2.2Log APToverview 18
3.2.3I1lustration of the Search Field Functionality in Nodinite 18
3.3.1 Search Field value stored in the log database 19
4.1.1 Architectural overview oftestbed 21
4.2.1 Architectural overview of the testing process 22
4.2.2Snapshot of Nodinite Database during stress tests, showing log
timestamps e e 22
4.2.3TeStiNG PrOCESS . .« + v v v e i e e e e e e e e e e e e e e e e e 23
4.3.1 Independent vs Dependent Variables 23
4.3.2Log Attributesand Log Sizes, 24
4.4.1 JSON file (650 bytes) containing the attributestolog 25
4.4.2Attributes from JSON (650 bytes) file stored in Nodinite using the
Search Fieldfeature, 26

5.2.1 Sending frequency: 7 logs/s, Amount of logs sent: 5,000 , Instances

sending: 1, Batch size: 100 logs, Processing Interval: 155 29
5.2.2Sending frequency: 35 logs/s, Amount of logs sent: 25,000, Instances
sending: 5, Batch size: 100 logs, Processing Interval: 158 31
5.2.3Sending frequency: 53-66 log events/s, Amount of logs sent: 50,000,
Instances sending: 10, Batch size: 100 logs, Processing Interval: 155 . . 32
5.2.4Instances sending: 5, 10 and 15, Batch size: 100 logs, Processing
Interval: 155 e 34
5.2.5Sending Frequency: 35 logs/s, Amount of logs sent: 25,000, Instances
Sending: 5. . . . o . e e e e e e e e e e 35
5.2.6Instances sending: 5, 10 and 15, Batch size: 100 logs, Processing
Interval: 55 e e 36

ix

List of Tables

2.1.1 Components in DataOps and their importance, according to experts
interviewed [4] e e
2.2.1 DT characteristics according to industryleaders

Chapter 1

Introduction

This chapter presents introductory information about the thesis. The chapter starts
with background information and a problem description of the topic, along with the
objectives and goals of the thesis. The ethical aspects of the project, along with its
stakeholders, will also be presented. Finally, the thesis outline and its delimitations
will be discussed.

1.1 Background

Data have become a critical asset for competitiveness in today’s applications, in which
data-driven solutions significantly increase the success of a business. Streamlined data
and analytical processes have become crucial for companies looking to improve their
business performance [4] [14]. However, with an ever-growing amount of generated
data, consuming all of it has become a problem. As a result, there is an increased need
to shape enterprise data and analytical processes, to effectively consume this data [4].
Subsequently, new ideas and concepts have emerged. One of these is DataOps, which
addresses the mentioned problems by automating data orchestration throughout an
organization.

Alongside this, an industrial revolution commonly known as Industry 4.0 is happening.
This revolution is about rapid change in industrial technologies centered around cyber-
physical systems. By combining real-time connections between physical and digital
systems with new technologies to enable innovation, Industry 4.0 is hypothesized
to change the way industries will operate in the future [1]. Further strengthening
competitive priorities for businesses. One of the new emerging technologies related
to Industry 4.0 is the Digital Twin (DT). A DT is a virtual copy of a physical system
that connects real systems to a virtual one to collect, analyze, and simulate data in a
virtual model [12]. However, there is a lack of tools, methods, and systems powerful
and sophisticated enough to fully realize this revolution and its technologies [17], such
as the DT.

CHAPTER 1. INTRODUCTION

1.2 Problem Description

To operate successfully, a DT must have access to available high-quality data that
accurately represent the system it models. DTs must also be able to collect data from
different sources, often not following the same format and standards. A tool that solves
these problems would be an attractive component for a DT. That tool could collect,
standardize, and process data from different sources in one centralized platform and
then make it available for retrieval for a DT in real-time. Additionally, it is essential that
the data-gathering process is implemented in a way that automates and streamlines
the entire data life cycle. Shortening the end-to-end cycle time of data analytics will
allow business value to be achieved more effectively. The above characteristics will be
managed by ensuring that a tool used for gathering data to a DT is implemented as a
DataOps solution.

1.3 Thesis Objective

The aim of this thesis is to investigate whether a standardized logging tool can be used
as a DataOps solution to gather and process data for a DT to use. This will be done by
providing and applying a testing methodology to such a tool and evaluating its ability to
gather, standardize, and process data for a generalized DT. The focus is on evaluating
the timeliness of this tool. To facilitate this aim, a case study is conducted on a tool
named Nodinite. Additionally, a literature review is conducted to gather information
about the discussed topics.

1.4 Thesis Goals

This thesis aims to show a systematic method that evaluates a data logging tool in the
context of DataOps for DTs. To create accurate and reliable DTs, it is essential to have
robust and efficient data logging tools in place. Through this process, the hope is to
provide valuable insight and recommendations for organizations looking to implement
data logging tools in their DataOps for DTs. By identifying the most effective tools,
we can help organizations optimize their data management processes and improve
the accuracy and reliability of their DTs. Ultimately, the goal is to contribute to the
development and advancement of DataOps for DTs and help organizations harness
this technology’s full potential. Furthermore, the following research questions will be
used as a basis to achieve the goals of the study:

1. What are the characteristics of a DataOps solution and the data requirements of
a DT?

2. Can a data logging tool be used as a DataOps solution to collect and make data
available for a DT?

3. What is the timeliness of the tool under test?

CHAPTER 1. INTRODUCTION

1.5 Ethics and Sustainability

This thesis aims to contribute in the field of Industry 4.0, enhancing the efficiency
of organizations and their data management processes. This could, under the right
circumstances, result in improved sustainability. For example by lowering the energy
consumption of a manufacturing process, after having applied and used technologies
such as those discussed in this paper.

The data used in this thesis do not contain personal, private, or sensitive
information.

1.6 Methodology

In this thesis, a data logging tool named Nodinite is evaluated as a case study for its
ability to act as a DataOps solution for gathering data to DTs. A literature study is
conducted to find the characteristics of a DataOps solution and the data requirements
of DTs. A testing methodology is built using the gathered information, to perform
the evaluation. More specifically, the thesis focuses on evaluating the tool’s ability to
gather and process data in a timely manner for DTs as a DataOps solution.

The testing is conducted by generating data for logging to the tool while varying the
different parameters related to the data. Then it is observed how the tool behaves under
these different parameters while measuring the processing times of the logged data.
The tool is evaluated when analyzing and relating the testing data with the information
collected from the literature study, and its timeliness.

1.7 Stakeholders

This project is carried out in collaboration with Kazoku IT AB. Kazoku is a consulting
company specializing in the integration of IT systems. One of the tools used by Kazoku
is Nodinite, a standardized logging and monitoring tool that centralizes information
from different IT systems and integrates it into one platform. With growing interest
in the industry regarding DataOps and DTs, Kazoku IT wants to investigate if and how
Nodinite can be used as a DataOps solution for DTs.

1.8 Delimitations

The evaluation conducted in this thesis is based on theoretical requirements found
in the literature to be important for DTs in general. This allows the tool to be
evaluated for the industry in general rather than for specific industrial scenarios and
environments. However, further research is still motivated in which Nodinite is
applied to an actual and specific DT, where data requirements are derived from a real-
life environment. Extended testing with more complex data could also contribute to

3

CHAPTER 1. INTRODUCTION

an improved evaluation. Further, as Nodinite is used as a generalization for logging
tools in this study, research regarding other logging tools is also motivated.

1.9 Outline

This thesis is structured as follows: Chapter 2 presents the information necessary to
understand the following chapters through background and related work. A literature
study will be conducted to present and define DataOps and DTs. Furthermore, the
characteristics of DataOps and the data requirements of DTs will be discussed, laying
the foundations for the tests and evaluation carried out in the case study. The chapter
will also present testing theories and methodologies, along with related works and a
conclusion of the chapter. Following this, in chapter 3 a description of the used tool is
given. In Chapter 4, a description of the design and implementation process is given.
Detailed information on the methodology will be presented using written descriptions,
figures, and graphs. Chapter 5 will present the study’s results and the tests applied to
Nodinite. Lastly, a discussion of the results, followed by a conclusion of the thesis, will
be given in Chapter 6.

Chapter 2

Background and Related Work

Industry 4.0 conceptualizes rapid change in industrial technologies centered on cyber-
physical systems. This revolution means that real-time connections between physical
and digital systems combined with new enabling technologies are likely to change
how industries traditionally operate, advancing competitive priorities such as cost,
flexibility, speed, and quality [11]. However, the lack of robust tools poses a significant
obstacle to reaching the full potential of Industry 4.0. More specifically, there is a lack
of formal methods and systems crucial to implementing this revolution [17].

A term of relevance in the implementation of Industry 4.0 is DataOps, which aims
to automate data orchestration throughout a business. Furthermore, a technology
emerging directly from Industry 4.0 is the DT. This technology is a virtual
representation of a physical object that spans its entire life cycle, essentially addressing
one of the core ideas of Industry 4.0 - building cyber-physical systems. This chapter
includes a literature study on related topics to better understand the aforementioned
terms, technologies, and the demands on tools that enable them. After this, related
works are reviewed followed by a conclusion of the chapter and its significance for the
thesis.

2.1 DataOps

This section presents the definitions of DataOps and identifies its characteristics. The
process of implementing a fully integrated DataOps solution in an organization is also
discussed.

2.1.1 Definitions of DataOps

Upon reviewing the term DataOps, no standardized definition is found. How DataOps
is described depends on the stakeholder and their interest. As an example, below are
two different definitions given by business leaders in DataOps:

“DataOps is the orchestration of people, processes, and technology to deliver trusted,

5

CHAPTER 2. BACKGROUND AND RELATED WORK

business-ready data to data citizens, operations, and applications throughout the
data lifecycle. With properly governed data, companies can comply with complex
regulations and data privacy and ensure the accuracy of the AI model by monitoring
data quality *.”

“DataOps is a collaborative data management practice focused on improving the
communication, integration, and automation of data flows between data managers
and data consumers across an organization. The goal of DataOps is to deliver value
faster by creating a predictable delivery and managing changes in data, data models,
and related artifacts. DataOps uses technology to automate the design, deployment,
and management of data delivery with appropriate levels of governance and uses
metadata to improve data usability and value in a dynamic environment®.”

By also reviewing the current literature related to DataOps, the above definitions can
be extended and complemented to define the term better. In a study [4] conducted to
move toward a standardized definition of DataOps, current literature about DataOps
is investigated. The study investigates which components and characteristics are
essential for DataOps solutions. It is concluded that most of the authors of the
reviewed literature emphasizes continuous improvement and a culture of collaboration
and trust as an underlying goal of DataOps. It is also emphasized that end-to-end
thinking is a core objective. Another vital component found within DataOps is the data
pipeline, which describes a process-oriented structure in which data are transferred
through multiple stages of a process. The stages mentioned are data extraction,
transformation, and visualization. It is also revealed that data-driven improvements,
testing, and monitoring are the fundamental principles of DataOps. Furthermore,
the study extracted common goals and principles related to the term in the literature.
To determine which components were considered the most important, eight DataOps
experts were interviewed and asked to note which components are the most valuable.
The result can be seen in table 2.1.1. The interviewees are denoted with the letter C
followed by a numbering in the table.

Based on this result, [4] derives the following definition:

“DataOps is a set of practices, processes, and technologies that combine an integrated
and process-oriented perspective on data with automation and methods from agile
software engineering to improve quality, speed, and collaboration and promote a
culture of continuous improvement.”

2.1.2 DataOps in an industrial environment

Today’s production environments generate substantial amounts of data. This is
especially the case in industrial environments, where data is continuously generated
near machinery (sensors and controllers) and from various IT systems and on-site
data centers. With the rise of Industry 4.0, the need for digitization and improved

thttps://www.ibm.com/se-en/analytics/dataops
2https://www.gartner.com/en/information-technology/glossary/dataops

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1.1: Components in DataOps and their importance, according to experts
interviewed [4]

C1

Q
N
Q
w

C4 C5 C6 Cy C8

Goals:

Continuous improvement X
Orchestration

Empowerment of citizen users
Agility & Speed

Collaboration & Trust
Principles:

Reuse of artifacts

Automation

Integrated end-to-end thinking
Short cycles & Incremental change
Analytics as code

Testing

Monitoring

Data-driven improvement
Process-oriented Data pipelines

o
o

>

o
>

sl
el lle

P
sl

X
X

P R
olel
ol

PR R)
AP PP X A)

X X X X

efficiency in data consumption has also increased [5]. The importance of DataOps
in the industrial setting is further emphasized. By looking at current literature [5]
of DataOps in manufacturing and industrial settings, in an attempt to further extend
the previously defined components of DataOps, a set of essential components can be
identified, better aligned with the context of this thesis:

« Standardization of data: To get full value from any production data, an
analysis must be performed on different machines, processes, and data sources.
This kind of data landscape generally does not provide any standardization of its
data. To handle this, a standard model must be established within the industrial
DataOps solution.

« Connect to industrial and IT systems: IT systems and devices in industrial
environments communicate through many different protocols, extensively using
APIs and custom integration. Therefore, an industrial DataOps solution must
seamlessly integrate with devices and data sources using industry standards.

« Provide scale and security: Compared with typical transaction data,
industrial data differ. It usually comes from hundreds or thousands of devices
and must be captured, contextualized, and delivered efficiently. For analytics
and/or visualization to work optimally, it is also essential that the data meet real-
time constraints that can arise when data must be available to applications in a
timely manner. DataOps solutions must be secured and delivered discretely to
applications in the industrial solution.

Understanding how the implementation and application process of DataOps is carried

7

CHAPTER 2. BACKGROUND AND RELATED WORK

out in a real-world environment is essential. It is not enough to know only the
definitions and target attributes of DataOps and then build it. Real environments are
often very complex, and implementing new technologies is not done in an instant. This
is discussed next.

2.1.3 Towards DataOps

The implementation process of DataOps in an organization is not completed
immediately. It is something that is built over time, evolving from basic data analysis
in incremental steps. Despite the fact that the topic has received increasing attention in
the industry, there are no clear definitions of how a fundamental data collection process
(ad hoc) evolves into a fully automated data analytic process such as DataOps [10]. To
highlight this and better define the steps leading to a fully integrated DataOps solution,
[10] investigated the process of moving from ad-hoc data analytics to DataOps. The
study was conducted through a multi-vocal literature study combined with a case study
in a large mobile communication organization. Five phases, including DataOps itself,
were identified. The phases can be seen in Figure 2.1.1, and are described in the bullet
list below:

Phase 2: Phase 4:
Phase 1: . Phase 3: . . Phase 5:
Semi-Automated Data Continous Testing &
Ad-hoc Data Analysis . Agile Data Science o DataOps
Analysis Monitoring

Maturity Level >

Figure 2.1.1: Phases [10] of moving from ad-hoc data analysis to DataOps

« Ad-hoc data analysis means that reports on data are created on demand, and
in which the reports are highly customized to the specific scenario in question.
In an ad-hoc solution, the user decides which source to retrieve data from and
how to present it. Insights can range from simple data tables to more advanced
visualization features. Ad-hoc solutions should also be able to deal with different
data sources in a flexible and scalable way. The ad-hoc analysis is helpful when
there are requirements to deliver immediate results, and the analyst knows what
to look for. However, to make a good business decision, it is always better to
have adequate data engineering, collection, and more extensive analysis. A big
challenge with ad-hoc solutions is that the data collected from different sources
will not be centralized to a single access point. The data are represented in
data silos (raw data presented in systems that are isolated from each other,
for example, is accessible by one department but not another), which prevents
customers and users from getting the full picture of their data.

+ Semi-automated data analysis is a more efficient and automated way of

8

CHAPTER 2. BACKGROUND AND RELATED WORK

collecting and processing data and can be implemented using data pipelines.
A data pipeline is a process (or processing elements) of moving data from a
source to a destination. During the process of moving the data, it is transformed
and optimized, preparing the data for its destination and analysis. Thus, well-
designed pipelines are necessary to efficiently evaluate, test, ingest, transform,
validate, and publish large-scale data. Data technologies for data collection,
engineering, processing, analysis, and visualization are also crucial through
pipelines. However, there are some challenges in the data pipeline. One is
that some activities are not automated. For example, monitoring is often done
manually, and when an issue is found, the problem is also often solved manually.
Problems that occur in a data pipeline are inefficient in terms of solving.

« Agile data science includes agile and DevOps methodologies, where product
development and deployment processes are well defined. Teams can develop
complete, tested, and functional code in short periods of time. As customer
requirements often change over time, developers must evolve with these
requirements. In agile methodologies, insights are delivered to customers after
each sprint (short cycles), where feedback is provided, and rework is initiated if
required. Some challenges in this phase are that without continuous automated
testing, many man-hours are spent surveilling data pipelines. To provide quality
insights, data must be available in a timely manner. Thus, monitoring and
testing of data pipelines should be conducted continuously to acquire quality data
that can be part of insights delivered to customers so that action can be taken
immediately.

« Continuous testing & monitoring are essential elements of data pipelines,
especially in systems that handle real-time data. As problems can be detected
before the data cross successive elements of a pipeline, the problem can be
prevented from escalating. If a problem is identified at the end of a pipeline, it is
much harder to identify where it originates from. Furthermore, to meet quality
constraints, it is important to have continuous automated unit tests running in
the pipeline or parts of the pipeline. With automated alerts, teams can be notified
when something is not right within the pipeline.

« DataOps shortens the end-to-end cycle time of data analysis, from data
collection to obtaining insights from it. DataOps incorporates data pipelines
to create valuable insights and innovation pipelines to push new analytics into
the data pipelines. Continuous integration and delivery are the main goals of
DataOps, as well as monitoring the data life cycle process.

2.2 Digital Twins

This section will present information on DTs. The section begins with an introductory
section describing different definitions of the technology, followed by discussing
information regarding the data requirements of the technology. As the aim of this

9

CHAPTER 2. BACKGROUND AND RELATED WORK

thesis is to evaluate a tool for data gathering to a DT, and not build a DT, focus is
on the data requirements of the technology.

2.2.1 Definitions

With the DT being a relatively new concept that is currently being explored, there are no
standardized definitions of what a DT is, as concluded in [15]. However, some common
traits reappear in literature, and are also prevalent in definitions given by industry
leaders on the subject. Below are three different definitions gathered from industry
leaders in DTs:

”A digital twin is a virtual representation of a physical product or process, used
to understand and predict the physical counterpart’s performance characteristics.
Digital twins are used throughout the product life cycle to simulate, predict and
optimize the product and production system before investing in physical prototypes
and assets 3.”

"A digital twin is a virtual representation of an object or system that spans its life
cycle, is updated from real-time data, and uses simulation, machine learning and
reasoning to help decision-making +.”

”A digital twin is a virtual representation of a physical object or system — but it is
much more than a high-tech lookalike. Digital twins use data, machine learning, and
the Internet of Things (IoT) to help companies optimize, innovate, and deliver new
services 5.”

Looking further into the definitions of DTs according to industry leaders, table 2.2.1
shows a set of DT characteristics and whether or not the characteristic is present in the
industry leaders description of a DT ¢ 7 8 9 1© 11 This highlights what is commonly
regarded as important for the technology. In conclusion, a DT is a virtual model
representing a physical counterpart throughout its lifecycle. This counterpart could be
any arbitrary physical object, such as a phone, a building, an engine, or an industrial
production system. In theory, there are no limits as to what a DT model is. A DT could
essentially be a virtual representation of the entire industrial ground of a company,
or a single production unit in a manufacturing plant. The DT should also use real-
time data, which means that the data used should be gathered and used by the DT in
a timely manner. However, no time constraints define what timely means, and the
answer depends on the use case of the DT.

Shttps://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465
4https://www.ibm.com/blogs/internet-of-things/iot-cheat-sheet-digital-twin/
Shttps://www.sap.com/sweden/products/supply-chain-management/digital-twin.html
Shttps://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465
7https://www.sap.com/sweden/products/supply-chain-management/digital-twin.html
Shttps://www.ge.com/digital/applications/digital-twin
Shttps://www.ge.com/research/offering/digital-twin-creation
Ohttps://docs.microsoft.com/en-us/azure/digital-twins/
https://www.ibm.com/topics/what-is-a-digital-twin

10

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.2.1: DT characteristics according to industry leaders
Ci C2 C3 C4 Cs
X X

Virtual rep. Of physical entity
Spans lifecycle

Measure performance

Predict performance
Real-time Data

Historical data

Bidirectional data flow

Uses ML

Uses IoT/Sensor data

RNl

X
X
X

P] X
R e Ralialie
o I e

ol
slal
ol

In addition, a DT is used to collect, analyze, and simulate data that can be used
to improve performance and gain insight into the system/object it models. What
performance means and on which metrics it is based also depends on the use case of
the DT. Furthermore, DTs should help understand how a system performs and predict
how it will perform in the future. When data derived from the modeled system/object
are analyzed, predictions about the future can be made. A method that is prevalent
among companies to perform data analysis is machine learning (ML). It is important
to note that the key characteristic is the analysis itself, whereas ML is only a method
to perform the analysis. That is, the effect of ML is what is desired, not the technique
itself.

With the definitions, attributes, and goals of DTs described, it is also of interest
to explore the requirements prevalent for the construction of the technology in the
first place. What are the requirements for the data used and for the enabling
technologies?

2.2.2 Datarequirements, principles and enabling technologies for
Digital Twins

To operate successfully, a DT must have access to available high-quality data that
accurately represent the system it models. As a result of developments in technologies
such as the Internet of Things (IoT), cloud computing, edge computing, big data, and
artificial intelligence (AI), large amounts of data are being continuously generated.
This is especially prevalent in industrial environments where operations are conducted
around the clock and data are constantly being generated from operational devices. It
is essential to determine what data requirements and principles should be followed
to use the data efficiently. In [18], the requirements and principles for DT data are
explored. The following segments concludes some of the essential topics that are
discussed in the paper:

Comprehensive data gathering is necessary to enhance the accuracy, efficiency,
and adaptability of the characteristics of DT. The comprehensive data in this context

11

CHAPTER 2. BACKGROUND AND RELATED WORK

refer to normal and abnormal states, common and rare events, and certain and
uncertain events. A DT developed only based on data collected directly from a physical
entity will probably face specific problems when the scenarios of lower probability
finally occur, and the data belonging to these scenarios cannot be adequately handled.
In the same sense, DTs built only using virtual models and simulated data might have
problems handling disturbances and data that vary over time that often arise in data
gathered from physical environments. As a result, DTs should be powered using both
available data from a physical entity and simulated/virtual data. This is of benefit and
interest when for example simulating a scenario on the DT that one does not want to
try on the physical entity itself.

Real-time data is another important aspect of DTs. The data flowing between DT and
the entity it models should be transferred in a timely manner, allowing for real-time
interaction and representation of the modeled entity. The term timely depends on the
scenario and the system to be modeled; for certain scenarios, it may not be of great
importance to have a real-time representation DT, and for other scenarios, it might be
crucial to have an accurate, timely representation. To restore consistency, there should
also be a way to detect inconsistencies in transmission times. Phrased differently, there
should be some means of monitoring the data.

Data universality is an obstacle to implementing DTs, as large environments
with different types of data landscapes, application scenarios, data types, structures,
interfaces, and communication protocols often result in low universality of data.
Therefore, it is important to effectively transform and standardize the data to take
advantage of data gathered from multiple sources. This will make data exchange with
a DT and its modeled entity(s) more efficient.

Furthermore, there is also research on enabling technologies for DTs. For example, in
[13], work is carried out to review methodologies and techniques related to building
DTs, aiming to cover challenges and enable technologies in the research area. One
of the enabling technologies identified in this paper is data pre-processing. This
includes gathering and compressing data on the fly while offering capabilities such
as automatic outlier detection. Another identified key components are big data, which
means infrastructure to store and process large volumes of data. Lastly, the enabling
techniques must also be able to deliver data on time. That is, it must be processed in a
timely manner without any latency.

2.3 Load, Performance, and Stress Testing

Large-scale software systems and tools must support concurrent access and usage from
multiple sources. This is also the case for the tools used within DTs to collect data,
as the data can come from many different sources. Studies have shown that failures
in these systems are often caused by their inability to scale to meet usage demands
rather than failures due to feature bugs [16]. To ensure the quality of these systems,
testing techniques can be applied to evaluate them. Three of these techniques are load,

12

CHAPTER 2. BACKGROUND AND RELATED WORK

stress, and performance testing. These terms are often used interchangeably but can
be defined as distinct techniques that share a relationship. Below is a description of
each technique, as defined in [7]:

» Load Testing is a process in which the behavior of a system is assessed to detect
load-related problems. The rate at which the SUT is submitted to requests is the
load. Problems evaluated can be functional problems, such as deadlocks, buffer
overflows, memory leaks, or non-functional problems. These problems violate
quality-related requirements such as reliability, stability, or robustness.

» Performance Testing is a process in which performance-related aspects of a
software system are measured. Such metrics include response time, processing
time, and resource utilization. In contrast to load testing, performance tests are
broader. Performance testing can verify performance requirements (pass-fail
criteria) but can also be exploratory (no clear pass-fail criteria).

« Stress Testing is a process in which a SUT is placed under extreme conditions
to verify its robustness and/or detect load-related problems. Test conditions
can, for example, be reached by applying load, limiting computing resources, or
producing failures.

2.4 Related Work

As presented in previous parts of this chapter, there is broad and an increasing amount
of research regarding the concept of DTs and their data requirements. There is less
research regarding the gathering of data for the twins. This conclusion is also made in
[3], where the process of making DTs a reality is discussed. The paper concludes that
there is a need for more research regarding data collection and processing methods for
DT data. More specifically, research is needed to improve the traditional methods of
collecting and processing data, and to implement a communication interface between
real environments and physical twins. Other papers recognizes similar problems as
well. One such paperis [9], where it is stated that the DT is a concept of many promises
and potentials, facing many challenges. One such challenge is the complexity in data
accumulation and lack of processing power to support DTs. The study also states
that a communication medium between the real environment and the DT is essential,
but that the choice of this medium will be totally dependent on the communication
requirements of the DT. This strengthens the idea that there are no specific enabling
technology that is commonly accepted as a standard for DTs. Another challenge of
DTs and current literature is the lack of research regarding general implementations of
DTs and their enabling technologies. As stated in [6], the majority of current literature
focuses on conceptual development of DTs frameworks and tools that are designed
for specific implementation areas. Thus, more research regarding general frameworks
and enabling tools that could be used to implement DTs is motivated.

Current literature regarding DataOps has also been reviewed in this chapter,

13

CHAPTER 2. BACKGROUND AND RELATED WORK

concluding definitions and characteristics of the term. However, it has not yet been
discussed what kind of tools that are available to implement DataOps. A similar
question was posed in [8], where a goal was to provide a comprehensive overview on
tools and their suitability for DataOps. The paper discusses different tools to provide
ideas and shed light on the large variety of tools that exists, but in a very general manner
without any actual tests and evaluations. It is emphasized that a single tool does not
necessarily need to provide a full fledged DataOps solution, but that it can aid in some
stages of DataOps. In short, different types of tools are thought to be useful for different
kinds of situations. The paper does not provide any actual testing, with any specific
tool, and it is concluded that a topic for future research is to evaluate the performance
of different tools in different use cases, in a real project. In other terms, using a real
tool and evaluating its performance as a DataOps solution is a topic that could provide
research value.

2.5 Conclusionary Remarks

Having described both DataOps and DTs, some conclusionary remarks are given to
connect their characteristics and data requirements to the topic of the thesis, and to
provide motivation for the testing that is conducted.

2.5.1 DataOps

Beginning with DataOps, it is clear that some key characteristics of a DataOps solution
is the ability to standardize data, connect to industrial and IT systems, provide
scalability, and meet real-time constraints. This means that a logging tool used for
the purpose of implementing DataOps should be able to handle and process small
amounts of data, but also large amounts. This data should also be standardized. As
data originating from different kinds of sources might have different formatting, it is
important to standardize it to efficiently take use of it. A DataOps solution should
also have the ability to gather data from different sources — ranging from hundreds
to thousands of units. As the data landscape in an industrial setting often consists of
different types of devices (machine controllers, PLCs, sensors, etc), protocols, APIs
and custom solutions, it is important that an efficient DataOps tool is able to connect
and gather data from different kinds of sources. Gathering data from many different
sources also implies an increased amount of logged data that the tool must handle.
Another very important characteristic is the ability to process data in a timely matter,
meeting real-time constraints that might be put on the system — even if the load is
increased.

To evaluate a logging tool for its ability to operate as a DataOps solution, the above
characteristics must be related to the qualities and features of the tool. This thesis
aims to evaluate how suitable a logging tool might be for being used in DataOps, by
analyzing the features of the investigated tool and relating it to the above mentioned
characteristics. Further, a practical testing process is conducted to investigate how

14

CHAPTER 2. BACKGROUND AND RELATED WORK

timely the tool is in processing data. Timeliness is crucial in DataOps, and it
should integrate seamlessly into the system where it is used. A tool which can not
provide timeliness is not an optimal DataOps solution — even if other qualities and
characteristics are fulfilled. Thus, focus is put on timeliness.

2.5.2 Digital Twins

The data requirements for enabling a DT relates well to the characteristics of a DataOps
solution. Firstly, data used for a DT can originate from many different kinds of sources.
A tool used for gathering data to a DT must therefore be able to connect and gather data
from many different end points. Standardizing this data could enable a DT to more
effectively take use of it. Further, data used should be comprehensive in the sense that
it does not only consist of real data. As a result of DTs often being used for simulation
and analyzation, enabling data gathering tools should also be able to deliver synthetic
data to a DT — enabling the DT to evaluate different events that might not happen very
often in a real-life setting. Lastly, timeliness is also very important for DTs.

Similarly to what was concluded for DataOps, a logging tool used for enabling
DTs should have the features and qualities which enables the characteristics and
requirements mentioned above. Again, this thesis aims to evaluate how suitable a
logging tool might be for being used as a enabling technology for DTs. This will be
done by evaluating the features of a logging tool and relating it to the characteristics
and data requirements for DTs. A comprehensive testing process is also conducted to
test the tool for its ability to process data in a timely manner. Again, this quality is of
great importance and timeliness will dictate what kind of DTs the tool could be suitable
for.

15

Chapter 3

The Logging Tool

This chapter will describe logging tools, with a focus on Nodinite — the SUT of the thesis.
A description of its logging mechanics and other functionalities offered by the tool is
given.

3.1 Introduction

A data logger is a device or software system that automatically gathers and stores data,
often originating from real-life sensors, devices, or IT systems. They are often used to
collect data for quality control, predictive maintenance, and troubleshooting purposes.
In its simplest form, these data are stored in a spreadsheet where a person analyses
them manually [2]. In other cases, the data might be processed more sophisticatedly
through third-party software or within the logger itself. In environments such as
industrial ones, many different IT systems communicate and depend on each other,
whether they concern orders, production statuses, sensor data, or something else. A
logging tool will log events that occur within such an environment. The data will be
logged to a standardized platform for the data consumer to gain control and insight.
Often, features are offered to monitor critical data flows, where a monitoring system
can send alerts if something is wrong or a specific event is registered. Essentially, a
logging tool will centralize information flows in an environment from many different
systems to a single platform. Nodinite is one of those logging tools with features
mentioned above *.

3.2 The Logging Service and Log API

For the logged data to be presented in a user friendly manner and for it standardized,
the data require some form of processing. In Nodinite, there is a Logging Service that
is responsible for processing and reprocessing the events and messages that are being
logged. The service comprises one or more Log Agents, which will create log events

thttps://www.nodinite.com/features/

16

CHAPTER 3. THE LOGGING TOOL

from one or more integration brokers that carry information about events and an
optional payload. Events are communicated to the tool through a log API that enables
end-to-end logging across many system integration platforms. With the API built
in Representational state transfer (REST) and Windows Communication Foundation
(WCF), it is possible to create custom solutions that allow logging of arbitrary data.
The ability to build custom solutions to record data from any arbitrary data source
is important to make a recording tool scalable and applicable to as many systems as
possible. REST and WCF will support the following protocols to communicate with
the API 2:

« Hypertext Transfer Protocol (HTTP) (REST and WCF)
« HTTPS (REST and WCF)
« MSMQ (WCF)

« TCP (WCF)
Event Details
"LogAgentValueld": 42 Mandatory Details
“EndPointName™: "INT1@1: Receive Hello World Log Events
"EndPointUri™: "C:\\temp\\in
"EndPointDirection”: @

"EndPointTypeld

"OriginalMessage

"LogDateTime":

"EventDirection":

“ProcessingUser™: "DOMAIN\\user"
"SequenceNo™: @

"EventNumber™: 8

“LogText™: "File OK™
"ApplicationInterchangeId”: ""
"LocalInterchangeId™: null

“Logstatus": @

ocessingModuleType™: "File

erviceInstanceActivityId”: null

bco=", | Payload (base64)
Context Properties
"CorrelationId": "@64205E2-F7CF-43A6-B514-4B55536C2B67"

"FileName™: "Hello.txt"

Figure 3.2.1: JSON Log Event details.

When sending custom log events to the log API, a format that can be used is JSON.
These JSON log events include three distinct parts: Event details (mandatory), a
payload (optional), and context properties (optional), as seen in fig. 3.2.1. The payload
can, for example, also be a JSON file, which will then be logged into Nodinite. Within
Nodinite, all or individual data fields of this JSON file can be explicitly stored, as
described in the next section. In fig. 3.2.2, a simplified visual representation of the
logging architecture is given, using custom solutions built using the log API.

2https://www.nodinite.com/features/

17

CHAPTER 3. THE LOGGING TOOL

Custom-Built
Logging Solution 1

E Log Event With Payload
and Context
HTTP
HTTPS
MSMQ
TCP

Log API

Web Service

SQL Server

Custom-Built
Logging Solution N

Nodinite

Figure 3.2.2: Log API overview

The Logging Service within Nodinite is set up to gather logs through the API based
on two parameters. The first specifies how often the service should look for new
messages, and the second specifies how many messages the service should process in
each iteration. The system parameters are called MessageProcessingTimerInterval
and MessageProcessingBatchSize. This means that logs sent to the Log API will
only be fetched by the Logging Service and processed in batches fetched with certain
intervals.

Expression Type % Result - Number of unique matches: 1

578018
JSON Path

Expression

[‘Article Number]

Resolvable Expressions:

[‘Article Number]

£ Message Body P Message Context

{

"Adress": "ExampleStreet 45",

"Weight (g)": 500
}

Figure 3.2.3: Illustration of the Search Field Functionality in Nodinite

3.3 Search Fields

Another feature offered by Nodinite is the feature to explicitly fetch specific data fields
in the logged data. This is done using Search Fields. A Search Field facilitates search
conditions. The functionality extracts values from log-event payloads and explicitly
stores them in a database. To fetch these values, a Search Field Expression is applied
to a message type, for example JSON, to extract a specific value. Figure fig. 3.2.3 is an
example that illustrates this feature. As can be seen, a specific value can be extracted
from the JSON file. In this case, the value is stored as Integer, but Nodinite also

18

CHAPTER 3. THE LOGGING TOOL

supports Text, Long Integer, Real numbers with two decimals, GUID, Double, Date
time with offset and Bitwise Integer. The Search Field Expression will persist for
all similar logs/events from the same source (or multiple sources), which means that
the value (Article Number in this example) will be extracted for all logged events of
similar type. It will be explicitly stored in Nodinite’s log-database, as seen in fig. 3.3.1.
This means that logged data, either entire logs or just specific fields, can be stored in
Nodinite no matter where it originates from and its original formatting. In addition,
there is also an option to monitor the values logged in Nodinite. Using this monitoring
system, Nodinite can notify the user if a data field reaches a specific value or exits a
specified interval.

SearchFieldValueld Eventld SearchFieldld Value
1 EC'IEE?B?I}-E?FC-EC'I1-EA15—DD224858DEA? TA21EATE-62FC-EC11-BA15-0022485B06AT 21 678310

Figure 3.3.1: Search Field value stored in the log database

19

Chapter 4

Design and implementation

The following chapter will provide a practical description of how the thesis work
was implemented, the goals of the implementation, and the design choices. The
testing process aims to perform a combination of load, performance and stress testing
methodologies to evaluate the SUT, Nodinite, for its suitability as a DataOps solution
used for data collection to DTs. Specifically, the testing will evaluate the timeliness
of the tool. The log processing times (timeliness) are measured under different loads
in an exploratory sense. That means that no clear pass/fail criteria are used. Lastly,
a stress test places the SUT under more extreme conditions. When conducting these
tests, it is also assessed how Nodinite behaves when the logging frequency is increased
and multiple instances feed data to the tool.

4.1 Testbed

A test bed is built to conduct rigorous, transparent, and replicable testing processes.
This testbed consists of a Nodinite instance, an environment on which it can run,
and custom software to test the SUTwith. The instance runs on a production server
provided by Kazoku IT AB. As these components are located on a server, there is also
a need to establish a remote desktop connection. Included in the test bed is also the
Nodinite Web Client. The testbed is depicted in fig. 4.1.1, followed by a description of
its components.

« Nodinite Instance: An instance of Nodinite specifically dedicated to the
testing of this project was set up on the server provided by Kazoku IT AB. This
allowed uninterrupted testing to be carried out, producing results that would not
be affected by external events or disturbances.

« Personal Computer and Remote Desk Connection: An authenticated
remote-desk connection was used to reach the server.

« Nodinite Web Client: Nodinite Web Client acts as an interface for the Nodinite
instance. Allows access to the instance and its functionalities to see, configure,

20

CHAPTER 4. DESIGN AND IMPLEMENTATION

Kazoku Laboration Server
Windows Server 2019 Datacenter

Testing Intance/Account

Testing/Logging Nodinite Instance
Software
xy_‘—’/

Remote Desk Connection

Nodinite Web Client

Figure 4.1.1: Architectural overview of test bed

Personal
Computer

and monitor Nodinite as the testing process is conducted.

» Testing Software: Custom testing code was built using Python. This code was
executed using Visual Studio code on the server.

The next paragraph will explain how the test is conducted and why the testing strategy
is designed the way it is. Alternative designs are also discussed. In addition, some
comments are made on the test bed and the reasons for its architecture.

4.2 Logging and Measuring Setup

As described in Section 2.6.4, the tool offers support for using custom-built solutions to
communicate with the log API. This enables complete control over what is logged and
when an event is logged. It is a time-efficient option, as direct HTTP requests to the
log API can be made using REST, instantly sending the desired data/logs to the tool.
Thus, building a custom solution that sends automatically generated data directly to
the Log API using REST is the base technique for logging during testing. Additionally,
the built-in log-generating/testing software is run on the same server as the logging
tool’s instance rather than remotely. Although there would be some benefits to running
the tests locally and having the logging tool located on a server, such as evaluating the
tool as a solution implemented in the cloud, we want to conduct a full-fledged stress
test not affected by external variables.

Testing is centered around measuring the processing time of logged data. That is,
the time it takes from receiving an event to the point where it is logged, ready,
and processed in the log database. As mentioned above, the data are generated
through a custom-built solution. This system can vary the sizes of the events, their
contents/amount of parameters, the frequency at which they are sent, how many

21

CHAPTER 4. DESIGN AND IMPLEMENTATION

events to send, and how many instances that generate and send events concurrently.
In fig. 4.2.1, the architecture of the testing process is shown.

Sending
Frequency

—()—

Instance 1

Log Event(s) with
payload and context
HTTP (REST)

Log API

Configuration
Database

Active Log
Database

SQL Server

Web Server

_g 5—/
Sen-ding
Frequency

Instance N
Queue
Testing

Database

Processing
Queue Query (108 >
Figure 4.2.1: Architectural overview of the testing process

In addition to generating and sending events to Nodinite, there is also a way to measure
the processing times. Each event receives a time stamp within the SUT when it
arrives in the system, labeled Created, and a second when it is finished processing and
ready in the active log database, labeled Changed. There is also another label called
LogDateTime, which includes the time in which the data was initially created in the
testing software. In fig. 4.2.3 and fig. 4.2.2 these timestamps are shown. We can derive
a processing time by subtracting the completion time with the arrival time (Changed
- Created). By measuring only the timestamps within SUT, the testing is isolated to
the SUT in a black-box manner: only focusing on internal processing times, and not
taking into account the time between LogDateTime and Created. This also minimizes
the effect that external factors, such as the efficiency of the event generator, have on
the tests.

Furthermore, a way to measure the current amount of unprocessed logs within the tool
is set up. A health check of the logging process can be performed by regularly observing
how many logs are unprocessed. A new database contains the current amount of
unprocessed logs in SUT. Additionally, a query is built that, with an interval of 10
seconds, fetches this amount from the database along with a timestamp. In this way,
eventual correlations between the number of unprocessed logs and processing times
can be observed. The process can be seen in fig. 4.2.1.

Size Created

646
648
647
647
646

Figure 4.2.2:
timestamps

LogDate Time

2022-06-16 16:58:37.3140000 +00:00
H022-06-16 16:58:37_ 1850000 +0D0:00
2022-06-16 16:58:37.0640000 +00:00
2022-06-16 16:58:36.9350000 +00:00
2022-06-16 16:58.36.7930000 +00:00

2022-06-16 16:58:37.3274070 +02:00
2022-06-16 16:58:37.2024237 +02:00
2022-06-16 16:58:37.07742459 +02:00
2022-06-16 16:58:36.9524523 +02:00
2022-06-16 16:58:36.8117369 +02:00

Changed

2022-06-16 17:08.59.4877097 +02.00
2022-06-16 17:08:59 4655777 +02:00
2022-06-16 17:08.59.4503195 +02.00
2022-06-16 17:08:59.4503155 +02:00
2022-06-16 17:08.59.4346545 +02:00

Snapshot of Nodinite Database during stress tests, showing log

22

CHAPTER 4. DESIGN AND IMPLEMENTATION

Timestamp 1 Timestamp 2 Timestamp 3
(LogDateTime) (Created) (Changed)
: NLog 1, Log N +1.... So0e00= | N
Instance1 - —) ; ; >
Log AF:'I Active Log

Database

\ 4

Instance N -

_glﬂ Log N, Log 2N, ...,
s

Figure 4.2.3: Testing process

4.3 The Logs and Testing Variables

An important design decision is what the logs should include: what kind of information
will be sent and logged to the SUT. As the tests in this project aim to evaluate the SUT
for DTs in general and not a specific use case, the data logged should be of relevance,
and the tests should apply to the general DT. The data should also be available and
time-efficient to gather/create, as generating events in these tests will be done rapidly
and frequently. Therefore, it is decided to log system utilization data. The Python
library python-system-and-process-utilities (psutil) fetches these values. Additionally,
the events are generated in JSON file format. This format is lightweight and can be
generated efficiently and commonly used.

Additionally, there is a set of critical variables in the testing process. These variables
can be split into two groups: a set of input (independent) variables and a set of output
(dependent) variables. The input variables are used to vary, modify, or tweak the
testing mechanics, and the output variables are the outputs resulting from the input
variables. The output variables are the metrics used to measure the performance and
behavior of the SUT in the tests. In fig. 4.3.1, these variables are visualized.

Independent Variables

Log Event Size (Number of attributes to generate/send to Nodinite)

Log Event
Generator

Sending
Frequency

{ Sending Frequency Per Instance Dependent Variables

Amount Of Instances Sending Concurrently <--trocessing Time J

Number Of Log Events To Generate/Send

Batch Size
Nodinite
Processing Interval

Figure 4.3.1: Independent vs Dependent Variables

Unprocessed Logs

As previously described, the software built to test the SUT can vary the sizes of the logs,
the frequency at which they are sent, how many logs to send, and how many instances

23

CHAPTER 4. DESIGN AND IMPLEMENTATION

sending concurrently. The sizes are set by varying the number of attributes of the
system (presented in the above listing) included in the logs and thus also stored in SUT.
More specifically, three types of logs ~ 165, 335 and ~ 650 bytes are used. As we will
see, these sizes and their differences were enough to show a change in behavior in the
SUT, measure its timeliness and identify its qualities. Other sizes and log complexities
could have been used, but this would also require the log generator to be more efficient.
In fig. 4.3.2, the log attributes are shown, where each attribute is represented as it is in
the Python code used to generate them. By dividing the logs in this way, testing can be
conducted to show eventual differences in the SUTSs processing related to log size.

Log Attributes

"CPU": cpuPercent,

"CPU ctx switches": cpuStats.ctx_switches

"CPU interrupts since boot": cpuStats.interrupts

"CPU software interrupts since boot": cpuStats.soft_interrupts
"CPU syscalls since boot": cpuStats.syscalls, 165 bytes
"Time spent executing in user mode": cpuTimes[0]

"Time spent executing in kernel mode": cpuTimes[1],

"Time spent executing in kernel mode": cpuTimes[2],

"Time spent for servicing hardware interrupts ": cpuTimes[3]
335 bytes

"Time spent for servicing deferred procedure calls ": cpuTimes[4],

"Total Memory": memory.total,

"Percentage": memory.percent,

"Free memory": memory.free,

"Disk (device)": disk.fstype,

"Network (bytes_sent)": network.bytes_sent
"Network (bytes_recv)": network.bytes_recv,
"Network (packets_sent)": network.packets_sent,
"Network (packets_recv)": network.packets_recv 650 bytes v

Figure 4.3.2: Log Attributes and Log Sizes

The second variable is the sending frequency. Two sub-variables determine this
variable: the sending frequency per log-generating instance and the number of
instances sending concurrently. This means that the sending frequency can be
increased either by scaling vertically or horizontally. Vertically increases the sending
speed of the individual instance and horizontally increases the number of instances;
however, the end result is the same for both. From the SUTSs point of view, the effect
is the same. Finally, the total number of logs generated in each testing session can be
decided. The variable is set by deciding how many logs each log-generating instance
should generate. There is also a set of independent testing variables found within the
SUT, which will be described in the next section.

4.4 Nodinite Setup

Most of the design and mechanics to perform the tests are outside of SUT. However,
some settings are made within the tool to prepare it for tests. Firstly, a Log Agent is set
up in Nodinite that listens for events sent by the custom solution (see 3.2). Second, the

24

CHAPTER 4. DESIGN AND IMPLEMENTATION

Search Field feature (see 3.3) is set up to collect and store the attributes from the JSON
files being logged. In fig. 4.4.1 the JSON file is seen and in fig. 4.4.2 these attributes
have been stored in Nodinite.

{
"CPU": 75.8,
"CPU ctx switches™: 2594883469,
"CPU interrupts since boot": 2167795998,
"CPU software interrupts since boot": @,
"CPU syscalls since boot™: 3812879841,
"Time spent executing in user mode": 638714.87812499988,
"Time spent executing in kernel mode": 6£499335.984375,

": 4435.78125,
"Time spent for servicing deferred procedure calls ": 4827.15625,
"Total Memory™: 17179398144,
"Percentage”: 70.0,
"Free memory": 5146042368,
"Disk (device)": "NTFS",
"Network (bytes_sent)": 41348982952,
"Network (bytes_recv)": 382719782014,
"Network (packets_sent)": 94645229,
"Network (packets_recv)": 269556980

1

"Time spent for servicing hardware interrupts

Figure 4.4.1: JSON file (650 bytes) containing the attributes to log

Furthermore,

there are two independent testing variables within Nodinite. These system parameters
decide the batch size and processing interval, named MessageProcessingBatchSize
and MessageProcessingTimerInterval in Nodinite. Varying the batch size will alter
how many logs the Logging Service will fetch and process in each iteration. And the
processing interval specifies how often the Logging Service will look for new logs to
fetch and process. These variables and their functionalities are described in 3.2. As
a base set, the batch size is set to 100 logs and the processing interval to 15s — the
standard value of the SUT. This is also the starting variable used for the testing.

25

CHAPTER 4. DESIGN AND IMPLEMENTATION

Search Field

CPU Load &

Memaory Percentage Z
Free Memory “

Disk (device) &

Network (Bytes Sent) @
Network (bytes_recv) &
Network (packets_sent) &
Network (packets_recv) &
TDtaI,‘t“emDr}"u

CPU ctx switches &

CPU interrupts since boot &

CPU software interrupts since boot &

CPU syscalls since boot &

. . A
Time spent executing in user mode &

: I 2
Time spent executing in kernel mode &

Time spent for servicing hardware

interrupts £

Time spent for servicing deferred

2
procedure calls

Values

75

70
5146042368
NTFS
41348982952
302719702014
94545229
269556980
17179398144
2594803469
2167795998

0

3812879041
638714.078125
6499335.984375

443578125

482715625

Figure 4.4.2: Attributes from JSON (650 bytes) file stored in Nodinite using the Search

Field feature

26

Chapter 5

Evaluation and Result

This chapter will answer the research questions of this thesis. First, the result of
the literature study will be presented, followed by the testing results and, finally, an
overall evaluation. Asthe information for answering the first question has already been
gathered in Chapter 2, this chapter will focus on the two latter questions.

1. What are the characteristics of a DataOps solution and the data requirements of
a DT?

2. Can a data logging tool be used as a DataOps solution to collect and make data
available for a DT?

3. What is the timeliness of the tool under test?

The tests presented in this chapter are conducted with the primary goal of evaluating
the timeliness of the SUT, and to evaluate its suitability as a DataOps solution for DTs.
Focus is put on the characteristic of timeliness in the SUT, as this a quality that is not as
easily verified by directly analysing the features offered by the tool and its architecture.
It is a quality that is not documented, as opposed to other features of the tool which
can be connected to important qualities of DataOps solutions and DTs. We know that
the tool can gather and process data in certain ways, but not how efficiently — and
thus it must be further investigated. Additionally, timeliness is crucial for a DataOps
solution. How efficiently the tool can process data will also dictate which DTs it could
be applicable for.

5.1 Results from the Literature Study

One of the goals of this paper was to find the characteristics of DataOps solutions. In
the literature study that was conducted, we found that one very important component
of DataOps was speed, essentially meaning that a DataOps solution should be fast
and improve speed within the data system that it is implemented. An example of this
could be processing times, the solution must be able to process its data very efficiently,
seamlessly integrating into the system where it is deployed. Continuous improvement,

27

CHAPTER 5. EVALUATION AND RESULT

automation, and monitoring were other principles named by experts in the field to be
important in DataOps. In addition, to better understand DataOps within Industry 4.0,
we look at DataOps in manufacturing and industrial settings. Here, a very important
component was the ability to standardize the data. As processing must be done on data
originating from many different sources in industrial environments, it is important
that the data is standardized and a standard model established. It is also important
that the DataOps solution is able to connect to different industrial IT systems, to gather
the data in the first place. Lastly, it is also concluded that a tool used for DataOps must
provide scalability, the ability to gather data from hundreds to thousands of different
sources concurrently. Again, it is stated that this must be done while meeting real-
time constraints. The tool must not suffer in its processing efficiency even though
an increasing amount of data is being logged, ultimately increasing the load on the
system.

Moving on, it was also investigated what the requirements on the data used for DTs
were. These requirements are well related to the characteristics of DataOps. Firstly, it
was again important that the data provided to a DT is fed to it in real-time. However, it
can be argued that this might not be the case for all DTs. For example, a DT only used
for analytical purposes will be less sensitive to time than a DT used to communicate and
provide direct feedback to devices on the production floor in manufacturing. However,
it must be determined how timely an enabling tool for DTs can process data. If one
does not know its timeliness, it is also very hard to determine what kind of DT it could
be used for. Another important ability for a DT, or a tool gathering data for one, is
to detect inconsistencies in the data. This can be done by, for example, monitoring a
certain parameter and sending out alerts if a specified change is detected. This is well
related to the monitoring ability mentioned for DataOps as well. Just as for DataOps
solutions it is also crucial that the data are standardized, again as a result of the data
originating from many different sources. If a DT is to gather data from a tool, it is
much more efficient if those data are standardized and follow the same format. The
DT will then be able to take advantage of this data much more efficiently. Lastly, the
data provided should both be real data and artificial data if needed. This enables DT to
operate on both actual data from a real physical entity and to be fed with artifical data
for analytical and testing purposes.

5.2 Testing results

This section presents the results of the tests.

5.2.1 Load and Performance Testing

The first tests were carried out by varying the parameters Log Event Size and Sending
Frequency. Furthermore, the tests were carried out in three blocks, each of which
had a different sending frequency. In each block, three log types of different Log
Event Size and contents were used for the testing. The result from the first block is

28

CHAPTER 5. EVALUATION AND RESULT

165 byte logs - 7 logs/s 165 byte logs - 7 logs/s

—— Mean Processing Time: 7.68 s

it

0 1000 2000 3000 4000 5000 0 100 200 300 400 500 600 700
Amount of logs sent Passed time (s)

100

=
w

80 1

=
o

60

40

w

Processing time (s)

201

Number of logs in processing queue

335 byte logs - 7 logs/s 335 byte logs - 7 logs/s

—— Mean Processing Time: 7.72 s

15 1
10
5 -
0

0 1000 2000 3000 4000 5000 0 100 200 300 400 500 600 700
Amount of logs sent Passed time (s)

100
80 1
60 1

40

Processing time (s)

201

Number of logs in processing queue

650 byte logs - 7 logs/s 335 byte logs - 7 logs/s

—— Mean Processing Time: 7.86 s

15 100 A

80 1

10 60 1

401

Processing time (s)

201

Number of logs in processing queue

0 1000 2000 3000 4000 5000 0 100 200 300 400 500 600 700
Amount of logs sent Passed time (s)

Figure 5.2.1: Sending frequency: 7 logs/s, Amount of logs sent: 5,000 , Instances
sending: 1, Batch size: 100 logs, Processing Interval: 15s

shown in fig. 5.2.1. In column one, the processing times of the logs are shown for log
sizes of 165, 335, and 650 bytes. In the second column, the amount of unprocessed
logs within the SUT is shown for each of the log sizes. The sending frequency per
instance is 7 log events per second, and only one instance is sending concurrently. The
batch size (MessageProcessingBatchSize) is set to 100 logs, and the processing interval
(MessageProcessingTimerInterval) to 15s — the standard values used by the tool.

Looking at the first tests (shown in fig. 5.2.1), the average processing time ranges
from 7.68s for 165-byte logs to 7.86s for 650-byte logs. The processing times for
the largest logs are approximately 2.3% higher than for the smallest ones. When
comparing the logs of 335 with 165 bytes, the difference is even smaller. In general, the
differences between the sizes are small. With such small differences, it is hard to say
with confidence that the size difference is the cause of the processing time difference

29

CHAPTER 5. EVALUATION AND RESULT

for these particular results. However, as other tests will show, log size can substantially
impact the processing time. Another thing to note is that the average processing times
do not change over time, and that the processing times on an individual level oscillates
within a fixed interval. This means that the tool provides stable and consistent
average processing times (for the parameters in this specific test), while the individual
processing times fluctuates. Looking at fig. 5.2.1 again, we see the processing times
ranging from well below 1s to slightly above 15s, with the average being around 7.5-
7.9s. This behaviour is concluded to be a result of how Nodinite Logging Service
operates. As described in 3.2, Nodinite will fetch log events from the API with a regular
interval set by the MessageProcessingTimerInterval variable. This means that certain
logs will take a longer time to process than others, depending on when it is sent to
the API in relation to when the Logging Service will fetch logs from the queue. A
log that is sent directly after a fetch has recently been made will take a longer time
to process than a log that is sent directly before a fetch is made. Essentially, some
log events will spend more time in a non-productive state than others. This kind of
architecture and internal structure of the tool will result in high average processing
times — which we have seen already in this first test. It can also be seen that the
number of unprocessed logs (column 2) follows the same pattern as the processing
times. We also see the effect of the data being fetched in intervals: The amount of logs
waiting to be processed oscillates in a pattern that correlates well with the processing
times. However, this pattern is not as regular. The reason for this is that the current
number of unprocessed logs is checked every 10 seconds in the tests. If this interval
were faster, the pattern would likely be more regular and would correlate better with
processing times. The take-away is that processing times correlate with the amount
of unprocessed logs. Finally, when you look at the processing times as absolute values,
they are very high even at these initial tests where the logging frequencies are relatively
low. Although some individual log processes are at the lower end of the 0-1s range, an
average of 7.6-7.9s is very high for efficient use in DataOps.

The sending frequency was then increased to 35 logs per second to observe any change
in behavior. In fig. 5.2.2 the results of this are shown. As can be seen, the result is very
similar to the first test, with the main difference being the processing times. For all
log sizes, an increase in processing times is observed. More specifically, the processing
times increase to 8.55-8.81s, compared to 7.68-7.86s in the first test. Thisis an increase
of roughly 11-12% — while the increase in logging frequency from 7 to 35 logs per second
corresponds to a 400% increase. This suggests that the tool can scale to a higher logging
frequency quite well. However, as later tests will show, this behavior will be broken.
Looking at the processing times in absolute values again, they are still very high in the
context of DataOps.

For the third block of tests, shown in fig. 5.2.3, a clear difference in behavior is
observed. First, the pattern for the processing times is different. In these tests, the
pattern of regular highs and lows is still observed, but much less frequent, with only
a small amount of local maxima and minima. As an example, only two minima of
the processing times are observed for the 165-byte logs compared with 25 in fig. 5.2.2.

30

CHAPTER 5. EVALUATION AND RESULT

165 byte logs - 35 logs/s 165 byte logs - 35 logs/s

N
o

(=)}

o

o
!

—— Mean Processing Time: 8.55 s

D
AR

0 5000 10000 15000 20000 25000 100 200 300 400 500 600 700
Amount of logs sent Passed time (s)

w

o

o
1

iy

o

o
!

N

o

o
!

Processing time (s)
= =
wv o 192
]
S —

]

i

o

o
s

e

o
o L

Number of logs in processing queue
w
o
o

o

335 byte logs - 35 logs/s 335 byte logs - 35 logs/s

N
o

(=)}
o
o

—— Mean Processing Time: 8.53 s

T
TR

5000 10000 15000 20000 25000 100 200 300 400 500 600 700
Amount of logs sent Passed time (s)

w

o

o
L

IN

o

s}
L

Processing time (s)
= [
o w
) . L
P ——
N
o
o
!

w
——_,

=

o

o
s

o
o L

Number of logs in processing queue
w
o
o

o

o

650 byte logs - 35 logs/s 650 byte logs - 35 logs/s

N
o

] " 600
—— Mean Processing Time: 8.81 s

AN
IR

0 5000 10000 15000 20000 25000 0 100 200 300 400 500 600 700
Amount of logs sent Passed time (s)

500

=
w
!

400 1

=

300 A

200 A

w

Processing time (s)
=
o

100 A

]

Number of logs in processing queue

o

Figure 5.2.2: Sending frequency: 35 logs/s, Amount of logs sent: 25,000, Instances
sending: 5, Batch size: 100 logs, Processing Interval: 15s

The processing times still oscillate around the mean processing time, but in a much
less fluctuating pattern. Looking at the 165- and 335-byte logs compared with those
in fig. 5.2.2, processing times are increased from roughly 8.5s to 9.1-11.1s on average
— an increase of 7-30%. This increase is higher than what was observed between the
first two tests in fig. 5.2.1 and fig. 5.2.2, although the increase in logging frequency (in
percentage) for this test was lower. 77-89% (35 to 62-66 logs per second) compared
with 400% (7 to 35 logs per second). This suggests that the SUT is getting less efficient
in scaling to higher logging frequencies. It is also noted that the processing times for
the 335-byte logs are on average faster than those of the 165-byte logs - 9.06s compared
to 11.12s. This means that for this test the lower frequency resulted in a high processing
time. The reason for this is unclear, and even though multiple tests were run, the result
persisted. However, this behavior does not change the overall outcome or conclusion
of the tests and is thus not investigated further. Lastly, when looking at the number

31

CHAPTER 5. EVALUATION AND RESULT

165 byte logs - 63 logs/s 165 byte logs - 63 logs/s

N
w

1200
—— Mean Processing Time: 11.12 s
1000 A

N
o
!

800 A

-
w
L

600 -

=
o
L

400 1

Processing time (s)

200 A

w
L

o

Number of logs in processing queue

10000 20000 30000 40000 50000 0 100 200 300 400 500 600 700 800
Amount of logs sent Passed time (s)

o

335 byte logs - 66 logs/s 335 byte logs - 66 logs/s

25 1200
—— Mean Processing Time: 9.06 s
201 1000 1
800
15 A
600 1

400 A

Processing time (s)

200 A

Number of logs in processing queue

0 10000 20000 30000 40000 50000 0 100 200 300 400 500 600 700 800
Amount of logs sent Passed time (s)

650 byte logs- 53 logs/s 650 byte logs- 53 logs/s

50

—— Mean Processing Time: 23.78 s 2000 -

40
1500 A
301
1000 A

500 -

Processing time (s)

Number of logs in processing queue

0 10000 20000 30000 40000 50000 0 100 200 300 400 500 600 700 800
Amount of logs sent Passed time (s)

Figure 5.2.3: Sending frequency: 53-66 log events/s, Amount of logs sent: 50,000,
Instances sending: 10, Batch size: 100 logs, Processing Interval: 15s

of unprocessed logs, the correlation is more clearly seen in this block compared with
previous tests. The pattern is largely the same when comparing column 1 with column
2, again suggesting that processing time correlates with the amount of unprocessed
logs.

Moving on, a great difference and a complete change of behavior is observed in the
bottom row of fig. 5.2.3. As can be seen, the mean processing time is substantially
higher than for the 165- and 335-byte logs. Comparing the 335 and 650 byte logs, the
average processing time increases roughly 161% (9.1s to 23.8s), even though the logging
frequency is a bit lower for the logs of the higher size. This suggests that the log sizes
affect the SUTSs processing efficiency quite substantially, even though this behavior has
not been observed on this scale until now. It can also be seen that the processing time
continues to increase with the number of logs sent. They no longer oscillate around a

32

CHAPTER 5. EVALUATION AND RESULT

mean value but rather continuously increase over time. Looking at the graph showing
the number of unprocessed logs, it can be seen that the queue starts to decrease at
roughly the same point that the processing times stop increasing. Phrased differently,
processing becomes faster only when the queue finally starts emptying. This is also
the point where the log generator stopped logging into SUT. Essentially, this means
that the processing times only started to decrease because no more logs arrived at the
tool. What would happen if the logging continued? In the next section, this is further
investigated. It should also be noted that the average processing time here is far above
what is optimal in the context of DataOps.

5.2.2 Stress Test

In fig. 5.2.3, it was observed that processing times continuously increased when
sending with a high frequency, 53 logs per second, for 650-byte logs. This behavior
continued until the sending process stopped, upon which the processing times finally
started to decrease. What would happen if the log generator continued to send logs
for an extended time, under high frequencies? To investigate this, an extended stress
test was performed. The test was carried out by sending 100,000 logs of 650 bytes
size at three different sending frequencies. The result is shown in fig. 5.2.4. When
sending with a frequency of 36 logs per second, the processing times fluctuate within
a static interval that is not changed over time, resulting in an average processing
time that is stable during the entire sending process. This is consistent with the
previous corresponding tests. As seen, the frequency of 36 logs per second produced
an average processing time of roughly 8.8s. This processing time is consistent with the
corresponding test conducted in fig. 5.2.2, where only 25,000 logs were sent. Thus,
under this load the processing times does not increase over time even if a higher
amount of logs are sent in total. This suggests that the tool provides consistency and
stability for logs and frequencies of this type. However, at some point, this behavior
deteriorates. Looking at the frequency of 62 logs per second, it can be observed that the
processing times increase over time, in accordance with previous corresponding tests.
The average processing time is roughly 250s, and the median processing time is 312s.
These values are extremely high and confirm the behavior indicated in the previous
tests that processing times will continuously increase as long as they are being sent
to SUT, after a certain threshold in frequency and log size has been exceeded. The
difference between average and median processing times should also be noted. With
a median value that is substantially higher than the average value, it can be concluded
that of the 100,000 logs, most are on the higher side in terms of processing time.
Looking at the graph of 62 logs per second, we can see this. The processing times
increase the most for the first roughly 40,000 logs. During the previous tests, we could
see a peak in the graph, after which the processing times starts to decrease. We see this
in fig. 5.2.4 as well, but it is less prominent. Again looking at the graph of 62 logs per
second, we see a peak (this is also the point where the logging is stopped). After this
peak, the processing times decrease until all of the 100,000 logs have been processed.
However, the decrease is not as severe as in the previous tests. This suggests that the

33

CHAPTER 5. EVALUATION AND RESULT

tool struggles with its processing efficiency even after logs have stopped being sent to
it. This is hypothesized to be the result of an increased computational power being
required to store and handle the large amount of data that is in the queue.

Looking at the highest logging frequency of 90 logs per second, a similar result but
with higher numbers is presented. An observed difference is that the processing times
never stop increasing. This happens even though at some point on the graph the log
event generator stops sending logs. This means that the processing times continue
to increase even after the log generator has stopped sending and the queue is being
emptied. Lastly, an important topic also is whether this result (processing times) can
be improved. This is investigated in the next section.

36 logs/s —— 62 logs/s 90 logs/s
Average Processing Time: 8.78 s Average Processing Time: 249.79s —— Average Processing Time: 495.7s
—-=—=- Average Processing Time: 9.0 s Median Processing Time: 312.0 s —== Median Processing Time: 579.0 s

600 -

500 A

400 4

300 A /_,_—/\‘

Processing Time (s)

0 20000 40000 60000 80000
Number of sent logs

Figure 5.2.4: Instances sending: 5, 10 and 15, Batch size: 100 logs, Processing Interval:
15s

5.2.3 Improving Processing Times

Two independent testing variables have not yet been
investigated: MessageProcessingTimerInterval and MessageProcessingBatchSize.
In this section, these variables are tuned to determine if they can improve processing
times. This is done by first varying MessageProcessingBatchSize while keeping
MessageProcessingTimerInterval constant, and vice versa. In fig. 5.2.5, the results
are shown. Looking at the top row, it can be observed that a larger batch size results in
substantially higher processing time. By, for example, comparing a batch size of 100
to 1000, the time difference is roughly 123%. This indicates that a lower batch size

34

CHAPTER 5. EVALUATION AND RESULT

a) 100 logs per batch b) 500 logs per batch c) 1000 logs per batch
20.0) gs p 25) gs p 10) gs p

175 —— Mean Processing Time: 8.65 s 35 —— Mean Processing Time: 19.25 s

|

Il ST

o

12,51

v

201

o

Processing time (s)

= =

o w

o o

|

—

—————
ey

Processing time (s)
Processing time (s)

T

v

NN
0 o U
——
——

o b h e
=}
L s s L

T T T T 0 ™ T T T ™ T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Amount of logs sent Amount of logs sent Amount of logs sent
200 d) Fetching Interval 15s e) Fetching Interval 10s 8 f) Fetching Interval 5s
—— Mean Processing Time: 8.65 s 144 —— Mean Processing Time: 6.41 s —— Mean Processing Time: 3.49 s
17.54 7
121
o 15.01 o @ 6
10
g 125 g 10 gs
=] B g =]
210.01 l 2 24
@ 2 6 @
9 7.59 o 03
< < <
€ 504 a 44)
2.5 21 1
0.0 T T T T 0 T T T T 0+ T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 5000 10000 15000 20000 25000

Amount of logs sent Amount of logs sent Amount of logs sent

Figure 5.2.5: Sending Frequency: 35 logs/s, Amount of logs sent: 25,000, Instances
sending: 5

is more efficient in fetching and processing logs. Continuing, looking at the bottom
row, a substantial improvement can be observed when the standard fetching interval
of 15s is changed. Comparing an interval of 15s to 5s (no lower frequency is allowed
in the SUT), the processing time is roughly 148% higher for the 15s interval — 3.49s
vs. 8.65s. This aligns well with what has been discussed earlier, that a liming factor
in the internal structure and architecture of the tool is the way that logs are fetched in
intervals. The design of fetching logs for processing in intervals rather than directly can
result in a major bottleneck for SUT in terms of timeliness. Continuing, as decreasing
this variable results in a faster processing time, a question that arises is if this can
improve the problem of continuously increasing processing times for higher sending
frequencies. In fig. 5.2.6, the tests of fig. 5.2.4 were re-conducted with a processing
interval of 5s instead of a processing interval of 15s. A clear improvement can be
observed; however, the characteristic of increasingly faster processing times is still
present. It can also be seen that the highest sending frequency still results in processing
times that continue to increase even after log-events stop being fed to the SUT. Thus,
a faster fetching frequency does not solve the problem of high and continuously
increasing processing times — the bottleneck (fetching interval) persists.

5.3 Evaluation

This section will evaluate the test results and discuss the SUTs ability to collect and
process data in a timely manner. Subsequently, the tool is evaluated as a DataOps

35

CHAPTER 5. EVALUATION AND RESULT

62 logs/s — 62 logs/s

Average Processing Time: 249.79s Average Processing Time: 131.22s
90 logs/s 90 logs/s
Average Processing Time: 496s —— Average Processing Time: 400.09s

700 -

500

EN
o
o

300 A

Processing Time (s)

N

o

o
L

100 -//

0 B
0 20000 40000 60000 80000
Number of sent logs

Figure 5.2.6: Instances sending: 5, 10 and 15, Batch size: 100 logs, Processing Interval:
58

solution for DTs, based on the results collected and the information derived from the
current literature in Chapter 2. Lastly, limitations of the testing process and the thesis
in general are presented.

5.3.1 Evaluation of Testing Results

Starting with the results presented in fig. 5.2.1, we concluded that the average
processing times ranged from 7.68s for the 165-byte logs, to 7.86s for the 650-byte
logs — when the logging frequency was 7 logs per second. This is a 2.3% increase in
processing time and an increase of 294% in log size. The same behavior was observed
in the next test, shown in fig. 5.2.2. Here, the average processing times ranged from
8.55s to 8.81s for a logging frequency of 35 logs per second. This is a 3% increase
in processing time, again for an increase of 294% in log size. If we compare the
results from fig. 5.2.1 with fig. 5.2.2, the processing times are increased from 7.68-
7.86s to 8.55-8.81s while the logging frequency is increased from 7 to 35 logs per
second. This means that even though the logging frequency was increased with 400%,
the processing times only increased roughly 11-12%. These first initial results, where
the processing efficiency is only slightly decreased, even though both log sizes and
logging frequency are increased on a much higher scale, suggest that the tool can
handle both logging of larger sized logs and an increase in logging frequency quite well.
Increasing the logging frequency is especially interesting, as one of the qualities that

36

CHAPTER 5. EVALUATION AND RESULT

were important for DataOps and DTs is scalability. When a tool logs data from more
devices and data sources, the logging frequency should also increase, and it must be
able to handle this. However, this quality and hitherto observed behavior would soon
deteriorate as the load was increased. Continuing, still looking at the first two initial
results, we also observed that the processing times on an individual level fluctuates
around and deviates from the average processing times quite substantially in a regular
pattern. This is concluded to be a result of how the SUT fetches its logs in regular
intervals, more specifically 15s in these tests (which is the standard value of the tool). If
logs are only fetched at regular intervals from a queue, some logs will inherently have a
higher processing time than others, and vice versa. Let’s illustrate this with an example:
A batch of logs have just been gathered for processing by the tool. Immediately after
this fetch is made, another log enters the queue. If the processing interval is 15s, this
log will now have to wait roughly 15s before being fetched for processing. When 14s
have passed, another log enters the queue. This log will only have to spend 1s in an
idling state before being fetched for processing. If we look at the graphs, we see that
the highest processing times only slightly exceed 15s. This suggests that as soon as the
logs are fetched for processing, the processing itself is done very fast. Even if a log,
as in the example above, has to spend 15s waiting for the next batch, its processing
time will only slightly exceed 15s. A conclusion here is that a majority of the processing
time is spent in an idling, non-productive state. This presents a major bottleneck in
the ability of the SUT to process data in a timely manner and will severely limit its
timely capabilities. Additionally, looking at the processing times as absolute values,
it can be argued that they are very high even at sending frequencies such as these.
With an average of 7.68-8.81s, the tool would be very limited for use in DataOps —
where timeliness is crucial and the tool must be seamlessly integrated into the systems
where it is applied. Instead, looking at the tool explicitly for use in DTs, there are
still a lot of application areas where processing times as high as these would be too
slow. For example, in time-critical production lines in manufacturing. However, in
applications where time is not as critical, these processing times could be acceptable,
especially considering that they do not increase over time (for these particular results).
When using DTs strictly for simulation and testing purposes rather than applying them
directly to a physical entity, it could also be argued that time is not as critical. However,
looking at the tool from the perspective of DataOps for DTs, the initial tests indicate
that the tool is not a viable option. As we have concluded, a DataOps solution must
seamlessly integrate into the system where it is deployed. Adding processing delays in
the range of seconds would not do this.

Continuing, a behavioral change was observed in fig. 5.2.3 where the logging frequency
increased to 52 and 63/66 logs per second. For logs of 165 and 335 bytes, an increase
in the average processing time was identified. However not substantial, there is still
a behavioral change in how the SUT processes the data. Not as many maxima and
minima are observed, and the previously discussed fluctuation around an average value
is not as prominent and frequent. The main focus is not on the behavior itself, but
on its effect, which is not changed in a critical matter. The average processing times

37

CHAPTER 5. EVALUATION AND RESULT

are still, at large, about the same as in previous results. However, a critical change
can be identified for the 650-byte logs, where a substantial increase in the processing
times, as well as a change of behavior, was observed. It is also seen that processing
times continue to increase with time. Only when the log generator stops sending logs
and the processing queue is offloaded is a decrease in processing time observed. This
is not a good sign, as it suggests that the SUT would become increasingly ineffective
in processing data as long as data are logged. This was further investigated in the
following stress test. As observed in this test, fig. 5.2.4, high sending frequencies
continued to produce logs with increasingly longer processing times. For the highest
frequency of 90 logs per second, it could also be observed that the values continued
to increase even after the log event generator had stopped sending logs. This means
that even though the processing queue did not continue to fill up, the processing times
still increased — until all of them were processed. For a sending frequency of 62 logs
per second, an average processing time of 250 was reached when sending 100,000
logs. For a frequency of 90 logs per second, this number reached almost 500s. This
is very high, and under these circumstances, it would be very difficult to apply the
logging tool for collecting data to even moderately time sensitive systems. Looking at
the lowest sending frequency of 36 logs per second, the previous behavior of no increase
in average processing time is still present. The processing time per log is roughly the
same as in fig. 5.2.2, even though 100,000 logs were sent.

Following this, it was investigated whether processing times could be improved. As
concluded in fig. 5.2.5, a lower value for MessageProcessingTimerInterval would
reduce processing times. For 335-byte logs sent with a frequency of 35 logs per second,
the average processing time could be lowered from 8.65s to 3.49s when changing the
fetching interval from 15s to 5s. This is substantially better and provides improved
timeliness. Although this is an improved timeliness, as a DataOps solution, it is still too
high. Even if the fetching interval is lowered to 5s, there would still be a ”5s bottleneck”.
Processing data in the range of seconds is not optimal for a DataOps solution that
should integrate seamlessly where it is implemented. However, as mentioned, for use
specifically within DT, it could be a viable option for those twins that are not dependent
on real-time data. Therefore, it was essential to test whether the very slow processing
times presented earlier in the stress tests could be reduced to a more suitable level.
Thus, the last test applied a fetching interval of 55 on the same variables used in
fig. 5.2.4 to see if processing times could be reduced. As was concluded, the values
were lowered but remained at a high level and followed the same behavior as for the 15-
second interval tests. With such high values, the only actual application area would be
those that do not depend on timely behavior at all. But, as argued earlier, a full-fledged
DataOps solution for general use should not process in seconds, and this would be too
slow.

To conclude this evaluation, the initial tests indicate that the SUT does provide a
certain scalability. The logging frequency can be increased quite substantially without
itloosing its overall processing efficiency — until reaching a certain threshold. However,
the baseline for how efficiently the tool processes data to begin with is not optimal

38

CHAPTER 5. EVALUATION AND RESULT

in terms of DataOps. Even in the initial tests the SUT does not process the data in
real-time. Further, as logging frequencies were increased, the tool started to lose its
processing efficiency and the processing times increased even more. Although the
logging frequencies could be considered very high, they highlight critical problems
within the tool in terms of timeliness.

5.3.2 Logging tools as a DataOps solution for Digital Twins

It is established that a core functionality of a DataOps solution is the ability to
standardize data. It is also established that it is important that the data used for DT be
standardized, considering that the twin might operate on data originating from many
different sources. As the tool can log data of different formats and store the information
in a standardized format to a database, the characteristic of standardization is present
in the tool. Furthermore, using the Search Field system in the SUT, specific data fields
that have been sent to the tool through a Payload can be stored as standardized values.
This means that one can also store specific fields from a log, rather than the whole log
itself. Furthermore, monitoring was another important feature. In the SUT, a feature
that can monitor specific data fields and send alerts if these fields reached a certain
threshold is present. This can be considered a form of monitoring. However, it must
be pointed out that this mechanic was not explicitly tested.

It is concluded that a DataOps solution should be scalable and be applicable for
connecting to different types of IT systems and devices. This is also an essential
aspect for DTs. As has been discussed, the tool offers the functionality to connect
and record data from different types of source, either using prebuilt log agents or
building custom solutions that logs data. Although this indicates that the tool is
scalable, being scalable also infers that the tool must be able to handle an increased
load (logging frequency). As the tests of this thesis have shown, the SUT provides a
certain scalability. However, at some point when a threshold is exceeded, this quality
deteriorates. When the logging frequencies (in combination with the log sizes) reach
a certain point, the processing capabilities of the SUT are substantially affected and
the processing capabilities become increasingly worse. Lastly, a crucial quality for
DataOps is timeliness. This is also the quality which was focused during the tests. And,
as we concluded, SUT has a major bottleneck in its architecture and internal structure
that prevents it from processing data in real time. During the moderate loads in the
tests, the average processing times ranged from roughly 3.5 to 11 s, depending on which
parameters were used. This could be a viable timeliness for some DTs, but for a tool
to be used as a full-fledged solution in DataOps it should process data much more
efficiently than in the range of seconds. It should integrate seamlessly into the system
where it is applied. Thus, an argument can be made that the SUT used in this thesis,
Nodinite, is not a viable option for being used as a DataOps solution. However, it could
be a viable tool for gathering data to some DTs, more specifically those twins that does
not depend on timely data.

Generalizing the findings of the study and the statements above, it can be concluded

39

CHAPTER 5. EVALUATION AND RESULT

that logging tools of this type have some features which coincide well with the
characteristics of DataOps solutions and the data requirements of DTs. However, as
we have shown for this specific tool, there are strong limitations in its ability to process
data in a timely manner. This affects its suitability for being used as a DataOps solution
negatively. Furthermore, it will limit its potential use for data collection to DTs, as most
DT s depend on real-time data. It must also be mentioned that although the results of
this study present processing times that can be regarded as high for the discussed areas
of application, it does not necessarily mean that all similar logging tools will provide
equal results. It could, however, show to be a recurring problem, as logging tools are
not necessarily built with the intention of presenting logs in real time, but to rather
show them in a presentable, clean, accurate, and well-processed way. This is not a
final conclusion, however, and is a statement which would require more research. In
short, the result indicates that the tool could be used as a data gathering solution for
certain non-time critical DTs, but is not a viable option for being used as a DataOps
solution. At least in its current state.

5.3.3 The timeliness of the SUT

Having discussed the results, it is clear that the SUT in this study does not provide
optimal timeliness. The presented average processing times range from 3.5s to more
than 500s. Although the extreme logging frequencies used during the stress test might
not be a realistic logging frequency, it can be seen already under moderate loads that
processing times are in the range of roughly 3.5s to 11s on average (depending on
different parameters). As has also been discussed, the main reason that the SUT is
not very efficient in timely processing is an effect of how it obtains logs for processing.
If, in theory, the processing interval present in the tool were to be eliminated and
processing be done immediately as data is logged, processing times would be much
faster. In conclusion, the tool processes data in the range of seconds and thus never
in real-time. With an average in these tests reaching no lower than 3.5s. Not looking
at the average, but rather on individual logs, the processing times oscillate around the
average, reaching both lower and higher values than the average.

5.3.4 Proposed Improvements For The SUT

As has been discussed, the SUT is limited in how quickly it can process logs. The main
reason for the high processing times is the way the tool fetches data for processing in
intervals. If batches of logs are only fetched in certain time intervals for processing,
the time between generating the data and it being completely processed will be greatly
affected by this interval. For example, if the batch fetching interval is set to 15s and
a log is sent to the tool directly after a batch has just been fetched, it will have a
minimum processing time of roughly 15s — as this is the time it takes for the next batch
to be fetched. In the test cases, we can see that the processing time rarely exceeds
the processing interval time by a substantial amount. If the processing interval is 15s,
the maximum processing times will also be around 15s. This means that between the

40

CHAPTER 5. EVALUATION AND RESULT

data being generated and the data being completely processed, most of the time will
be spent waiting for the tool to fetch these data from the batch. When data is finally
fetched, it is processed in a time that is likely much faster than the time it has spent in
an idle state. This is a flaw in the system and a major bottleneck in looking at the tool
from the perspective of timely processing. Improving this and possibly removing the
fetching interval completely could improve processing efficiency.

5.4 Limitations of the Thesis

One limitation of this study is the lack of testing multiple logging tools. Using only
one SUT requires generalizations to be made. Further studies should look at other
logging tools as well to get a broader understanding of how they work and operate.
Additionally, although some features present in the tool can be related to important
qualities of DTs and DataOps, they have not been explicitly tested and verified. For
example, it is described how Nodinite can connect to different IT systems for logging
data and how it can monitor and send out alerts if some threshold is exceeded, but it
is not explicitly tested in the thesis. However, as has been stated, it is still motivated
to focus on timeliness, as that will be a main determining factor. Another limitation
is that no investigation has been done as to how easily accessible the gathered data
is. Although the processing times for the collection and processing of the data within
the SUT are determined, it is not determined how efficiently DT could fetch these
data. The lack of a real use case also affects the evaluation of the SUT as a DataOps
solution, as this analysis is based on a general picture of such solutions. By conducting
a study in a real use case, where the tool is used as DataOps in a real environment with
real DT, the limitations and problems described above would be further evaluated and
explored. One of the favorable effects of this would be that the tool could be evaluated
for its contribution to the system where it is implemented, as a whole. As DataOps
is often about making an entire environment more effective, for example, introducing
data orchestration and pipelines, a real environment would be very beneficial. Another
topic of improvement would be conducting tests on more complex logs. For example,
by logging large XML files, instead of small JSON files. Lastly, a topic of interest is
also how hardware will affect the results. Hardware will obviously affect computational
capabilities, and this would certainly be a topic for further research. However, as we
have concluded, a main limitation of the processing capabilities of the SUT in this
thesis is due to software limitations rather than computational limits. The final result
shown in this thesis should, therefore, not be affected by hardware to an influencing
degree. Nonetheless, it is a limitation that hardware has not been more investigated
and integrated into the tests.

41

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the literature study we found that a very important quality for DataOps in
particular, but also DTs, is the ability to process data in real-time. Continuous
improvement, automation, monitoring, data orchestration, and data pipelines have
also been concluded to be important qualities for DataOps. Further investigating
DataOps in Industry 4.0, another crucial component is the ability to standardize data.
This is also of great importance for DTs, considering the environments in which they
operate, where the data can originate from many different sources, requiring the data
to be standardized to take advantage of it efficiently. Related to this component is
the ability to connect to different kinds of device and to gather the data to begin with.
This is also important for both DataOps and DTs. Lastly, both technologies should
provide scalability. This means that a DataOps tool in DTs must be able to log data
from many different devices simultaneously, all while not losing efficiency when an
increasing amount of data is being logged.

It is concluded that the processing times vary depending on a set of parameters of the
SUT and the logs. The variables that affect the processing times are; logging frequency,
log sizes, the number of logs sent, how often the tool fetches logs from its queue and
how many logs to fetch per batch. Depending on these parameters, average processing
times can range from 3.5 to 500 seconds (for the conducted tests). The results also
suggest that the latter could increase if the logging was continued, i.e. the number of
logs sent was higher. There is a threshold in which, when exceeded, the processing
times become increasingly higher. It cannot be concluded exactly when this threshold
is exceeded, but the main parameters that affect it are the logging frequency and the
log sizes. If this threshold is not exceeded, the processing times do not increase over
time, but fluctuate within a fixed interval. This behavior is a result of how the tool
fetches its data in intervals. It is also shown that a faster fetch interval will positively
affect processing times, which means that the tool runs more efficiently when fetching
data batches with a higher frequency. The fact that processing times continue to

42

CHAPTER 6. CONCLUSION AND FUTURE WORK

increase after a certain threshold could be mitigated (but not eliminated) by lowering
this fetching interval. For example, by having a fetching interval of 5 seconds instead of
15 seconds, the average processing time could be reduced from roughly 500 seconds to
400 seconds in one of the stress tests. Similarly, processing times could be reduced
from roughly 9 seconds to 3.5 seconds for moderate logging frequencies. For low-
to-moderate logging frequencies, the average processing times are consistent, while
individual processing times fluctuate within a fixed interval, but never real-time. Thus,
the timeliness of the tool evaluated is in the range of seconds, where average processing
times are never lower than roughly 3.5 seconds for the conducted test cases. It is
concluded that the reason the tool cannot process data faster is because of the way it
fetches data in batches. If data are not fetched and processed immediately as it reaches
the tool, there will always be a bottleneck or a lower limit as to how fast data can be
processed. For example, data that reaches the tool right after a batch of logs is fetched
will have to wait in a queue until the next batch. Thus, the timeliness of the tool largely
depends on how regularly the tool can fetch the batches — creating a bottleneck. In
conclusion, the tool processes data in the range of seconds and never in real-time.

We can conclude that the tool has some characteristics that are well related to the
characteristics found in DataOps and the requirements of the data in DT. For example,
the tool enables data to be logged from any arbitrary data source, standardizing, and
storing them to a database, important qualities for both DataOps and DTs. It is also
possible to store specific parameters in the log files, these data being standardized as
well. As custom solutions for logging can be built, the tool also allows for the recording
of artificial data. That is, data that do not originate from physical data sources. This
is important for DTs for analytical and predictive purposes. Although not explicitly
tested, the tool also has features for monitoring log parameters. However, even though
some features fulfill important qualities in DataOps for DTs, we have shown that the
tool does not process the data in real time. The result strongly suggests that for use in
DataOps, the processing times are not fast enough. Therefore, since timely processing
is crucial for DataOps, the tool cannot be concluded to be a viable solution DataOps
for DTs. It could, however, be a viable option on its own for data gathering to certain
DTs — that is, not as a DataOps solution in general. For those DT cases where it is not
critical to have data processed immediately, but with consistency and where data are
recorded with a moderate frequency, the tool could be a viable option. However, this
would require more research.

6.2 Future Work

Considering the result, a crucial component in continuing this work is to investigate
whether the timeliness of the SUT can be improved. As we have mentioned, timeliness
is a bottleneck because logs are fetched in batches at regular intervals. If a solution
could be found to fetch data immediately as it is sent to the tool, the processing
times could be improved. Another prospect for future studies is to investigate
whether similar tools have the same problem. As only one SUT has been subject to

43

CHAPTER 6. CONCLUSION AND FUTURE WORK

tests and evaluation, generalizations have been made. Conducting more extensive
research that includes a wide set of logging tools would provide a better overview
of such tools. Additionally, a study conducted in a real environment would be very
beneficial. For example, DataOps is something that is implemented with the intention
of changing and improving the entire system where it is implemented. Applying a
tool to a real environment would provide a better way to evaluate the tool in terms
of data orchestration, pipelines, and other characteristics of DataOps. Additionally,
implementing a real DT would allow testing of the ease with which the logged data are
accessible. In this study, we have logged data, but we have not tested how accessible it
is to use for a real DT. However, for the above to have a purpose, the timeliness must
first be improved or another tool found.

44

Bibliography

[1]

[2]

[3]

[4]

(5]

[6]

[7]

[8]

[9]

Abdelmajied, FathyElsayed Youssef. “Industry 4.0 and its implications: Concept,
opportunities, and future directions”. In: (2022).

Connolly, Christine. “A
review of data logging systems, software and applications”. In: Sensor Review
(2010).

El Saddik, Abdulmotaleb. “Digital twins: The convergence of multimedia
technologies”. In: IEEE multimedia 25.2 (2018), pp. 87—92.

Ereth, Julian. “DataOps-Towards a Definition.” In: LWDA 2191 (2018), pp. 104—
112.

Harrington, John. “DataOps: Fundamental for Industrial Transformation.” In:
InTech 68.1 (2021), pp. 28—32. ISSN: 0192303X.

Hu, Weifei, Zhang, Tongzhou, Deng, Xiaoyu, Liu, Zhenyu, and Tan, Jianrong.
“Digital twin: A state-of-the-art review of its enabling technologies, applications
and challenges”. In: Journal of Intelligent Manufacturing and Special
Equipment (2021).

Jiang, Zhen Ming and Hassan, Ahmed E. “A Survey on Load Testing of Large-
Scale Software Systems”. In: IEEE Transactions on Software Engineering 41.11
(2015), pp. 1091—-1118. DOI: 10.1109/TSE.2015.2445340.

Mainali, Kiran, Ehrlinger, Lisa, Matskin, Mihhail, and Himmelbauer, Johannes.
“Discovering DataOps: a comprehensive review of definitions, use cases, and
tools”. In: DATA ANALYTICS 2021 The Tenth International Conference on Data
Analytics. 2021.

Mihai, Stefan, Yaqoob, Mahnoor,
Hung, Dang V., Davis, William, Towakel, Praveer, Raza, Mohsin, Karamanoglu,
Mehmet, Barn, Balbir, Shetve, Dattaprasad, Prasad, Raja V., Venkataraman,
Hrishikesh, Trestian, Ramona, and Nguyen, Huan X. “Digital Twins: A Survey
on Enabling Technologies, Challenges, Trends and Future Prospects”. In: IEEE
Communications Surveys Tutorials 24.4 (2022), pp. 2255—2291. DOI: 10 .
1109/COMST.2022.3208773.

45

https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1109/COMST.2022.3208773
https://doi.org/10.1109/COMST.2022.3208773

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Munappy, Aiswarya Raj, Mattos, David Issa, Bosch, Jan, Olsson, Helena
Holmstrom, and Dakkak, Anas. “From ad-hoc data analytics to dataops”. In:
Proceedings of the International Conference on Software and System Processes.
2020, pp. 165—174.

Olsen, Tava Lennon and Tomlin, Brian. “Industry 4.0:
Opportunities and challenges for operations management”. In: Manufacturing
& Service Operations Management 22.1 (2020), pp. 113—122.

Pires, Flavia, Cachada, Ana, Barbosa, José, Moreira, Antonio Paulo, and Leitao,
Paulo. “Digital twin in industry 4.0: Technologies, applications and challenges”.
In: 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN). Vol. 1. IEEE. 2019, pp. 721-726.

Rasheed, Adil, San, Omer, and Kvamsdal, Trond. “Digital twin: Values,
challenges and enablers from a modeling perspective”. In: Ieee Access 8 (2020),
pp- 21980—-22012.

Seddon, Peter B, Constantinidis, Dora, Tamm, Toomas, and Dod, Harjot. “How
does business analytics contribute to business value?” In: Information Systems
Journal 27.3 (2017), pp. 237—269.

Uhlenkamp, Jan-Frederik, Hribernik, Karl,
Wellsandt, Stefan, and Thoben, Klaus-Dieter. “Digital Twin Applications: A first
systemization of their dimensions”. In: 2019 IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC). IEEE. 2019, pp. 1-8.

Weyuker, E.J. and Vokolos, F.I. “Experience with performance testing of
software systems: issues, an approach, and case study”. In: IEEE Transactions
on Software Engineering 26.12 (2000), pp. 1147—-1156. DOI: 10 . 1109 / 32 .
888628.

Xu, Li Da, Xu, Eric L, and Li, Ling. “Industry 4.0: state of the art and future
trends”. In: International journal of production research 56.8 (2018), pp. 2941—
2062.

Zhang, Meng, Tao, Fei, Huang, Biqing, Liu, Ang, Wang, Lihui, Anwer, Nabil, and
Nee, AYC. “Digital twin data: methods and key technologies”. In: Digital Twin
1.2 (2022), p. 2.

46

https://doi.org/10.1109/32.888628
https://doi.org/10.1109/32.888628

	Introduction
	Background
	Problem Description
	Thesis Objective
	Thesis Goals
	Ethics and Sustainability
	Methodology
	Stakeholders
	Delimitations
	Outline

	Background and Related Work
	DataOps
	Definitions of DataOps
	DataOps in an industrial environment
	Towards DataOps

	Digital Twins
	Definitions
	Data requirements, principles and enabling technologies for Digital Twins

	Load, Performance, and Stress Testing
	Related Work
	Conclusionary Remarks
	DataOps
	Digital Twins

	The Logging Tool
	Introduction
	The Logging Service and Log API
	Search Fields

	Design and implementation
	Testbed
	Logging and Measuring Setup
	The Logs and Testing Variables
	Nodinite Setup

	Evaluation and Result
	Results from the Literature Study
	Testing results
	Load and Performance Testing
	Stress Test
	Improving Processing Times

	Evaluation
	Evaluation of Testing Results
	Logging tools as a DataOps solution for Digital Twins
	The timeliness of the SUT
	Proposed Improvements For The SUT

	Limitations of the Thesis

	Conclusion and Future Work
	Conclusion
	Future Work

	References

