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ABSTRACT

There is often a scarcity of training data for machine learning (ML)

classification and regression models in industrial production, espe-

cially for time-consuming or sparsely run manufacturing processes.

Traditionally, a majority of the limited ground-truth data is used

for training, while a handful of samples are left for testing. In that

case, the number of test samples is inadequate to properly evaluate

the robustness of the ML models under test (i.e., the system under

test) for classification and regression. Furthermore, the output of

these ML models may be inaccurate or even fail if the input data

differ from the expected. This is the case for ML models used in the

Electroslag Remelting (ESR) process in the refined steel industry

to predict the pressure in a vacuum chamber. A vacuum pumping

event that occurs once a workday generates a few hundred sam-

ples in a year of pumping for training and testing. In the absence

of adequate training and test samples, this paper first presents a

method to generate a fresh set of augmented samples based on

vacuum pumping principles. Based on the generated augmented

samples, three test scenarios and one test oracle are presented to

assess the robustness of an ML model used for production on an

industrial scale. Experiments are conducted with real industrial

production data obtained from Uddeholms AB steel company. The

evaluations indicate that Ensemble and Neural Network are the

most robust when trained on augmented data using the proposed

testing strategy. The evaluation also demonstrates the proposed

method’s effectiveness in checking and improving ML algorithms’

robustness in such situations. The work improves software test-

ing’s state-of-the-art robustness testing in similar settings. Finally,

the paper presents an MLOps implementation of the proposed ap-

proach for real-time ML model prediction and action on the edge

node and automated continuous delivery of ML software from the

cloud.
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1 INTRODUCTION

Machine learning (ML) software has grown in popularity in recent

years due to the availability of massive amounts of training data

and application size. When training an ML software, in general, the

conventional approach is to divide the data into training and testing

for regression or classification. A large portion of the Ground Truth

(GT) is often used for training, leaving a fraction of the samples

for test, usually 25% or less. A problem arises when insufficient

data is available, which takes practically all the GT for training and

leaves a few samples for testing using the conventional approach.

For example, when an event is performed ‘N’ (N < 10) times a day

during the workday, such as a manufacturing/production process, it

adds up to roughly 300N different events per year. Delivering stable

decisions over time is a critical issue in the industrial application.

Therefore, testing the robustness of such a software product is an

essential quality assurance check. Robustness is a non-functional

quality attribute of ML software. Testing the robustness of ML

software under limited data conditions is underexplored in the

literature. The question remains whether these limited data are

sufficient to render a robust ML model using the conventional

training-test split strategy.

An instance where there are insufficient data available is in the

refined steel industry, specifically vacuum pumping in the Elec-

troslag Remelting (ESR) process [2, 15, 24]. The process includes

furnace cleaning [18], which requires vacuum pumping or extract-

ing oxygen from the furnace. As part of the ESR process, when a

vacuum pumping event occurs, the sensors attached to the chamber

collect data on the total pressure inside the chamber. The pump-

ing process is terminated when the desired pressure threshold is

reached. Predicting the minimum pressure of a vacuum chamber

early in the pumping process can potentially identify issues such

as pump failures and leaks. However, a pumping event occurs once

a day on average and generates a few hundred events in a year to

split between training and test. In this case, for an ML model, there

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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are only a few hundred occurrences to divide between training

and test data. It becomes difficult to obtain the appropriate test

data to determine whether the ML model for pressure prediction is

overfitting [21].

Theoretically, to avoid overfitting, one of the following steps is

taken [4, 8, 22]: (i) removing features such as random forest, (ii)

increasing the amount of data available for training, (iii) performing

cross-validation, or with (iv) regularisation, which includes cali-

brating the hyperparameters for the given data. Data augmentation

[11, 28] is one such technique for generating slightly altered copies

of existing data or creating new synthetic data and boosting the

number of training samples available. We use data augmentation in

a new industrial application in the ESR process. The data augmenta-

tion technique and the testing approach discussed in this paper are

based on the general principles of vacuum engineering. Vacuum

pumping is used across multiple domains, including fusion power

plants [9] and EUV lithography for global silicon manufacturing

[30]. This paper focused on ESR due to the availability of pumping

data from the Uddeholms AB steel company. However, in principle,

this augmentation and testing technique can be applied in multiple

disciplines where vacuum pumping is part of the manufacturing

process.

This study offers a fresh perspective on data augmentation for

vacuum pumping from the software testing point of view. The ap-

proach presented in this paper first decomposes the data using

domain knowledge and then generates random and fresh samples

utilizing the concepts of vacuum pumping. Although this body of

work focuses on vacuum pumping for the steel industry, which

is comprised of well-modeled concepts, the decomposition and

augmentation technique can be applied to other domains. For the

general case, the GT can be decomposed to its fundamental basis

using approaches like Blind Source Separation [19] for domains that

do not have well-modelled relationships, which is subsequently

utilized to generate augmented data. The newly generated aug-

mented data are then used to assess ML models’ robustness on

an industrial scale. Here, careful test scenarios were designed to

determine the end-to-end functionality of the ML systems. Each

scenario is combined with a test oracle to determine the pass and

fail cases during robustness testing. The oracle has been designed

from a combination of theory and domain-knowledge background

in industrial production. Therefore, ML models are subjected to

robustness testing, an important non-functional testing property

of ML software [31]. Here, robustness testing is used to ensure

that they work as expected with GT data, remain within physical

constraints, and, in theory, are resilient to future unknown data.

To assess the robustness in the presence of limited data, this paper

makes the following contributions:

• A data augmentation approach for ESR vacuum pumping is

developed that uses domain knowledge to generate synthetic

data.

• A strategy is developed to evaluate the robustness of an ML

model based on real and augmented data to compensate for

insufficient GT test data.

• The paper used real data from steel production and ML mod-

els on an industrial scale.

• An MLOps implementation of the proposed approach.

The remainder of the paper is structured as follows. Section 2

gives an overview of ML training with small samples and vacuum

pumping theory to describe the principles underlying the data

decomposition and pumping speed dictionary mentioned in the

proposed work. The subsequent section 3 describes (i) an efficient

data augmentation approach for vacuum pumping and (ii) tests to

evaluate the robustness of a trained ML model. Section 4 shows

how the proposed approach is used in industrial production, where

training, testing, and real-time prediction and actions of the ML

software are carried out automatically, followed by Section 5 which

contains experiential results. Section 6 concludes the paper and

provides future directions for continuing this study.

2 BACKGROUND AND RELATED WORK

2.1 Small Sample ML and Data Augmentation

Small samples have low statistical power, making it difficult for the

ML software to train robustly [27]. It is difficult to accurately pre-

dict performance from a small set of measured variants, especially

if those features interact. An approach to statistical learning perfor-

mance prediction that considers variability is presented in the paper

by Guo et al. [10]. The method uses a series of random samples

to detect feature interactions step by step without additional ef-

fort. The method investigates and exploits the correlation between

feature selections and performance to predict performance in a con-

figurable software system. This correlation can be easily revealed by

measuring the performance of all software system configurations

and then providing direct answers (e.g., which configuration is the

fastest). In addition, small sample ML requires a robust validation

method. The simulations in Vabalas et al.’s paper [26] show that

the k-fold cross-validation produces strongly biased performance

estimates with small sample sizes, and the bias is still apparent with

sample sizes of 1000.

Increasing the training sample size in a principled manner is a

constant demand for ML software. Increasing training data with

data augmentation improved accuracy in various areas. Two key

categories are defined in the survey paper byWen et al. [28] on time-

series data augmentation: basic and advanced. Basic approaches

include the time domain, the frequency domain, and the time-

frequency domain, which include augmentation approaches such

as noise injection, flipping, and jittering. Advanced methods in-

clude decomposition, statistical generative models, and learning.

The survey’s primary focus is on class imbalance and data augmen-

tation for members of the minority class. Among other methods,

Generative adversarial networks (GANs) have been shown to be

able to produce artificial data that are similar to the real data. When

faced with the problem of unbalanced data classification, GANs

can provide an alternative solution. By generating artificial data

that are similar to the original data, and thus augmenting the train-

ing dataset, GANs can be used for data augmentation. GANs, for

example, in the papers by Shao et al.[23], Ortego et al. [20], and

more recently in Jain et al. [12] are intended to produce realistic

synthesized signals with labels for further use in machine fault di-

agnosis. A limitation of such methods is that all augmented samples

produced may not be physically plausible and may show unrealistic

artifacts. A recent study by Lee and Lee [17] presents a unique deep
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learning methodology for evaluating the interior noise in automo-

biles. The method uses domain knowledge for data augmentation

and for model development, has seen substantial increase in ML

software accuracy. Thus, unlike other approachesź this paper ex-

pands on data augmentation in ESR and proposes a new method

that combines domain knowledge and ML to test the robustness of

such software products.

2.2 ESR Vacuum Pumping

The ESR process involves remelting the consumable electrode as

the steel is refined and solidified [14]. Figure 1 depicts the schematic

diagram of the ESR, where the region above the slag requires near-

vacuum conditions to avoid contaminants during the process. As

a result, the vacuum pumps attached to the ESR pump out excess

oxygen or air from the chamber.

Ingot

Liquid Pool

Slag

V

Vacuum

Electrode

Figure 1: Schematic sketch of ESR.

Theoretically, vacuum pumps in the ESR process reduce the

number of gas molecules in a vacuum system by creating a volume

flow determined by the rate at which the pressure in a vacuum

system of constant volume decreases over time [13].When pumping

occurs, the overall pressure inside a chamber is directly proportional

to the amount of gas extracted by the pump, and therefore there is

less leakage and flow through the inner surfaces of the chamber.

The amount of gas pumped out and the amount of gas that leaks in

are constantly changing over time. Dmitrieva et al. [6] describe the

total pressure inside a vacuum system at a time ‘T’ as ‘𝑃𝑇 ’ with an

initial pressure of ‘𝑃0’, the volume of the vacuum pump chamber

‘𝑉𝑐 ’ the average pumping speed ‘𝑆’, the leakage flow ‘𝑄𝑙 ’ and the

flow from the inner surfaces ‘𝑄𝑖 ’, which is:

𝑃𝑇 =

𝑄𝑙 +𝑄𝑖

𝑆
+ (𝑃0 −

𝑄𝑙 +𝑄𝑖

𝑆
)𝑒
−𝑇𝑆

𝑉𝑐 (1)

In the above equation 1, 𝑄𝑙 depends on the total conductance

that determines the aggregate bandwidth of all leaks. And, 𝑄𝑖 is

proportional to the surface area of the vacuum chamber, a degassing

coefficient, and a constant that depends on the material and rough-

ness of the vacuum chamber. However, in practice, a vacuum pump

can only lower the pressure to a certain point; and the time taken

is referred to as the pump-down time. An approximate model [5]

with effective pumping speed ‘𝑆𝑇 ’ at pump-down time ‘T’ is given

as:

𝑆𝑇 =

𝑉𝑐

𝑇
𝑙𝑛(

𝑃𝑇

𝑃0
) (2)

The pumping event is not a common occurrence in real pro-

duction. For example, in a steel company such as Uddeholms AB

in Sweden, for which this study is conducted, the pumping event

occurs once a day on average for approximately twenty minutes to

pump out oxygen from the vacuum chamber. After pumping for

twenty minutes, experts inspect the chamber to ensure that it meets

quality standards before moving on to the next phase, such as check-

ing internal pressure. If the quality requirements are not achieved,

the chamber is inspected and re-pumped for an additional twenty

minutes. The role of ML in this situation is to observe the first

few seconds or a minute of pumping and to forecast the minimum

pressure. In this case, accurate pressure forecasts save valuable

time and increase production efficiency with an early decision and

action. However, with the limited occurrence of the event, a few

hundred samples can be generated in a year of pumping for training

and testing that will affect the robustness of the implemented ML

model.

3 THE PROPOSED APPROACH

This paper presents two concepts for the ESR vacuum pumping

application with limited training data: (i) data decomposition and

augmentation to generate new vacuum pumping data, and (ii) tests

for evaluating the robustness of a trained model using the generated

augmented data and new test scenarios.

3.1 Augmented Sample Generation

A three-step strategy is designed to generate augmented data and

address the scarcity of training data for vacuum pumping. The

first step is to decompose the GT and interpret the initial pressure

and pump-down time. Second, a dictionary of pumping speeds is

constructed that is independent of the initial pressure. The final step

generates sparse representations for the dictionary and produces a

fresh set of augmented samples. The following subsections address

these steps.

3.1.1 Decomposing the GT Data. Each pumping event is a separate

and distinct occurrence. For a given vacuum chamber (i.e., a con-

stant volume), equation 2 mandates that one must understand ‘𝑆𝑇 ’,

‘𝑇 ’, and the ‘𝑃0’ in order to interpret ‘𝑃𝑇 ’. At minimum pressure, all

three mentioned variables are scalars. However, a vector is formed

for 𝑆𝑇 when we look at the entire pumping period (t = 0 to T). We

take the approach to decompose the ground-truth by interpreting

the 𝑃0 and 𝑇 distributions and extracting the 𝑆𝑇 into a dictionary

or a matrix containing only the unique 𝑆𝑇 vectors. As a result,

we use the central limit theorem and the law of large numbers

[25] to approximate the initial pressure and pump-down time as a

Gaussian distribution. Although future pumping occurrences are

unknown, this assumption will, in principle, assist a regression/-

pressure prediction model in learning about the different pumping

events in a proactive manner. The mean and standard deviation of

the distributions for 𝑃0 and 𝑇 are computed using the maximum

likelihood estimation from ground-truth data.

3.1.2 Extracting a Dictionary of Pumping Speeds. After obtaining

the 𝑃0 and 𝑇 distributions, the next step is to obtain the pumping
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speeds 𝑆 per unit volume at regular intervals. Because the amount

of gas coming in and going out changes over time, we extracted

all 𝑆 from Equation 2. The collected 𝑆 was then reduced to the

independent pumping speeds to a dictionary 𝐷𝑆 ∈ R
𝑋×𝑌 (𝐷𝑆 ⊂

𝑆) assuming a simplex and linear mixing. Mathematically, for an

acceptable residual error 𝜖 and a representation𝜓 , it is given as:

min
𝐷𝑆 ∈R

| |𝐷𝑆 | |𝑟𝑜𝑤,0 s.t. | |𝑆 − 𝐷𝑆𝜓 | |2 ≤ 𝜖 (3)

3.1.3 Generating Augmented Samples. Once the parameters 𝑃0 and

𝑇 from section 3.1.1, and a dictionary 𝐷𝑆 mentioned in section 3.1.2

for the vacuum chamber and pump setup are determined, the next

step is to generate as many augmented samples M (𝑀 ≫ 𝑁 ) as are

required. For each of the𝑀 samples, a sparse vector𝜓 (𝜓 ∈ R𝑌×1)

is generated at random, resulting in a unique pump speed that is

a fractional combination of historical events. The mathematical

conditions of𝜓 are:

∀𝜓𝑦 ⊂ 𝜓 ,𝜓𝑦 ≥ 0 and | |𝜓 | |1 = 1 (4)

After that, a random initial pump speed 𝑃0 and pump-down time

𝑇 are generated for their respective distributions, and a convolution

operation with equation 2 creates a unique augmented sample.

This augmented sample differs from the GT data while remaining

within the constraints of vacuum pumping’s physical capabilities.

The procedure is repeated M times to yield M unique samples. A

diagram of the proposed data augmentation is depicted in Figure 2.

Extract DS
(Dic�onary)

Ground Truth

Augmented DataAugmented Data

Generate Ψ
(Sparse Representa�on)

Extract P0 and T
Distributions

New P0 and T

Figure 2: A diagram showing the proposed data augmentation

technique for ESR vacuum pumping.

3.2 Tests to Evaluate Robustness of a Trained
ML Model

Once an ML model is trained using augmented data, it must be

tested to ensure that it is robust. We propose three test scenarios

to evaluate the robustness of the model. Each of the three test

scenarios addresses a unique concern, which are as follows:

• Feasibility test scenario: is to see if the trained model

remains within the physical limits of vacuum pumping.

• GT testing: examines the trained model’s accuracy and its

performance when applied to known data.

• Volume enclosed testing: under a given residual error

examines how well the trained model should operate under

the constraints of vacuum pumping (e.g., in case of a drift in

the data or changes in the pumping conditions).

Depending on the application’s sensitivity, the results from the

scenarios are collected into a test oracle that determines if an applied

robustness test of the machine learning model is passed or failed.

3.2.1 Feasibility Test Scenario. The feasibility test scenario ensures

that a trained model stays within the physical limits of vacuum

pumping. This scenario warrants that no direction from initial

pressure and pump-down time is impractical, i.e., the predicted 𝑃𝑇
is always positive when 𝑃0 and𝑇 are positive. Mathematically, it is:

∀𝑃0 > 0 and 𝑇 > 0, 𝑃𝑇 > 0 (5)

3.2.2 Testing the GT. After the feasibility test, we have a scenario

that uses the ground-truth and a scenario that uses augmented

data. The second test scenario evaluates the residual error of the

data from the ground-truth test data. The mean absolute error

(MAE, equation 6), also known as the Manhattan distance or the ℓ1
norm of the residual error divided by the number of observations,

and the goodness-of-fit measure: R-squared (𝑅2, Equation 7) value.

An additional ℓ∞ with the real and augmented data shows the

maximum expected prediction error for the given data.

𝑀𝐴𝐸 (𝑎, 𝑏) =

∑𝑛
𝑖=1 |𝑎𝑖 − 𝑏𝑖 |

𝑛
(6)

𝑅2 (𝑎, 𝑏) = 1 −

∑𝑛
𝑖 (𝑎𝑖 − 𝑏𝑖 )

2

∑

𝑖 (𝑎𝑖 − 𝑎)
2
, where 𝑎 =

1

𝑛

𝑛
∑︁

𝑖=1

𝑎𝑖 (7)

3.2.3 Volume Enclosed Under a Given Residual Error. The third test

scenario involves estimating the volume of occupied space within

a specified residual error threshold. A higher volume indicates a

more robust method for the given data and threshold. A graphical

illustration of the concept is shown in Figure 3.

This test retrieves augmented sampleswhose residual error is less

than a specified threshold, ‘t’. Afterward, the linearly independent

columns are located. In the end, the determinant method [29] is

used to compute the volume, which is:

|𝑉 (𝑃) | =

√︁

det(𝑃𝑇 𝑃)

(𝑑 − 1)!
(8)

Where, 𝑃 = [𝑃1 − 𝑃𝑑 , 𝑃2 − 𝑃𝑑 , ... , 𝑃𝑑−1 − 𝑃𝑑 ]
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theoretical pumping possibilities 

(augmented data)

observed ground truth

pumping data where prediction 

is under acceptable threshold

Figure 3: A two-dimensional illustration of the area enclosed

by the residual error (under a desired threshold) of pumping

measurements.

3.2.4 Test Oracle. In the final phase, the results/output of the three

test scenarios are fed into three sub-oracles and then to the main

oracle. Figure 4 displays the flow diagram of the sub and main

oracles.

Scenario 1 
(Feasibility Test)

Scenario 2 
(Ground Truth

Testing)

Scenario 3 
(Volume Enclosed

Testing)

Oracle 1 Oracle 2 Oracle 3

Main Oracle

Figure 4: Robustness testing test oracle for the ESR vacuum

pumping

• Oracle 1: The first sub-oracle (or oracle 1) is to identify

whether a vacuum pump pressure prediction ML model pre-

dicts positive values with the augmented samples. If any of

the augmented samples as input returns a negative pressure,

the ML model under test is considered a failure of the test.

Mathematically, it is given by:

∑︁

𝑃𝑇 > 0 =

{

1 , Pass

0 , Fail
(9)

• Oracle 2: The second sub-oracle gets its input from sce-

nario 2 (or ground-truth testing). The sub-oracle compares

the predicted values/scores against acceptable thresholds

determined by field experts. Selecting thresholds is about

determining how pure each block of steel should remain.

In principle, a higher minimum pressure means that more

gas molecules remain in the chamber, reacting with the steel

during subsequent production processes after vacuum pump-

ing. The output of this sub-oracle determines whether a ML

model meets the threshold requirements of the application.

For example, for a given threshold of ‘𝑡 ’ for the MAE, the

pass-fail criteria is:

𝑀𝐴𝐸

{

≥ 𝑡 , Pass

< 𝑡 , Fail
(10)

• Oracle 3: The third sub-oracle inputs two volume measure-

ments from the volume enclosed testing scenario: the volume

of the augmented sample space in its entirety (𝑉𝑡𝑜𝑡 ) and the

volume of the augmented data space (𝑉𝑡 ), which is under

the field expert determined threshold. The ratio of the two

volumes is calculated and the pass-fail criteria is given by a

threshold ‘𝑡𝑣 ’ as:

𝑉𝑡

𝑉𝑡𝑜𝑡

{

≥ 𝑡𝑣 , Pass

< 𝑡𝑣 , Fail
(11)

Once an ML model under test passes the sub-oracle, the 𝑉𝑡
value is passed on to the main oracle.

• Main Oracle: The main oracle takes input from all three

sub-oracles and determines the robustness of the ML model.

A robust model must stay within the physical boundary (i.e.,

passed the oracle 1), meet the business requirements (i.e.,

passed the oracle 2), and be able to adapt to slight changes in

the GT data (i.e., passed oracle 3). However, suppose that an

ML model under test passes oracles 1 and 2 only. In that case,

it suggests that the MLmodel fairs well with the GT data, but

any deviation or drift may produce unreliable predictions or

be less robust. For this reason, the main oracle considers an

ML model under test a robust model when it has passed all

three sub-oracles. Finally, among several ML models under

test that passed the main oracle; the most robust ML model

is the one with the largest volume, demonstrating resilience

towards changes in the GT while delivering the required

accuracy in the current data.

4 MLOPS IMPLEMENTATION

Continuous and automated ML software development, also known

as MLOps, is becoming increasingly popular as a result of the

success of continuous software development, DevOps in particular.

This paper describes an early-stage implementation to continuously

deliver ML software in the ESR for the proposed data augmentation

and testing approach. The architecture outlined in figure 5 shows

the proposed implementation with services and microservices split

between cloud and edge node. Services like ML software training

and retraining and the persistent storing of pumping data are exe-

cuted in the cloud. Microservices at the edge operate in real-time,

making decisions and taking action automatically.

4.1 Real-Time Prediction and Action

Automated and real-time decisions in production are made possible

by containerized microservices on the Edge node. A great tool for

creating containerized applications is Docker1 [1]. During vacuum

pumping, the ‘delivery and collection’ microservice receives real-

time data from pressure sensors attached to the ESR. The real-time

streaming data pipelines and applications built with Apache Kafka2

is an example of ‘delivery and collection’. After ‘T’ seconds after

1https://www.docker.com/
2https://kafka.apache.org/
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Microservices on Edge Node

Delivery and
Collection Services

Vacuum Pump
Pressure Prediction Action Service

Persistent Storage

API Layer

Vacuum Pump Pressure Prediction ML Model Training Service

Automated
Deployment

Actuator / Display
Output

ESR Vacuum Pump
Pressure Sensor

Data Augmentation ML Model Training ML Model Testing

Cloud or Offline

Real-time or Online

Figure 5: Data pipeline for MLOps implementation of the proposed approach in industrial setting enabled by a combination of

(i) sensor, actuator, and Edge microservices (light blue) for real-time analysis/prediction and action, and (ii) Cloud services

(light green) for offline ML software training and testing.

pumping, delivery and collection microservice transmits the col-

lected data to the ‘vacuum pump pressure prediction’ microservice,

where the ML model trained by our proposed approach is run. The

ML model predicts whether or not the desired minimum pressure

will be reached and sends the predicted minimum value to the next

microservice ś ‘action’. The ‘action’ microservice signals the actua-

tor to stop pumping when the predicted minimum does not meet

the expected requirements in a fully autonomous setup. Alterna-

tively, or in addition, the ‘action’ microservice sends a signal to

display the predicted minimum for a human field operator to take

appropriate steps. The ‘action’ microservice is customizable based

on the business needs.

4.2 Continuous and Automated ML Software
Training and Deployment

In order to provide continuous delivery of the ML vacuum pump

prediction software, data flows from the sensors attached to ESR to

the "delivery and collection" microservice on the edge. The pumping

data is subsequently forwarded to the cloud for long-term ‘persis-

tent’ storage. The API layer in the cloud offers an interface between

microservices on the edge, cloud services, and persistent storage.

The ML software with the proposed approach is then trained with

the historical pumping data, and when an ML model passes our

proposed main oracle, a new version of the ML prediction software

container is automatically deployed to the Edge. At the current

stage, the ML model is trained periodically after a few months;

however, future work in the architecture will involve the research

on additional microservices to detect and classify model degrada-

tion and trigger a re-training automatically.

5 EXPERIMENTAL EVALUATION AND
RESULTS

5.1 Dataset and ML Methods

The experiments carried out in this paper are using proprietary

data from Uddeholms AB on two furnaces of equal volume and

manufacturing specifications, termed ‘furnace M’ and ‘furnace S.’

From January to October 2021, Furnace M has 203 events (subfigure

(a) in figure 6), and Furnace S has 107 events (subfigure (c) in figure

6). For this experiment, the goal of the pressure prediction model

is to predict the minimum pressure (in mbar) reached after twenty

minutes of pumping based on the data collected during the first

minute of pumping (subfigure (b) in Figure 6).

Three machine learning approaches are evaluated in this paper

using the default settings in MATLAB’s: (i) Optimizable Ensemble3

(Opt Ensemble), (ii) a single-layered Neural Network (NN)4, and (iii)

Optimizable Gaussian Process Regression5 (or Opt GPR). Bayesian

3https://www.mathworks.com/help/stats/fitensemble.html
4https://www.mathworks.com/help/stats/fitrnet.html
5https://www.mathworks.com/help/stats/fitrgp.html
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Figure 6: Two ESR pumps are depicted in this figure: pump M in (a) and pump S in (c). Subfigure (b) displays pumping data from

the first minute that is utilized as input to a ML model for predicting the minimum pressure.

optimization6 was used to optimize the models’ hyperparameters

during run-time. Similar optimizers exist in other platforms, such

as Hyperopt in Python [16] and the paper by Bergstra et al. [3],

which use random search and two new greedy sequential methods

based on the expected improvement criterion to optimize hyper-

parameters. The hyperparameters are mentioned in table 1.

Table 1: Table showing the optimized Ensemble and GPR

hyperparameters and the default hyperparameters of the

single layered NN.

Model Hyperparameters

Method: Bootstrap aggregation (bagging)

Number of learners: 496

Opt Ensemble Minimum leaf size: 5

Number of predictors to sample: 59

Layer size: 10

NN Activation: ReLU

Standardize data: Yes

Sigma: 7.2e-02

Basis: Zero (empty matrix)

Opt GPR Kernel function: Nonisotropic Exponential

Standardize data: Yes

Our proposed data augmentation method and the classical/tra-

ditional approaches under test are both trained on like-for-like

conditions with MATLAB’s Bayesian hyperparameter optimizer

in this paper. Using the conventional 80%-20% training-test split

approach (referred to as ‘classic’ in tables and figures) and 100,000

augmented samples (referred to as ‘aug’ in tables and figures), all

three approaches were trained using furnace M data. Classic meth-

ods use 80% of GT data for training, while aug approaches train

with the augmented samples. After training, the models were tested

on data from furnace S.

6https://www.mathworks.com/help/stats/hyperparameter-optimization-in-
regression-learner-app.html

5.2 Data Decomposition and Augmentation

The first stage in data augmentation of the pump M data is using

maximum likelihood to estimate the distributions of initial pres-

sure (𝑃0) and pump-down time (𝑇 ). The distributions of 𝑃0 and 𝑇 ,

respectively, are depicted in subfigures (a) and (b) in figure 7. The

pumping speeds (𝑆𝑇 ) are then calculated using equation 2. After

that, the GT data is converted from temporal domain to a time-

independent sparse domain. In other words, all individual pumping

data with their own length from t = 0 to the pump-down time (T) are

interpolated to the same length using cubic spline interpolation7.

With an average pump-down time of 333s, we selected a dictionary

resolution or length of 500 (≈1.5x) to capture minute changes in

pump speeds. The collection of all pumping speeds is then subset to

the independent pumping speeds with a greedy dictionary learning

approach presented in algorithm 1.

Algorithm 1 Pseudocode for the extraction of the pumping speed

dictionary

1: Input: S

2: while stopping criteria for 𝜖 do

3: 𝜓 ← 𝑓 (𝐷𝑠 , 𝑆) ⊲ Representation

4: 𝜖 ← 𝑆 − 𝐷𝑠 ×𝜓 ⊲ Residual error

5: 𝑆𝑚 ← argmax | |𝜖 | |𝑝 ⊲ 𝑆𝑚 : element with max 𝜖

6: 𝐷𝑠 ← 𝐷𝑠
⋃

𝑆𝑚 ⊲ Add selected 𝑆𝑚 to 𝐷𝑠

7: end while

8: Output: 𝐷𝑠

In principle, the representation is an 𝐿0 minimization problem

which is NP-hard[7], is often approximated to 𝐿1 or in this case,

we choose the greedy approach, which is 𝐷𝑇
𝑠 × 𝑆 . This approach

iteratively selects the pump speed with the highest residual that

is orthogonal to the previously selected pumping speeds. With a

small residual error of 1e-03 for 𝜖 , the dictionary selects 40 different

pumping speeds. The output dictionary is shown in figure 7c.

After decomposing ESR M data, a random sparse representation

and a random initial pressure (𝑃0) and pump-down time (𝑇 ) are

7https://www.mathworks.com/help/matlab/ref/spline.html
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Figure 7: Figure showing the distributions of the ESR M’s initial pressure in (a) with a mean and standard deviation 1e+03 ±

16.84, and pump-down time in (b) with a mean and standard deviation of 333.59 ± 262.52. Subfigure (c) shows the extracted

pumping speed dictionary.
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Figure 8: Three examples of augmented samples, each with a pump-down time of 218, 869, and 222 seconds, respectively (top to

bottom) and with initial pressures of 1007.9, 1012.3, and 996.8 mbar respectively.

generated for augmented data generation. 𝑃0 and 𝑇 are generated

with Pearson system random numbers8 within the limits of the GT

data. Figure 8 shows three examples of augmented samples.

The procedure is repeated for 100k augmented samples in this

experiment. The augmented data of all samples is shown in Figure

9.

8https://www.mathworks.com/help/stats/pearsrnd.html

5.3 Testing the ML Models

5.3.1 Feasibility Test. When all six models (three with classic and

three with aug) are run through the feasibility test, both Opt En-

semble and Opt GPR pass the test. In contrast, the classic NN failed

the test, predicting a negative pressure from the augmented data.

Despite the fact that five out of six models predicted only positive

values.
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Table 2: Residual error of the six models in furnace M, furnace S, and the maximum error observed in the augmented data.

Since aug models were trained using augmented samples, they use 100% of GT data for testing, unlike classic approaches that

use only 20% of GT data for testing.

furnace M furnace S aug MAE

Model MAE 𝑅2 ℓ∞ MAE 𝑅2 ℓ∞ ℓ∞ |S-M|

Opt Ensemble (classic) 1.03 0.95 14.76 1.38 0.94 22.40 9.04 0.35

Opt Ensemble (aug) 1.20 0.93 13.56 1.00 0.98 21.02 6.37 0.20

NN (classic) 1.72 0.48 2.34 2.08 0.47 19.69 124.54 0.36

NN (aug) 1.45 0.80 13.21 1.29 0.91 21.11 7.63 0.16

Opt GPR (classic) 1.21 0.58 8.80 1.28 0.83 25.29 15.39 0.07

Opt GPR (aug) 1.23 0.75 14.17 1.16 0.93 22.12 8.04 0.07

(a) 100k samples of augmented data
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Figure 9: Augmented pumping data from decomposed ESR

M GT.

5.3.2 Testing the GT. If a model passes the feasibility test, this

scenario calculates the residual error with ground-truth data. With

60 seconds of input data, the residual error between the predicted

minimum pressure and the actual minimum pressure is calculated.

Table 2 shows mixed MAE outcomes between furnace M and S

individually between classic and aug training. However, there is

an increase in the 𝑅2 score and consistency in the results between

bias and variance when trained with augmented samples. Figure

10 illustrates the improvements, showing that training with aug-

mented data surpasses the classical technique, in addition to spikes

and deviations.

5.3.3 Volume Enclosed Under a Given Residual Error. The last test

estimates the volume of the trained model in temporal space whose

residual MAE error is below the acceptable error threshold. For this

experiment, a threshold of 1 mbar determined by Uddeholm field

experts is selected. When the data is collected once per minute, we

have 60 temporal dimensions with the first minute of pumping data

as input.

Table 3 shows that, compared to classic models, the enclosed

capacity for aug models has increased dramatically. However, all

six models cover less than 0.11% of the whole augmented sample

space, necessitating further research into a deep learning model for

vacuum pumping predictions.

Table 3: Volume enclosed by augmented samples for 60 sec-

onds of pumping data whose prediction residual error is

below the threshold of 1 mbar. The volume of augmented

data in this space is 1.1331e-17.

Model Volume Increase %

Opt Ensemble (classic) 3.46e-45

Opt Ensemble (aug) 6.39e-31 1.85e+16

NN (classic) 9.86e-52

NN (aug) 1.93e-33 1.96e+20

Opt GPR (classic) 1.25e-35

Opt GPR (aug) 7.48e-21 5.98e+16

5.3.4 The Test Oracle. Finally, the output from the feasibility test

and the findings from Tables 2 and 3 are input into the test oracle

to measure the robustness of the six ML models under test. The

thresholds for the pass-fail criteria for each sub-oracle will vary

according to the application’s sensitivity. For this experiment, we
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Figure 10: A figure showing the prediction of Opt Ensemble

and NN models with both classic and aug training.

used the following thresholds determined by field experts: MAE of

1.5 mbar, 𝑅2 threshold of 0.8, ℓ∞ threshold of 25 mbar, and volume

below the residual error threshold of 1.0e-35. Two of the six models

pass the three sub-oracles and the main oracle, Opt Ensemble and

NN, were both trained using augmented samples. And, based on the

volume enclosed, Opt Ensemble (aug) covers ≈330x more volume

than NN (aug), making Opt Ensemble trained with augmented

samples the most robust of the six models.

6 CONCLUSION

In this paper, we show that the traditional 80-20 split between

training and testing in software testing is inadequate for machine

learning with small samples. Furthermore, this paper improves on

the state-of-the-art software testing practices in robustness testing

and presents a data augmentation technique that comprises newly

developed test scenarios and oracles to determine a trained model’s

robustness in the absence of sufficient training and test data. The

early experiments suggest that adding augmented data generated

by the proposed approach to ML models’ training improves the

test data prediction accuracy and, more importantly, reduces the

bias and variance difference between different vacuum pumping

production data for ESR applications. Additionally, we identified

that the six ML models under test do not capture events where

the minimum pressure deviates substantially from the training

distribution mean, which will be investigated in future work and

require the development of a bespoke model for vacuum pumping

application. The augmentation and testing approach is designed to

aid future model development and how to design a robust testing

methodology when working with small sample ML.

In the future, further model investigation will need to be car-

ried out, including research into deep learning and the integra-

tion and use of several trained models simultaneously. This paper

presents our best practice to date in addressing quality assurance

challenges in an MLOps workflow. Although the paper focuses

on vacuum pumping in the steel production industry, robustness

testing methodology and general quality assurance workflow can

be applied across multiple disciplines.
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