
Faculty of Health, Science and Technology
Bachelor thesis in Computer Science
First Cycle, 15 hp (ECTS)
Supervisor: Tobias Pulls, University of Karlstad, Karlstad
Examiner: Per Hurtig, University of Karlstad, Karlstad
Karlstad, 10 January 2023

Further Developing Preload Lists
for the Tor Network

Vidareutveckling av preloadlistor för Tor-nätverket

Daniel Bahmiary

Abstract

A recently proposed defense for the anonymity network Tor uses preload lists of
domains to determine what should be cached in the Domain Name System (DNS)
caches of Tor relays. The defense protects against attacks that infer what is cached in
Tor relays. By having domains continuously cached (preloaded), the cache will become
independent of which websites have been visited. The current preload lists contain
useless domains and have room for improvement. The objective of this project is to
answer the question of ”How can we generate better preload lists?” and to provide
improved methods for generating preload lists, with the ultimate goal of generating
better preload lists that the Tor Project can benefit from.

We further developed existing tools to use web crawling to find more useful domains,
as well as implementing filtering to remove useless domains from the preload lists. The
results of this project showed promising results, as the useless domains decreased by
an average of around 57% and more useful domains were found.

Keywords
Tor, DNS, Preload list, Crawling

iii

Sammanfattning

Ett nyligen föreslaget försvar för anonymitetsnätverket Tor använder preload listor
av domäner för att avgöra vad som ska cachelagras i domännamnssystemets (DNS)
cacher för Tor reläer. Försvaret skyddar mot attacker som avgör vad som cachelagras i
Tor relärer. Genom att ha domäner kontinuerligt cachade (förladdade), blir cachen
oberoende av vilka websidor som har besökts. De nuvarande preload listorna
innehåller värdelösa domäner och har utrymme för förbättring. Syftet med detta
projekt är att svara på frågan ”Hur kan vi generera bättre preload listor?” och att bidra
med förbättrade metoder för att generera preload listor, med det ultimata målet att
generera bättre preload listor som Torprojektet kan dra nytta av.

Vi vidareutvecklade befintliga verktyg till att använda webbkrypning för att hitta mer
användbara domäner, samt implementerade filtrering av värdelösa domäner från
preload listorna. Detta projekt visade lovande resultat, då de värdelösa domänerna
minskade med i genomsnitt ungefär 57% ochmer användbara domäner hittades.

Nyckelord
Tor, DNS, Preload lista, Webbkrypning

iv

Acknowledgements

I would like to thank my supervisor and project provider Tobias Pulls for his guidance
throughout this project, as well as his input and help with structuring this thesis.

v

Acronyms

DNS Domain Name System
IP Internet Protocol
TLD top-level domain
SSH Secure Shell
VPN Virtual Private Network
HTTPS Hypertext Transfer Protocol Secure
URL Uniform Resource Locator
XML Extensible Markup Language
HTML HyperText Markup Language
TTL Time to live
GUI Graphical user interface
TMPFS Temporary File System

vi

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Background . 1
1.2 Problem Description . 2
1.3 Thesis Objective . 2
1.4 Project Goals . 2
1.5 Ethics and Sustainability . 2
1.6 Methodology . 2
1.7 Stakeholders . 3
1.8 Delimitations . 3
1.9 Outline . 3

2 Background and Related Work 4
2.1 DNS . 4
2.2 Tor . 5
2.3 URL . 5
2.4 Related Work . 7

3 Methodology 10
3.1 The Preload Design . 10
3.2 Method . 10
3.3 Defining Better Preload Lists . 10
3.4 Phases . 12

4 Implementation 14
4.1 Setup . 14

4.1.1 Remote Server . 14
4.1.2 Virtual Private Network . 14

4.2 Preload List Generation . 15
4.2.1 Generate Visit List . 16
4.2.2 Domain Collection . 17
4.2.3 Collection Details . 18

vii

CONTENTS

4.2.4 Preload List Generation . 18
4.3 Evaluation Tool . 19
4.4 Filtering . 20

4.4.1 Identifying Useless Domains . 21
4.4.2 Filtering Implementation . 23

4.5 Crawling . 24
4.5.1 Scrapy . 24
4.5.2 Beautiful Soup . 25
4.5.3 Implementation . 25
4.5.4 Requests . 26
4.5.5 Link Collection . 28
4.5.6 Storing Collected Links . 30
4.5.7 Domain Collection Changes . 31
4.5.8 Preload List Generation Changes 32

4.6 Collection Runs and Preload List Generation 33
4.6.1 Original Preload Lists . 33
4.6.2 Crawling - All Links . 33
4.6.3 Crawling - Top 10,000 List . 34
4.6.4 Crawling - Five Links . 34
4.6.5 Filtering . 35

5 Results and Evaluation 36
5.1 Results . 36
5.2 Evaluation . 36

5.2.1 Size of Preload List . 36
5.2.2 Time to Create Lists . 37
5.2.3 Number of Hits . 37
5.2.4 Number of Useless Domains . 37
5.2.5 Best Preload List . 38
5.2.6 Crawling Tools . 38
5.2.7 Filtering Tool . 39

6 Conclusions and Future Work 41
6.1 Discussion . 41
6.2 Conclusion . 41
6.3 Future Work . 42

References 43

viii

List of Figures

2.1.1 Example of how a DNS query is resolved. 5
2.2.1 Visualisation of how circuits are created in Tor. 6
2.3.1 Components of a Uniform Resource Locator (URL). 6
2.4.1 A central party collecting domains from popular websites and

generating a preload list. 8
2.4.2How Tor relays handle DNS lookups. 9

3.2.1 Visualisation of methodology used in project. 11
3.4.1 Representation of the crawling phase. 12
3.4.2Representation of the collection phase. 13
3.4.3Representation of domain identification phase. 13
3.4.4Representation of the filter phase. 13

4.4.1 Example of how domains are sorted according to amount of hits in the
file sorted_hits. 22

ix

List of Tables

5.1.1 Metrics from the evaluation program preload-eval.py. 40

x

Chapter 1

Introduction

Research is being conducted [8] on how the Domain Name System (DNS) should be
handled by exits in the Tor network [9]. The focal point is to only cache certain domain
names that are used on popular websites. This is done in order to solve the privacy
issues with the current DNS cache design and to prevent possible attacks. In this thesis,
we will further develop and analyze existing tools that collect popular domains which
will be used to create preload lists. These preload lists will serve as the cache that the
DNS will use.

1.1 Background
The DNS is a decentralized system that maps domain names to Internet Protocol
(IP) addresses. IP addresses are numerical addresses and are used for identifying
locations on the Internet. When requesting a webpage, e.g., www.example.com, a
DNS query is sent to the DNS which will return the IP address of the domain
www.example.com [3].

The Tor network is a distributed overlay network designed for anonymous
communication [9]. Users of Tor have their integrity protected and are also protected
against attacks such as eavesdropping [15]. In Tor, DNS requests are run on the
exit relay, which is the last relay that traffic passes through before reaching its final
destination [14].

Dahlberg and Pulls have motivated a preload defense [8] to prevent attackers from
identifying website visits by users using Tor, since the current DNS cache design is
vulnerable to timing and timeless attacks. This preload defense presents a redesign of
the DNS cache in Tor, where two types of caches are used on the exit relays, i.e., shared
preload cache and same-circuit cache. The shared preload cache contains domains
from an allowlist, which is generated by visiting the most popular sites on the Internet.
While this preload defense protects against attacks, it also improves performance: how
much improved depends on the allowlist of domains. This thesis further builds on the

1

CHAPTER 1. INTRODUCTION

preload defense and explores different techniques to improve the generation of preload
lists.

1.2 Problem Description
Both collection of domains and generation of preload lists can be done in a number
of different ways. This thesis aims to answer the question of ”How can we generate
better preload lists?”. The definition of ”better” is something that will be explored in
this thesis.

1.3 Thesis Objective
The objective of this thesis is to describe how better preload lists can be created. In
order to do this, the preload tools used for collecting domains and generating preload
lists will be analyzed and evaluated.

1.4 Project Goals
Dahlberg and Pulls, researchers at Karlstad University, are researching [8] on how
preload lists can solve the privacy issues with the current DNS design in the Tor
network. Their research will protect against attacks and be contributed to the Tor
Project [26]. The Tor Project is an organization that maintains the Tor network. The
goal of this project is to create better preload lists that the Tor Project can use to
improve the privacy and security of the Tor network. The deliverables of this project
are improved preload tools that generate better preload lists. The results of this project
are preload lists that are more effective and efficient, e.g, improved cache-hit ratio and
fewer useless domains.

1.5 Ethics and Sustainability
No ethical issues arise during this project. The only data collected are domain names
that are extracted from visiting popular websites. No personal data are therefore
collected that can be a threat to privacy. There were a lot of ethical issues, caused by
attacks, thatwere solved byDahlberg andPulls [8]. This thesis is a part of their solution
since it further improves on their work. As for sustainability, the improvements in this
thesis will bring better performance to the Tor network and improve its efficiency.

1.6 Methodology
This project was done in iterations. The first step in the iteration was to find and
implement an improvement to either the preload lists directly or to the tools that collect

2

CHAPTER 1. INTRODUCTION

domain names for the preload lists, e.g., filter useless domains or find new ways of
collecting more useful domains. The next step was to run the tools that visit popular
websites and collect domains. After collecting domains, preload lists can be created
from them. Lastly, the preload lists were evaluated to identify any improvements, e.g.,
number of hits or useless domains. When the evaluation was completed, the process
was repeated from the beginning.

1.7 Stakeholders
Dahlberg and Pulls research on how preload lists can be used in the Tor network. Our
work further builds on their research and implements new ways of creating preload
lists. By improving the preload lists, the DNS cache will become more effective and
efficient and will ultimately give Tor improved performance and security. The security
is improved because without an effective and efficient preload-based defense, the
preload-defense (or something similar) will not be deployed, and thus Tor will not be
fully protected from the attacks presented by Dahlberg and Pulls [8]. This work is
something that hopefully the Tor Project can use and benefit from. Tor in turn is used
by millions of people daily to browse the web anonymously, circumvent censorship,
and visit onion sites.

1.8 Delimitations
The focus of this thesis is to generate better preload lists for the preload cache. We
will not go into how the DNS on the exits or Tor should handle the preload lists. Other
defenses and lists may exists that could give different results, however this thesis will
only focus on the preload lists that Pulls and Dahlberg have worked on.

1.9 Outline
The structure in this thesis is as follows. InChapter 2, wewill give a detailed description
of DNS, Tor, DNS in Tor, Uniform Resource Locator (URL) and related work. Chapter
3 describes the methodologies of data collection used in this project. Chapter 4 gives a
detailed description of the implementation of themethods of data collection. Chapter 5
evaluates the results. Chapter 6 describes the conclusions given fromChapter 5 and the
positive effects and drawbacks from the results. Future work is also discussed.

3

Chapter 2

Background and Related Work

2.1 DNS
The Domain Name System (DNS) [11] is a decentralized system used for mapping
domain names to Internet Protocol (IP) [10] addresses. IP addresses are numerical
addresses used for communication and represent a location on the Internet for a device
or a network interface. Depending on the version of the IP, addresses have the format
x.x.x.x (IP Version 4) or y:y:y:y:y:y:y:y (IP Version 6). Web requests are an example
where IP addresses are used. When performing a request for a webpage, the IP address
of the desired webpage is used to send the request to the right destination. However,
since IP addresses are long numerical addresses, it makes them difficult to read and
memorize for humans. This issue is solved by the DNS, mapping domain names to
IP addresses. A domain name is a unique text string that is much easier for humans
to read and use compared to an IP address when requesting access to websites on the
Internet, e.g, www.example.com rather than 93.184.216.349 [3].

The DNS architecture is also hierarchical and consists of root servers, top-level domain
(TLD) servers and authoritative servers [4]. Apart from these servers, there are also
recursive resolvers. The first step when requesting for a webpage is for the web client
to send a DNS query to the recursive resolver. If the recursive resolver has the domain
in the DNS query in its cache, a response will be made, otherwise it will send a request
to a root name server. The root server will respond with the corresponding TLD server
of the extension, e.g., .com, .org, .edu etc. After receiving response from a root server,
the recursive resolver sends a request to a TLD server. The TLD server responds with
the authoritative name server for the requested domain. Lastly, the resolver sends a
request to a authoritative name server that responds with the IP address of the domain.
When the recursive resolver receives an IP address, it will send the IP address with a
respond to the web client [5].

Looking at a DNS query for example.com, as shown in Figure 2.1.1, the root server
responds with the TLD server of .com, the TLD server responds with the authoritative
server for example.com and the authoritative server responds with the IP address.

4

CHAPTER 2. BACKGROUND AND RELATEDWORK

Figure 2.1.1: Example of how a DNS query is resolved.

2.2 Tor
Tor is a distributed overlay network that enables anonymous communication. The Tor
network implements onion routing, which is a technique used to protect the integrity
of data and users while also protecting against eavesdropping and traffic analysis [9].
When communicating, a circuit is built containing three relays that passes traffic.
These relays, often called guard, middle and exit relay, only have knowledge of the
relay before and after it. One benefit of this is that it makes tracking of data difficult [9,
14].

Figure 2.2.1 gives a visualisation of how circuits are created in the Tor network. Web
traffic on the Tor Browser is passed through a guard, middle and exit relay before
reaching the final destination.

To avoid DNS leaks, DNS requests must be sent over Tor. DNS requests in Tor are
run on exit relays. The exit relay is the last relay that traffic passes through before
reaching its final destination. To improve performance, the exit relays cache DNS
responses [14].

2.3 URL
A Uniform Resource Locator (URL) is an unique address that identifies a resource
on the Internet, e.g., the address of a website. A URL consists of a number of

5

CHAPTER 2. BACKGROUND AND RELATEDWORK

Tor Browser Final destination

Guard

Middle

Exit

Figure 2.2.1: Visualisation of how circuits are created in Tor.

components [13], as shown in Figure 2.3.1. The most relevant components in this
project are:

• Scheme: Which protocol is used, e.g., http or https.

• Subdomain: A subdomain is an optional part of a domain, e.g., www is a part of
example.com in Figure 2.3.1.

• Domain name: A domain name identifies a organisation or entity within the
Internet.

• Path: A path identifies the location of a resource, e.g., a web page or a file.

• Parameters: Data/elements that are being queried.

• Fragment: Specifies a location within, for example, a web page.

scheme

subdomain

domain name

port number

path

query

parameters

fragment

https:// www. example.com:so /index.html ? key1=value1#bar

Figure 2.3.1: Components of a URL.

6

CHAPTER 2. BACKGROUND AND RELATEDWORK

2.4 Related Work
Pulls and Dahlberg showed [22] how to use attacks, like the one that motivated the
preload defense by Dahlberg and Pulls [8], to reliably identify website visits by users
despite them using Tor. The preload defense introduces a redesign of Tor’s DNS cache.
The goal of this defense is to achieve false positives when attackers try to use the DNS
as a tool to determine if a user has visited a certain website (timeless attack).

Before explaining the preload defense in more detail, we have to briefly explain how a
DNS cacheworks. In Section 2.1, we discussed howaweb client sentDNSqueries to the
resolver in order to get the IP address of a webpage. This process takes time and has to
be repeated for every webpage the web client wants to visit. This is were the DNS cache
is introduced. The DNS cache is a temporary storage of DNS lookups from previously
visited domain names. The time these lookups are stored depends on their Time to
live (TTL). When a client wants to visit a webpage, the DNS cache is checked to see if it
it contains the DNS lookup for the requested webpage. If the DNS lookup exists in the
DNS cache, the IP address of the domain name is returned to the client immediately.
However, if the DNS lookup does not exist in the DNS cache, DNS queries have to be
made to DNS servers in order to resolve the domain. In short, the DNS cache reduces
the frequency of complete DNS lookups and brings improved performance since the
DNS queries can be resolved much quicker [6].

The preloaded DNS cache by Pulls and Dahlberg consists of two types of caches:

• Shared preload cache. The shared preload cache consists of domains from an
allowlist (a preload list) and is shared across circuits. The allowlist contains the
most popular domains and are collected by visiting the most popular sites on the
Internet. The exit relays receive the allowlist and resolves the domains to IPs.
DNS requests on a circuit will firstly go the preload cache to see if the domain
exists in the cache. The reasonwhy this cache can safely be shared is that theDNS
no longer takes previous lookups in regard, if the domain exists in the preload
cache there will be a cache hit.

• Same-circuit cache. If the domain does not exists in the preload cache, the DNS
request will go to the circuit’s same-circuit cache. Since circuits are isolated,
attackers can not gain information from caches on other circuits than their own.

Figures 2.4.1 and 2.4.2 give a visual representation of the preloaded DNS cache design.
In Figure 2.4.1, a central party visits sites on a popularity list and collects domains.
After the collection, an allowlist (preload list) of domains is generated. The preload list
is then used in the shared preload cache, as shown in Figure 2.4.2, for every Tor relay.
When a DNS lookup is made, the lookup will first go to the shared preload cache. If
the DNS lookup can not be resolved in the shared preload cache, the DNS lookup goes
to a dynamic same-circuit cache which is not shared across circuits. If the DNS lookup
still can not be resolved, it will be sent to a DNS resolver (like in Section 2.1).

This defense protects against timing and timeless attacks. These attacks are used

7

CHAPTER 2. BACKGROUND AND RELATEDWORK

against the original DNS cache to identify if a user has visited a specific website. Since
the DNS cache is dynamic and stores lookups based on their TTL, timing attacks can
be used to identify if a lookup is stored in the DNS cache, as cached and non-cached
lookups take different amount of time to resolve. The preload defense protects against
these kind of attacks with the shared preload cache and same-circuit cache. The shared
preload cache is continuously preloaded, which means that the domains have no TTL.
This means that timing and timeless attacks can not gain any information from the
shared preload cache. Timing and timeless attacks are also useless against the same-
circuit cache, since attackers only can use these attacks in their own circuits.

Beside promising protection against timing and timeless attacks, this preload defense
also brings improved performance. The performance is improved since the most
popular domains on the Internet are continuously preloaded, resulting in quicker
resolve time forDNS lookups and increased cache-hits. Tomeasure the performance of
the preload lists, the ideal would be to operate a modified Tor exit on the Tor network
and measure the performance of the DNS cache. Dahlhberg and Pulls did this with
significant efforts to do it safely (ethically and legally), such as contacting the Tor
Research Safety Board [25] for guidance [8].

The preload defense highlights that promising future work is to improve how preload
lists should be generated in order for better performance. Improvements such as
filtering useless domains and crawling websites to collect more useful domains are
ideas that could be implemented.

This thesis further builds on the preload defense and explores different techniques to
improve the generation of preload lists.

foo.org
foo.org/about
shop.bar.org
baz.org/news

...

foo.org

bar.org/about

baz.org/news

foo.org
support.foo.org

shop.bar.org
baz.org

ads.baz.org
...

Phase 1: Visit websites from extended popularity
list and collect domains found.

Popularity list

Preload list

Phase 2: Generate allowlist (preload list).

Central party

Figure 2.4.1: A central party collecting domains from popular websites and generating
a preload list.

8

CHAPTER 2. BACKGROUND AND RELATEDWORK

foo.org
support.foo.org
shop.bar.org

baz.org
ads.baz.org

...

Preload list

Relay

Circuit D

DNS hierarchyShared
preload cache

Circuit A Circuit B

Circuit C

foo.org <IP>
support.foo.org <IP>

shop.bar.org <IP>
baz.org <IP>

ads.baz.org <IP>
 ...

Same circuit caches

...

...

...

...

Figure 2.4.2: How Tor relays handle DNS lookups.

9

Chapter 3

Methodology

3.1 The Preload Design
The preload defense, proposed by Dahlberg and Pulls, uses preload lists to serve as a
shared cache and contains domains from popular websites. The generation of preload
lists begins with downloading a popularity list, e.g., Alexa- [2] or Tranco-list [21], from
the web. These popularity lists contain the most popular websites on the Internet. The
next step is to visit the popular websites and collect all the domains that are loaded.
Lastly, the domains collected are used for generating preload lists.

3.2 Method
The overall structure of this project was to work in iterations. By using this method,
the preload lists will gradually improve and regular evaluations can be made. The
process of creating better preload lists can be divided into five smaller parts, as seen
in Figure 3.2.1. The first part is to analyze the current preload lists to find a way to
improve the lists. What is defined as an improvement will be discussed later in this
chapter. After figuring out a way to improve the preload lists, the next step is to
implement the idea by either modifying the current tools or create new tools. Now
that the tools have been improved, the third step is visit the most popular websites and
collect domains. After collecting the domains, the next step is to generate new preload
lists from them. Lastly, the new preload lists are evaluated to see how improved tools
have affected the results. After completing the evaluation the process is repeated from
the beginning.

3.3 Defining Better Preload Lists
In order to create better preload lists, we must define what we mean by better. Since
these preload lists will be used in the DNS cache, any improvements to the preload lists
must take the DNS cache into consideration, i.e., how the DNS cache benefit from the

10

CHAPTER 3. METHODOLOGY

Figure 3.2.1: Visualisation of methodology used in project.

improvement. In this project, we look for two different aspects of improvements to the
preload lists:

• Filter useless domains – The current preload lists contain useless domains.
Useless domains are domains that do not get any hits in the cache. There are
currently a lot of domains that are used for advertisement. Most of these domains
are unique, since they are customized for a specific user. The preload lists have
no use for unique domains, since the lists are shared across circuits in Tor, i.e.,
the unique domains most likely do not appear for other users. To improve the
preload lists, we have to find a way to identify and filter useless domains.

• More useful domains –More useful domains would boost the performance of
the shared preload cache. Useful domains are domains that get hits in the cache.
Here we must explore different techniques to find more useful domains.

To measure the performance and any improvement to the preload lists, ideally we
should operate a modified exit relay in the Tor network and measure the performance
of the DNS cache, like Dahlberg and Pulls [8]. However, this is not feasible within the
limited time of this thesis topic (ethical approval and contact with the Tor Research

11

CHAPTER 3. METHODOLOGY

Safety Board, etc). Instead, to measure the performance of our improved preload lists
in this project, we will:

1. Visit sites, collect domains and generate preload lists.

2. Visit the same sites again and record lookups.

3. Compare the recorded lookups against the generated preload lists.

3.4 Phases
Our work on improving the preload lists can be divided into four phases. The first
phase, seen in Figure 3.4.1, is the crawling phase. The preload tool takes the popularity
list as input and visits each domain in order to find subdomains and subpages. The
collected subdomains and subpages are then added to the popularity list, creating an
extended popularity list. By adding subdomains and subpages, we can hopefully find
more useful domains during the next phase.

Popularity
list

foo.org
foo.org/about
shop.bar.org
baz.org/news

...

Phase 1: Crawl websites from popularity list and collect
subdomains and subpages.

foo.org

bar.org

baz.org

Figure 3.4.1: Representation of the crawling phase.

The second phase is the collection phase, seen in Figure 3.4.2. Taking the extended
popularity list as input, the preload tool visits each domain, subdomain and subpage
and collects all domains that are loaded. The output from the preload tool is a preload
list, containing all the domains collected.

The third phase is the domain identification phase, seen in Figure 3.4.3. The purpose
of this phase is to identify useless domains. To identify useless domains, an extra
collection run is made on the same extended popularity list as the one in the second
phase, recording domain lookups. These lookups are then compared with the collected
domains from the second phase, with the purpose of identifying which domains are
useless.

The fourth phase is the filter phase, see Figure 3.4.4. Now that the useless domains
have been identified, we take the preload list and remove useless domains.

12

CHAPTER 3. METHODOLOGY

foo.org
foo.org/about
shop.bar.org
baz.org/news

...

foo.org

bar.org/about

baz.org/news

foo.org
support.foo.org

shop.bar.org
baz.org

ads.baz.org
...

Phase 2: Visit websites from extended popularity
list and collect domains found.

Extended popularity list

Preload list

Figure 3.4.2: Representation of the collection phase.

foo.org
foo.org/about
shop.bar.org
baz.org/news

...

foo.org

bar.org/about

baz.org/news

foo.org
support.foo.org

shop.bar.org
baz.org

ads.baz.org
...

Phase 3: Visit websites from extended popularity
list and recording lookups. Then compare the
lookups with the collected domains from phase 2.

Extended popularity list

Lookup list

Lookup list

Preload list

Figure 3.4.3: Representation of domain identification phase.

foo.org
foo.org/about
shop.bar.org
baz.org/news
ads.baz.org

...

Preload list

foo.org
support.foo.org
foo.org/about
shop.bar.org
baz.org/news

...

Filtered Preload list

Phase 4: Find and remove useless domains.

Figure 3.4.4: Representation of the filter phase.

13

Chapter 4

Implementation

4.1 Setup
Access to the preload tools was given by Tobias Pulls on aGitLab repository, containing
Python files and a shell script. In addition, access to previously collected datawas given.
These are all research artifacts shared by Dahlberg and Pulls as part of their paper on
the preload defense [8].

4.1.1 Remote Server
The collection of domains takes time and resources. Thus, access was given to a remote
server at Karlstad University in order to run larger collection runs. OpenVPN [19] is
used to access the remote network and then Secure Shell (SSH) is used to access the
server.

4.1.2 Virtual Private Network
During domain collection we visit thousand of websites and make a ton of requests.
This can lead to being labeled as a bot and getting our IP address blacklisted on the
Internet. To prevent getting our real IP address blacklisted, wewill use aVirtual Private
Network (VPN) that changes our IP address. The VPN that is used in this project is
Mullvad VPN [17].

An issue that occurred is that when connecting to Mullvad VPN on the remote server,
we got kicked out of the SSH session and could not SSH back again. This was caused
by the VPN modifying the routes on the server. To solve this, the split tunneling [18]
feature offered by Mullvad VPN was used. To enable split tunneling, rules had to
be added to a firewall, allowing the SSH connection being routed outside of the VPN
tunnel. The rules, shown in Listing 4.1, allowed a process to listen on port 22 (SSH)
while Mullvad VPN was active. An additional rule, excludeOutgoing, was also added,
which allowed traffic to the default gateway 10.91.0.1. The following lines describe the
code in Listing 4.1:

14

CHAPTER 4. IMPLEMENTATION

• Line 1 declares a new table called excludeTraffic.

• Lines 2, 7 and 11 create the input chains allowIncoming, allowOutgoing and
excludeOutgoing respectively.

• Line 3 sets chain type to filter (for filtering packets) and links the allowIncoming
chain to the input hook. The priority is set to -100 and the default policy is set to
accept.

• Line 4 allows incoming SSH traffic on port 22.

• Line 8 sets chain type to route (for rerouting packets) and links the
allowOutgoing chain to the output. The priority is set to -100 and the default
policy is set to accept.

• Line 9 allows outgoing SSH traffic on port 22.

• Line 12 sets chain type to filter and links the excludeOutgoing chain to the output
hook. The priority is set to -10 and the default policy is set to accept.

• Line 13 allows SSH and Hypertext Transfer Protocol Secure (HTTPS) traffic to
the default gateway 10.91.0.1.

The rules were saved to file as excludeTraffic.rules and then with the command
sudo nft -f excludeTraffic.rules a new firewall table was set up.

1 table inet excludeTraffic {
2 chain allowIncoming
3 type filter hook input priority -100; policy accept;
4 tcp dport 22 ct mark set 0x00000f41 meta mark set 0x6d6f6c65;
5 }
6

7 chain allowOutgoing {
8 type route hook output priority -100; policy accept;
9 tcp sport 22 ct mark set 0x00000f41 meta mark set 0x6d6f6c65;
10 }
11 chain excludeOutgoing {
12 type filter hook output priority -10; policy accept;
13 ip daddr 10.91.0.1 tcp dport {22, 443} ct mark set 0x00000f41;
14 }
15 }

Listing 4.1: Input chains of excludeTraffic.rules

4.2 Preload List Generation
In order to discuss how the preload lists can be improved, the generation of preload
lists has to be explained in detail. Preload lists were also generated at the start of the
project to make sure everything worked and to understand the tools better.

15

CHAPTER 4. IMPLEMENTATION

4.2.1 Generate Visit List

The process begins with downloading a fresh popularity list from the web. Since
Dahlberg and Pulls made it clear [8] that only Tranco lists are of interest, this project
will only use Tranco lists. Tranco lists contain the most popular websites on the
Internet, ranked in order of popularity. The reason Tranco is chosen instead of Alexa,
is that Tranco is a more recent source of website popularity [27]. The next step is to
generate a list of unique domains for sites that will be visited. The list is generated
by the Python program preload-unique-sites.py. Preload-unique-sites.py takes, as
shown in Listing 4.2, two arguments as input. The arguments are:

• A popularity list to parse, i.e., a Tranco list.

• Number of sites to parse. This argument is optional and the default value is set
to 10,000.

The downloaded Tranco zip file is then opened and parsed, adding the sites to a list.
Lastly, the list of sites is shuffled (to not make parallel visits when visiting websites
later on) and written to file as unique-domains-10k.

1 ap = argparse.ArgumentParser()
2 ap.add_argument("-l", nargs="+", required=True,
3 help="popularity lists to parse")
4

5 ap.add_argument("-n", required=False, type=int, default=10000,
6 help="number of sites")
7

8 args = vars(ap.parse_args())
9

10 def main():
11 unique = {} # dict for faster lookup
12 for l in args["l"]:
13 print(l)
14 with zipfile.ZipFile(l) as z:
15 with z.open('top-1m.csv') as c:
16 for line in c:
17 p = line.decode('utf-8').strip().split(",")
18 if int(p[0]) <= args["n"] and p[1] not in unique:
19 unique[p[1]] = True
20

21 domains = list(unique.keys())
22 random.shuffle(domains)
23 fname = f"unique-domains -10k"
24

25 with open(fname, "w") as f:
26 for d in domains:
27 f.write(f"{d}\n")

Listing 4.2: How the file unique-domains-10k is generated by preload-unique-sites.py

16

CHAPTER 4. IMPLEMENTATION

4.2.2 Domain Collection
After generating a visit list, the next step is to visit all the sites in the list and collect
domains that are loaded. The collection was done by the program preload-collect-
domains.py. Preload-collect-domains.py takes the list unique-domains-10k as input
and initiates scripts for domain collection. For eachwebsite visit, a headless Chromium
is ”fired up” and from each visit loaded domains are collected. Headless Chromium is
a web browser without a Graphical user interface (GUI). Headless browsers are used
for machines that do not have a GUI and for the performance they bring. Compared
with a regular browser, a headless browser is much faster. When finished with all the
visits, the collected domains are written to file as results.csv.

To find even more domains, Mullvad VPN is used in order to make visits from Europe
(EU), United States (US) and Hong Kong (HK). Collection from EU is repeated three
times, whileUS andHKhave two repetitions each. The reason for repetitions is that the
collection runs do not always succeed and by making repetitions, the measurements
become more reliable. To make collections from different regions, the shell script
collect-domains.sh is used. As shown in Listing 4.3, the shell script begins with
connecting to a server in Stockholm, Sweden (EU) with the command mullvad relay
set location se sto. Then the collection tool preload-collect-domains.py is run
with the command time ./preload-collect-domains.py -l $LIST -n 3 -b 60 -t
20. The arguments needed for preload-collect-domains.py are the following:

• -l $LIST: List of unique sites to visit. In our case this is the list unique-domains-
10k.

• -n: Number of repetitions.

• -b: Batch size. Optional, default is set to 10.

• -t: Timeout for each attempted visit. Optional, default is set to 10.

Since we want three repetitions of domain collections, -n is set to three. The
command time is used for determine how long the collection tool takes to run. The
collected domains stored in results.csv is renamed results-eu-3.csv and copied to the
∼/Downloads/ folder. These commands are then repeated for domain collection from
US and HK. For US, we connect to New York, United States, set -n to two repetitions
and store the collected domains as results-us-2.csv. Lastly, for HK, we connect to
Hong Kong, set -n to two repetitions and store the collected domains as results-hk-
2.csv.

1 # unique list of sites
2 LIST=unique-domains -10k
3

4 # 3x from Europe
5 mullvad relay set location se sto
6 echo "set location to Stockholm"
7 sleep 5
8 time ./preload-collect-domains.py -l $LIST -n 3 -b 60 -t 20
9 sleep 10

17

CHAPTER 4. IMPLEMENTATION

10 mv results.csv results-eu-3.csv
11 cp results-eu-3.csv ~/Downloads/
12

13 # 2x from US
14 sleep 5
15 mullvad relay set location us nyc
16 echo "set location to New York"
17 sleep 10
18 time ./preload-collect-domains.py -l $LIST -n 2 -b 60 -t 20
19 mv results.csv results-us-2.csv
20 cp results-us-2.csv ~/Downloads/
21

22 # 2x from HK
23 sleep 5
24 mullvad relay set location hk
25 echo "set location to Hong Kong"
26 sleep 10
27 time ./preload-collect-domains.py -l $LIST -n 2 -b 60 -t 20
28 mv results.csv results-hk-2.csv
29 cp results-hk-2.csv ~/Downloads/
30

31 mullvad relay set location se got
32 echo "set location to Göteborg"

Listing 4.3: How the shell script collect-domains.sh runs domain collection.

4.2.3 Collection Details

Collection of domains take a lot of time, since there a great number of Chromium
browser logs (parsed to extract domains) that are written to disk. To speed up the
process, we run the collection tool on a ramdisk on the server. A ramdisk is created
with the command sudo mount -t tmpfs -o rw,size=2G tmpfs /mnt/ramdisk. This
command creates a ramdisk using a Temporary File System (TMPFS) on themounting
point /mnt/ramdisk. Using the ramdisk for collecting domains, it takes around nine
hours to complete a collection run.

4.2.4 Preload List Generation

When the collection of domains is done, the last step is to generate preload lists out
of them. The preload lists are generated by the tool preload-gen-list.py. Preload-gen-
list.py takes the following arguments:

• -t: The tranco zip file earlier downloaded. There were also the arguments -a and -
u that took an Alexa andUmbrella zip file. However, since only Tranco lists are of
interest, every piece of code that handled the popularity lists Alexa and Umbrella
were removed from this project.

• -l: Unique sites list. This is the unique-domains-10k list.

18

CHAPTER 4. IMPLEMENTATION

• -c: Collected domains. These are the collected domains stored in results-eu-3.csv,
results-us-2.csv and results-hk-2.csv.

• -s: Folder which the generated lists will be stored to.

• -n: Maximum site/domain popularity to consider. This argument is optional and
set to 10,000 as default.

With these arguments, Preload-gen-list.py generates preload lists of two different
types. The first type is preload lists containing domains from only the Tranco
popularity list. The second type is extended preload lists containing the domains
collected when visiting Tranco sites, e.g., a top 10 extended preload list contains all the
domains collected when visiting top 10 most popular sites on the Tranco popularity
lists. For both list types, top 10,200,..1000,...10,000 lists are created.

4.3 Evaluation Tool
To evaluate a preload list, a tool for evaluation had to be implemented. The metrics
used for evaluating a preload list are as follows:

• Number of domains in the list.

• Time to create the list.

• Number of hits.

• Number of useless entries (no hits).

To count the number of hits and useless entries, we reuse the collection tools. After
having generated new preload lists, the top X sites are visited in the same way again
and lookups (collected domains) are recorded. The lookups are then run against the
generated preload lists.

The evaluation tool preload-eval.py was implemented that took the following
arguments:

• -l: Lookup list. This is the collected domains stored in results-eu-3.csv, results-
us-2.csv and results-hk-2.csv.

• -e: Extended preload list. This is the extended Tranco list that is to be evaluated.

Preload-eval.py begins with storing all the collected domains in a list named lookups.
Thereafter, all the domains in the extendedpreload list are stored in a dictionary named
preload, as shown in Listing 4.4. The key:value pairs are set as domain:hit in order to
count the number of hits a domain in the preload list has.

1 with open(args["e"], "r") as f:
2 for line in f:
3 preload[line.strip()] = 0

Listing 4.4: How preload-eval.py stores collected domains.

19

CHAPTER 4. IMPLEMENTATION

The next step is to iterate through each domain in the lookups list and check if the
domain exists in the dictionary preload, as shown in 4.5. If a lookup exists in the
dictionary, the amount of hits is increased by one as well as the value for the domain
in the dictionary. However, if a lookup does not exist it is counted as a miss.

4 hit = 0
5 miss = 0
6 for domain in lookups:
7 if domain in preload:
8 hit += 1
9 preload[domain] += 1
10 else:
11 miss += 1

Listing 4.5: Code for checking domain hits.

To count the number of useless domains, the dictionary preload is checked for domains
with zero hits, as shown in Listing 4.6 .

12 for domain in preload:
13 if preload[domain] == 0:
14 useless_entries += 1

Listing 4.6: Code for counting useless domains.

Another good metric is the cache hit ratio. The cache hit ratio gives a measurement
of how many requests a cache successfully fulfills, compared to the total amount of
requests. In our case, requests are domains in the lookup list. The cache hit ratio is
calculated as shown in Listing 4.7

15 hit_ratio = round(hit/(hit + miss)*100)

Listing 4.7: Code for calculating hit ratio.

Lastly, the calculated metrics are written to file as eval, as shown in Listing 4.8. The
size of the preload list is calculated with the len() function. The only metric that is
not calculated in preload-eval.py is the time to create lists. The time to create lists is
instead calculated during collection in the shell script collect-domains.shwith the time
command.

16 with open("eval", "w") as w:
17 w.write(f"Preload list: size = {len(preload)}\nLookup list: size = {len

(lookups)}\n")
18 w.write(f"\nHits = {hit}\nHit ratio � {hit_ratio}%\nMiss (not in

preload cache) = {miss}\n")
19 w.write (f"\nUseless entries = {useless_entries}")

Listing 4.8: Code for writing calculated metrics to file.

4.4 Filtering
This section will discuss how useless domains were identified and how the filtering was
implemented.

20

CHAPTER 4. IMPLEMENTATION

4.4.1 Identifying Useless Domains
A useless domain was as earlier mentioned a domain that was unique and did not get
any hits in the cache. A lot of the useless domains in the preload lists were unique
tracking domains used for advertisement. A good example of useless domains are
*.safeframe.googlesyndication, which appears a lot in the preload lists.

To get a better understanding of how to identify useless domains, preload-eval.py is
extended to write the domains and their corresponding hits to file as sorted_hits. As
shown in Listing 4.9, the domains are sorted in order of hits (low to high) and the
written to file.

20 with open("sorted_hits", "w") as w:
21 newlist = sorted(preload.items(), key=lambda item: item[1])
22 for item in newlist:
23 w.write(f"{item}\n")

Listing 4.9: How the domains in the dictionary are sorted and written to file.

Firstly, we explored how the most popular browser extensions, uBlock [20] and
AdBlock [1], used filter lists to block ads. The findings were as follows:

• AdBlock - Within the AdBlock settings, the only readable list available to the
user is the EasyList [12]. EasyList is a filter list with the purpose of removing
content such as adverts and trackers. This list was however not of any use, since
EasyList blocks almost all adverts. The reason this is bad for us, is that we
do not want to filter all adverts, we only want to filter adverts that are useless
(no hits). As an example, ad.doubleclick.net is an advertising service that
EasyList blocks. However, when looking at the sorted-hits list, it was seen that
ad.doubleclick.net gets a lot of hits. Domains that get hits in a cache are worth
storing, since time and resources are saved by not having to do DNS requests.

• uBlock - For blocking adverts and trackers, uBlock uses EasyList and Peter
Lowe’s Ad and tracking server list [16]. EasyList was as earlier mentioned
disregarded in this project. Peter Lowe’s Ad and tracking server list did, similar
to EasyList, block all adverts. This type of generalisation was not of any use when
looking for a way to filter useless domains.

Moving on from the browser extensions, we ran the lookup lists against preload lists
with the purpose of gaining information on useless domains. Preload-eval.py was
extended to give a visualisation of the domains in both lookup and preload lists. The
following additions were made:

• If a domain from the lookup list does not exists in the preload list, add the domain
to the listmiss_list_lookups. The list is then written to file asmiss_list.

• If a domain in the preload list do not have any hits, add the domain to the list
useless_list_preload. The list is then written to file as useless_list_preload.

• The domains in the preload list are sorted by order of hits (low to high) and

21

CHAPTER 4. IMPLEMENTATION

written to file as sorted_hits. An example of how the domains are sorted are
shown in Figure 4.4.1

Figure 4.4.1: Example of how domains are sorted according to amount of hits in the
file sorted_hits.

By comparing and analysing the previous mentioned files together, information about
the domains the preload lists could be given. The file miss_list_lookups contained
domains that could either be worth storing or useless for the preload lists. The
file useless_list_preload gives as earlier mentioned all the domains with zero hits.
A domain with zero hits could indicate that the domain is useless. However, it is
not enough information to certainly call the domain useless. By combining both
useless_list_preload and sorted_hits, we could tell if a certain type of domain was
useless or not. Examples of how useless domains were determined are as follows:

• In useless_list_preload there were around 100 unique domains with the format
*.fls.doubleclick.net. When looking at sorted_hits, around 600 domains of
the same format were found that got hits. Since the format of the domains are
the same, the domains with zero hits can not be separated. In addition, the
amount of domains with zero hits was a lot less than those with hits. As a result,
*.fls.doubleclick.net is a domain type that is worth storing.

• Inuseless_list_preload therewere around2000unique domainswith the format
*safeframe.googlesyndicaton.com. In sorted_hits, there were no domains of
the same type that had any hits. Since all *.safeframe.googlesyndication.com
domains had zero hits, this type of domain was considered useless.

22

CHAPTER 4. IMPLEMENTATION

4.4.2 Filtering Implementation

After identifying useless domains, the next step was to implement domain filtering. To
filter domains, a function called filterDomainwas added to the preload list generating
program preload-gen-list.py. The function, shown in Listing 4.10, took a domain from
a filter list as a parameter and checked if the domain was to be filtered. The check was
done by using regular expressions that checks for a match anywhere in a string. The
parameters in the re.match() function was:

• pattern: A pattern that is checked against a domain.

• domain: The domain in which the pattern is looked for.

25 def filterDomain(domain):
26 for filter in filterList:
27 match = re.search(filter,domain)
28 found = bool(match)
29 if(found):
30 return True
31

32 return False

Listing 4.10: Function that checks if a domain should be filtered.

A filter list, shown in Listing 4.11, was created which contained domain patterns that
represented useless domains. These domain patterns were the pattern parameters
used in the filterDomain() function. For every pattern in the filter list, the function
checked if the pattern was found in a collected domain.

33 filterList = [
34 "safeframe.googlesyndication",
35 "[a-z0-9]+report.wc.yahoodns",
36 "v-[a-z0-9]+.wc.yahoodns",
37 "sombrero.yahoo",
38 ".am.dotnxdomain",
39 ".ap.dotnxdomain",
40 ".eu.dotnxdomain",
41 ".tbap.dotnxdomain",
42 ".tbam.dotnxdomain",
43 ".tbeu.dotnxdomain",
44 "[a-z0-9]+.tmptrk.sensic",
45 "[a-z0-9]+.trk.sensic",
46 "ts-[a-z0-9]+-clienttons -s.akamaihd.net",
47 "[a-z0-9]+-[a-z0-9]+-[a-z0-9]+-clientnsv4 -s.akamaihd",
48 "init.cedexis-radar",
49 "nuid.imrworldwide",
50 "darnuid.imrworldwide",
51 "metric.gstatic",
52 "sync.upravel",
53 "l4.adsco",
54 "n4.adsco",
55 "s4.adsco"

23

CHAPTER 4. IMPLEMENTATION

56]

Listing 4.11: A list containing domain patterns.

The function will return a Match object, which will be True if a match is found. If a
match is found, the function will return True, otherwise it returns False.

An optional argument, "-f", was also added to preload-gen-list.py for the purpose of
filtering. This argument was a bool with default set as False. If this argument was used,
the program was to enter a filter mode. The purpose of this was to choose if filtering
was to be made. The filtering was used before creating preload lists out of the collected
domains, as shown in Listing 4.12. For every domain in list, a check was done if we
were in filter mode. If True, the function filterDomain() was called and if a match
was not returned, the domain was written to file. If the programwas not in filter mode,
the domain would always be written to file.

57 for domain in list:
58 if args["f"]== True:
59 if not filterDomain(domain):
60 w.write(f"{domain}\n")
61 else:
62 w.write(f"{domain}\n")

Listing 4.12: Code for checking if the program should filter domains or not.

4.5 Crawling

The second improvement that could be done to the preload lists is to add more useful
domains to the preload lists. At the moment, we only visit the frontpages of the sites to
collect domains. One idea to find more domains is to crawl a website to find subpages
and then visit the subpages to (hopefully) find more useful domains. This section will
discuss how crawling was implemented and how more useful domains were added to
the preload lists.

4.5.1 Scrapy

At first we looked into how Scrapy [24] was used to crawl websites. Scrapy is one of
the most popular web scraping frameworks used to extract data from websites. It is a
powerful tool that offers, in addition to data extraction, redirect handling, maintaining
sessions, asynchronous request handling and more. When researching the advanced
features that Scrapy provided, we believed that this framework might be a bit overkill
for this project, since we only want to do simple data extractions. Our understanding
was that Scrapy would be more suitable for bigger andmore complex projects that had
a need for a more advanced web-crawling framework.

24

CHAPTER 4. IMPLEMENTATION

4.5.2 Beautiful Soup

Beautiful Soup [7] is a Python parsing library for extracting data from HyperText
Markup Language (HTML) and Extensible Markup Language (XML) documents.
Beautiful Soup is not in it self a scraping tool, but offers simple and direct ways to
extract specific data during web crawling. Complex HTML documents are converted
into parse trees that are easy to navigate through. Because of Beautiful Soups simplicity
and great documentation, Beautiful Soup was chosen for this project.

4.5.3 Implementation

A crawling tool called web-crawl.py is created with the purpose of crawling websites
and collecting subpages. The only argument required for the program is a list of sites
to visit. This is the unique-domains-10k list that was generated by preload-unique-
sites.py. However, one change is that the list is in order of popularity. The reason this
order of popularity is desired is to be able to choose topX sites to crawl and collect from.
To create a ordered popularity list, the code in preload-unique-sites.py was modified
as shown in Listing 4.13. "s" is an optional argument for the program that makes it
possible to choose if the domains should be shuffled or not and the default value is set
to false.

63 if args["s"]:
64 random.shuffle(domains)
65 fname = f"unique-domains -10k"
66 else:
67 fname = f"unique-domains -10k-ordered"

Listing 4.13: Implementation of choosing to shuffle or not.

Web-crawl.py begins with reading all the sites in the unique-domains-10k-ordered
and appending them to the list crawl_list. For every domain in crawl_list, the function
crawl() is called, as shown in Listing 4.14.

68 scheme = "https://"
69 for idx, domain in enumerate(crawl_list):
70 if idx < 2000:
71 url = scheme + domain + "/"
72 crawl(url,domain)
73 if idx >= 2000:
74 domain_to_link[domain] = [domain]

Listing 4.14: Code for iterating domains and choosing which to crawl.

The function crawl() takes the following two arguments:

• url: URL for the site. When doing requests, the URL for the site is needed. To
create a URL, the protocol HTTPS and the domain are concatenated.

• domain: The domain that will be visited and crawled.

25

CHAPTER 4. IMPLEMENTATION

To control how many domains that are crawled, the index idx is used. In Listing 4.14,
Idx is used to crawl the first 2000 sites. After 2000 sites, the rest of the sites will not
be crawled and instead be added to the dictionary domain_to_link. The dictionary
domain_to_link consists of the key:value pairs domain:links, where domain is the
visited domain and links are the collected links for the domain.

4.5.4 Requests
The crawl function begins with extracting the domain name with the function call
urlparse(url).netloc. This domain name will later be used for identifying internal and
external links. The next step is to create a request with a fake user agent. A user agent
is a software that represents a real user. In our case, the user agent tells servers which
web browser is being used and makes the server believe we are a real user. A request
is created with the function set_request as shown in Listing 4.15.

75 def set_request(url):
76 req = Request(
77 url,
78 data = None,
79 headers = {
80 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36"
81 }
82)
83 return req

Listing 4.15: Function that creates and returns a request.

The request contains the following objects:

• url: A string containing a valid URL.

• data: Additional data to send to server. Data is set to None since it is not needed.

• headers: A dictionary containing a fake user agent.

The next step after creating a request is to download the HTML content and create a
BeautifulSoup object, as shown in Listing 4.16.

84 try:
85 req = set_request(url)
86 soup = BeautifulSoup(urlopen(req,timeout=10).read(), "html.parser")

Listing 4.16: Code for sending a request and creating a BeautifulSoup object.

The code in line 86 works as follows:

• The function call urlopen(req, timeout=10).read() sends the created request and
reads the HTML document of the site. A timeout is set to 10 seconds to avoid a
408 Request Timeout response status code.

• ”html.parser” is the parser that BeautifulSoup() will use.

26

CHAPTER 4. IMPLEMENTATION

• The function call soup = BeautifulSoup(urlopen(req,timeout=10).read(),
”html.parser”) downloads the HTML content of the site, parses it and creates
a BeautifulSoup object called soup.

The reason the code in Listing 4.16 is in a try block is that the request is not guaranteed
to succeed. Exceptions like for example 400 Bad Request, 308 Permanent Redirect
and 403 Forbidden often appear. An except block is used to catch and log expressions,
as shown in Listing 4.17. Inside the except block, the current thread is then suspended
for two seconds in order to prevent errors that arrive when doing to many requests in
a short interval. Then the request is retried, however this time with the subdomain
"www.". The reason for using "www." is that it seemed to handle some of the exceptions
like 308 Permanent Redirect.

87 except Exception as e:
88 logger.error(repr(e))
89 print(f"HTTPError: {url}\n")
90 try:
91 time.sleep(2)
92 www_url = "https://www." + domain_name
93 req = set_request(www_url)
94 soup = BeautifulSoup(urlopen(req,timeout=10).read(), "html.parser")

Listing 4.17: Code for catching exceptions and retrying request.

Another except block is then used to catch exceptions. Inside a new try block, the
thread will sleep for four seconds to prevent servers learning sleep patterns. Then
one last attempt to make a request is made. This time the request is done with a
cloudscraper [23]. Cloudscraper is a Python module that is used to bypass sites that
are protected by Cloudflare. Cloudflare is a network that improves the security and
performance of websites. What cloudscraper does is that it bypasses Cloudflare’s anti-
bot page, a page that tries to detect bots. As shown in Listing 4.18, a cloudscraper
instance is created and then with BeautifulSoup() a request is made. One could ask
why this program does not use from the beginning. The reason behind this is that
urlopen() retrieves more links from websites when compared with cloudscraper.

95 scraper = cloudscraper.create_scraper()
96 soup = BeautifulSoup(scraper.get(url,timeout=10).text, "html.parser")

Listing 4.18: Request done with cloudscraper.

Lastly, one last exception block is used, as shown in Listing 4.19. Errors are logged and
the domain that could not be crawled is printed to console. Since the domain could
not be crawled, the only collected link will be the original domain. The domain is then
added to the lists:

• internal_urls_preload: A list containing internal links. An internal link is a
hyperlink to a webpage that is on the same website/domain.

• domain_to_link: A dictionary with the key:value pairs domain:links, where
domain is the visited domain and links are the links collected from the website.

27

CHAPTER 4. IMPLEMENTATION

97 except Exception as g :
98 logger.error(f"{repr(g)}: {www_url}")
99 print(f"*********** Could not crawl {www_url} ************")
100 internal_urls_preload.append(domain_name)
101 domain_to_link[domain_name] = [domain]
102 return

Listing 4.19: Code for catching exceptions and adding domain to list and dictionary.

The exception block ends with a return statement, since the domain could not be
crawled there is no point to continue.

4.5.5 Link Collection
The next step after crawling a site is to collect links from the site. The BeautifulSoup
object soup that was created in the Listing 4.17 represents the HTML document as a
nested data structure and is now used for navigating theHTMLdocument. A for loop is
created, as shown in Listing 4.20, that finds all <a> tags in the HTML document.

103 for a_tag in soup.findAll("a"):

Listing 4.20: Iteration of all <a> tags in the HTML document.

The <a> tag is used in HTML to create a hyperlink to on the webpage. A hyperlink
links a webpage to other webpages, email addresses, sections in the same page and
many more. The <a> tag has an attribute href, which is the hyperlinks destination.
To find more links, the program retrieves the href attributes of <a> tags, as shown in
Listing 4.21.

104 href = a_tag.attrs.get("href")

Listing 4.21: Code for retrieving the href attribute of the <a> tag.

Some hrefs only contain the relative path and not the absolute path. Examples of
relative and absolute paths are:

• Relative path: index.html, /about/contact/.

• Absolute path: https://www.example.com/index.html.

Do identify if the found link is internal or external, the absolute path is needed. The
absolute path is created by calling the function urljoin(), as shown in Listing 4.22.
The function urljoin() constructs an absolute path by combining the url with the href.
The newly created href is then parsed into six different components. The components
of interest are scheme, netloc and path. By concatenating the scheme, netloc and path,
an absolute path is created without URL GET parameters and URL fragments.

105 href = urljoin(url,href)
106 parsed_href = urlparse(href)
107 href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path

Listing 4.22: Code for creating an absolute path.

28

CHAPTER 4. IMPLEMENTATION

After retrieving the href, the following checks are made:

• If href is empty and if true, skip the current iteration and move on with the next
<a> tag.

• If href is in the set internal_urls, this to avoid duplicates. Internal links are added
to this set and if the check says true, the link has already exists in the set. If the
link already exists in the set, skip the current iteration.

• Is the link internal or external? This is done by checking the netloc (network
location) part of the URL, as shown in Listing 4.23. The netloc includes the
domain or subdomain. If the domain of the visited website exists in the netloc
of the absolute path, it is an internal link. If not, the absolute path is an external
link and the current iteration is skipped.

• Does the string ”mailto” exists in the href. If true, skip the current iteration since
the <a> tag is aMailto link used for redirecting to email addresses instead of web
page URLs.

108 if domain_name not in parsed_href.netloc:

Listing 4.23: Code for checking if a link is internal or external.

If all checks are passed, the collected link is added to the set internal_urls. This set is
as earliermentioned used to keep a record of collected links. The link is then simplified
to only contain netloc and path, as shown in Listing 4.24, since the scheme (”https”) is
not of interest.

109 href_filtered = parsed_href.netloc + parsed_href.path

Listing 4.24: Code for simplifying the absolute path.

A check is then done to see if the link starts with "www.". If true, the string is sliced to
return a string without "www.". Lastly, the link is added to the list domain_list, which
contains all links found on the website.

After finding all links on a website, it is time to add the links to list. First, a check
is made to see if the crawled domain is in the list of collected links, as shown in
Listing 4.25. If the domain does not exist in the list, insert the domain at the beginning
of list.

110 if not domain in domain_list:
111 domain_list.insert(0, domain)

Listing 4.25: Code for checking if domain exists in list and if True, inserting the domain
to list.

The collected links for the website are then added to the dictionary domain_to_link,
as shown in Listing 4.26. If no links were found during crawling, only add the domain
of the site as found link in domain_to_link, as shown in Listing 4.27.

29

CHAPTER 4. IMPLEMENTATION

112 domain_to_link[domain_name] = domain_list

Listing 4.26: Code for adding collected links to dictionary.

113 if len(domain_to_link[domain_name]) == 0:
114 domain_to_link[domain_name] = [domain]

Listing 4.27: Code for only adding domain of the site to dictionary if no links were
found.

The process of collecting links is then repeated for every site that is going to be
crawled.

4.5.6 Storing Collected Links
The next step after collecting links is to store them. However, before saving to file,
the links have to be filtered. During link collection a lot of duplicates were found
and added to the dictionary domain_to_link. An example of duplicate links are
example.com/images and example.com/images/. By iterating the key:value pairs
in the domain_to_link, duplicates can be identified and removed, as shown in
Listing 4.28. If a value belonging to a key is a duplicate, that specific value is
removed.

115 for key, values in domain_to_link.items():
116 for value in values:
117 dup_domain = key + "/"
118 dup_val = value + "/"
119 for val in values: # check duplicate value
120 if val == dup_val:
121 domain_to_link[key].remove(val)

Listing 4.28: Code for finding and removing duplicate domains in the dictionary.

Lastly, the collected links are written to file as crawl_list_full, as shown in Listing 4.29.
For every line in the file, a key (domain) and its values (links) are written.

122 with open("crawl_list_full", "w") as w:
123 for k, v in domain_to_link.items():
124 w.write(f"{k},")
125 for val in v:
126 w.write(f"{val.strip()},")
127

128 w.write("\n")

Listing 4.29: Code for writing collected domains and links to file.

An additional file called domain_data is created, as shown in Listing 4.30.
Domain_data contains information about how many links were found for each site.
This file will later be used when generating preload lists.

129 with open("domain_data", "w") as w:
130 for k, v in domain_to_link.items():

30

CHAPTER 4. IMPLEMENTATION

131 w.write(f"{k}, {len(domain_to_link[k])}\n")

Listing 4.30: Code for writing amount of found links for each site to file.

4.5.7 Domain Collection Changes
During domain collection, sites that were visited came from the file
unique_domains_10k. Since crawling was implemented, preload-collect-domains.py
had to read sites from crawl_list_full instead. As earlier mentioned, crawl_list_full
contained a site and collected links on every line. The code for reading crawl_list_full
wasmodified, as shown in Listing 4.31. Since around 700,000 links were found during
crawling, a decision was made to only use around 1% of the links when collecting
domains. Thus, the following variables were declared:

• max_hit: Boolean that tells if 1% of the links have been added to list.

• max: Number of extra links to add to list.

• n_links: Number of links that have been added to list.

The code in Listing 4.31 read every line in crawl_list_full and did the following:

1. Add all domains and links to list p.

2. Continue if maximum numbers of links have not been added to the list sites,
otherwise skip to line four.

3. For every domain in list p: If domain is not a duplicate and the number of added
domains are less than the maximum allowed, add the domain to the list sites.
Then increment the number of added links by one.

4. Since the maximum amount of (extra) domains have been added, only add the
first domain of every line to the list sites.

132 with open(args["l"], "r") as f:
133

134 max_hit = False
135 max = 7000 # maximum links (extra) to visit
136 n_links = 0
137

138 for i,line in enumerate(f):
139 if "," in line:
140 p = line.split(",")
141 if not max_hit: # If not hi
142 for domain in p:
143 if domain == "\n":
144 continue
145 if not domain in sites: # no duplicates
146 if n_links >= max:
147 max_hit = True
148 break
149

31

CHAPTER 4. IMPLEMENTATION

150 sites.append(domain.strip())
151 n_links += 1
152 else:
153 if domain == "\n":
154 continue
155 sites.append(p[0].strip()) # Add OG domain to list

Listing 4.31: Code for reading domains and links from file and adding them to list.

4.5.8 Preload List Generation Changes
The crawling implementation also changed how Preload-gen-list.py should generate
preload lists. Before the implementation, it was easy to know which domains were
collected for each site and generate preload lists from them. After the implementation,
the number of collected domain for each site has to be known. An argument "-d" was
added to the program, which was the domain_data file that contained the number of
domains visited for each site. The domain_data file was then read and the number
of domains for each site were added to the list domain_data_info, as shown in
Listing 4.32.

157 with open(args["d"], "r") as d:
158 for i, line in enumerate(d):
159 if "," in line:
160 p = line.split(",")
161 domain_data_info.append(p[1])

Listing 4.32: Code for reading number of domains and adding them to list.

The list domain_data_info was then used in the function loadcollected(), which read
the collected domains, as shown in Listing 4.33. The variables used are explained as
follows:

• index: Index used for retrieving value from domain_data_info.

• link_per_domain: Number of domains/rows read in total.

The function loadcollected() began with reading a line from file containing domains
(results-eu-3.csv, results-us-2.csv or results-hk-2.csv). For every line, the code did the
following:

• In line 167, the first value in domain_data_info is assigned to the variable
num_domain. If, for example, num_domain has the value 14, it means that
there are 14 rows of domains collected for the domain at index X in the ordered
popularity list.

• In line 169, a check is made to see if all rows for the domain at index X have been
read. If false, all rows have not been read and we continue to add domains for the
current domain at index X in the ordered popularity list. If true, increment index
by one and add num_domain to the total rows read (link_per_domain). Index
is incremented by one to get the next value of the list domain_data_info. Then

32

CHAPTER 4. IMPLEMENTATION

continue with adding domains to the domain at index X in the ordered popularity
list.

162 def loadcollected(l):
163 with open(l, "r") as f:
164 index = 0
165 link_per_domain = 0
166 for i, line in enumerate(f,1):
167 num_domain = int(domain_data_info[index])
168

169 if i > link_per_domain + num_domain:
170 index += 1
171 link_per_domain += num_domain
172

173 site = uniquesites[index]
174

175 if site not in site2domains:
176 site2domains[site] = []
177

178 if "," in line:
179 domains = site2domains[site]
180 p = line.split(",")
181

182 for j in range(len(p)-1):
183 d = p[j+1].strip()
184 if d not in domains:
185 domains.append(d)
186

187 site2domains[site] = domains

Listing 4.33: Code for reading collected domains and links and then adding them
dictionary.

4.6 Collection Runs and Preload List Generation
At the start of the project and when improvements were implemented, collection runs
were made and preload lists were generated from them. For every collection run, an
additional collection run was made in order to make evaluations.

4.6.1 Original Preload Lists
At the start of this project, a collection run was done with the original unchanged
preload tools. The preload lists generated from this run were the base point in this
project and every improvement would be compared with these preload lists.

4.6.2 Crawling - All Links
A collection run was made in combination with the implemented crawling tools. The
crawling run stored every link found from the first 2000 domains in the popularity

33

CHAPTER 4. IMPLEMENTATION

list.

4.6.3 Crawling - Top 10,000 List
Two collection runs were made in combination with the implemented crawling tools.
The crawling runs stored five and six links respectively from the first 2000 domains.
The collected links were however inconsistent, some domains had a few rows missing.
This made it impossible to generate extended top 10-9000 preload lists, since the
programcould not tell which domains belonged to a certain site. However, an extended
top 10,000 preload list could be generated. This was because the effect a few missing
rows has on the extended top 10,000 preload lists was not as noticeable, since there
are a lot of duplicate links for each domain visited. To prevent collection that results in
missing rows, the crawling toolwasmodified. More about themodification is discussed
in Section 4.6.4.

4.6.4 Crawling - Five Links
A collection run was made in combination with the implemented crawling tools. The
crawling run stored five links from each of the first 2000 domains in the popularity list.
To only store five links, the code that created the file crawl_list_full in web-crawl.py
was modified, as shown in Listing 4.34. The following variables were used:

• max_links: Maximum number of links to store.

• link_counter: Counter for the number of links stored for the current domain.

When creating the file crawl_list_full, the variables max_links and link_counterwere
used to only store five links per domain. For each added link, the counter link_counter
was incremented by one. If link_counter reached max_links, the for loop would be
terminated and started storing links for the next domain.

188 with open("crawl_list_full", "w") as w:
189 max_links = 5
190 link_counter =0
191 for k, v in domain_to_link.items():
192 w.write(f"{k},")
193 link_counter = 0
194 for val in v:
195 if link_counter == max_links:
196 link_counter = 0
197 break
198 w.write(f"{val.strip()},")
199 link_counter += 1
200

201 w.write("\n")

Listing 4.34: Code to only store five links per domain.

An additional part ofweb-crawl.py that had to be changed was the creation of the file
domain_data, as shown inListing 4.35. Domain_data contained a domain and a value

34

CHAPTER 4. IMPLEMENTATION

(number of links collected) at every line. Since five links were stored per domain, if a
value was greater than five, the value was set to five. For example, if a domain had 20
collected links, the number of links would be stored as five. The purpose of this change
was that preload-gen-list.py used this file to generate preload lists.

203 with open("domain_data", "w") as w:
204 for k, v in domain_to_link.items():
205 if len(domain_to_link[k]) > 5:
206 w.write(f"{k}, {5}\n")
207 else:
208 w.write(f"{k}, {len(domain_to_link[k])}\n")

Listing 4.35: Code for writing a maximum of five links per domain to file.

One thing to note with the collected links were that when crawling the site
epicgames.com, six links were collected for some unknown reason. Since this was the
only issue with the collected links, one row belonging to epicgames.com that contained
duplicate links was removed (for each *.csv file)

4.6.5 Filtering
For every preload list generated, a filtered version of the preload list was generated by
using the filter functions implemented earlier in this section.

35

Chapter 5

Results and Evaluation

This chapter begins with presenting the results of this project. Thereafter, the
evaluation of the results is made.

5.1 Results
The results of this project, as shown in Table 5.1.1, were generated by the evaluation
program preload-eval.py, that took collected domains as input and compared them
with the generated ext-tranco-top-10000 preload lists.

The time to generate preload lists with the original and the new preload tools were as
follows:

• With the original preload tools, collecting domains and generating preload lists
took around nine hours.

• Crawling 2000 sites and collecting up to 7000 links in total took around six hours.
Domain collection for the collected links took around eleven hours. Thus, in total
time to collect domains and generate lists took around 17 hours.

5.2 Evaluation
The generated preload lists were evaluated by comparing their results from the
evaluation program preload-eval.py.

5.2.1 Size of Preload List
The filtered preload lists showed an average decrease of around 7% domains. This
indicated that around 7% of the domains in the preload lists were considered useless.
After filtering, when comparing the preload lists that were generated by collecting
all and five links respectively for each site, the preload lists that were generated
by collecting five links for each site had around 0,6% more domains. This showed

36

CHAPTER 5. RESULTS AND EVALUATION

that collecting all links for each site (up to 7000 links in total) resulted in a lot of
duplicate domains. Therefore, there is no benefit to collect more than five links for
each site.

5.2.2 Time to Create Lists
Every preload list that were generated by using crawling took the same amount of
time to generate, since the link limit were 7000 links for all collection runs. When
comparing with the original preload lists, the preload lists that used crawling took
around eight hours more to generate. A big part of the increased time was the crawling
and link collection which took around six hours alone.

5.2.3 Number of Hits
Since all lookup lists vary a lot in size, there was no point to compare the number of
hits. Instead, the hit ratio of each result was compared. Filtering a preload list did not
have an impact on the hit ratio, e.g, the largest impact on the number of hits was a
decrease by around 0,006% hits. The reason behind this was that (nearly) all domains
that got hits in the pre filtered preload lists were not removed during filtering.

Comparing the original preload lists with the preload lists that used crawling showed
that the hit-ratio increased by around 1%, except for when collecting all links which
had the same hit ratio. This was an interesting result, since the hit ratio was expected
to decrease since domains in the preload lists were removed. What this result implied,
was that the (nearly) all the domains that were removed during filtering were useless
domains, since the number of misses did on average increase by 0,04%.

5.2.4 Number of Useless Domains
By comparing all the filtered preload lists, the number of useless domains were on
average reduced by around 57%. When looking further into the useless domains,
the majority of filtered useless domains were *.safeframe.googlesyndication.com
domains. There were a great amount of *.safeframe.googlesyndication.com
domains in the pre filtered preload lists, which all of them were unique and therefore
useless.

The preload list generated by collecting all links for each site had the highest amount
of useless domains, while the preload list generated by collecting five links for each
site had the lowest amount. A hypothesis would be that the most popular sites on
the Internet contain the most amount of advertising domains and by collecting a lot
of domains from these sites, the preload lists would contain a lot of useless domains.
However, this hypothesis would need to be verified.

The preload lists in section 4.6.3 were not evaluated for this metric, since they were
generated from lists with missing rows. Therefore, no evaluation on useless domains
could be done that would be certain.

37

CHAPTER 5. RESULTS AND EVALUATION

5.2.5 Best Preload List

From the results and metrics gathered, the most promising preload list generated
would be the one that used crawling and collected five links for each site. This preload
list had the least amount of useless domains (around 8% less than the original preload
list), while having a high hit ratio (around 1%higher than the original preload list). The
amount of misses for this preload list are relatively low (17% higher than the original
preload list), considering that the lookup list was around 31% larger than the lookup
list for the original preload list. Compared with the original preload list, collecting five
links for each site gave an increase of around 7% domains.

By following the patterns shown in the results, it may be possible that by collecting
even fewer links for each site and visiting more sites, greater preload lists could be
generated.

5.2.6 Crawling Tools

While the tools for crawling showed great results, the collected domains for the preload
lists in section 4.6.3 had some missing rows. The issue was solved and used in
Section 4.6.4. However, as earlier mentioned, one site had an extra row of domains
which had to be removed. The cause of this issue could perhaps be that something
went wrong with parsing that specific sites HTML document, since it only was that site
that had an extra row. Nevertheless, this is a issue that should be looked into.

Also, the cloudscraper that was used to bypass Cloudflare protection, did not always
succeed. Sometimes the error ”cloudscraper.exceptions.CloudflareChallengeError:
Detected a Cloudflare version 2 Captcha challenge, this feature is not available in the
opensource (free) version.” appeared, indicating that a paid version of cloudscraper
also exist. However, this error did not always appear for the same site all the time,
since when rerunning the program, the bypass would sometimes work.

Another issuewas that therewere a lot of sites that could not be crawled. This issuewas
a bit harder to solve, since there were a couple of errors that appeared during crawling
runs. Some of the errors were:

• ”Max retries exceeded with URL”.

• 308 Permanent Redirect.

• 400 Bad Request.

• 403 Forbidden.

By finding solutions to the errors above, more domains can be found for the preload
lists.

38

CHAPTER 5. RESULTS AND EVALUATION

5.2.7 Filtering Tool
The implemented filtering showed promising results. As earlier mentioned,
the filtering tool removed on average 57% of the useless domains and most
of them were *.safeframe.googlesyndication.com domains. It was possible
to filter even more domains, however no domain stood out compared with
*.safeframe.googlesyndication.com. There were a lot of domains of the same
type that were both useless and useful at the same time. An example of this
was the earlier mentioned *.fls.doubleclick.net domains. Another example was the
*.fastly-insights.com domain type, which had a lot of useless domains but the
amount of domains with hits were much greater. Since these domains have the same
format, good and useless domains cannot be distinguished when collecting domains.
In this example, *.fastly-insights.com domains had to be stored in the preload lists,
even though some of these domains were useless.

39

CHAPTER 5. RESULTS AND EVALUATION

P
reload

list
P
reload

list
size

L
ooku

p
list

size
H
its

H
it
ratio

(%
)

M
iss

U
seless

en
tries

O
rigin

al
4
334

0
39

4
54
1

38
76
23

9
8

6
9
18

4
8
59

F
iltered

O
rigin

al
4
0
6
25

39
4
54
1

38
76
23

9
8

6
9
18

214
4

C
raw

lin
g
(alllin

ks)
4
6
721

58
0
511

57139
6

9
8

9
115

6
6
58

F
iltered

C
raw

lin
g
(alllin

ks)
4
329

7
58

0
511

57136
4

9
8

9
174

3236
C
raw

lin
g
(T
op

10
k,6

lin
ks)

4
78
75

6
14
6
8
2

6
0
720

7
9
9

74
75

59
9
0

F
iltered

C
raw

lin
g
(T
op

10
k,6

lin
ks)

4
4
10
5

6
14
6
8
2

6
0
7176

9
9

750
6

2221
C
raw

lin
g
(T
op

10
k,5

lin
ks)

4
6
9
9
4

5729
76

56
4
6
37

9
9

8
339

5711
F
iltered

C
raw

lin
g
(T
op

10
k,5

lin
ks)

4
3733

5729
76

56
4
6
0
2

9
9

8
374

24
51

C
raw

lin
g
(5

lin
ks)

4
6
529

5729
76

56
4
6
74

9
9

8
30

2
4
9
28

F
iltered

C
raw

lin
g
(5

lin
ks)

4
356

5
5729

76
56
4
6
39

9
9

8
337

19
6
5

T
able

5.1.1:
M
etrics

from
th
e
evalu

ation
p
rogram

p
reloa

d
-eva

l.p
y.

40

Chapter 6

Conclusions and Future Work

6.1 Discussion
The evaluation of the results in chapter 5 showed both positive and negative effects of
the implemented tools. The positive effectswere that the preload list that used crawling
and filtering contained less useless domains andmore useful domains when compared
with the original preload list.

As for the negative effects, the crawling tools significantly increased the domain
collection time. With only 2000 crawled sites, the collection time was nearly doubled.
Depending on how many sites were to be crawled, the collection time could increase
even more. However, an increased collection time did not necessary have to be all bad,
since the same preload list in the preload defense proposed by Dahlberg and Pulls [8]
were used for a couple of months. This means that there was no rush to generate new
preload lists quickly. Another negative effect was that the results did not give a clear
indication to what the most optimal amount of links would lead to finding the most
amount of useful domains. A great amount of different collection runs has to be made
in order to find the right amount of links.

6.2 Conclusion
The goal of this project was to create better preload lists that the Tor Project can
benefit from. Better preload lists meant that we had to filter useless domains and find
more useful domains. By analysing collected domains and identifying useless domains,
filtering was implemented in the preload list generating tool. The filtered preload lists
showed promising results when on average around 57% of the useless domains were
filtered. As for finding more useful domains, crawling tools were created to crawl
sites and collect links. From the collected links, more useful domains could be find.
When combining the filtering and crawling tools, better preload lists were generated
with regard to useless and useful domains. This project can therefore be regarded as a
success.

41

CHAPTER 6. CONCLUSIONS AND FUTUREWORK

6.3 Future Work
This project laid the foundation for filtering preload lists and crawling sites. The
current tools could be further developed to generate even better preload lists.
Examples of future work could be:

• Operate a modified exit relay in the Tor network to evaluate the performance of
the improved preload lists.

• Explore how many links, collected from crawling, would generate the most
optimum preload lists. There is a large number of different combinations
possible to find the right amount of links.

• Chapter 5 discussed that not all sites could be crawled. The tools created in
this project could be further developed to crawl sites that can not currently be
crawled.

• During domain collection runs in this project, we visited sites with HTTP. As for
future work, collection runs could be made with, for example, HTTPS or www, to
see if even more domains are found.

• The filtering tool can also be further developed to remove more useless domains.

• Domains can be collected from more locations to see if more useful domains are
found.

42

Bibliography

[1] AdBlock. Surf the web without annoying pop ups and ads! URL: https : / /
getadblock.com/en/ (visited on 12/02/2022).

[2] AmazonWeb Services.Alexa Top Sites. URL: https://www.alexa.com/ (visited
on 01/02/2023).

[3] Banday, M. Tariq. “Recent Developments in the Domain Name System”. In:
International Journal of Computer Applications 31 (Oct. 2011). DOI: 10.5120/
3796-5227.

[4] Cloud Infrastructure Services. What is DNS Hierarchy Architecture with
Examples (Explained). URL: https://cloudinfrastructureservices.co.uk/
what-is-dns-hierarchy/ (visited on 09/28/2022).

[5] Cloudfare. DNS server types. URL: https://www.cloudflare.com/learning/
dns/dns-server-types/ (visited on 09/28/2022).

[6] ClouDNS. DNS cache explained. URL: https://www.cloudns.net/blog/dns-
cache-explained/ (visited on 01/19/2023).

[7] Crummy. Beautiful Soup Documentation. URL: https://www.crummy.com/
software/BeautifulSoup/bs4/doc/ (visited on 12/20/2022).

[8] Dahlberg, Rasmus and Pulls, Tobias. “Timeless Timing Attacks and Preload
Defenses in Tor’s DNS Cache”. In: USENIX Security. to appear. 2023.

[9] Dingledine, Roger, Mathewson, Nick, and Syverson, Paul F. “Tor: The Second-
Generation Onion Router”. In: USENIX Security. 2004.

[10] DoD standard Internet Protocol. RFC 760. Jan. 1980. DOI: 10.17487/RFC0760.
URL: https://www.rfc-editor.org/info/rfc760.

[11] Domain names - concepts and facilities. RFC 1034. Nov. 1987. DOI: 10.17487/
RFC1034. URL: https://www.rfc-editor.org/info/rfc1034.

[12] EasyList. EasyList - Overview. URL: https : / / easylist . to/ (visited on
12/02/2022).

[13] GeeksforGeeks. Components of a URL. URL: https://www.geeksforgeeks.
org/components-of-a-url/ (visited on 01/02/2023).

[14] Greschbach, Benjamin, Pulls, Tobias, Roberts, Laura M., Winter, Philipp, and
Feamster, Nick. “The Effect of DNS on Tor’s Anonymity”. In: NDSS. 2017.

43

https://getadblock.com/en/
https://getadblock.com/en/
https://www.alexa.com/
https://doi.org/10.5120/3796-5227
https://doi.org/10.5120/3796-5227
https://cloudinfrastructureservices.co.uk/what-is-dns-hierarchy/
https://cloudinfrastructureservices.co.uk/what-is-dns-hierarchy/
https://www.cloudflare.com/learning/dns/dns-server-types/
https://www.cloudflare.com/learning/dns/dns-server-types/
https://www.cloudns.net/blog/dns-cache-explained/
https://www.cloudns.net/blog/dns-cache-explained/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://doi.org/10.17487/RFC0760
https://www.rfc-editor.org/info/rfc760
https://doi.org/10.17487/RFC1034
https://doi.org/10.17487/RFC1034
https://www.rfc-editor.org/info/rfc1034
https://easylist.to/
https://www.geeksforgeeks.org/components-of-a-url/
https://www.geeksforgeeks.org/components-of-a-url/

BIBLIOGRAPHY

[15] Haraty, Ramzi A. and Zantout, Bassam. “The TOR Data Communication
System”. In: JOURNAL OF COMMUNICATIONS AND NETWORKS (2014).

[16] Lowe, Peter. Blocking with ad server and tracking server hostnames. URL:
https://pgl.yoyo.org/adservers/ (visited on 12/16/2022).

[17] Mullvad.Mullvad VPN - Privacy is a universal right. URL: https://mullvad.
net/en/ (visited on 12/01/2022).

[18] Mullvad. Split tunneling with Linux (advanced) - Guider | Mullvad VPN. URL:
https://mullvad.net/sv/help/split-tunneling-with-linux-advanced/
(visited on 12/01/2022).

[19] OpenVPN. Business VPN | Next-Gen VPN | OpenVPN. URL: https://openvpn.
net/ (visited on 12/01/2022).

[20] Origin, uBlock. uBlock Origin - Free, open-source ad content blocker. URL:
https://ublockorigin.com/ (visited on 12/02/2022).

[21] Pochat, Victor Le, Goethem, Tom van, Tajalizadehkhoob, Samaneh, Korczynski,
Maciej, and Joosen, Wouter. “Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation”. In: 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019. URL: https://www.ndss-
symposium.org/ndss- paper/tranco- a- research- oriented- top- sites-
ranking-hardened-against-manipulation/.

[22] Pulls, Tobias and Dahlberg, Rasmus. “Website Fingerprinting with Website
Oracles”. In: PETS (2020).

[23] Pypi. Cloudscraper. URL: https://pypi.org/project/cloudscraper/ (visited
on 12/23/2022).

[24] Scrapy. Scrapy | A Fast and Powerful Scraping andWebCrawling Framework.
URL: https://scrapy.org/ (visited on 12/20/2022).

[25] Tor Project. Research Safety Board. URL: https : / / research . torproject .
org/safetyboard/ (visited on 01/20/2023).

[26] Tor Project. Tor Project | Anonymity Online. URL: https://torproject.org
(visited on 10/21/2022).

[27] Tranco. A research-oriented top sites ranking hardened against manipulation
- Tranco. URL: https://tranco-list.eu/ (visited on 12/04/2022).

44

https://pgl.yoyo.org/adservers/
https://mullvad.net/en/
https://mullvad.net/en/
https://mullvad.net/sv/help/split-tunneling-with-linux-advanced/
https://openvpn.net/
https://openvpn.net/
https://ublockorigin.com/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://pypi.org/project/cloudscraper/
https://scrapy.org/
https://research.torproject.org/safetyboard/
https://research.torproject.org/safetyboard/
https://torproject.org
https://tranco-list.eu/

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Description
	Thesis Objective
	Project Goals
	Ethics and Sustainability
	Methodology
	Stakeholders
	Delimitations
	Outline

	Background and Related Work
	DNS
	Tor
	URL
	Related Work

	Methodology
	The Preload Design
	Method
	Defining Better Preload Lists
	Phases

	Implementation
	Setup
	Remote Server
	Virtual Private Network

	Preload List Generation
	Generate Visit List
	Domain Collection
	Collection Details
	Preload List Generation

	Evaluation Tool
	Filtering
	Identifying Useless Domains
	Filtering Implementation

	Crawling
	Scrapy
	Beautiful Soup
	Implementation
	Requests
	Link Collection
	Storing Collected Links
	Domain Collection Changes
	Preload List Generation Changes

	Collection Runs and Preload List Generation
	Original Preload Lists
	Crawling - All Links
	Crawling - Top 10,000 List
	Crawling - Five Links
	Filtering

	Results and Evaluation
	Results
	Evaluation
	Size of Preload List
	Time to Create Lists
	Number of Hits
	Number of Useless Domains
	Best Preload List
	Crawling Tools
	Filtering Tool

	Conclusions and Future Work
	Discussion
	Conclusion
	Future Work

	References

