Splitting Hairs and Network Traces

Improved Attacks Against Traffic Splitting as a Website Fingerprinting Defense

Matthias Beckerle Jonathan Magnusson Tobias Pulls
Karlstad University Karlstad University Karlstad University
Sweden Sweden Sweden
matthias.beckerle@kau.se jonathan.magnusson@kau.se tobias.pulls@kau.se
ABSTRACT 1 INTRODUCTION

The widespread use of encryption and anonymization technologies—
e.g., HTTPS, VPNs, Tor, and iCloud Private Relay—makes network
attackers likely to resort to traffic analysis to learn of client activity.
For web traffic, such analysis of encrypted traffic is referred to as

Website Fingerprinting (WF). WF attacks have improved greatly in
large parts thanks to advancements in Deep Learning (DL). In 2019,
a new category of defenses was proposed: traffic splitting, where

traffic from the client is split over two or more network paths with
the assumption that some paths are unobservable by the attacker.

In this paper, we take a look at three recently proposed defenses

based on traffic splitting: HyWF, CoMPS, and TrafficSliver BWR5.
We analyze real-world and simulated datasets for all three defenses

to better understand their splitting strategies and effectiveness as

defenses. Using our improved DL attack Maturesc on real-world
datasets, we improve the classification accuracy wrt. state-of-the-
art from 49.2% to 66.7% for HyWF, the F; score from 32.9% to 72.4%
for CoMPS, and the accuracy from 8.07% to 53.8% for TrafficSliver
BWR5. We find that a majority of wrongly classified traces contain
less than a couple hundred of packets/cells: e.g., in every dataset 25%
of traces contain less than 155 packets. What cannot be observed
cannot be classified. Our results show that the proposed traffic

splitting defenses on average provide less protection against WF
attacks than simply randomly selecting one path and sending all
traffic over that path.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; - Net-
works — Network privacy and anonymity.

KEYWORDS

website fingerprinting; deep learning; network splitting

ACM Reference Format:

Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls. 2022. Splitting
Hairs and Network Traces: Improved Attacks Against Traffic Splitting as
a Website Fingerprinting Defense. In Proceedings of the 21st Workshop on
Privacy in the Electronic Society (WPES °22), November 7, 2022, Los Angeles, CA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3559613.
3563199

WPES 22, November 7, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9873-2/22/11.
https://doi.org/10.1145/3559613.3563199

This work is licensed under a Creative Commons Attribution
International 4.0 License.

15

The web has widely adopted HTTPS, with a majority of connec-
tions today being encrypted [15]. The DNS is also slowly evolving,
seeing increased use of encrypted connections using, e.g., DNS-over-
HTTPS (DoH) [26], DNS-over-TLS (DoT) [29], and DNS-over-QUIC
(DoQ) [30]. In parallel, consumers increasingly use technologies like
VPNs [2, 51] and the anonymity network Tor [11] to protect their
activities. Recently, Apple announced iCloud Private Relay [5], a
VPN-like technology that can be seen as a middle-ground between a
VPN and Tor. With content (HTTPS and Do{H,T,Q}) and destination
IP-addresses (VPNs, Tor, iCloud Private Relay) hidden, attackers
observing network traffic from clients are increasingly limited in
their visibility of client activity. One remaining avenue is analyzing
patters in the encrypted traffic.

In the Website Fingerprinting (WF) setting, a local passive at-
tacker analyzes patterns in encrypted traffic to fingerprint websites
visited by a victim client [8, 24, 25, 39, 58]. The attacker is “local” in
the sense that they are close to the client: it could be, e.g., the client’s
Internet Service Provider (ISP), a WiFi hotspot, or the client’s mobile
service provider. The attacker is “passive” in the sense that they only
eavesdrop on network traffic without interfering with the commu-
nication. WF attacks typically target the frontpage of websites, i.e.,
the goal of the attacker is to determine if a victim has visited a par-
ticular website, instead of particular webpages as part of a website.
A concrete example would be to fingerprint visits to wikipedia.org
instead of visits to, e.g., the English Wikipedia page on the origin
of “Slava Ukraini” at en.wikipedia.org/wiki/Slava_Ukraini.

WF attacks, just like for most attacks in general, have become
increasingly more powerful over the years. The community spent
many years on perfecting manual feature engineering—which as-
pects of encrypted network traces to consider—to improve WF
attack classification accuracy when using traditional machine learn-
ing techniques like k-nearest neighbors [62] and support vector
machines [45]. Around 2016, k-fingerprinting was the state-of-the-
art WF attack based on manual features [20] and the community
was moving towards promising efficient and effective defenses [35].
Unfortunately, shortly thereafter the massive advances in Deep
Learning (as part of the ongoing “Al spring”) enabled automatic
feature engineering—just let the neural network learn features from
the raw data—that vastly surpassed the manual features. Conse-
quently, WF attacks based on Deep Learning (DL) are successful
against many state-of-the-art WF defenses [6, 50, 55]. More broadly,
the last five years have seen massive advances in the area of DL.
Combined with advances in available hardware, DL gets faster,
more precise and better understood, enabling new architectures
and learning strategies, ultimately leading to better attacks [22].

https://doi.org/10.1145/3559613.3563199
https://doi.org/10.1145/3559613.3563199
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3559613.3563199
wikipedia.org
en.wikipedia.org/wiki/Slava_Ukraini

WPES °22, November 7, 2022, Los Angeles, CA, USA

WF defenses take different forms and have different trade-offs
with a history as long as that of WF attacks [27]. In this paper, we
focus on a category of WF defenses that was first proposed in the
context of WF in 2019 [37] and has shown promising effectiveness
also against WF attacks utilizing DL: traffic splitting. In traffic
splitting, the setting of WF attacks is relaxed to assume that a WF
attacker can only observe one out of many paths used by the client
to communicate. Figure 1 shows three such possible settings for
traffic splitting in Tor.

Henri et al., for their WF defense HyWF [23], propose that clients
use multihoming (multiple Internet connections) to split their traffic
to the same guard! over two paths (Figure 1a). De la Cadena et al.
propose TrafficSliver BWR [36], where traffic is split over multiple
paths to the same middle (Figure 1b). The most effective version of
TrafficSliver is BWR5, where traffic is split over five paths (only two
paths are shown in Figure 1b). Figure 1c shows Conflux by AlSabah
et al. [4], where traffic is split over two paths all the way to the
exit. Conflux was proposed already in 2013, but as a performance
optimization for bridge users. The Tor Project is investigating traffic
splitting inspired by Conflux [18]. Beyond Tor, Wang et al. [60]
recently proposed the CoMPS framework for any service supporting
connection migration (e.g., QUIC [32] and WireGuard [12]), using
three paths to connect to a server supporting connection migration,
e.g., QUIC over multiple WireGuard VPNs.

In this paper, we evaluate WF defenses based on traffic split-
ting by utilizing a newly created WF attack that based on recent
developments in DL. Our contributions are:

o We analyze three traffic splitting WF defenses—HyWF [23]
using two paths, CoMPS [60] using three paths, and Traffic-
Sliver BWRS5 [36] using five paths—in terms of their designs,
splitting strategies, and resulting datasets from both real-
world implementations and simulation. Our analysis shows
that all three defenses have similar splitting strategies, and
that for all datasets 25% of the traces contain less than 155
packets/cells. This poses a significant challenge for any WF
attacker, because it is deprived (by assumption in the relaxed
setting) of the vast majority of traffic, lowering the accuracy
one should reasonably expect from defenses and attacks in
this setting (Section 3).

e Using developments in the rapidly evolving DL area, we
provide improved attacks that refine the evaluated effective-
ness of the analyzed traffic splitting defenses (Section 4). On
respective authors’ real-world datasets, we improve the state-
of-the-art accuracy from 49.2% to 66.7% for HyWF, the F;
score from 32.9% to 72.4% for CoMPS, and the accuracy from
8.1% to 53.8% for TrafficSliver BWR5. We accomplish this by
utilizing xresnets [56], one-cycle training [22], and extensive
hyperparameter tuning. Our attack also shows competitive
accuracy on regular (non-split) WF tasks (Appendix A).

e Based on our findings, we further analyze the relaxed traffic
splitting setting as a WF defense (Section 5). We conclude
that traffic splitting across multiple paths increases the threat
posed by WF attacks, because a WF attacker will be highly

!Technically, they propose using a multipath bridge, but it would serve the same
purpose as the guard.

16

Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls

successful once it can observe a couple of hundred of pack-
ets/cells. The main defense from traffic splitting is provided
by the underlying assumption that an attacker may not be
able to observe nearly any traffic, which is not the case
against many relevant threat actors within the threat model
of Tor [11]. When attackers can observe traffic other WF
defenses are needed, and therefore traffic splitting should
be viewed mainly as a performance feature. Luckily, this
aligns well with how scheduling algorithms like BLEST and
minRTT behave [16, 31, 40] and the proposal from the Tor
Project to investigate such algorithms [18].

Section 2 covers necessary background, Sections 3-5 contributions,
Section 6 related work, and Section 7 conclusions.

2 BACKGROUND

We briefly cover relevant background on Tor, Website Fingerprint-
ing, and Deep Learning.

2.1 Tor

Tor is a low-latency anonymity network with millions of daily
users that use Tor mainly to browse the web anonymously, ac-
cess so-called onion services, and circumvent censorship [11]. The
Tor network consists of more than 7,000 volunteer-run servers,
called relays. Connections in Tor are made through circuits, layered
encrypted connections that traverse three or more relays in the
network. Within circuits, data is transported in fixed-sized cells of
514 bytes that are encrypted both on the cell-level and network-
level (using TLS between relays). For a regular (non-onion) circuit,
the first relay is called the entry guard relay, the second relay the
middle relay, and the third final relay the exit relay. The relays get
their respective names from the role they play, where notably users
will use many different middle and exit relays, but restrict their
guards to a small set of relays. The guard set of relays are selected
by users once and kept the same for months, motivated by a wide
range of security concerns [19]. At the time of writing, the size of
the set is configured to 1.

Tor adds minimal latency and bandwidth overheads, and is not
designed to provide anonymity against an attacker that can observe
all traffic in the Tor network [11]. There are well known trade-offs
in terms of latency, bandwidth, and provided anonymity [9, 10], but
Tor strongly favours performance with the goal of attracting more
users. In general, the weaker the attacker, the more concerned Tor
is with deploying defenses against attacks by such attackers.

2.2 Website Fingerprinting

A type of attack that falls directly within the threat model of Tor is
a Website Fingerprinting (WF) attack. The setting of a WF attack
involves a local passive attacker that observes encrypted network
traffic (a trace) between a target user and their guard, with the goal
of determining (classifying) the website (typically frontpage of the
website) the user is visiting. Such an attacker could be the WiFi-
network the user is connected to, their Internet Service Provider
(ISP), any intermediate Autonomous System (AS), middleboxes,
nation-state actors, or even the guard itself.

WF attacks and defenses are evaluated in either a “closed” or
“open” world. In the closed world, the goal of the attacker is to

Splitting Hairs and Network Traces

5,,0

(a) Split to guard, HyWF [23]

WPES °22, November 7, 2022, Los Angeles, CA, USA

@0@@9@ = I %o@%@;@ ® W @0@00@ B
A 5 &

(b) Split to middle, TrafficSliver BWR [36]

&, ,0

(c) Split to exit, Conflux [4]

Figure 1: Three approaches to traffic splitting in Tor.

identify which website a trace belongs to out of a fixed number
of possible monitored websites (typically on the order of a 100
websites). In the open world, the attacker has the same goal as in
the closed world, but some traces may now come from unmonitored
websites: conceptually every other possible website on the web
except for the monitored websites. The open world is considered
more realistic, but opens up issues such as the base rate of monitored
websites in datasets: typically datasets contain 50% monitored and
50% unmonitored traces, but this is not a representative split [34, 47].
The closed world, while less realistic, is useful for comparison
between attacks and defenses.

2.2.1 Attacks. WF attacks have a long history, and before mainly
being focused on Tor considered HTTPS [8], web proxies [25, 58],
SSH tunnels [39], and VPNs [24]. Central to attacks are features
extracted from traces for use in classification, and it is possible to
group attacks based on manual or automatic feature engineering.

With manual feature engineering, attackers define their own fea-
tures. Known important features are, e.g., the number of incoming
packets and the fraction of incoming/outgoing packets. The state of
the art WF attack in this category is k-fingerprinting by Hayes and
Danezis [20], that uses a random forest classifier with 150 carefully
selected features (cf,, e.g., Wang et al’s earlier and less effective
kNN attack with over 3,000 features [62]).

The advent of deep learning (see Section 2.3) brought with it
automatic feature extraction for attacks [1, 52]. Attackers now
consider different representations of traces as input data, and the
neural networks automatically extract latent feature spaces with
richer information than any manually engineered feature set. The
two main representations of input data are as directional sequences
or directional time. For directional sequences, the data consists just
of a sequence of integers denoting packet or cell sizes where positive
or negative values indicating sent or received. Because Tor sends
all data as padded 514-byte cells, traces for Tor typically consists of
a sequence of +1 and -1. Directional time is a data representation
for Tor where the time a cell was sent is represented either as a
positive or negative float, depending on direction.

State of the art WF attacks using deep learning (in terms of
maximum accuracy, not considering training time or the amount
of available training) are Deep Fingerprinting (DF) by Sirinam et
al. [55], Var-CNN by Bhat et al. [6], and Tik-Tok by Rahman et
al. [50]. DF is a ResNet-inspired [21] architecture that notably uses
directional sequences (without time), yet has excellent performance,
including on defenses such as WTF-PAD [35]. Tik-Tok improves
DF by changing the data representation to instead use directional
time. Var-CNN is an ensemble classifier based on a ResNet-18 ar-
chitecture using dilated causal convolutions, where one classifier

17

uses directional sequences and another direction time combined
with cumulative statistical features of the network trace.

2.2.2 Defenses. Broadly, most WF defenses can be categorized into
four categories: imitation, regulation, alteration, and traffic split-
ting [27]. Imitation defenses, like Glove [43] and Walkie-Talkie [64],
aim to make traces look similar to that of other known traces.
This requires a database of known traces (of key features of those
traces) to target. Such a database is a practical challenge, and newer
defenses like Walkie-Talkie that make trade-offs to become more
practical have been shown to be vulnerable to deep learning attacks
like Tik-Tok.

Regulation defenses, like RegulaTor [27], Tamaraw [7], and WTF-
PAD [35], aim to make all traces look similar. Provably secure
defenses like Tamaraw impose significant latency and bandwidth
overheads. Less strict defenses, pioneered by WTF-PAD, relax the
security guarantees to reduce overheads. WTF-PAD showed great
promise against WF attacks using classical machine learning, but
has been shown to be vulnerable to deep learning based attacks
such a DF [55]. Regulator is a new defense in this category that
manages low overhead and a significant challenge for deep learning
based attacks [27].

Alteration defenses, like HTTPOS [41] and FRONT ([17], aim
to change traces to such an extent that attackers cannot find any
useful patterns. As a primarily example, FRONT focuses on heavily
padding the early (front) parts of traces achieving modest overheads
while reducing accuracy also for deep learning based attacks [17].

Finally, traffic splitting defenses, like HyWF [23], CoMPS [60],
and TrafficSliver BWRS5 [36], aim to split traces over two or more
network paths, where the attacker is assumed to only be able to
observe one path. This is a new approach to WF defenses, and
the category we focus on in this paper. Section 3 provides further
details.

2.3 Deep Learning

Deep Learning (DL) is a form of machine learning that mimics bio-
logical learning by utilizing neural networks with more than three
hidden layers. DL is usually outperforming classical approaches
of machine learning and reaches super human levels in multiple
domains, e.g., in classification problems. It has the additional ad-
vantage that no feature engineering is needed. It works best when
raw data is used as input, which is convenient and efficient.

DL and machine learning in general face common challenges.
For a successful training and application of the model the following
challenges have to be meet:

WPES °22, November 7, 2022, Los Angeles, CA, USA

Physical limitations: Especially the amount of GPU memory
can limit the model size and input amount. The speed of the
CPU and GPU determine learning speed.

Data limitations: There are several factors regarding the data
that can limit learning success. These factors are: too little
training data, noisy data (e.g., if it is defended), mislabeled
data, and non-representative data (that does not reflect real-
ity).

Hyperparameter tuning: Hyperparameters have to be cho-
sen correctly for optimal training results. For more details
see Section 2.3.1.

There are several building blocks for successful DL. The correct
data preparation, the correct DL architecture, and a fitting set of
hyperparameters have to be chosen.

It is important to choose an architecture that fits the problem. In
the context of WF, convolutional networks (ConvNets [38]) or the
successor residual nets (ResNets [21]) are commonly used [1, 6, 52,
55]. While originally developed for other use cases they work well
for WF too.

2.3.1 Hyperparameters. In the context of ML, hyperparameters
are the tunable parameters that influence and control the learning
process. We considered eight hyperparameters in three categories:
o Two related to the data: trace length and input channels.
e Two related to the architecture: number of layers and dropout
in %.
e Four related to the training of the model: learning rate, mo-
mentum, batch size, and epochs.
To find the right set of hyperparameters, it is often most efficient
to start with common best practises and adjust after reviewing
initial results. Hardware limitations may also limit the range of
possible hyperparameters. Especially the amount of input data per
instance, the complexity of the architecture, and the chosen batch
size increase the memory footprint proportionally. However, more
does not always mean better, allowing state of the art results even
on modest hardware.

2.3.2 One-Cycle Training. Instead of static learning rates and static
momentum, it is beneficial to change these parameters while the
training is progressing as described by Smith [56]. The learning
rate of One-cycle training is the maximum learning rate that is
reached in one-cycle training. Momentum is not manually tuned
since it is automatically adjusted based on the learning rate. How
learning rate and momentum change during the training process
can be seen in Figure 2. If used correctly, One-cycle training can
drastically reduce training times and even improve the accuracy of
a model.

3 UNDERSTANDING TRAFFIC SPLITTING

We first look at the three most effective splitting strategies in detail
and then analyze the resulting network traces.

3.1 Splitting Strategies
Figure 3 shows the three splitting strategies we consider due to
their assessed strengths as WF defenses:

o HyWF by Henri et al. [23], their strongest defense that splits
traffic over two network paths (Figure 3a).

18

Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls

0.020 4

0.015 A

+= 0.010 A

0.005 4

0.000 A

1000 2000 3000 4000

o 4

0.94 A

0.92 A

0.88 A

0.86

6 1 OIO 0 2 OIOO 3 OIO 0 4 010 0

Figure 2: An example of how learning rate (Ir) on the left
and momentum (mom) on the right changes over time in
one-cycle training. The x-axes shows the amount of training
batches. This example is from our training on the comps-rw
closed dataset with optimized hyperparameters. The detailed

parameters can be seen in the first data-row in Table 2.

o The Batched Weighted Random (BWR) strategy of Traffic-
Sliver by De la Cadena et al. [36], where traffic is split over
five network paths (Figure 3b).

o The Weighted Random (WR) strategy of CoMPS by Wang et
al. [60] that splits traffic over three network paths (Figure 3c).

The three strategies are similar, but differ in the number of network
paths they use. Note that the CoMPS design was motivated by ease
of implementation, based on BWR from TrafficSliver. For sake of
comparison, we go over all three strategies in unison.

First, each strategy assigns a random weight to their respective
network paths (line 1). The weights are sampled once per website
visit to defend. Next, each strategy assigns initial zero values to
variables (line 2) and starts iterating over packets to send (line
3). Each strategy updates the network path to send packets over
once a threshold is reached. For HyWF and BWR, the threshold is
based on the number of packets sent since the last update (lines
4-5). For CoMPS, this is based on elapsed time since the last update
(line 4). The selection of path to send packets on is sampled based
on the weights assigned earlier to each path (p «sw). For HyWF
and BWR, the number of packets to send before the next update
is sampled from their respective distributions (line 7), while the
duration between updates in CoMPS is fixed to 100 ms (line 4).

Splitting Hairs and Network Traces

Table 1: Structure of the ten datasets. The total for the sim-
ulated datasets (closed world) comes from sites x inst +
sites x inst x p x x, where sites x inst is the original
Wang k-NN dataset size (traces available only for training)
and sites x inst x p x x from simulating p paths x times.
Simulated open world is twice the size of closed world.

dataset sites inst unmon p X total
comps-rw-closed 107 100 1 1 10700
comps-Tw-open 107 100 10324 1 1 21024
hywf-rw 100 100 2 1 20000
ts-bwr5-rw 100 100 5 1 48574
comps-sim-closed 100 90 3 10 279000
hywf-sim-closed 100 90 2 10 189000
ts-bwr5-sim-closed 100 90 5 10 459000
comps-sim-open 100 90 9000 3 10 558000
hywf-sim-open 100 90 9000 2 10 378000
ts-bwr5-sim-open 100 90 9000 5 10 918000

These are the main differences between the three strategies, in
addition to their varying number of paths.

3.2 Dataset Analysis

To better understand the splitting strategies, we look at the result-
ing datasets of traces from their use. For each strategy, we analyze
two types of datasets: a real dataset provided by the authors of the
strategy (“rw”, short for real-world) and a simulated dataset from
our own simulation (“sim”) of the strategy. The real datasets are
research artefacts provided by the respective authors and that were
collected from the implementations of their strategies. The simu-
lated datasets are based on the widely used Wang k-NN dataset [62].
Simulating each strategy from the same underlying dataset allows
for a more accurate comparison.

Table 1 summarizes the ten datasets we use in this paper. We
consider both open and closed worlds where data is available. In
general, unless otherwise stated, assume a closed world. Notewor-
thy details on the datasets:

e comps-rw-open only contains a single path (the one ob-
served by the WF attacker) and is slightly unbalanced be-
tween monitored/unmonitored.

e ts-bwr5-rw is missing ~ 3% of traces due to being unspeci-
fied in the original dataset (artefact of data format and split-
ting strategy). Other traces in all other datasets are also of
length zero (see later analysis).

e We repeatedly simulate the splitting strategies ten times per
original trace, providing ample more data for training, as
was shown useful for TS BWR5 [42] and HyWF [23].

e All datasets contain timestamps, but as see later in Sec-
tion 4.3, time is not useful in the hywf-rw dataset.

Figure 4 shows the distributions as boxen plots of trace lengths,
i.e,, packet counts, in the datasets. All traces are truncated at 5,000
packets, as typical in related work for deep-learning classifiers [6,
50, 55]. The original Wang dataset is included for comparison. For
one, note how splitting strategies result in a significant fraction of
tiny traces, for the 25th percentile top-to-bottom in Figure 4: 57,

19

WPES °22, November 7, 2022, Los Angeles, CA, USA

51, 68, and 155 packets for real-world, 73, 130, and 35 packets for
closed simulated, 86, 153, and 52 packets for open simulated, and
496 packets for Wang k-NN [62].

While simulated datasets show a clear relationship between trace
length and splitting strategy (mainly, number of paths), the real-
world datasets are more messy. For all split datasets, we have less
than 155 packets? for 25% of the traces. This is very little data in
comparison to typical WF datasets—like Wang’s, with a median of
1362 packets—highlighting why classifiers may struggle to become
highly effective: what cannot be observed cannot be classified.

4 IMPROVED DEEP LEARNING ATTACKS

To properly evaluate defenses, it is important to investigate and op-
timize tailored attacks for each defense and dataset. In this section,
we present Maturesc®, a new state of the art attack with specific
tailored sets of hyperparameters on a per-database basis that out-
performs reported results of former attacks significantly, especially
if only little training data is available.

Maturesc uses a modified version of optimized xresnets [22]
which were configured for one-dimensional multi-channel input
data and one-cycle-training [56]—to enable fast training with re-
duced amounts of epochs—and reduce overfitting when the amount
of training data is limited. Maturesc is built in PyTorch [46] and
fastai [28], available as open-source at https://github.com/m-bec/
Splitting-Hairs-and-Network-Traces.

Earlier WF-attacks typically optimize hyperparameters once and
then use a static set of hyperparameters for all datasets [6, 55]. We
found that the hyperparameter tuning itself needs to be part of the
attack for optimal results. This is similar to how Rimmer et al. [53]
note the importance of hyperparameter tuning for evaluating traffic
correlation attacks on different datasets. Our architectural decisions
are based on optimizing learning efficiency when extensive hyper-
parameter tuning is part of the learning process.

We decided to limit ourselves to trace lengths of <5000 to be
comparable to former attacks. Small improvements are possible
if traces are particular long with a larger trace lengths. We use
two input channels, i.e., timestamps and directional packet size.
Both can be easily represented as separate input streams of fp32
numbers which are directly feed to our one-dimensional, two chan-
nel xresnets. This is highly efficient since no calculation intensive
transformations are needed that way.

One-cycle-training enables learning in one go without the need
for iterative fine tuning as long as fitting hyperparameters are cho-
sen. We tested different architectural configurations and learning
strategies but in our tests nothing achieved improved results com-
pared to our chosen approach when combined with our systematic
hyperparamter tuning.

For a more detailed insight into our architecture please see the
following sections and the source code at https://github.com/m-
bec/Splitting-Hairs-and-Network-Traces.

2While we use packets and cells interchangeably throughout, please do note that it
is only CoMPS real-world that contains packets: the rest are Tor cells. In practice,
multiple cells will be packed into a packet if possible, leaving even less data available
by assumption.

3from Latin, Maturescere - approaching maturity.

https://github.com/m-bec/Splitting-Hairs-and-Network-Traces
https://github.com/m-bec/Splitting-Hairs-and-Network-Traces
https://github.com/m-bec/Splitting-Hairs-and-Network-Traces
https://github.com/m-bec/Splitting-Hairs-and-Network-Traces

WPES ’22, November 7, 2022, Los Angeles, CA, USA

Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls

1: w « Bernoulli(«$[0,1]) 1: w « Dirichlet(5) 1: w « Dirichlet(3)

2: ne—0,b«0 2: ne—0,b«0 2: t«0

3: foreach packet do 3: foreach packet do 3: foreach packet do

4: nen+1 4: nen+1 4: if Since(#) > 100ms then
5: if n > b then 5: if n > b then 5: p—sw

6: p—sw 6: pesw 6: t « Now()

7: b «— Geometric(1/20) 7: b «$[50,70] 7: endif

8: ne«o0 8: neo0 8: send packet on path p
9: endif 9: endif 9: endforeach

10 send packet on path p 10 send packet on path p

11: endforeach 11: endforeach

(a) HyWF using two paths [23]

(b) TrafficSliver’s Batched Weighted Ran-
dom (BWR) strategy using five paths [36]

(c) CoMPS with Weighted Random (WR)
strategy using three paths [60]

Figure 3: The most effective traffic splitting strategies of HyWF [23], TrafficSliver [36], and CoMPS [60]. Notation adjusted for
ease of comparison, where w is the sampled weights assigned to each path, b the batch size of packets to send before updating,
and p the sampled network path to send traffic over. Bernoulli, Dirichlet, and Geometric are sampled probability distributions
with their respective arguments while s denotes uniformly random sampling in the specified range or probability vector.
For time, Now() returns the current timestamp and Since(t) returns the duration of time since timestamp ¢.

Boxen Plots of Datasets
comps-rw-closed - I

comps-rw-open - {01 I
hywf-rw - 1 I]
ts-bwr5-rw - @l I
comps-sim-closed - €1 F
hywf-sim-closed - €] !
ts-bwr5-sim-closed -

comps-sim-open - (I
hywf-sim-open - <[—
ts-bwrs-sim-open - (EN—
wang - =i
0 1000 2000 3000 4000 5000

trace length

Figure 4: Distribution of trace lengths in datasets.

4.1 Setup

Before the training of the DL model begins, the data has to be
brought in a unified format. In the WF community, this is typi-
cally done by representing traces using directional sequences or
directional time (see Section 2.2). In our setup, we observed a small
increase in accuracy when this is changed to relative timestamps
instead: meaning that we are not counting time from the beginning
of the trace but relative to the previous packet in the trace. We be-
lieve that a reason for that is the higher resistance against random
delays in data transmission what makes learning a bit easier.

If available (only CoMPS), we also use the packet size as an
additional input channel to our models. However, this also increases
the memory footprint of the model by factor two.

For easy access to modern DL architectures and general improve-
ments in the rapidly evolving area, we use PyTorch [46] and fastai

20

[28]. In particular, the easy access to enhanced ResNet building-
blocks that we utilize to build our xresnets [22], a efficient im-
plementation of one-cycle training [56], and pre-built evaluation
functions makes this a convenient choice.

For the hyperparameter tuning, we included all relevant ones
in our attack script as command line parameters to enable an easy
variation. The script is generated out of a Jupyter Notebook which
was also used for testing and optimising the script.

The xresnets are configured for one dimensional multi channel
data. Most successful were the configurations with 18 and 50 layers.
The xresnets with only 18 layers excelled in two of the simulated
open datasets (comps-sim-open and hywf-sim-open) were the batch
size was also the largest with 2048.

We evaluated our attack with two NVIDIA A40 GPUs, an AMD
EPYC 7713P 64-Core CPU, and 512 GB of memory. When utilizing
a single GPU, training times were around two minutes per epoch
for the real-world datasets and up to 33 minutes for the simulated
TS-BWRS5 open-world dataset on our 50 layer net, each with a trace
length of 4900 packets/cells.

4.2 Journey

Here we describe some learning lessons from our training. Note
that all datasets were split 8:1:1 for training, validation, and testing.
We experimented with 10-fold cross-validation but noticed little
to no variance, likely due to significant dataset sizes (see Table 1).
This is similar to how our validation scores are close to our test
scores (see shortly).

4.2.1 One-cycle Training. While providing the best results in gen-
eral, One-cycle training has a stochastic component. Running an-
other training session with the same hyperparameters might result
in different outcomes. However, One-cycle training is considerably
faster converging which allows to grind out near optimal results.

Splitting Hairs and Network Traces

The speed-up that One-cycle-training provides can also be in-
vested in a systematic approach to hyperparameter optimization.
Such an extensive testing with different hyperparameter combina-
tions is feasible since training times, e.g., for the real-world datasets
are comparatively short.

A potential pitfall could be overfitting to the validation set, by
choosing the training run with the best validation score. However,
as we could validate, optimizations based on a validation set trans-
late very well to test sets.

4.2.2 Hyperparameter Tuning. To enable its full potential, One-
cycle training needs different hyperparameters compared to classi-
cal fitting to work properly. In general our chosen learning rates
are higher (up to 0.01) compared to other work since they reflect
maximum learning rates that are only reached around the first quar-
ter of the training. For the real-world datasets we are also using a
relatively small batch size of 32 to 128 items.

However, for the much bigger simulated datasets, especially the
open world ones, we realised quickly that similar batch sizes lead
to no learning at all or to overfitting. Here, bigger batch sizes (350
to 2048), and in addition, strong regulation (dropout of 85%) are
necessary to receive the best results.

We trained on all datasets with multiple permutations of hy-
perparameters. For the batch size we tested 32, 64, 128, 256, and
depending on the GPU memory consumption 350 or 400, 512, 1024,
2048. For the learning rate we tested 0.002, 0.001, 0.05, 0.02, 0.01. For
dropout we trained with 0%, 50%, 75%, 85%, and 90%. For the amount
of epochs we trained with 10, 20, 30, and 40. The amount of layers
and the amount of entries per trace that were used was determined
by available memory on the GPU since more is generally better
here but the trade-off with batch size has to be considered.

4.3 Results

The optimal hyperparamters were chosen based on the accuracy
on the validation set. The best combination of hyperparameters for
each dataset can be seen in Table 2.

We realized that in all our tests the test set scores are relatively
close to the validation scores with an average absolute distance of
1.21% accuracy (+/- 0.19% with « = 0.005) and a maximum of less
than 3.9% absolute distance. In all but two cases, the best models
based on validation scores were also the best models based on test
scores.

It is important to recall that DL results are stochastic by nature.
Repeating an experiment with the same hyperparameters on the
same hardware can produce slightly different results. Another factor
are trade-offs between parameters. Especially learning rate, batch
size, and dropout cross-influence each other. So can for example
an increase of the batch size while also increasing the learning
rate result in very similar results. Often even moderate variations
can result in similar results. To give an example, comps-rw-closed
gave the following results with a batch size of 64, 128, and 256
which resulted in 75.8%, 75.3%, and 73.3% validation set accuracy
and 76.0%, 75.0%, and 73.2% test set accuracy respectively.

Figure 5 shows our results, including the state-of-the-art WF at-
tacks DF [55], Tik-Tok [50], and Var-CNN [6] for reference. Closed-
world results are plotted as accuracy-confidence threshold graphs,

21

WPES °22, November 7, 2022, Los Angeles, CA, USA

particularly useful in our setting to show when the Var-CNN en-
semble loses confidence in its classification. Open-world results are
shown as as precision-recall graphs, demonstrating the inherent
trade-off between prediction value and sensitivity.

We start directly comparing our results with those reported in
the work of respective splitting strategy:

e For HyWF [23], Henri et al. report two relevant results. On
the same real-world dataset they state 49.2% accuracy using
DF, compared to our 66.7% accuracy. By repeatedly simulat-
ing HyWF on the k-NN Wang et al. dataset [62]—identical
to our setting—they reach slightly below 50% accuracy, com-
pared to our 71.6% accuracy.

e For CoMPS [60], Wang et al. report for their real-world
dataset a Fj score of 18.3% with DF and 32.9% with Var-CNN,
compared to our 72.4%.

e For TS BWRS5 [36], De la Cadena et al. report 8.1% accuracy
for DF on their real-world dataset, compared to our 53.8%
accuracy.

Going over the real-world dataset results (first row of Figure 5)
we see a significant gain in classifier performance over state-of-the-
art. In terms of closed-world results for COMPS on the same dataset
(not shown in figure), we get 76.0% accuracy, compared to second-
best Var-CNN at 50.7%. The difference between our results for TS
BWRS5 (53.8%) and CoMPS (76.0%) can be explained in part by the
reduction in paths, making more data available. HyWF is an outlier
here, with only two paths but only 66.7% accuracy: this can likely be
explained by the low utility of time in the HyWF real-world dataset.
This is apparent from the poor accuracy of Tik-Tok (4.2%), which is
consistent with the directional time classifier part of the Var-CNN
ensemble also performing poorly (4.4%, not shown in figure, but
note the drop in accuracy once the confidence threshold goes past
0.5). We suspect this is an artifact of how the dataset was collected,
time is still very useful for classifiers against HyWF, see next.

Looking at closed-world performance on the simulated datasets
(second row of Figure 5), we see a much cleaner relationship be-
tween number of paths and accuracy: 71.6% for HyWF (two paths),
59.0% for CoMPS (three paths), and 43.5% for TS BWR5 (five paths).
Given the huge availability of traces (see Table 1) to train on, Tik-
Tok is the clear second-best with the second-highest accuracy as
well as smooth confidence threshold. This is a compelling result
since Tik-Tok uses a simpler architecture (DF) and is faster to train
than Var-CNN. Note that Var-CNN was designed to be more effi-
cient with less training data, so the comparison in training time
and setting (massive amount of training data) is not fair.

Finally, the open-world results on the simulated datasets (third
row of Figure 5) show similar results as in the closed-world. The Var-
CNN ensemble behaviour of drastically getting worse somewhere
in the middle of the threshold is also visible here. Tik-Tok remains
the clear second-best.

Interestingly, our Maturesc classifier never reaches close to 100%
precision, even with a > 0.99 threshold: we get HyWF 94.9%, CoMPS
90.6%, and TS-BWR5 93.1% precision. However we use the fastai
CrossEntropyLossFlat loss function which flattens input and output.
This is different from the loss functions used by the other attacks.
In the end, our model seems to be more hesitant to give absolute
certainties about specific results what is arguably more realistic.

WPES ’22, November 7, 2022, Los Angeles, CA, USA

Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls

Table 2: Optimized hyperparameters for each dataset based on validation set accuracy (vali acc), with trace length = maximum
amount of entries per trace that are used; layers = layers of the used architecture; learning rates reflects maximum learning
rate; vali acc = rounded validation set accuracy; test acc = rounded test set accuracy.

accuracy

accuracy

precision

dataset trace length layers dropout batchsize learningrate epochs valiacc testacc
comps-rw-closed 4900 50 50% 64 2e-2 30 75.8% 76.0%
comps-rw-open 4900 50 50% 64 2e-2 30 77.5% 78.5%
hywt-rw 4900 50 0% 32 2e-2 30 69.2% 66.7%
ts-bwr5-rw 4900 50 50% 128 2e-2 20 54.2% 53.8%
comps-sim-closed 4900 50 85% 350 2e-2 10 62.6% 59.0%
hywf-sim-closed 4900 50 85% 350 le-2 10 74.8% 71.6%
ts-bwr5-sim-closed 4900 50 85% 512 2e-2 20 46.6% 43.5%
comps-sim-open 2500 18 85% 2048 2e-2 30 75.1% 72.7%
hywf-sim-open 4900 18 85% 2048 2e-2 30 82.5% 80.5%
ts-bwr5-sim-open 4900 50 85% 512 2e-3 30 69.1% 67.7%
HyWF Real-World CoMPS Real-World TS BWR5 Real-World
0:9:-0.0-.9. 1.0
0.6 1 ¢0%e.q.,. ¢ots,
c > 0.4 1
0.4 “ 508 g
8 g
0.2 g o6 \\‘ g 0.2
00 TV 041, . . . 0.0, :
0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.0 0.5 1.0
threshold recall threshold
HyWF Simulated CoMPS Simulated TS BWR5 Simulated
0.6 [X @
0.4 ¢¢0eo.4.,.
0.6 1 . N Ao F “~
0 0.4 1 O V.
e o Dol N
0.4 1 2 3 0.2
§ 0.2 ® *w‘
0.2 1
T T T 0.0 i+ T T 0.0 T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
threshold threshold threshold
HyWF Simulated CoMPS Simulated TS BWR5 Simulated
1.0 1 1.0 v 1.0
Yoy \{
\ cos ‘V"‘ B *x ~
° s o 5 0.8 Xy
0.8 A 8 0.6 YV \ 8 ‘
o= ‘ 206
v8 s 50 A
0.4
0.6 041, . . .
0.2 0.4 0.6 0.0 0.2 0.4 0.0 0.1 0.2 0.3
recall recall recall
--@ - Maturesc DF —¥-- Tik-Tok —&— Var-CNN

Figure 5: Evaluation results of our Maturesc classifier compared to Deep Fingerprinting (DF) [55], Tik-Tok [50], and Var-CNN [6].
The first row contains results for the real-world datasets of HyWF [23], CoMPS [60], and TrafficSliver BWRS5 [36], while the
second and third rows show simulated datasets based on the widely used Wang k-NN dataset [62].

22

Splitting Hairs and Network Traces

Boxen Plots of Maturesc

-]

comps-rw-closed -
comps-rw-open -
hywf-rw -
ts-bwr5-rw -
comps-sim-closed -
hywf-sim-closed -
ts-bwr5-sim-closed -
hywf-sim-open -
comps-sim-open -
ts-bwr5-sim-open -

" ¢

T

2000 3000 4000 5000

trace length

1000

o

Figure 6: Trace lengths of correct (green, above) and wrong
(red, below) classifications by the Maturesc classifier for each
dataset. Wrongly classified traces are significantly shorter.

5 DISCUSSION

We discuss lessons learned and implications of our results, ranging
from looking closer at the DL attacks to the setting of traffic splitting
as a WF defense.

5.1 Finding Optimal Hyperparameters

Training optimal models highly depends on the type and amount
of training data. We found some general rules of thumb:

o The bigger the dataset, the bigger the batch size should be
(but still not too big) and the more regulation is helpful, i. e.,
dropout.

e Bigger models (i.e. more layers) increase performance but
not by much.

e More than 30 epochs of training were not helpful.

5.2 What is Wrongly Classified?

Figure 6 shows boxen blots for each dataset with the trace lengths of
correctly and wrongly classified traces using our improved classifier
from Section 4 (same data as plotted in Figure 5). From top to bottom
in Figure 6, the median trace lengths for wrongly classified are 79,
146, 64, 244, 87, 120, 60, 169, 115, and 68 packets. Recall (Section 3)
that 25% of traces in all datasets have less than 155 packets in
them, accounting for 25% of accuracy in a closed-world dataset.
It is apparent that the classifier fails mainly on very short traces.
This failure is across all websites/classes: every dataset but one has
at least one sample from each class wrongly classified (except for
hywf-rw, where 99/100 classes were wrongly classified).

One of the conclusions of De la Cadena et al. [36] when analyz-
ing TS BWRS5 was that good protection against WF attacks were
achieved if “less than 60% of the total length” was available to the
attacker. Based on our results and improved attacks, we believe
a more accurate assessment is expressed in terms of an absolute
trace length in the order of hundreds of packets. Once the attacker
is able to observe a couple of hundred of packets, especially for
closed-world evaluations, the protection drops drastically. This is
more likely to occur the fewer paths traffic is split over.

23

WPES °22, November 7, 2022, Los Angeles, CA, USA

5.3 On Traffic Splitting as a Defense

We believe that our results warrant a more critical view on traf-
fic splitting as a WF defense. In a sense—given that attacks are
in general successful if the attacker can observe a couple of hun-
dred packets of a trace—traffic splitting is more of an assumption
than a defense. The underlying assumption is that the attacker can-
not observe the vast majority of traffic. This leads us to conclude
that—while it is possible to construct a WF defense using a mostly
unobservable communication path—it is a very strong assumption
in the context of anonymous communication [48].

For one, using splitting as a WF defense, we do not know which
path is unobservable to the attacker. As in all considered traffic
splitting strategies, one can just randomly bias the path selection
(see each first line in Figure 3). Our results imply that this bias should
be very high for one path: that way either traffic is unobservable and
safe, or it is not. Spreading traffic over multiple paths just greatly
increases the chances that a WF attacker can observe enough traffic
to attack.

Noteworthy, the heavy single-path bias is similar to what Henri
et al. [23] observed when evaluating the default MPTCP scheduler
(“minRTT”) as a splitting defense. They noted that because minRTT
aims to minimize RTT, it typically ends up sending almost all traffic
over the path with the lowest RTT (“primary path”), resulting in
the attacker having only a 2% success rate on classifying traffic
on the other (“secondary*) path (so, at most, 52% accuracy if the
primary path is perfectly classified). As a splitting defense, minRTT
would actually perform just as well as the best splitting strategy
evaluated here (TS BWR5 had the lowest real-world accuracy of
53.8% accuracy, see Section 4) using only two paths, compared to
the five of TS BWRS5. Using five paths with minRRT would likely
result in #20-30% accuracy, under the assumption that minRRT
would still mostly end up favoring the fastest path. This is in a
sense a straw man traffic splitting strategy that uniformly random
selects one available path and sends all traffic over it, resulting in
an expected 1/N accuracy for N paths. One can think of this as a
baseline for any splitting strategy to compare against.

Efficiently using multiple paths, especially if paths have varying
latency and/or throughput, is not trivial [16, 31, 40]. In asymmetric
latency settings, schedulers like BLEST [16] will emphasize using
the faster path to an even greater extent than minRTT for web
traffic (e.g., see Figure 9 in the paper of BLEST [16]). It is first
for symmetric paths or for other tasks than web traffic, like bulk
downloads, where more than one path will end up seeing notable
use. As a consequence—in asymmetric latency settings of web-
traffic—currently proposed traffic splitting defenses will result in
more overhead than expected in practise: by using non-optimal
secondary paths performance will get worse. How much worse
depends on how bad some of the bad paths are. For Tor, slow paths
are likely to include two continental hops of added latency (e.g.,
circuits from EU — US — EU or Asia — US — EU), potentially to
destinations a third continental hop away.

The Tor Project is working on proposal 329 [18] for traffic split-
ting. The proposal suggests splitting over two circuits (paths) to a
single exit, based on Conflux [4] (see related work in Section 6), with
scheduling/splitting algorithms based on minRTT and BLEST to
be investigated. It further notes that splitting may help against WF

WPES °22, November 7, 2022, Los Angeles, CA, USA

attacks, citing the work of De la Cadena et al. on TrafficSliver [36].
Our improved results on TS BWRS5 shows that minRTT or BLEST
would both make better WF defenses on their own by simply being
likely to send the vast majority of traffic over the primary circuit
and hoping that it is unobservable by the attacker.

Since minRTT and BLEST-like algorithms will heavily favour
the path with the lowest latency, traffic splitting is closely related
to path selection. In a sense, traffic splitting becomes an extension
of path selection, after paths have been selected. Consider the
following two scenarios:

o If paths of similar latency are selected, then the splitting
algorithm may end up sending traffic over all paths. From a
WF perspective, this is undesirable, because then attackers
along both paths can launch successful attacks.

o If the selected paths have different latency characteristics,
then the splitting algorithm will rapidly detect this fact and
only send traffic over the primary path.

The above suggests that the path selection algorithm should try
to provide paths of similar latency characteristics as per its own
estimates (more generally, use similar metrics as the traffic splitting
algorithm), otherwise it is very likely that including the second path
is mostly pointless. In this scenario, additional WF defenses are
needed. Our results show that with a few hundreds of packets/cells
observed traffic splitting offers little to no defense on its own. As was
proposed by Henri et al. [23] and Wang et al. [60], splitting could
be combined and evaluated in conjunction with other WF defenses.
However, for as long as path selection and splitting algorithms are
likely to send virtually all traffic over a single path in some cases,
WF defenses may as well be evaluated without considering traffic
splitting at all.

5.4 Assuming Unobservable Paths in Tor

In general, one cannot know which path is unobservable to a pas-
sive adversary. For Tor, clients would pick at least the number of
guards as the number of paths used for traffic splitting (in line with
proposal 329 [18]). At the time of writing, the top-three countries
by aggregated guard probability are Germany (39%), US (11%), and
France (10%). By virtue of the guard probability, the vast majority
of users would end up picking guards outside of the country they
are connecting from. Nation state actors presumably observe such
traffic crossing their national borders and trivially link paths by
source IP-address, invalidating the unobservability assumption for
this powerful and highly relevant threat actor [11].

ISPs of users, unless users do multihoming (presumably rare
today, and will likely remain so for some time for mobile-first
users), can also observe all paths and trivially link them. The same
is true for WiFi-hotspots, mobile carriers, and more broadly the AS
the user is connecting from. For WF, the only entities negatively
impacted by traffic splitting are non-colluding non-overlapping
ASes on the paths between a clients connecting AS and each guard,
and the guards.

Arguably, the biggest win of traffic splitting is limiting the ob-
servability of paths by attackers operating as guards, because it is
straightforward to operate one for anyone with modest resources.
Because guard sets are kept by clients for months, traffic splitting
would have the benefit of only letting a malicious guard observe a

24

Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls

fraction of clients traffic (expected proportional to the size of the
guard set). Guards are also in a position to see more fine-grained
cell-level events in a circuit, while other network-level attackers
have to deal with multiplexed TLS between the client and guard
that may somewhat reduce the effectiveness of attacks [34, 44, 63].

6 RELATED WORK

Traffic splitting in Tor has its origins in the Conflux scheme by
AlSabah et al. [4]. Conflux proposed splitting traffic over two net-
work paths—built from the client to different guards and merged at
the exit. The goal was to improve performance by splitting traffic
proportional to the measured latency of each path. Conflux is stated
as the primary inspiration for proposal 329 by the Tor Project [18].
Earlier, Snader [57] showed that multiple circuits can improve per-
formance, highlighted by Conflux as important related work. Our
work only focuses on traffic splitting as a WF defense.

Traffic splitting as a WF defense for Tor was first proposed in
2019 [37] by De la Cadena et al. in poster-format followed by de-
tailed investigations in 2020 by De la Cadena et al. with TrafficSliver
BWR [36] and Henri et al. with HyWF [23]. Traffic splitting was
then in turn later generalized and expanded by Wang et al. [60]
with the CoMPS framework for any service supporting connection
migration. In addition to proposing the splitting strategies ana-
lyzed in this paper, De la Cadena et al., Henri et al., and Wang et al.
investigated a number of other potential splitting strategies, e.g.,
round-robin, fixed splitting probabilities, splitting by direction, and
weighted random. The splitting strategies were evaluated using
primarily k-fingerprinting [20] and DF [55] (Wang et al. in addi-
tion used Var-CNN) and rejected due to not significantly reducing
accuracy. This is similar to our methodology of focusing on WF
classifier accuracy.

Henri et al. and Wang et al. both propose to combine their traffic
splitting strategies with other WF defenses, in particular WTF-
PAD [35] and Walkie-Talkie [64]. All of their evaluations show a
significant reduction in attacker accuracy. Our results confirm that
combining traffic splitting with other WF defenses is needed.

De la Cadena et al. further present TrafficSliver-App, an appli-
cation layer defense that (when using its most successful splitting
strategy) sends each HTTP request over one of seven random cir-
cuits and achieves 57.34% accuracy against DF. We did not evaluate
TrafficSliver-App, but note that the accuracy is well above the
straw-man design of 1/7 accuracy. TrafficSliver-App only requires
client-side changes though—making it easier to implement—so it
may be interesting to consider as part of WF defenses.

More broadly, path selection is essential for providing anonymity
in anonymity networks, especially for low-latency anonymity net-
works like Tor [14]. For mix networks, Serjantov and Murdoch
already in 2005 considered splitting messages across network paths
[54]. For Tor, path selection can be optimized in different ways, such
as to take into account AS-level attackers [13], network conges-
tion [61], and optimizing for low-latency [3]. In general, optimizing
for any performance metric comes at a cost of anonymity, involving
trade-offs [33, 59]. Our work relates to what takes place after path
selection is done, and shows that if splitting/scheduling algorithms
use latency as a performance metric, then likely path selection
should as well.

Splitting Hairs and Network Traces

Juarez et al. [34] and Perry [47] critically evaluate simplified
assumptions surrounding the evaluation of WF attacks, e.g., closed-
vs-open world, front-page vs web-page fingerprinting, base-rate
concerns, and the absence of background traffic in collected network
traces, leading to a series of works investing some of the concerns
(e.g., [44, 49, 63]). In a sense, our work is a dual of these works,
where we focus on the key underlying assumption of unobservable
network paths made by a category of defenses rather than attacks.

7 CONCLUSIONS

In this paper we investigated the effectiveness of different types of
traffic splitting as a defense against improved Website Fingerprint-
ing (WF) attacks. We showed that our improved attack, Maturesc,
works effectively even when only a few hundreds cells/packets
are observable by the attacker. Further advances in Deep Learning
are expected to enable attacks that need even less observable data.
Given that so little data is needed for successful attacks, the risk of
sending traffic over multiple (potentially compromised) paths when
splitting may outweigh any potential gains. At least for all splitting
strategies we evaluated, none offered more protection than the
straw man defense of just uniformly randomly picking a path and
sending all traffic over it (see Sections 4 and 5.3). For HyWF and its
setting of two paths, the straw-man defense would at most see 50%
accuracy, Maturesc achieved 66.7%. For CoMPS with three paths,
the straw-man defense would achieve 33% accuracy, Maturesec got
76.0%. Finally, for TS BWRS with five paths, the straw-man defense
would have an accuracy of 20%, Maturesc achieved 53.8%. Clearly,
on average, the straw-man defense would offer superior protection
against a WF attacker in all those settings.

The weak threat model underpinning traffic splitting is that all
but one path used for communication is unobservable. This is a
strong assumption for anonymous communication [48]. Many rel-
evant threat actors, such as ISPs (of clients lacking multihoming)
and presumably nation state actors are likely to observe more than
one path or even all paths. Even ignoring the aforementioned argu-
ments, traffic splitting would not work as a defense in these cases.
It would be anyway necessary to deploy additional defenses against
such realistic, more powerful attackers that are squarely within
the threat model of Tor [11]. In fact, this is the traditional (non
traffic-splitting) setting of WF.

Since, in general, the considered traffic splitting strategies can-
not protect observable paths, additional WF defenses are needed.
We conclude that traffic splitting should primarily be seen as a
technique to increase performance, not a technique for defending
against WF attacks.

ARTIFACT AVAILABILITY

Datasets, documentation, and Python scripts for the Maturesc attack
and splitting simulations are available at:

https://github.com/m-bec/Splitting-Hairs-and-Network-Traces

ETHICAL CONSIDERATIONS

We believe that it is both ethical and in the interest of society
to make our improved attacks public, if anything because already
public WF attacks (like DF [55] and Var-CNN [6]) are comparable on
undefended traffic, i.e., the state of Tor and less defended protocols

25

WPES °22, November 7, 2022, Los Angeles, CA, USA

like WireGuard today. Our research is also focused on proposed
defenses: by improving the evaluation of defenses before they are
deployed we hope to contribute to the effective deployment of WF
defenses in the future.

ACKNOWLEDGEMENTS

The authors would like to thank Per Hurtig and Mike Perry for
helpful comments and discussion. This work has been funded in
part by Mullvad VPN and the Swedish Internet Foundation.

REFERENCES

[1] Kota Abe and Shigeki Goto. 2016. Fingerprinting attack on Tor anonymity using
deep learning. Proceedings of the Asia-Pacific Advanced Network 42 (2016), 15-20.
Daniel Agnew. 2020. Google Trends Reveals Surge in Demand for VPN.
https://www.namecheap.com/blog/vpn-surge-in-demand/.
Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. 2012. LASTor: A
Low-Latency AS-Aware Tor Client. In IEEE Symposium on Security and Privacy,
SP 2012, 21-23 May 2012, San Francisco, California, USA. IEEE Computer Society,
476-490. https://doi.org/10.1109/SP.2012.35
Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. 2013. The path
less travelled: Overcoming Tor’s bottlenecks with traffic splitting. In PETS.
[5] Apple. 2021. iCloud Private Relay Overview.
https://www.apple.com/privacy/docs/iCloud_Private_Relay
Overview_Dec2021.PDF.
Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2019. Var-CNN: A
Data-Efficient Website Fingerprinting Attack Based on Deep Learning. Proc. Priv.
Enhancing Technol. 2019, 4 (2019), 292-310. https://doi.org/10.2478/popets-2019-
0070
[7] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In ACM SIGSAC. 227-238. https://doi.org/10.1145/2660267.2660362
[8] Heyning Cheng and Ron Avnur. 1998. Traffic analysis of SSL encrypted web
browsing. Project paper, University of Berkeley (1998).
[9] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2018.
Anonymity Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low La-
tency - Choose Two. In IEEE SP. 108-126. https://doi.org/10.1109/SP.2018.00011
Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2020.
Comprehensive Anonymity Trilemma: User Coordination is not enough. Proc.
Priv. Enhancing Technol. 2020, 3 (2020), 356-383. https://doi.org/10.2478/popets-
2020-0056
Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security.
Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel.
In 24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Society.
Matthew Edman and Paul F. Syverson. 2009. As-awareness in Tor path selection.
In Proceedings of the 2009 ACM Conference on Computer and Communications
Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009, Ehab Al-Shaer,
Somesh Jha, and Angelos D. Keromytis (Eds.). ACM, 380-389. https://doi.org/10.
1145/1653662.1653708
Nick Feamster and Roger Dingledine. 2004. Location diversity in anonymity
networks. In Proceedings of the 2004 ACM Workshop on Privacy in the Electronic
Society, WPES 2004, Washington, DC, USA, October 28, 2004, Vijay Atluri, Paul F.
Syverson, and Sabrina De Capitani di Vimercati (Eds.). ACM, 66-76. https:
//doi.org/10.1145/1029179.1029199
Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. 2017. Measuring HTTPS Adoption on the Web. In 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, 1323
1338. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/felt
Simone Ferlin, Ozgii Alay, Olivier Mehani, and Roksana Boreli. 2016. BLEST:
Blocking estimation-based MPTCP scheduler for heterogeneous networks. In
2016 IFIP Networking Conference, Networking 2016 and Workshops, Vienna, Austria,
May 17-19, 2016. IEEE Computer Society, 431-439. https://doi.org/10.1109/
IFIPNetworking.2016.7497206
Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX
Association, 717-734. https://www.usenix.org/conference/usenixsecurity20/
presentation/gong

[2

3

—_
=t

—_
S

=
=

[11

[12]

(13

[14

[15

[16

[17

https://github.com/m-bec/Splitting-Hairs-and-Network-Traces
https://doi.org/10.1109/SP.2012.35
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1109/SP.2018.00011
https://doi.org/10.2478/popets-2020-0056
https://doi.org/10.2478/popets-2020-0056
https://doi.org/10.1145/1653662.1653708
https://doi.org/10.1145/1653662.1653708
https://doi.org/10.1145/1029179.1029199
https://doi.org/10.1145/1029179.1029199
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://doi.org/10.1109/IFIPNetworking.2016.7497206
https://doi.org/10.1109/IFIPNetworking.2016.7497206
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://www.usenix.org/conference/usenixsecurity20/presentation/gong

WPES ’22, November 7, 2022, Los Angeles, CA, USA

[18]

[19]

[20]

[21]

[22

[23

[24]

[25
[26

[27]
[28]

[29]

[30

[31]

[32]

[33]

[34]

[35]

[36]

[37

[38]

[40]

[41]

David Goulet and Mike Perry. 2020. Overcoming Tor’s Bottlenecks
with Traffic Splitting. /https://gitlab.torproject.org/tpo/core/torspec/-
/raw/main/proposals/329-traffic-splitting.txt.

Jamie Hayes and George Danezis. 2015. Guard Sets for Onion Routing. PETS
(2015).

Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., Thorsten Holz and Stefan Savage
(Eds.). USENIX Association, 1187-1203. https://www.usenix.org/conference/
usenixsecurity16/technical- sessions/presentation/hayes

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li.
2019. Bag of tricks for image classification with convolutional neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
558-567.

Sébastien Henri, Gines Garcia-Aviles, Pablo Serrano, Albert Banchs, and Patrick
Thiran. 2020. Protecting against Website Fingerprinting with Multihoming. PETS
(2020). https://doi.org/10.2478/popets-2020-0019

Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website finger-
printing: attacking popular privacy enhancing technologies with the multinomial
naive-bayes classifier. In CCSW.

Andrew Hintz. 2002. Fingerprinting Websites Using Traffic Analysis. In PET.
Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH).
RFC 8484. https://doi.org/10.17487/RFC8484

James K Holland and Nicholas Hopper. 2022. RegulaTor: A Straightforward
Website Fingerprinting Defense. PETS (2022).

Jeremy Howard and Sylvain Gugger. 2020. Fastai: a layered API for deep learning.
Information 11, 2 (2020), 108.

Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul E.
Hoffman. 2016. Specification for DNS over Transport Layer Security (TLS). RFC
7858. https://doi.org/10.17487/RFC7858

Christian Huitema, Sara Dickinson, and Allison Mankin. 2022. DNS over Dedi-
cated QUIC Connections. RFC 9250. https://doi.org/10.17487/RFC9250

Per Hurtig, Karl-Johan Grinnemo, Anna Brunstrém, Simone Ferlin, Ozgu Alay,
and Nicolas Kuhn. 2019. Low-Latency Scheduling in MPTCP. IEEE/ACM Trans.
Netw. 27, 1 (2019), 302-315. https://doi.org/10.1109/TNET.2018.2884791

Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. https://doi.org/10.17487/RFC9000

Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul F. Syverson.
2013. Users get routed: traffic correlation on tor by realistic adversaries. In 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung (Eds.). ACM, 337-348. https://doi.org/10.1145/2508859.2516651
Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.).
ACM, 263-274. https://doi.org/10.1145/2660267.2660368

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2016. Toward an Efficient Website Fingerprinting Defense. In ESORICS. 27-46.
https://doi.org/10.1007/978-3-319-45744-4_2

Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian
Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2020.
TrafficSliver: Fighting Website Fingerprinting Attacks with Traffic Splitting. In
CCS.

Wladimir De la Cadena, Asya Mitseva, Jan Pennekamp, Jens Hiller, Fabian Lanze,
Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2019. POSTER: Traffic
Splitting to Counter Website Fingerprinting. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz (Eds.). ACM, 2533-2535. https://doi.org/10.1145/3319535.
3363249

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278—
2324.

Marc Liberatore and Brian Neil Levine. 2006. Inferring the source of encrypted
HTTP connections. In CCS.

Yeon-sup Lim, Erich M. Nahum, Don Towsley, and Richard J. Gibbens. 2017.
ECF: An MPTCP Path Scheduler to Manage Heterogeneous Paths. In Proceedings
of the 13th International Conference on emerging Networking EXperiments and
Technologies, CONEXT 2017, Incheon, Republic of Korea, December 12 - 15, 2017.
ACM, 147-159. https://doi.org/10.1145/3143361.3143376

Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.
Chang, and Roberto Perdisci. 2011. HTTPOS: Sealing Information Leaks
with Browser-side Obfuscation of Encrypted Flows. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2011, San Diego,

26

[42

[43

S
&

[45

[46

[47]

S
&

[49

[50]

[51

[52

[54

[55]

‘o
o

[57

[58

(59]

(0]

[62

Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls

California, USA, 6th February - 9th February 2011. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-
leaks-with-browser-side- obfuscation- of-encrypted-flows

Jonathan Magnusson. 2021. Evaluation of a Proposed Traffic-Splitting Defence for
Tor: Using Directional Time and Simulation Against TrafficSliver. Master’s thesis.
Karlstad University, Department of Mathematics and Computer Science.

Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A Bespoke Website
Fingerprinting Defense. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, WPES 2014, Scottsdale, AZ, USA, November 3, 2014, Gail-Joon
Ahn and Anupam Datta (Eds.). ACM, 131-134. https://doi.org/10.1145/2665943.
2665950

Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In NDSS.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website fingerprinting in onion routing based anonymization networks. In Pro-
ceedings of the 10th annual ACM workshop on Privacy in the electronic society,
WEPES 2011, Chicago, IL, USA, October 17, 2011, Yan Chen and Jaideep Vaidya
(Eds.). ACM, 103-114. https://doi.org/10.1145/2046556.2046570

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Mike Perry. 2013. A Critique of Website Traffic Fingerprinting Attacks.
https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks.
Andreas Pfitzmann and Marit Hansen. 2010. A terminology for talking about
privacy by data minimization: Anonymity, unlinkability, undetectability, unob-
servability, pseudonymity, and identity management.

Tobias Pulls and Rasmus Dahlberg. 2020. Website Fingerprinting with Website
Oracles. PETS (2020).

Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. Tik-Tok: The Utility of Packet Timing in
Website Fingerprinting Attacks. Proc. Priv. Enhancing Technol. 2020, 3 (2020),
5-24. https://doi.org/10.2478/popets-2020-0043

Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and Roya Ensafi. 2022. VPNa-
lyzer: Systematic Investigation of the VPN Ecosystem. In Network and Distributed
System Security.

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In
NDSS. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/
ndss2018_03A-1_Rimmer_paper.pdf

Vera Rimmer, Theodor Schnitzler, Tom van Goethem, Abel Rodriguez Romero,
Wouter Joosen, and Katharina Kohls. 2022. Trace Oddity: Methodologies for
Data-Driven Traffic Analysis on Tor. Proc. Priv. Enhancing Technol. 2022, 3 (2022),
314-335. https://doi.org/10.56553/popets-2022-0074

Andrei Serjantov and Steven J. Murdoch. 2005. Message Splitting Against the
Partial Adversary. In Privacy Enhancing Technologies, 5th International Workshop,
PET 2005, Cavtat, Croatia, May 30-June 1, 2005, Revised Selected Papers (Lecture
Notes in Computer Science, Vol. 3856), George Danezis and David M. Martin Jr.
(Eds.). Springer, 26-39. https://doi.org/10.1007/11767831_3

Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In CCS.

Leslie N Smith. 2018. A disciplined approach to neural network hyper-parameters:
Part 1-learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820 (2018).

Robin A Snader. 2009. Path selection for performance-and security-improved onion
routing. University of Illinois at Urbana-Champaign.

Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padman-
abhan, and Lili Qiu. 2002. Statistical Identification of Encrypted Web Browsing
Traffic. In IEEE S&P.

Chris Wacek, Henry Tan, Kevin S. Bauer, and Micah Sherr. 2013. An Empirical
Evaluation of Relay Selection in Tor. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA, February
24-27, 2013. The Internet Society. https://www.ndss-symposium.org/ndss2013/
empirical-evaluation-relay-selection-tor

Mona Wang, Anunay Kulshrestha, Liang Wang, and Prateek Mittal. 2022. Lever-
aging strategic connection migration-powered traffic splitting for privacy. PETS
(2022).

Tao Wang, Kevin S. Bauer, Clara Forero, and Ian Goldberg. 2012. Congestion-
Aware Path Selection for Tor. In Financial Cryptography and Data Security - 16th
International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012,
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7397), Angelos D.
Keromytis (Ed.). Springer, 98-113. https://doi.org/10.1007/978-3-642-32946-3_9
Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In USENIX Se-
curity. 143-157. https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/wang_tao

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.2478/popets-2020-0019
https://doi.org/10.17487/RFC8484
https://doi.org/10.17487/RFC7858
https://doi.org/10.17487/RFC9250
https://doi.org/10.1109/TNET.2018.2884791
https://doi.org/10.17487/RFC9000
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2660267.2660368
https://doi.org/10.1007/978-3-319-45744-4_2
https://doi.org/10.1145/3319535.3363249
https://doi.org/10.1145/3319535.3363249
https://doi.org/10.1145/3143361.3143376
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/2046556.2046570
https://doi.org/10.2478/popets-2020-0043
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
https://doi.org/10.56553/popets-2022-0074
https://doi.org/10.1007/11767831_3
https://www.ndss-symposium.org/ndss2013/empirical-evaluation-relay-selection-tor
https://www.ndss-symposium.org/ndss2013/empirical-evaluation-relay-selection-tor
https://doi.org/10.1007/978-3-642-32946-3_9
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao

Splitting Hairs and Network Traces

[63]

[64]

Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. PoPETs 2016, 4 (2016), 21-36. https://doi.org/10.1515/popets-
2016-0027

Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and
Thomas Ristenpart (Eds.). USENIX Association, 1375-1390. https://www.usenix.
org/conference/usenixsecurity17/technical- sessions/presentation/wang-tao

27

WPES °22, November 7, 2022, Los Angeles, CA, USA

A REGULAR WF EFFECTIVENESS

We briefly evaluated RegulaTor-heavy by Holland and Hopper [27]
using Maturesc on the Wang et al. [62] dataset, for which they
reported an accuracy of 17.8%. Maturesc achieved 24.1% with default
parameters used for the real-world dataset. This comparatively
small increase is a testament to how WF defenses not based on
traffic splitting are more robust against modern Deep Learning
attacks, while also demonstrating that Maturesc is not only useful
against traffic splitting defenses.

https://doi.org/10.1515/popets-2016-0027
https://doi.org/10.1515/popets-2016-0027
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao

	Abstract
	1 Introduction
	2 Background
	2.1 Tor
	2.2 Website Fingerprinting
	2.3 Deep Learning

	3 Understanding Traffic Splitting
	3.1 Splitting Strategies
	3.2 Dataset Analysis

	4 Improved Deep Learning Attacks
	4.1 Setup
	4.2 Journey
	4.3 Results

	5 Discussion
	5.1 Finding Optimal Hyperparameters
	5.2 What is Wrongly Classified?
	5.3 On Traffic Splitting as a Defense
	5.4 Assuming Unobservable Paths in Tor

	6 Related Work
	7 Conclusions
	References
	A Regular WF Effectiveness

