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Abstract
An increasing number of mental health services are now offered through mobile health
(mHealth) systems, such as in mobile applications (apps). Although there is an unprece-
dented growth in the adoption of mental health services, partly due to the COVID-19
pandemic, concerns about data privacy risks due to security breaches are also increasing.
Whilst some studies have analyzed mHealth apps from different angles, including secu-
rity, there is relatively little evidence for data privacy issues that may exist in mHealth apps
used for mental health services, whose recipients can be particularly vulnerable. This paper
reports an empirical study aimed at systematically identifying and understanding data pri-
vacy incorporated in mental health apps. We analyzed 27 top-ranked mental health apps
from Google Play Store. Our methodology enabled us to perform an in-depth privacy anal-
ysis of the apps, covering static and dynamic analysis, data sharing behaviour, server-side
tests, privacy impact assessment requests, and privacy policy evaluation. Furthermore, we
mapped the findings to the LINDDUN threat taxonomy, describing how threats manifest on
the studied apps. The findings reveal important data privacy issues such as unnecessary per-
missions, insecure cryptography implementations, and leaks of personal data and credentials
in logs and web requests. There is also a high risk of user profiling as the apps’ development
do not provide foolproof mechanisms against linkability, detectability and identifiability.
Data sharing among 3rd-parties and advertisers in the current apps’ ecosystem aggravates
this situation. Based on the empirical findings of this study, we provide recommendations
to be considered by different stakeholders of mHealth apps in general and apps developers
in particular. We conclude that while developers ought to be more knowledgeable in con-
sidering and addressing privacy issues, users and health professionals can also play a role
by demanding privacy-friendly apps.
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1 Introduction

The ongoing COVID-19 pandemic has dramatically increased the number of mental
health support services provided using applications developed for mobile devices. Such
applications are called mental health apps, a subcategory of mobile health (mHealth)
systems. Examples are chatbots (e.g., Wysa and Woebot) and text-a-therapist platforms
(e.g., TalkSpace and BetterHelp) that can be readily downloaded from apps stores, e.g.,
iOS or Android, and used for seeking and/or providing help for mental health well-
being (ECHAlliance 2020; Heilweil 2020). Even before the COVID-19 pandemic, these
apps have made the provision of mental health services more accessible to the people in
need, by lowering cost, eliminating traveling, saving time and reducing the fear of social
stigma/embarrassment attached to psychological treatment (Bakker et al. 2016; Price et al.
2014). Furthermore, mental health apps increase the availability of mental health services
(“anywhere and anytime”) to users and provide additional functionalities such as real-
time monitoring of users (Donker et al. 2013). Research also shows that mental health
apps improve users’ autonomy and increase self-awareness and self-efficacy (Prentice and
Dobson 2014) leading to better health outcomes.

On the other hand, studies on the security of mHealth apps, in general, have shown that
many apps are insecure, threatening the privacy of millions of users (Papageorgiou et al.
2018). Insecure apps can be the prime targets of cyber attackers since personal health infor-
mation is of great value for cyber-criminals (IBM 2020). There is also increasing evidence
pointing to a widespread lack of security knowledge among mHealth developers, which is
usually linked to different issues, such as insufficient security guidelines, tight budgets and
deadlines, lack of security testing, and so on Aljedaani et al. (2020) and Aljedaani et al.
(2021). App developers also heavily rely on a range of SDKs for analytics and advertising,
exacerbating the risks of data linkage, detectability, and re-identification of users in such
ecosystems (Solomos et al. 2019).

The real or perceived security risks leading to data privacy compromises are particularly
concerning for mental health apps because they deal with highly sensitive data, in contrast
to other general mHealth apps, e.g., for fitness and wellness. The stigma around mental ill-
nesses also increases the potentially negative impacts on users in case of privacy violations.
For instance, the mere link of users to a given app can reveal that they might be having some
psychological problems (e.g., anxiety, depression, or other mental health conditions), which
may make mental health apps users feel more vulnerable and fragile.

The above-mentioned mHealth apps’ data privacy concerns warrant evidence-based
inquiries for improved understanding and actionable measures as there is a paucity of empir-
ical research on understanding the full range of privacy threats that manifest in mental health
apps; the existing research has only focused on privacy policy analysis (O’Loughlin et al.
2019; Powell et al. 2018; Robillard et al. 2019; Rosenfeld et al. 2017), or 3rd-party data
sharing (Huckvale et al. 2019). Hence, it is important to systematically identify and under-
stand the data privacy problems that may exist in mHealth apps as such a body of knowledge
can better inform the stakeholders in general and apps developers in particular.

In this study, we specifically focus on the subgroup of mHealth apps designed for mental
health and psychological support. This study was stimulated by one research question: What
is the current privacy status of top-ranked mental health apps? Here, we adopt a broad
definition of privacy that encompasses security and data protection and with emphasis on
the negative privacy impacts on data subjects.
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The methodology for this investigation relied on a range of penetration testing tools and
methods for systematic analysis of privacy policies and regulatory compliance artefacts.
We selected a sample of 27 top-ranked mental health apps from the Google Play Store
that collected, stored and transmitted sensitive personal health information of users. We
subjected the apps to static and dynamic security analysis and privacy analysis using various
tools. Particular focus was put on using the Mobile Security Framework (MobSF), which
provides a wide range of static and dynamic analyzing tools. Other tools such as Drozer,
Qualys SSL Labs, WebFX, CLAUDETTE and PrivacyCheck were also employed in this
study. Furthermore, we documented the privacy issues that we identified for each app by
mapping them to the well-known LINDDUN privacy threat categories (i.e., Linkability,
Identifiability, Non-repudiation, Detectability, Disclosure of information, Unawareness and
Non-compliance) (Deng et al. 2011).

This study’s findings reveal alarming data privacy problems in the mHealth apps used by
millions of users, who are likely to expect data privacy protection built in such apps. Our
study’s main findings include:

– Most apps pose linkability, identifiability, and detectability threats. This is a risk as
some 3rd-parties can link, re-identify and detect the users’ actions and data. Unaware-
ness is also related to such threats, given that apps do not explain (e.g., in the privacy
policy) the risks posed by targeted advertising on people experiencing mental prob-
lems and the risk of re-identification and disclosure of mental health conditions (e.g.,
anxiety, depression).

– Only 3/27 app developers responded to our query regarding Privacy Impact Assess-
ments (PIAs), mentioning that they had performed a PIA on their app, and only
two of them had made the PIA reports public. That suggests a high non-compliance
rate since mHealth apps tend to pose high-risk to the rights and freedoms of
users.

– 24/27 app privacy policies were found to require at least college-level educa-
tion to understand them. The remaining 3/27 apps needed 10th–12th-grade level
education to understand them. Such findings also suggest further problems with
regards to non-compliance, leading to data subject’s unawareness about the nature
of the data processing activities in mental health apps, data controllers, and service
providers.

– Static analysis reports show that 20/27 apps are at critical security risk, and 4/27
apps are at high security risk. Many of the issues are revealed through a simple
static analysis, such as the use of weak cryptography. Dynamic analysis also shows
that some apps transmit and log personal data in plain-text. Four apps can leak such
sensitive data to 3rd-parties, exacerbating risks of (re-)identification and information
disclosure.

We have also synthesised the main findings and mapped them according to the LIND-
DUN privacy threat taxonomy (Deng et al. 2011). The findings highlight the prevalence
of data privacy problems among the top-ranked mental health apps. It is clear that compa-
nies and software developers should pay more attention to privacy protection mechanisms
while developing mHealth apps. At the same time, users and mental health practitioners
should demand for (at least) compliance with privacy standards and regulations. Based on
the findings, we offer some recommendations for mHealth apps development companies,
apps developers, and other stakeholders.
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2 Background

2.1 Privacy (and Security)

Until quite recently, the term privacy was treated under the umbrella of security. However,
this situation has changed with data privacy gaining significance and prominence of its
own. It is essential to clarify the difference between privacy and security for the research
reported in this paper. In this study, we are mainly interested in data privacy that can be
compromised as a result of security breaches. The concept of privacy comprises several
aspects such as informed consent, transparency, and compliance, that are not necessarily
connected to security. Whilst privacy is protected through security measures, privacy cannot
be satisfied solely on the basis of managing security (Brooks et al. 2017). For such reasons,
we regard security as part of a broad conceptualisation of privacy, which includes protecting
personal data. As a consequence, the study design reflects this contrast between privacy and
security. That is, apart from traditional security testing, this study also evaluates the apps’
privacy policies, makes requests for privacy impact assessments, and gathers the developers’
feedback on raised issues.

2.2 The ecosystem of mental health Apps

Today’s information systems are built upon a wide range of services involving multiple
stakeholders. Figure 1 presents a simplified Data Flow Diagram (DFD) that can help a
reader to identify the main actors in the mental health apps ecosystem for discussing the
privacy issues. As shown in Fig. 1, users (i.e., data subjects) have their data collected by
mHealth apps and transmitted to the companies (i.e., data controllers) as well as to the other
service providers (i.e., data processors). Privacy considerations should be made for every

Fig. 1 Simplified Data Flow Diagram (DFD) for the apps’ ecosystem with an overview of the data subjects,
data controllers, data processors, and privacy threats to consider
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step of the DFD (i.e., a detailed DFD created by apps developers) in which personal data is
processed, stored and transmitted.

First, as shown in Fig. 1, the personal data flows from an app to a company-owned server.
Here developers have a greater control on the system’s design so that the main concern
is the protection of data at-rest, in-transit and in-use. Developers can fully understand all
aspects of the company-owned infrastructure (i.e., client and server sides). Thus, they can
transparently communicate the nature of personal data collection and processing to its users.
Data flows within this trusted boundary of the company-owned systems tend to be less
problematic regarding privacy. However, it is worth stressing that privacy goes beyond data
protection, so other privacy aspects should be considered, such as unawareness and non-
compliance threat categories.

Second, personal data flows to many 3rd-party service providers that support the collec-
tion and processing of the users’ data. Most companies rely (often entirely) on public cloud
infrastructures (e.g., Amazon AWS, Google Cloud) to maintain their servers and databases,
as well as use many APIs that provide services for the apps to function (e.g., CrashAnalyt-
ics, RevenueCat, PayPal, Firebase). In such cases, developers have limited control over the
system, and the processing activities are not fully transparent anymore. Developers have to
trust service providers, and a shared responsibility model ensues. Thus, the data flows going
to service providers should be carefully scrutinized. This concern is particularly critical in
the context of mental health apps since the personal data is considered highly sensitive, as
previously mentioned.

Adding to the problem, companies often rely on advertising as a source of monetary
income for their apps, and mental health apps are no exception in such business mod-
els. Thus, a user’s information provided for using an app may be distributed to the app
developer(s), to 3rd-party sites used for functionality reasons, and to unidentified 3rd-party
marketers and advertisers (Giota and Kleftaras 2014). Whilst users and health professionals
are expected to be aware of such risks, it is important that companies that develop mHealth
apps are also transparent about the business model in which they operate. Users already
have little control over their data that resides within the developers’ systems, let alone the
data shared with 3rd-parties, such as mobile advertising platforms and data brokers.

2.3 The LINDDUN threat taxonomy

LINDDUN is a well-known privacy threat modelling framework (Deng et al. 2011), recently
included in the NIST Privacy Framework (NIST 2022). Given the increasing popularity of
LINDDUN framework for systematically analyzing privacy threats during software systems
development, we decided to use LINDDUN to analyze and map the findings from our study.
The LINDDUN privacy threat analysis methodology consists of three main steps: (1) mod-
elling the systems, using DFDs and describing all data; (2) eliciting privacy threats, iterating
over the DFD elements to identify threats using a taxonomy; and, (3) managing the threats,
finding suitable solutions to tackle the uncovered threats.

We are mainly interested in the LINDDUN threat taxonomy, which can be used as a
standard reference for discussing privacy threats:

– Linkability: an adversary can link two items of interest (IOI) without knowing the iden-
tity of the data subject(s) involved (e.g., service providers are able to link data coming
from different apps about the same data subject).
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– Identifiability: an adversary can identify a data subject from a set of data subjects
through an IOI (e.g., service providers can re-identity a user based on leaked data,
metadata, and unique IDs).

– Non-repudiation: the data subject cannot deny a claim, such as having performed an
action or sent a request (e.g., data and transactions stored by companies and service
providers cannot be deleted, revealing the users’ actions).

– Detectability: an adversary can distinguish whether an IOI about a data subject exists
or not, regardless of being able to read the contents itself (e.g., attackers can detect that
a user’s device is communicating with mental health services).

– Disclosure of information: an adversary can learn the content of an IOI about a data
subject (e.g., data is transmitted in plain-text).

– Unawareness: the data subject is unaware of the collection, processing, storage, or
sharing activities (and corresponding purposes) of the data subject’s data (e.g., the com-
panies’ privacy policy is not easy to understand and transparent about the nature of data
processing).

– Non-compliance: the processing, storage, or handling of personal data is not compliant
with legislation, regulation, and policy (e.g., a company fails to perform a PIA for a
privacy-sensitive systems).

Each of these seven threat categories is composed by distinct threat trees, forming the
complete threat taxonomy. For instance, the Linkability category is subdivided into four
threat trees: (1) Linkability of Entity (L e); (2) Linkability of Data Flows (L df); (3) Link-
ability of Data Store (L ds); and, Linkability of Process (L p). Each of the threat trees is
modeled in a number of branches in which the leaf nodes refer to a specific threat. For
instance, if we take the threat tree of Linkability of Data Flow (L df), it develops in two
main branches, i.e., Linkability of transactional data (transmitted data) (L df1) and Linka-
bility of contextual data (metadata) (L df2). These two branches are then divided into other
more specific threats, e.g., data flow not fully protected (L df6) or linkability based on IP
address (L df8). The other threat trees, i.e., Linkability of Entity and Linkability of Data
Store, follow the same overall structure of branches and leaf nodes.

However, not all of the main threat categories are composed of multiple threat trees. The
category of Unawareness, for example, contains only the threat tree for Unawareness of
Entity (U e); this is the only relevant, i.e., only an entity can be unaware, not a data flow,
data store, or process. And particularly for the threat tree of Information Disclosure, the
LINDDUN methodology actually borrows its threat trees from Microsoft’s security threat
model, STRIDE (Howard and Lipner 2006).

For a complete account of all the LINDDUN threat categories, threat trees, and specific
threats, we refer the reader of this article to the catalogue compiled in Wuyts et al. (2014).
Some familiarity with LINDDUN is beneficial since we refer to specific threats through-
out the paper, e.g., when describing how LINDDUN was incorporated into our research
methodology for this study and when discussing the main findings and results.

2.4 Related work

2.4.1 Security and privacy of mHealth Apps in general

The broad category of mHealth apps includes several types of apps, such as wellness and
fitness apps (e.g., calorie counters, exercise trackers), personal health apps (e.g., diabetes
monitors, symptom checkers), and medical resource apps (e.g., drugs catalogues, medical
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terminology libraries). In the past years, many studies have analyzed the security and pri-
vacy of mHealth apps in general. Some studies focus on the analysis of the more “visible”
aspects of the mHealth apps, looking into their privacy policies, user interfaces, documen-
tation, and websites (Adhikari et al. 2014; Sampat and Prabhakar 2017; Hutton et al. 2018;
Shipp and Blasco 2020).

For instance, the work of Hutton et al. (2018) contributed with a set of heuristics for eval-
uating privacy characteristics of self-tracking apps. They introduced 26 heuristics under the
four categories of (a) notice and awareness, (b) choice and consent, (c) access and participa-
tion, (d) social disclosure usability. A group of 4 HCI and software engineering researchers
then analyzed 64 mHealth apps for self-tracking using these heuristics by reviewing the
apps’ user interface, terms of service, and privacy policies, reaching a moderate agreement
(kappa = .45) (Hutton et al. 2018). This work mentions that disagreements between raters
mainly arose from confusion over the privacy policies that are often unclear regarding lan-
guage and intent. We can also add that privacy lawyers would be better suited for this type of
analysis because the apps’ terms of service and privacy policies are legal artefacts. Nonethe-
less, their results show that most apps performed poorly against the proposed heuristics,
the app maturity was not a predictor for enhanced privacy; and apps that collected health
data (e.g., exercise and weight) performed worse than other self-tracking apps (Hutton et al.
2018). Adhikari et al. (2014) and Sampat and Prabhakar (2017) have also warned about the
issues concerning insufficient privacy policies (e.g., unclear or non-existent), lack of data
access and deletion functions, and opaqueness in the data sharing with 3rd-parties. Shipp
and Blasco (2020) also looked into menstrual apps in order to show that developers often
fail to consider menstruation and sex data as especially sensitive, mentioning only common
pieces of personal data (e.g., name, email) in their privacy policies.

Other studies have privileged the “invisible” aspects of mHealth apps’ security and
privacy, e.g., using pentesting tools to analyze the apps’ code, network traffic, logs, and
generated data (He et al. 2014; Papageorgiou et al. 2018; Hussain et al. 2018; LaMalva
and Schmeelk 2020). The earlier work of He et al. (2014) expressed concerns about the
widespread use of unsecured Internet communication and 3rd-party servers by mHealth
apps. Papageorgiou et al. (2018) carried out a more in-depth security and privacy anal-
ysis, revealing several vulnerabilities, such as unnecessary permissions, use of insecure
cryptography, hard-coding and logging of sensitive information, insecure server’s SSL con-
figuration, and transmission of personal data to 3rd-parties. Similar threats have also been
identified in other studies as reported by Hussain et al. (2018) and LaMalva and Schmeelk
(2020).

The above-mentioned studies have contributed significantly to the researchers’ and
practitioners’ understanding of security and privacy threats in mHealth apps in general.
However, these studies often analyze mHealth apps in wellness and fitness categories
instead of apps with highly sensitive data such as those in the mental health area. From
2020 to 2022, a sharp increase of users have turned to mental health apps as an effect of
the COVID-19 pandemic; this context motivated our research team to perform this study.
Nonetheless, even after the pandemic, this trend will continue with the increased adoption
of mental health services supported by mHealth technologies.

2.4.2 Security and privacy of mental health Apps

As shown in Table 1, we identified eight studies related to the security and privacy of men-
tal health apps. However, the existing related work has a limited scope of analysis. Most
researchers focus only on the apps’ privacy policies (O’Loughlin et al. 2019; Powell et al.
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2018; Robillard et al. 2019; Rosenfeld et al. 2017). Another work investigates only the apps’
permissions (Huang and Bashir 2017), or the combination of apps’ permissions and pri-
vacy policies (Parker et al. 2019). Another study (Muchagata and Ferreira 2019) proposes a
scope of analysis to check for GDPR compliance, i.e., assessing the types of collected data,
apps’ permissions, and evidence of consent management, data portability and data deletion
features. Such approaches mostly reveal Unawareness and Non-compliance issues, missing
the other categories of privacy threats. That means their results do not have the depth of
penetration tests to identify the presence of the concrete privacy threats.

One study has also examined the apps’ network traffic and data transmissions, in addition
to assessing the privacy policies (Huckvale et al. 2019). Looking into the network traffic
enabled the identification of data that is transmitted to 3rd-parties, such as marketing and
advertising services. To some extent, this study may cover all LINDDUN threat categories,
but it misses many branches in the LINDDUN threat trees. For instance, logs and stored data
are not inspected for data leaks and weak access control; nor is the reverse engineered code
reviewed for insecure coding. These types of inspections are important in order to achieve
breadth and depth of privacy analysis.

In this work, we employed an extensive assessment framework for the privacy analysis
of mental health apps, detailed in Section 3. In brief, our privacy analysis work included
a series of penetration tests, with static and dynamic analysis, inspecting apps’ permis-
sions, network traffic, identified servers, reverse-engineered code, databases and generated
data, which had not been explored in the related work shown in Table 1. Furthermore, the
proposed privacy analysis also involves communication with companies and software devel-
opers by requesting the PIAs of the apps and discussing findings through the responsible
disclosure process.

3 Methodology

This section presents the methodology used for the privacy assessment of the mental health
apps. Figure 2 gives an overview of the main processes, specific steps, and tools used
throughout the study.

3.1 Apps selection process

For this study, we selected mobile applications developed for Android devices that can be
downloaded from Google Play Store. The initial identification of potential apps for the
study was performed using the google-play-scraper Node.js module1, essentially
searching for free mental health apps in English (see Fig. 2), and setting the location to
Australia.

This search resulted in 250 apps as 250 is the default maximum number set by Google
Play Store. In this study, we are particularly interested in top-ranked mental health apps.
The main reason for focusing on top-ranked apps is that we sought to concentrate efforts on
the most popular mental health apps, in which privacy impacts may affect millions of users.
In order to select only the top-ranked apps, we introduced the following refinement criteria
during the app selection process: apps should have at least 100K downloads, rating above 4

1The google-play-scraper is a Node.js module to scrape application data from the Google Play store.
Website: https://www.npmjs.com/package/google-play-scraper

https://www.npmjs.com/package/google-play-scraper
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Fig. 2 An overview of the methodology used for investigating the privacy issues in mental health apps

stars, and categorized as MEDICAL or HEALTH AND FITNESS. This refinement reduced
our sample to 37 Android apps.

We also wanted to limit our analysis to apps that require health and/or personal data
as inputs in order to be functional and transmit users’ data to a remote host. That is, to
avoid analyzing apps data do not collect any personal data, e.g., a mindfulness app that
only plays music would most likely have fewer privacy impacts. To identify these types of
apps, we manually inspected the apps to figure out whether they store and transmit personal
data of their users. This process was carried by two researchers that jointly tested the apps
and reached a consensus on whether to include or exclude the app from the study. There
were no disagreements between the researchers in this step. This manual analysis included
several tasks such as downloading the apps, reading their descriptions, creating and using
dummy accounts to use the apps, entering information and checking apps’ functionalities.
The analysis stopped once we gathered sufficient evidence. That is, if an app collects and
stores or transmits at least one item of personal data (e.g., username, password, email, mood
levels, journal entry), we would consider this app for further analysis. We adopted this
low threshold for personal data collection because we assumed that even if an app adopted
stringent data minimisation strategies, there would still be potential privacy risks given the
rather sensitive context of the mental health apps.

This analysis identified nine apps that do not collect and transmit personal/health data of
users. Also, one of the apps provided a forum and chatting functionalities to users (e.g., to
discuss problems that they face or create support groups). The analysis of this app would
reveal information about other users on the platform. The mere collection of personal data
of other users (i.e., usernames, posts, replies) would require a complete ethical application
to address potential privacy issues. Therefore, we omitted these 10 apps from our analysis
and selected the remaining 27 apps to perform the privacy-centred security analysis.
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3.2 Privacy analysis process

As shown in Fig. 2, after filtering the 27 apps to perform the analysis, we performed static
and dynamic security analysis to identify security vulnerabilities of the shortlisted men-
tal health apps. We also used Qualys SSL to evaluate all the servers identified during the
dynamic security analysis. Altogether, these three initial steps of the Privacy Analysis Pro-
cess are mostly focused on the threats related to linkability, identifiability, non-repudiation,
detectatbility and disclosure of information. However, unawareness and non-compliance
threats are also detected here but to a lesser extent, e.g., when analyzing apps’ permissions
and manifest files.

In parallel, we also sent emails to all developers, companies or DPOs requesting the
PIA reports of the studied apps. A readability analysis of the apps’ privacy policies was
conducted, and the apps were analyzed using AI-enabled tools to identify unfair clauses and
points of non-compliance. Hence, these remaining steps mainly targeted threat categories
of unawareness and non-compliance. All steps of the Privacy Analysis Process are detailed
in the next sub-sections.

During the study, the researchers used two mobile phones while selecting the apps, an
OnePlus 3 (Snapdragon 820, 6GB RAM) and a Moto G4 (Snapdragon 617, 6GB RAM).
We also used two laptops: HP Pavilion 15t (Core i7, 16GB RAM) and a Asus X555U (Core
i7, 8GB RAM), with Windows 10 as operating system.

3.2.1 Static security analysis

We performed the static analysis using an open-source analysis tool called MobSF, which
is known for providing a convenient and easy to use fully automated framework for pen-
testing 2. MobSF is widely used by security researchers for performing security analysis of
mobile applications (Papageorgiou et al. 2018). Furthermore, previous research has shown
MobSF’s capability for identifying a wide range of Android security issues (Ranganath and
Mitra 2020).

To perform the static analysis, we downloaded the APK file for each app and analyzed
it using the MobSF static analyzer. This analysis reveals various details about each app,
e.g., including the apps’ average Common Vulnerability Scoring System (CVSS) Score
(FIRSTOrg 2019), trackers, certificates, android permissions, hard-coded secrets, and URLs
etc.

One of the limitations of this type of analysis is that MobSF may report a considerable
amount of false positives related to some vulnerabilities (Papageorgiou et al. 2018). There-
fore, based on the initial results obtained by MobSF, we further performed the following
checks to verify the issues reported by MobSF.

– Manually evaluate whether or not a “dangerous” permission is required to serve the
app’s purpose. For that, MobSF looks into the protection level of a permission that may
be specified as dangerous3.

2Mobile Security Framework (MobSF) is an automated, all-in-one mobile application (Android/iOS/
Windows) pen-testing, malware analysis and security assessment framework capable of performing static
and dynamic analysis. Website: https://mobsf.github.io/Mobile-Security-Framework-MobSF/
3Android’s documentation for the class Manifest.permission. Website: https://developer.android.com/
reference/android/Manifest.permission

https://mobsf.github.io/Mobile-Security-Framework-MobSF/
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
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– Manually analyze the code snippets that were reported to use insecure random number
generators, insecure ciphers and insecure cipher modes.

– Manually checked the code snippets that used IvParameterSpec to test whether
Initializing Vectors (IVs) have been correctly used.

The manual analysis process was performed by two researchers that continuously
reviewed, discussed and documented the findings for each app. This analysis is based on
expert knowledge, i.e., two privacy and security experts with experience in secure program-
ming, mobile security, and mobile and web development. Both researchers jointly read and
discussed the static analysis reports generated by MobSF that flagged potential vulnerabili-
ties. Based on our assessment, the relevant issues were then compiled in a separate document
listing all the problems for a given app. This manual process occurred in multiple iterations,
repeatedly reading and analyzing the data, discussing potential vulnerabilities, and decid-
ing whether or not to mark it as a real issue. The same approach was also used during the
dynamic analysis to inspect the apps’ logs, network traffic, generated data and databases,
further discussed as follows.

3.2.2 Dynamic security analysis

As the next step, we performed the dynamic analysis of the apps. Dynamic Analysis is a
black-box security testing methodology that analyzes an app by running it and performing
potentially malicious operations on it. For performing dynamic analysis, we used Geny-
motion Android emulator4, MobSF dynamic analyzer and Drozer5. The rationale for using
MobSF and Drozer is that these frameworks are among the most popular and widely used
dynamic analyzers in the field. While MobSF and Genymotion enabled us to emulate the
apps, run a series of security checks, and collect various data (e.g., logs, network traffic,
databases), Drozer simulated a rogue application that runs attack scripts against a target app.
Only 19 apps were subjected to the dynamic analysis in this step as the other eight apps were
not compatible to run on the Android emulator with MobSF. One common cause for this
incompatibility is that the app is not allowed to run in a rooted device, e.g., the developer
uses code to block the app from running in emulation environments. Another cause is that
Genymotion’s virtual machines have a x86 (32 bits) architecture and the app is provided for
ARM only. We consider this as a limitation of the used methodology.

In the analysis process, we installed each of the studied apps into Genymotion emulator
and manually performed various operations on each app while MobSF dynamic analyzer
was listening to the performed operations. The manually performed operations consisted of
opening and navigating to all pages (i.e., activities) of the apps, inputting text and recording
entries with the apps, storing and sending data. Manual operations were performed until we
used all the available features in the app, except for the paid ones, which should be con-
sidered as a limitation of this study. At the end of the analysis, MobSF provided us with
a report that included the complete Logcat log, Dumpsys log, Frida API monitor log and
HTTP/S traffic log for the whole period that we were interacting with each app. Further-
more, MobSF allowed us to download all the data created by each app that persisted in the
device’s storage. It is worth mentioning that at this step, we were conscientiously explor-
ing the app’s functionalities as opposed to performing other stress and reliability tests (e.g.,

4Genymotion is an emulator for Android devices. Website: https://www.genymotion.com/
5Drozer offers a comprehensive security and attack framework for Android. Website: https://labs.f-secure.
com/tools/drozer/

https://www.genymotion.com/
https://labs.f-secure.com/tools/drozer/
https://labs.f-secure.com/tools/drozer/
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using random inputs to analyze the app behaviour, crashes, and performance in general),
which are not explicitly geared towards revealing security and privacy issues.

In addition, when an app was running on the Android emulator, we used Drozer to
perform malicious operations on the app to identify app’s security vulnerabilities (MWR
InfoSecurity 2015). We used various attack scripts such as checking for attack surfaces,
SQL injection, and directory traversal vulnerabilities.

Thereafter, we performed a detailed analysis of the logs and apps’ data files that were
obtained from MobSF dynamic analysis. The HTTP/S traffic log provided the request and
response information for each HTTP/S communication made during the process. We went
through the log entries for each communication and investigated for any insecure channels
that might have communicated users’ sensitive data (e.g., health data, location, email, pass-
word). Furthermore, we also checked for the 3rd-party servers that each app was sending
users’ personal and health data.

In the next step, we analyzed Logcat logs and Frida API monitor logs generated during
the dynamic analysis process to identify whether or not these logs reveal personal infor-
mation of a user, reveal apps’ behavior, usage, and activities, reveal tokens and credentials
used by the app, or reveal the details of web traffic, parameters and Post values. Logcat
logs generated in the device are accessible to other apps running on the device and logging
sensitive information make such information accessible to those apps (Kotipalli and Imran
2016). To identify these insecure log entries, we first searched in the log files for various
obvious keywords of which the useful ones included: ‘username’, ‘password’, ‘API key’,
‘api-key’, ‘api key’, ‘key’, ‘@gmail.com’, ‘mood’, ‘meditat*’, ‘checkup’, ‘assessment’,
‘login’, ‘http*’, ‘post’, ‘uuid’, ‘aaid’, ‘save’, ‘delete’. Two of the researchers involved in
this study subsequently read all the log files looking for other suspicious entries.

As the final step of the dynamic analysis process, we analyzed the data generated by each
app (i.e., files and databases) to see whether or not an app had insecurely stored any user’s
sensitive data. We categorized the data as encrypted or not encrypted, and used DB Browser
SQLite6 to open and browse all the data stored in the apps’ folders, files and databases.
Similar to the other manual analysis processes, we read all files looking for sensitive data
that had been stored insecurely.

3.2.3 Server-side analysis

We also performed web server analysis on each domain with which the app communicated
during the dynamic analysis. As part of this step, the relevant web servers’ configurations
were analyzed to assess the security levels of the HTTPS data transmissions. To perform
this analysis, we used Qualys SSL Labs7 tool, which is a free online service that enables
the remote testing of web server’s security against a number of well-known vulnerabilities,
such as Heartbleed (Durumeric et al. 2014) and Drown (Aviram et al. 2016). The analysis
provided an overall rating for the web server’s security (A+, A, B, C, D, E, F) as well as
a score and weaknesses for certificate, protocol support, key exchange and cipher strength
aspects.

6Database browser for SQLite databases. Website: https://sqlitebrowser.org/
7Qualys SSL is a free online service to perform a deep analysis of the configuration of any SSL web server
on the public Internet. Website: https://www.ssllabs.com/ssltest/

https://sqlitebrowser.org/
https://www.ssllabs.com/ssltest/
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3.2.4 Request privacy impact assessment

Privacy Impact Assessment (PIA), also known as Data Protection Impact Assessment, is an
important component of an app’s accountability that comes under GDPR (ICO UK 2019).
Most information privacy regulations, such as the GDPR and the Australian Privacy Act,
encourage the publication of PIA reports as it demonstrates to stakeholders and the commu-
nity that the project has undergone critical privacy analysis, potentially reducing community
concerns about privacy (GDPREU 2020; OAIC 2020). Therefore, as a part of our privacy
analysis, we evaluated whether or not the developers of the studied apps had performed PIA
on their respective apps and made the findings public. We contacted the companies and/or
developers of the studied apps based on the contact details available on Google Play Store
and requested them to send the details of the public reports of their PIAs.

3.2.5 Readability evaluation of privacy policies

Privacy policies are responsible for communicating how an app gathers, uses, discloses,
and manages the personal information of the app users (Zaeem and Barber 2020). Previous
research has evaluated privacy policies of different types of apps and reported that privacy
policies are often too complex and difficult for users to read and understand (O’Loughlin
et al. 2019; Powell et al. 2018). We were interested in evaluating the readability of privacy
policies of the mental health app as these apps are often used by users who are already
psychologically and cognitively challenged (Marvel and Paradiso 2004).

Therefore, as a part of the privacy analysis step, we evaluated the readability of the apps’
privacy policies. We used WebFX8 free online tool for this. This tool provides various read-
ability scores (e.g., Flesch-Kincaid, Gunning Fog, SMOG), as well as a number of metrics
about the privacy policies (e.g., number of words, sentences, complex words).

3.2.6 AI-enabled analysis of privacy policies

We performed the final component of the privacy policy analysis using two AI-enabled
tools, which are CLAUDETTE (Lippi et al. 2019) and PrivacyCheck (Zaeem and Barber
2020; Zaeem et al. 2018). First, we used CLAUDETTE to identify the potentially unfair
clauses in apps’ privacy policies, e.g., jurisdiction disputes, choice of law, unilateral termi-
nation or change. In addition, we used PrivacyCheck, which is an automated tool provided
as a Chrome browser plugin. It evaluates the privacy policy of an app with respect to 20
points criteria where 10 questions are related to users’ control over their privacy and 10
questions are related to GDPR.

3.3 Responsible disclosure process

After completing the Privacy Analysis Process of the selected apps, we prepared the reports
on the results for each app. We emailed the evaluation reports to the companies and/or
developers of the apps based on the contact details available on Google Play Store and asked
them to respond within 30 days whether or not they had fixed the identified security and
privacy issues. We gathered the information about how they responded to our report and
whether or not they improved their apps based on our findings.

8The WebFX Readability Test Tool provides a way to test the readability of any textual content. Website:
https://www.webfx.com/tools/read-able

https://www.webfx.com/tools/read-able
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3.4 Mapping findings to LINDDUN

As the last step, a detailed mapping exercise was performed. Essentially, throughout the
privacy analysis, a list of privacy issues was compiled for each app. Then, we followed
the knowledge support provided by the LINDDUN methodology for cross-checking every
single issue in the list with respect to the entire threat taxonomy (threat-by-threat) to check
for correspondence. Finally, if one of the threats is relevant to a given issue, this threat is
mapped and included in the mapping table (readers are referred to the LINDDUN’s threat
tree catalog (v2.0) (Wuyts et al. 2014) for consultation).

An illustrative example is provided in Fig. 3. Every step of the Privacy Analy-
sis Process allows identifying a number of issues. For instance, during the Security
Static Analysis of App 1, two dangerous permissions were identified, and three files in
the reversed engineered code used insecure PRNGs. One dangerous permission is the
android.permission.READ PROFILE, which allows the application to read the
user’s profile data. This permission does not seem necessary at installation time nor for
the app to function for its specified purposes, thus it was marked as an issue. Having such
dangerous permission results in providing too much data (i.e., Unawareness threat). Also,
it relates to insufficient notice to users (i.e., Non-compliance threat tree) since the privacy
policy could have better explained the need for this dangerous permission. Similarly, the

Fig. 3 Example of mapping process for App 1: associating issues found during the analysis to the LINDDUN
taxonomy threats
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issues regarding the use of insecure PRNGs may lead to insecure security implementa-
tions, and thus, weak message confidentiality (i.e., Disclosure of Information threat). These
overarching findings are presented in Section 4 along with the results.

Another way to consider the mapping in Fig. 3 refers to the associations between the
main stages of the Privacy Analysis Process (and its respective tools) and the LINDDUN
threat taxonomy. For instance, the Static Security Analysis using MobSF allows for iden-
tifying “dangerous” permissions and inspection of reverse-engineered code of the apps.
As mentioned, the analysis of permissions usually translates into Unawareness and Non-
compliance threats. However, it can also lead to Disclosure of Information threats, e.g., if
the app uses the permission WRITE EXTERNAL STORAGE it might leak information to
other apps in the device that can also access the external storage. Similarly, when analyzing
the reverse-engineered code for insecure implementations, the threats are mainly associated
with the Disclosure of Information since improper cryptography weakens an app’s security,
leading to confidentiality breaches.

The Dynamic Security Analysis was also crucial for gathering various data generated
by the apps, especially in terms of data flows (e.g., network traffic and system logs) and
data stored (e.g., files and databases). Privacy issues found in data flows are associated
with several threats in terms of Linkability, Identifiability, Non-repudiation, Detectability,
Disclosure of Information, and Unawareness. For instance, data flows can be linked based
on unique IDs, some data points (e.g., IMEI, location) can facilitate the re-identification of
individuals, logging and data sharing thwart plausible deniability, data flows can be easily
detected (revealing the usage of an app), personal data might leak to 3rd-parties (e.g. email
address, username), and finally, users can be unaware about such extensive profiling and
data sharing operations. Arguably, the dynamic analysis of apps is essential to identify and
verify privacy issues related to many of the LINDDUN’s threat categories.

The other stages of the Privacy Analysis Process can also be mapped onto LINDDUN
taxonomy. The Server-Side Analysis focuses on the server’s security configuration. Thus,
it mainly relates to the Disclosure of Information threats, such as using weaker versions
of communication protocols. The stages such as Request of PIAs, Readability of Privacy
Policies, and AI-Enabled Analysis of Privacy Policies reveal problems in terms of Unaware-
ness and Non-compliance, e.g., the nature of data collection and processing can be hard to
understand, or it misses relevant information, or unfair clauses are used. Lastly, further com-
munication in the Responsible Disclosure process can also be associated with LINDDUN
taxonomy, such as failing to provide relevant information and ignoring the data subject’s
requests.

4 Results

4.1 Selectedmental health Apps

The final sample consists of 27 Android apps that provide functionalities related to mental
health services. Twenty-one of the selected apps were from the ‘Health & Fitness’ genre;
the remaining six apps were from the ‘Medical’ genre. Table 2 provides a summary of the
sample of apps used in this study. The selected apps originate from 11 different countries
from four continents. To keep the apps de-identified, we have not included the exact details
about the apps’ origin countries.
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Table 2 Apps with their
respective number of downloads N. of Apps N. of Downloads

12 100,000 - 500,000

3 500,000 - 1,000,000

9 1,000,000 - 5,000,000

1 5,000,000 - 10,000,000

2 10,000,000+

Table 3 provides the results of a tagging exercise performed by the researchers for all
the selected apps. We read the apps’ contents from Google Play Store and created tags
about the app’s main scope in terms of mental health (e.g., stress, anxiety, depression), func-
tionalities (e.g., journal, trackers, diagnosis), and other relevant tags (e.g., online therapy,
peer-support). Our approach follows the method of “generating initial codes” (Braun and
Clarke 2006), in which the codes/tags are mostly descriptive and based on explicit terms and
words used in the apps’ contents. A total of 36 tags were generated. Each app was tagged
with two to nine tags representing their scope, which allowed us to group them into themes.
Notice that an apps may fall into one or more themes. As shown in Table 3, Anxiety, Stress
and Depression are the most common tags among the selected apps. This tagging exercise
provides an overview of the apps’ themes while keeping the apps de-identified.

Of the 27 top-ranked mental health apps selected, most address the conditions of anxiety,
stress, burnout and depression. Also, over a third of them address various other mental
health conditions, e.g., addictions, bipolar, self-harm, PTSD and OCD. For these reasons,
we argue that these apps’ processing operations ought to be considered “high-risk” to the
rights and freedoms of their users.

Table 3 Themes of analyzed apps

N. of Apps Tags

22 Anxiety

19 Stress and burnout

13 Depression

13 Sleep and insomnia

13 Journal, diary and daily-planner

12 Mood and habit tracker

10 Disorders, addiction, bipolar, anger, phobia, eating disorder, negative
emotions, mood disorder, self-harm, PTSD, OCD, and ADHD

8 Meditation

8 Panic attack

8 Online therapy, online doctor, and couples therapy

5 Chatbot

5 Other, e.g., peer-support, pregnancy, pain management, bullying

4 Self-esteem

3 Mental health assessment, diagnosis, and check symptoms
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4.2 Summary of results according to LINDDUN

This section summarises the mapping between the identified issues for a given app and the
LINDDUN threat categories – this data is provided as supplementary material in the file
“Mapping Apps’ Issues to LINDDUN”. As shown in Table 4, considering App 1, three of
the found issues were mapped to one or more of the Linkability threats. On average, we
observed that apps had 22.3 privacy issues, ranging from 1.8 to 6.0 for each individual cat-
egory. In what follows, we structure the results section around the seven LINDDUN threat
categories, covering the main threats that manifest in the studied apps. Evidence gathered
during the Privacy Analysis Process, such as the results of tools (e.g., MobSF, Qualys SSL,
CLAUDETTE) and manual analysis of network traffic and logs, are used as examples of
how the threats appear.

Table 4 Mapping summary, showing the number of times that one of the apps’ issues was mapped to a threat
category. Note: (*) means that the dynamic analysis could not be performed for the app

App code L I N D D U N Total

App 1 3 3 3 3 5 5 7 29

App 2 2 2 2 2 6 4 5 23

App 3 2 2 2 2 7 4 6 25

App 4* – – – – 4 4 6 14

App 5 2 2 2 2 7 4 5 24

App 6* – – – – 2 4 5 11

App 7 3 3 3 3 6 5 7 30

App 8* – – – – 3 4 6 13

App 9 2 2 2 2 6 4 6 24

App 10 2 2 2 2 6 4 6 24

App 11 3 3 3 3 7 4 5 28

App 12 3 3 3 3 6 5 7 30

App 13 3 3 3 3 6 5 7 30

App 14 3 3 3 2 5 5 7 28

App 15 3 3 3 3 6 5 7 30

App 16 3 3 3 3 7 5 7 31

App 17 3 3 3 3 6 5 7 30

App 18 3 3 3 3 7 5 6 30

App 19* – – – – 2 4 6 12

App 20 2 2 2 2 4 3 4 19

App 21* – – – – 1 4 6 11

App 22* – – – – 1 4 6 11

App 23 3 3 3 3 7 5 7 31

App 24* – – – – 1 4 6 11

App 25* – – – – 2 4 6 12

App 26 2 2 2 2 4 3 4 19

App 27 2 2 2 2 5 4 6 23

Avgs.: 1.8 1.8 1.8 1.8 4.8 4.3 6.0 22.3
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4.2.1 Linkability threats

LINDDUN borrows most of its terminology definitions from the work of Pfitzmann and
Hansen (2010), including the definition for linkability. Linkability is the ability to suffi-
ciently distinguish whether two IOI are linked or not, even without knowing the actual
identity of the subject of the linkable IOI. Typical examples are anonymous letters written
by the same person, web pages visited by the same user, entries in two databases related to
the same person, people related by a friendship link, etc.

Such linkability threats are revealed during the dynamic analysis of an apps when
network traffic was manually inspected. This is done using tools such as MobSF and
Genymotion to emulate apps and capture their network traffic, logs, and generated data.

The most prevalent type of threat refers to the linkability of contextual data (L df2)
concerning data flows. Contextual data becomes linkable when non-anonymous communi-
cation (L df4) is used, which is the reality for all the selected apps. Hence, the data flow can
be linked based on IP address, device IDs, sessions IDs, or even communication patterns
(e.g., frequency, location, browser settings). An example of an app sharing linkable data to
3rd-parties, such as the user’s usage and activities in the app or the device configuration, is
shown in Fig. 4. In this case, linkable data is shared with AppsFlyer, a mobile marketing
analytics and attribution platform.

Such linkability threats manifested in all the 18 apps that went through the dynamic
analysis. User behaviour can be easily extracted from web traffic logs (i.e., it is easy to
perform profiling of mental health apps’ users), even if one cannot re-identify a subject
(see Fig. 5). Most apps also attempt to pseudo-anonymize users through anonymous IDs or
hashed advertisement IDs, but these IDs can still be used to link data among various 3rd-
parties. In particular circumstances, two apps exacerbate linkability threats by generating a
perplexing number of HTTP(S) requests in a short period (i.e., App 23 made 507 and App
15 made 1124 requests). The more data is available, the worst it is in terms of linkability.

Fig. 4 Example of 3rd-party receiving user’s device information
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Fig. 5 Example of 3rd-party receiving user’s activities information

More data points are linked over longer periods of time; and it is also harder to hide the
links between two or more items of interest (e.g., actions, identifiers).

4.2.2 Identifiability threats

Identifiability of a subject from an attacker’s perspective means that an attacker can suffi-
ciently identify a subject within a set of subjects (Pfitzmann and Hansen 2010). Examples
are identifying the reader of a web page, the sender of an email, the person to whom an entry
in a database relates, etc. It is worth mentioning that likability threats increase the risks of
re-identification. The more information is linked, the higher the chance the combined data
are identifiable (i.e., the more attributes are known, the smaller the anonymity set).

Identifiability threats are also revealed through the dynamic analysis when inspecting
network traffic, logged and stored data, using tools such as MobSF, Genymotion, Logcat
dumps, and DB Browser SQLite. Here we are particularly interested in data flows that go
to 3rd-parties or that may be accessible by attackers (i.e., situations in which users typi-
cally assume that they are anonymous). Identifiability of log-in used (I e1) and contextual
data (I df2) were the most common types of threat found in the 18 apps that went through
dynamic analysis. In such cases, users can be re-identified by leaked pseudo-identifiers,
such as usernames and email addresses, as shown in Fig. 6.

Identifiability may also manifest due to weak access control to stored data (I ds1). These
situations were observed when apps leak personal information in the system logs (accessi-
ble by all apps), or store data in plain text, using databases or external storage. However,
attackers would need physical access to the device to exploit such threats, and in such cases,

Fig. 6 Example of 3rd-party receiving user’s email information
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Table 5 Web servers
communicated during the
dynamic analysis

N. of Apps N. of Web Servers

6 1-5

5 6-10

6 11-20

2 >20

it is likely that they already know the victim’s identity. Such types of threats are nonetheless
discussed under the threat category of Disclosure of Information in Section 4.2.5.

4.2.3 Non-repudiation threats

Non-repudiation refers to not being able to deny a claim or action. Therefore, an attacker
can prove that a user knows, has done, or said something, such as using mental health apps
and services. Here, again, we are particularly interested in non-repudiation threats involving
3rd-party systems.

Such threats are also identified during the dynamic analysis. We observed non-
repudiation threats related to the disclosure of decrypted logs of network connections
(NR df7), and when a person wanting deniability cannot edit a database (NR ds3). The ana-
lyzed apps communicate with several 3rd-parties, e.g., for marketing and advertising, cloud
service provisioning, and payments services. This makes it impossible for users to deter-
mine to what extent their communication and data are collected, used, and stored. A rather
worrying example is the logging of user actions in an app by a 3rd-party logging service
using the insecure HTTP protocol, as shown in Fig. 7.

Table 5 shows the number of servers that the apps communicated with during the anal-
ysis. On average, an app communicated with 11.9 servers (std = 13.8), with a minimum
of 1 and a maximum of 64 communicating servers. Most of these servers are 3rd-party
service providers. On average, 81.7% (std = 18.3) of the servers that each app communi-
cated were owned by 3rd-parties. Such intense use of service providers increases the risks
of non-repudiation. In addition, if the data that is shared is identifiable, it will be harder to
repudiate.

Fig. 7 Example of 3rd-party logging service used to record apps’ activities, sending data over HTTP
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Table 6 Most common 3rd-party
domains N. of Apps Domain

18 google.com

15 googleapis.com

12 crashlytics.com

9 branch.io

8 facebook.com

8 gstatic.com

7 mixpanel.com

7 youtube.com

6 app-measurement.com

Table 6 presents a list of the 3rd-party domains most commonly observed in the
performed analysis. App developers use such common 3rd-parties for marketing (e.g., Mix-
panel, RevenueCat, Branch.io, Amplitude, Facebook), cloud service provisioning (Firebase,
CrashAnalytics, Bugsnag), and payment services (e.g., Stripe and PayPal). Software devel-
opers and users often have little to no control over the data after sharing it with service
providers.

4.2.4 Detectability threats

Detectability refers to being able to sufficiently distinguish whether or not an IOI exists
(Pfitzmann and Hansen 2010), even if the actual content is not known (i.e., no information
is disclosed). Based on the detection of whether or not an IOI exists, one can infer or deduce
certain information. For instance, by knowing that a user has a profile in a specific mental
health service, you can deduce that they might be seeking psychological support or facing
specific mental health conditions. Achieving undetectability in mobile and web applications
is inherently complex, given that client-server communication is usually easily detectable.

All apps that generate network traffic present detectability threats. Threats are observed
during the dynamic analysis, such as no or weak covert channel (D df2), since data flows
can be examined (D df7) and the timing of the requests is visible (D df13). The data stored
by the apps is also detectable due to the weak access control to the data file system or
database (D df1). Software developers cannot easily address such threats, considering that
existing apps would have to provide relatively advanced privacy controls, such as using
covert channels and anonymous communication. The reliance on various 3rd-party service
providers makes it even more challenging.

4.2.5 Disclosure of information threats

Information disclosure refers to the unwanted and unauthorised revelation of information.
For data flows, the channel is insufficiently protected (e.g., un-encrypted), and the message
is not kept confidential. Similarly, the information is protected with weak access control
mechanisms or kept in plain text for data stored.

Threats on disclosure of information were observed in the static, dynamic, and server-
side analyses, using MobSF to reverse engineer code and inspect data flows and server
configuration. Based on MobSF’s static analysis, a total of 20 apps (74%) scored as Crit-
ical Risk and 4 apps (15%) as High Risk in the App Security Score. To calculate the App
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Fig. 8 Example of insecure random (i.e., java.util.Random) used to generate IVs

Security Score, MobSF first gives every app an ideal score of 100. The score changes for
every finding based on its severity: high reduces 15 points, warning reduces 10 points,
and good increases 5 points. If the score is greater than 100, then it is kept as 100. If the
score is lower than 0, then it is kept as 10. The App Security Score falls into a final risk
level, according to the ranges: Critical Risk (0 - 15), High Risk (16 - 40), Medium Risk (41
- 70), and Low Risk (71 - 100). From the beginning of the analysis, the high number of
apps in Critical and High Risks suggested that many apps would have problems in terms of
permissions, code vulnerabilities, trackers, etc.

Among the prevalent types of threats, weak message confidentiality (ID df5) was ver-
ified in several apps due to the use of insecure cryptography, which leads to no channel
confidentiality (ID df7). Manual verification of the apps’ reverse-engineered code was per-
formed, revealing that fifteen apps used insecure PRNGs (e.g., see Fig. 8). Also, seven
apps used insecure cyphers (i.e. MD5 and SHA1), and one app used an insecure cypher
mode (ECB). We also manually investigated insecure Initialisation Vectors (IVs) used in the
apps. IVs are used as cryptographic primitives to provide an initial state (e.g., for a cypher),
and should be typically created using a cryptographic pseudorandom number generator, but
sometimes an IV only needs to be unpredictable or unique. A total of 12 apps were found to
have used insecure IVs. For instance, in Fig. 9, the IV is a hard-coded string of fixed value,
which would weaken any resulting ciphertexts when repeatedly used for a fixed key.

Another common threat is the lack of message confidentiality (ID df4). During the log
analysis, we sought to identify four types of data leaks, as shown in Table 7. These are
alarming results as this information in Logcat logs can be accessed by other apps that are
running in a device (Kotipalli and Imran 2016). Figure 10 shows an example of a Logcat
log snippet identified to log personal data of the user and API keys.

Threats to the stored data were also common, e.g., bypass protection scheme (ID ds1),
data intelligible (ID ds2), or un-encrypted (ID ds10). Only four apps have used encryption
for storing files, and none have used encrypted databases. We found 15 apps that stored
users’ personal information (e.g. email, password, address) in files or databases. Such infor-
mation can be accessible by unintended parties (e.g., in case of device theft or malicious
backups).

Disclosure of the credentials was also observed at various stages of the static and
dynamic analyses. This could lead to spoofing of an external entity (S) if an attacker can

Fig. 9 Use of hard-coded IVs
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Table 7 Analysis of Logcat logs
N. of Apps Information disclosure issues

19 Revealing apps’ behaviour, usage, and activities.

15 Logging web traffic, parameters, Post value.

5 Revealing personal information.

4 Revealing tokens and credentials used by the app.

obtain legitimate credentials (S 1) from an existing user (e.g., username and password) or
service (e.g., API keys). For instance, when inspecting the generated network traffic, we
found that 13 apps reveal API keys used to access 3rd-party services, leading to unau-
thorized access to micro-services and APIs. Two apps also revealed the user email and
password in the HTTP header or as GET parameters. Furthermore, 18 apps stored the
credentials such as passwords, tokens and keys insecurely.

4.2.6 Unawareness threats

Unawareness refers to data subjects not being aware of the impacts and consequences of
sharing personal data. For instance, personal data is shared with mental health services and
other services (i.e. cloud providers, analytics, advertising services). In such cases, a system
itself can support users in making privacy-aware decisions. Such unawareness threats focus
on a system’s provisions to guide and educate users concerning their data sharing.

Evidence of unawareness threats was observed in the static and dynamic analyses, the
requests of PIAs, and the communication with developers. A type of threat concerns pro-
viding too much personal data (U 1), which can be linked to the list of permissions required
by the apps to run. MobSF static analysis checks the apps for dangerous permissions, i.e.,
giving an app additional access to the restricted data and allowing an app to perform the
restricted actions that substantially affect a system and other apps. On average, the apps
have 5.6 dangerous permissions (std = 8.2), with apps requiring a minimum of 3 up to 30
dangerous permissions. Table 8 lists the most common dangerous permissions used by the
studied apps.

As mentioned in Section 3.2.1, two authors manually inspected the dangerous permis-
sions to verify whether they are necessary to serve the app’s purpose. During the evaluation,

Fig. 10 Example of sensitive information in Logcat logs
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we used the apps in real mobile phones, and checked for functions that would justify the use
of a given dangerous permission. Dangerous permissions that did not seem necessary were
flagged and included as a potential issue in the reports later sent to developers. Most of the
dangerous permissions were not deemed necessary for the apps to function. For instance,
the pair of permissions READ EXTERNAL STORAGE and WRITE EXTERNAL STORAGE
are not always needed, but they are dangerous because they grant an app indiscriminate
access to the device’s external storage, where a user’s sensitive information may be stored.
On average, the apps use 4.1 (std = 7.6) unnecessary dangerous permissions. Even though
software developers may have justifiable purposes for requiring such permissions, users
must clearly understand them.

In this study, we also took the initiative of contacting the companies whose apps were
studied and requesting the PIA reports of their respective apps. This step revealed a degree
of no/insufficient feedback and awareness tools (U 3), considering that PIAs reflect on the
impacts of information sharing. Only three (11%) companies carried out a PIA for their
apps, and only two of them made the PIA report available to us. Of the remaining companies,
twenty (75%) did not answer this PIA request, and four (15%) reported not conducting a
PIA. It is worth mentioning that PIAs would help companies to demonstrate compliance to
data protection authorities, which relates to the following subsection on Non-compliance
threats. Furthermore, if we consider mental health apps as likely to result in “high-risk” to
the rights and freedoms of natural persons, PIAs are mandatory according to the EU GDPR
(EU Commission 2017).

We can also consider the companies’ feedback in the responsible disclosure process. We
emailed the evaluation reports consisting of all the issues found for different apps to their
respective companies. We received responses from seven companies (26%) that provided us
with their feedback and the actions taken (e.g., forward the reports to the technical and legal
teams). The responses from software developers, lead engineers, and privacy officers were
positive. They all appreciated the well-intended ethical research actions supporting them,
with the desire to help build more secure and privacy-preserving apps. Three companies
have reported back stating that the raised issues were or are being fixed for the subsequent
releases of the apps. One company also provided a detailed response in which that company

Table 8 Most common dangerous permissions used by apps

N. of Apps Dangerous permissions

27 android.permission.INTERNET

24 android.permission.WAKE LOCK

23 com.google.android.finsky.permission-

.BIND GET INSTALL REFERRER SERVICE

19 android.permission.WRITE EXTERNAL STORAGE

16 com.android.vending.BILLING

13 android.permission.READ EXTERNAL STORAGE

9 android.permission.READ PHONE STATE

7 android.permission.ACCESS FINE LOCATION

6 android.permission.RECORD AUDIO

6 android.permission.MODIFY AUDIO SETTINGS

6 android.permission.CAMERA

6 android.permission.ACCESS COARSE LOCATION
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verified all the raised issues that were marked for suitable fixes. This company also asked
for further feedback to check if there were any other concerns. All the communication with
developers and companies was done via email.

4.2.7 Non-compliance threats

Non-compliance refers to adherence to legislation, regulations, and corporate policies.
LINDDUN uses this threat category to cover privacy notices and policies that should be
provided to all users to inform them about the data collected, stored, and processed by sys-
tems. Privacy policies and consent are linked, given that users have to read and understand
the apps’ privacy policy to provide informed consent.

The analyses of the apps’ privacy policies, using readability scores and AI-assisted pri-
vacy tools, allowed the identification of non-compliance threats concerning incorrect or
insufficient privacy policy (NC 2) and insufficient notice (NC 4). Considering the Flesch-
Kincaid reading ease measurement, most apps (89%, n = 27) scored between 30-50 in the
readability index, meaning that their privacy policies are difficult to read, requiring college-
level education. Three apps scored a 50-60 range index, implying that the privacy policies
are reasonably challenging to read, requiring 10th- to 12th-grade level education. Interest-
ingly, only one app provided a layered privacy policy (Timpson 2009), providing a 1st-layer
summary and a 2nd-layer with the complete privacy policy, making it easier to read and
understand.

Threats in terms of incorrect or insufficient policies (NC 2) were also revealed using the
CLAUDETTE tool to identify unfair clauses. Figure 11 presents a summary of the results
obtained using CLAUDETTE. On average, the apps’ privacy policies had 2,7 unfair clauses
The most common type of unfair clause we observed was ‘Unilateral Change’, presented in
the privacy policies of 18 apps. Furthermore, 16 privacy policies had unfair clauses in the
‘Contract by Using’ category.

We further analyzed the apps’ privacy policies using the PrivacyCheck tool, which scores
the apps in terms of (1) user control over privacy and (2) GDPR compliance. We used this
tool to check the privacy policies of 26 apps, except for one app that the tool failed to
interpret. On average, the apps obtained a user control score of 59/100 (std = 15.14), and
a GDPR score of 63.1/100 (std = 31.25).

Figure 12 presents a more detailed summary of the PrivacyCheck scores obtained for the
ten questions corresponding to the users’ control. As shown in the figure, our sample of
apps scored very poorly for questions such as “Does the site share your information with
law enforcement?” (11/26 apps scored 0/10) and “Does the site allow you to edit or delete

Fig. 11 Summary of CLAUDETTE results of unfair clauses
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Fig. 12 Summary of user control scores from PrivacyCheck

your information from its records?” (9/26 apps scored 0/10). However, it appeared that the
apps handled some privacy aspects more effectively, such as “How does the site handle your
Social Security number?” (24/26 apps scored 10/10) and “How does the site handle your
credit card number and home address?” (17/27 apps scored 10/10).

Similarly, Fig. 13 presents the PrivacyCheck scores obtained for the ten questions cor-
responding to GDPR compliance. The lowest compliance was observed for “Does the site
notify the supervisory authority without undue delay if a breach of data happens?” (24/26
apps scored 0/10) and “Does the site advise that their data is encrypted even while at rest?”
(19/26 apps scored 0/10). Most apps showed better compliance for questions such as “Does
the site implement measures that meet the principles of data protection by design and by
default?” (23/26 apps scored 10/10) and “Does the site allow the user object to the use of
their PII or limit the way that the information is utilized?” (22/26 apps scored 10/10).

Fig. 13 Summary of GDPR scores from PrivacyCheck
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5 Discussion

The study’s results enable us to answer the research question: What is the current privacy
status of top-ranked mental health apps? Table 9 summarises the most common privacy
issues and their prevalence in the studied mental health apps, contextualising findings
according to the LINDDUN threat categories. Based on that, this section discusses the fol-
lowing concerning topics: (1) privacy impacts of mental health apps; (2) apps’ permissions
and data access; (3) apps’ security testing and coding; (4) Privacy Impact Assessments and
responsible disclosure; (5) privacy policies; and, (6) recommendations.

5.1 Privacy impacts of mental health Apps

Even though mental health apps have higher privacy impacts, the results show that these
apps contain most of the privacy and security issues found in an average Android app.
For example, our analysis identified vulnerabilities related to all seven Android app vul-
nerability categories (i.e., cryptography API, inter-component communication, networking,
permission, data storage, system processes, and web API) presented by Ranganath and
Mitra (2020). Furthermore, various privacy issues were identified, such as insufficient lev-
els of information handling, similar to what other researchers have observed in different
types of mobile apps (Huckvale et al. 2019; Powell et al. 2018).

Privacy violations in mental health apps tend to have severe negative impacts on the
rights and freedoms of natural persons, therefore calling for higher levels of protection and
safeguards. Some issues identified in this privacy analysis would have a lower impact in
a general Android app (e.g., WhatsApp, Twitter, Netflix apps). For example, disclosure of
identifiers to 3rd-parties, such as IMEI, UUID and IP address, would have a low impact in a
general app. Perhaps, most users would not even consider it as an issue. In contrast, mental
health app users would consider this invasive since most users would not even want other
people to know that they are using mental health apps. Research has shown that breaches of
mental health information have severe repercussions, such as exploitative targeted advertis-
ing and negative impacts on an individual’s employability, credit rating, or ability to access
rental housing (Parker et al. 2019).

5.2 Apps’ permissions and data access

During the static analysis, we found that all apps use one or more dangerous per-
missions. Many of these permissions could be avoided or at least better explained to
end-users. For instance, the pair of dangerous permissions READ EXTERNAL STORAGE
and WRITE EXTERNAL STORAGE. Based on our manual analysis of apps’ permissions
(Section 4.2.6), we noticed that the apps rarely need access to external storage. Thus, these
permissions could have been avoided or more carefully used.

The apps also request such permissions (i.e., get user approval) when they are first
opened. Users can indeed revoke dangerous permissions from any app at any time, provided
that they know how to change the configurations. However, it would be recommended that
app developers ask for permissions “in context”, i.e., when the user starts to interact with
the feature that requires it. Also, if permissions are not essential for the apps to function,
they could be disabled by default, i.e., running the app most privately. Whilst it appears that
the apps are becoming greedier about users’ data, there are also flaws in the Android per-
mission system that should to be considered. As discussed in Alepis and Patsakis (2017),
Android still does not allow users to have full access to an app’s permissions so that users
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can revoke access to both normal and dangerous permissions individually. The system
automatically grants the normal permissions, and the users have little to no transparency
about them. The dangerous permissions are granted as a group, i.e., the entire permission
group CONTACTS is granted, including permissions GET CONTACTS, READ CONTACTS,
and WRITE CONTACTS, instead of letting users grant or deny them separately. Alepis and
Patsakis (2017) also stress that even normal permissions can lead to user profiling or leaks
of sensitive information (e.g., use GET PACKAGE SIZE to list all the user’s installed apps),
or have the potential for accidental or malicious misuse (e.g., use INTERNET to open
network sockets just to fetch ads). However, we assert that it should be the developers’
responsibility to understand the Android’s permission system and appropriately use it in a
privacy-preserving manner.

Future research could also focus on the apps’ permissions, data access, and sharing
behaviours over more extended periods. For instance, similar to Momen (2020), in which
researchers had apps installed on real devices over time (e.g., months) analyzing the apps’
behaviour under various conditions. Ideally, developers would benefit the most if they could
rely on a testbed for privacy assessment, as the one proposed by the REsearch centre on
Privacy, Harm Reduction and Adversarial INfluence online (REPHRAIN) (Gardiner et al.
2021). Such testbed would enable developers to only drop their app file into an user inter-
face, following a wizard-based tool. The testbed then runs multiple static and dynamic
privacy tests against the file and produces a report in a comma-separated format, which the
developer can download for their own analysis.

5.3 Apps’ security testing & coding

The results from our static analysis (Section 4.2.5) showed that most apps are at critical risk
(n = 20) or high risk (n = 4). Vulnerabilities such as hard-coded secrets (Lee 2019), use of
weak algorithms and protocols (ECB, TLS 1.0, etc.), weak IVs, and insecure PRNGs (Egele
et al. 2013) were also verified. The MobSF tool has been continuously upgraded, making
such security testing relatively straightforward. App developers could have identified most
of these issues using MobSF’s automated static analysis. The prevalence of such vulnerabil-
ities suggests that app developers are not adhering to the basic principles of secure coding.
Furthermore, it is worth stressing that many of our findings were identified in the dynamic
analysis. The inspection of network traffic, stored data, and logs can reveal several issues
that a static analysis alone cannot.

A recent study found that 85% of mHealth developers reported little to no budget for
security (Aljedaani et al. 2020) and that 80% of the mHealth developers reported having
insufficient security knowledge (Aljedaani et al. 2020; Aljedaani et al. 2021). We believe
that the developers of the mHealth apps analyzed in this study faced similar challenges that
are also evident from the following observations concerning secure coding/programming.
First, the use of insecure randoms, cypher modes, and IVs, i.e., incorrect use of crypto-
graphic components. Second, the insecure logs, leaking the app’s behaviour and the user’s
data, either internally to the system logs (e.g., Logcat) or externally to cloud-based log-
ging services (e.g. Loggly). Third, the presence of hard-coded information, such as tokens
and API keys. Such findings signal that app developers require more security training and
that security testing may not be part of the development process. Besides, developers can
also benefit from existing plugins for integrated development environments, such as Cog-
niCrypt (Krüger et al. 2017) for Eclipse, that generates secure implementations for common
programming tasks that involve cryptography and alerts for misuses of cryptographic APIs.
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5.4 PIAs, DPIAs, and responsible disclosure

From the start, we contacted all the relevant companies whose apps we selected for study
for obtaining the PIAs reports (if available). However, we received only two public PIA
reports. These PIA reports were relatively brief, lacking sufficient information about the
apps’ systems and components. PIAs should usually start with a high-level data flow dia-
gram that shows what personal data is collected and how it is processed and shared among
3rd-party services (EU Commission 2017). We assert that it is important for an mHealth app
to identify the potential privacy threats and apply suitable countermeasures for eliminating
or mitigating the identified risks during appropriate phases of development/evolution. As
per our findings, a large majority of the mHealth apps developers seem to be unaware of the
PIA requirements that are usually mandatory according to some regulations, such as GDPR.

Whilst it is understandable that performing and updating full-fledged PIAs is a time-
consuming process, e.g., see the PIA (Iwaya et al. 2019), mHealth apps development
companies and developers can still perform minimal PIAs. An example comes from the
proposal of a code of conduct for mHealth privacy by Mantovani et al. (2017) and their rec-
ommended PIA questionnaire. The knowledge and time invested in performing a PIA and
making that public will help increase the trust of the end users and the relevant authorities.

We also contacted the companies during the responsible disclosure process for providing
them with a list of found issues for each app. However, the current study shows that most of
these companies offered little to no response on the privacy concerns. Although seven com-
panies (26%) replied acknowledging the received reports, there were only three companies
that reported back stating that they would address the raised issues. Only one company pro-
vided a detailed account, verifying all the raised issues and proposing fixes. Such a lack of
answers indicates a troubling situation in which it is difficult to discern whether or not the
mHealth apps development companies will pay due attention to address privacy issues.

5.5 Privacy policies: transparency, consent and intervenability

All the analyzed mHealth apps had a privacy policy. This is quite positive if compared to
other studies that reported that only 46% of dementia apps (Rosenfeld et al. 2017) and
19% of diabetes apps (Blenner et al. 2016) had a privacy policy. This is likely because we
analyzed only top-ranked apps with large user bases. However, the readability scores of the
privacy policies are still low. According to other studies, the average grade-level readability
should be calculated as the average of the scores from the Gunning Fog, Flesh-Kincaid
Grade Level, and SMOG formulas (Robillard et al. 2019; Sunyaev et al. 2014). In such case,
the average grade-level readability for the analyzed privacy policies was 13.21, consistent
with the scores of 13.78 in Robillard et al. (2019) and 16.00 in Sunyaev et al. (2014). Privacy
policies are still hard to read, raising concerns with regards to transparency and consent.

Privacy policies also present unfair clauses, of which “contract by using” and “unilateral
change” are the two most common types. Contract by using is incredibly unfair in the case
of mHealth apps. Such apps should rely on explicit informed consent since they handle
sensitive personal data of people who may be considered to be in a more vulnerable and
fragile state. The EU GDPR (Art. 4 (11) defines consent as freely given, specific, informed
and with explicit indication of the data subject’s wishes to use the system and have his or her
data collected and processed (European Commission 2016). Contract by using defies this
idea of consent. Companies should review their apps’ privacy policy and, most importantly,
change the apps to honestly inform users, recording their consent to collect and process data.
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Most apps’ consent process was just an initial screen presenting the privacy policy and an
“I agree” button. Understandably, developers design their apps with as few steps as possible
in the onboarding process, aiming to reduce friction and improve users’ experience. How-
ever, poor privacy also causes a bad user experience. Balancing privacy and user experience
is challenging and demands further investigation. However, developers could ask them-
selves: “Would my users be surprised if they knew about all the data that is collected, the
processing purposes, or the extent of data sharing?” Any privacy “surprises” reveal issues
that need to be raised and discussed, users should be informed, and the system’s design
should be reviewed.

For instance, many mHealth apps rely on advertising as monetary revenue. Users of
mHealth apps, even if de-identified, are still targeted with personalised advertisements based
on their unique “anonymous” IDs (e.g., uuid and aaid). Also, the advanced paradigms of
personal advertising, such as cross-device tracking (CDT), are commonly used to monitor
users’ browsing on multiple devices and screens for delivering (re-)targeted ads on the most
appropriate screen. For instance, if a person downloads an mHealth app on one’s mobile
device, it is likely that person will see other ads about mental health in one’s Facebook
timeline when using a PC. Researchers have already found that CDT undoubtedly infringes
users’ online privacy and minimizes their anonymity (Solomos et al. 2019). Besides, there
is a risk of exploitative advertising to individuals who may be vulnerable due to mental
health conditions. Such extent of data processing is likely to surprise users (and developers),
unaware of privacy risks and impacts. These observations enable us to support the growing
arguments that apps development is intrinsically linked to the online advertising businesses,
which may give little to no control on the management and utilization of data to those from
whom the data is gathered, i.e., end users.

6 Limitations

Some limitations in terms of the methodology need to be considered when interpreting the
findings of this study. It should be noted that today there is a myriad of other open-source
tools for penetration testing that can be used for studies like this one. For example, static ana-
lyzers, such as FlowDroid (Arzt et al. 2014), Amandroid (Wei et al. 2018) or RAICC (Samhi
et al. 2021), and dynamic analyzers, such as IntelliDroid (Wong and Lie 2016) and Taint-
Droid (Enck et al. 2014). For planning future studies, we would encourage the researchers
to seek more resources that would enable them to select and further review other app cate-
gories. However, it may not be possible for researchers doing empirical studies to consider
all sorts of tools available due to scope and resources limitations. In this study, apart from
tools such as Drozer, Qualys SSL, CLAUDETTE and PrivacyCheck, we relied on MobSF
for various static and dynamic analyses since this framework integrates many tools to pro-
vide a broad coverage of penetration tests. The community around MobSF also provides its
users with free support channels, learning materials, and a straightforward installation and
setup process. For such reasons, MobSF is widely used in academia and industry.

To identify the mental health apps on Google Play Store, we used the
google-play-scraper to automate the search process. This tool required us to set a
specific location for the search, which we defined as Australia. Even though most of the
investigated apps come from the regions of North America and Europe, it is important to
consider that apps available in Australia might not be representative of the overall Android
mHealth apps ecosystem.
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We also manually investigated the code snippets flagged for insecure PRNGs, cyphers,
and cypher modes during the static analysis. That is, we limited our analysis to the files
flagged by MobSF. However, we observed that some of the reported code snippets used
insecure PRNGs and cyphers to create wrapper classes and util methods for the origi-
nal functionality. Even though using these wrapper classes and util methods in security
contexts would lead to a security vulnerability, our analysis did not investigate such usages
as it would increase the complexity and resources required for the study. We have shared
this observation with the studied apps’ development teams as part of the responsible disclo-
sure process with the suggestion to take these points into consideration while reading our
findings.

During the dynamic analysis, some apps were not compatible to run on the Genymotion
emulator with MobSF. Hence, the results are limited to a smaller sample of 19 apps that
were fully dynamically analyzed. This process required the manual operation of the apps,
attempting to cover all of the accessible functionalities. However, we neither performed any
credit card payments nor paid to test the premium features, limiting the extent of testing.

Regarding the analysis of the privacy policies, we relied on two AI-based tools: (1)
CLAUDETTE, to identify unfair clauses; and, (2) PrivacyCheck, to calculate user’s con-
trol and GDPR compliance scores. Although such tools give us a metric for comparison,
an ideal analysis of privacy policies would require a legal analysis of the text made by a
privacy lawyer. These AI-based tools also have some limitations concerning their accuracy.
According to the creators of these tools, CLAUDETTE has an accuracy of 78% for identi-
fying unfair clauses and an accuracy between 74%-95% for distinguishing between unfair
clause categories (Lippi et al. 2019). PrivacyCheck has an accuracy of 60% when scoring
privacy policies for the ten user control questions and the ten GDPR questions (Zaeem et al.
2020). Thus, the results should be interpreted with such limitations in mind.

7 Conclusion

Mental health apps offer new pathways for people to seek psychological support anywhere
and anytime. The innovative use of technological advances in mobile devices for provid-
ing mental health (or well-being) support purports to significantly improve people’s quality
of life. However, the mobile apps are increasingly vulnerable to data privacy breaches as a
result of security attacks. A data privacy breach of an app may result in financial, social,
physical or mental stress. Given the users of mental health apps are usually facing psycho-
logical issues such as depression, anxiety and stress, the detrimental impact of an app’s data
privacy breach can have more significant negative impact on users. Thus, it is of utmost
importance that the development of such mHealth apps follows the practices that ensure
privacy by design.

We decided to empirically study the data privacy of mental health apps. Our empirical
investigation shows a high prevalence of information disclosure threats, mainly originating
from insecure programming. Threats related to linkability, identifiability, non-repudiation
and detectability are also exacerbated by the large number of 3rd-parties in the apps’ ecosys-
tem, facilitating profiling of users and exploitative advertising. Apps also lack transparency
and sufficient notice mechanisms, leading to unawareness and non-compliance threats.

This study has provided us with sufficient empirical evidence to assert that mHealth apps
in general and also mental health apps in particular ought to be developed by following
a privacy by design paradigm (Cavoukian et al. 2009; Gürses et al. 2011). Moreover, this
study has also enabled us to surmise that apart from developers, other stakeholders can also
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play important roles in ensuring data privacy in mHealth apps. Based on this research, we
have compiled a list of data-informed actionable measures as a set of recommendations for
ensuring data privacy in mHealth apps. Table 10 provide the list of recommendations linked
to the findings presented in Table 9. We expect that these recommendations will enable all
the key stakeholders, particularly the apps developers, to play their respective parts in order
to ensure the privacy of the data of mHealth apps.

These recommendations also serve to reiterate the fact that developers alone cannot
implement all the safeguards to mitigate, reduce or eliminate the identified threats. The com-
panies’ leaders and top management are the ones who define the business models around
the mental health apps. For instance, when considering the excessive use of 3rd-parties
and data brokers, the software developers might be able to raise privacy issues, but it is

Table 10 Summary of recommendations to multiple stakeholders

Organizations Find.

−→ Undertake a Privacy Impact Assessment – Demonstrate compliance by
conducting Privacy Impact Assessment, even if not a full-fledged PIA. There are
more concise/simplified methodologies for mHealth.

16

−→ Assume Mental Health Apps as High-Risk Systems – Development pro-
cesses should be fine-tuned to give better emphasis to security and privacy. When
developing a health app (or mental health app), higher levels of security and
privacy should be considered compared to other general apps.

1, 8

−→ Engage with Experts – Better engagement of security and privacy experts
in the development and evaluation, as well as in the writing of privacy policies
to avoid unfair clauses.

20

−→ Write Readable Privacy Policies – Enhance transparency and openness
by writing accessible Privacy Policies that truly allow users to understand and
make informed decisions.

17

Software developers Find.

−→ Beware of the Unskilled and Unaware – Likely, app developers do not
know the extent of security and privacy risks of using 3rd-party SDKs and APIs.
That, matched with the lack of security knowledge, might make them prone to
a Dunning-Kruger effect on security knowledge, i.e., overseeing and underes-
timating security and privacy issues while also overestimating their levels of
secure coding abilities (Ament 2017; Wagner and Mesbah 2019).

4, 5, 6, 9, 12, 13, 14, 15

−→ Connect the Privacy Policy to the System’s Design – Even though pri-
vacy policies are not within the software developers responsibility, they should
be familiar with their app’s privacy policy and terms of service. Interact with
lawyers (or whoever is responsible for writing and updating the privacy policy)
whenever necessary to correct information on data collection, purpose limitation
and specification, and ensure security and privacy by design.

17, 18, 19

−→ Engineer Privacy By Design and By Default (Art. 25 GDPR (Euro-
pean Commission 2016)) – Software developers should be aware that the GDPR
states that “controller shall implement appropriate technical and organisational
measures”. Even though implementing the “state-of-the-art” is not always “tech-
nically” possible in all organisations and systems, vulnerabilities related to very
basic secure coding practices are rather concerning.

2, 4, 7, 9, 13, 14, 15

−→ Collect Valid Consent with Responsible On-boarding – Even though
the use of proper consent mechanisms may add friction to the on-boarding pro-
cess, mental health apps rely on user consent to operate, so it is important
that valid consent is being collected. After consent, apps should operate in the
most privacy-preserving way by default (e.g., no advertising), and the consent
withdrawal should be as easy as providing consent.

8, 10, 11, 18
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Table 10 (continued)

End-users and Health Practitioners Find.

−→ Stand Up for Your Rights – Users that value their privacy can exercise
rights by requesting more privacy-friendly apps. Users can question the current
privacy policies and consent mechanisms. Request access to their data and better
information on the nature of the data processing.

10, 11, 16, 19

−→ Recommend Reputable Apps for Mental Health – Health practitioners
should encourage their patients to take higher control over their treatment and
journey towards better mental health. Mental health apps can help with that, but
practitioners should pay careful attention and recommend only apps that respect
users’ privacy.

16, 19

Mobile App Distribution Platforms Find

−→ Raise the Bar for High-Risk Apps – App distributors could require better
privacy measurements to be put in place. Distributors could also categorise high-
risk apps, adding filters for health genre apps.

1, 16

−→ Enhance Trust and Transparency (Bal and Rannenberg 2014) – App dis-
tributors could also add useful privacy information about apps, especially about
privacy consequences to support decision-making, and add privacy ratings for
apps based on their data-access profiles and purposes of data access.

8, 10, 11, 12

Smartphone Platform Providers Find.

−→ Call for Privacy-Friendly System Apps and API Frameworks (Bal and
Rannenberg 2014) – Smartphone providers could develop common systems to
keep track of sensitive information flows, as well as to communicate observed
behaviour to users, and provide developers with standardised ways to explain
permission requests.

3

ultimately the responsibility of the leaders to re-think and adopt more privacy-preserving
business strategies. Simply put, no amount of technical and organisational privacy controls
can fix a broken business model that inherently undermines people’s privacy.

This empirical study suggests that companies and app developers still need to be more
knowledgeable and experienced when considering and addressing privacy risks in the app
development process. At the same time, leaders and managers need to review their business
models and re-think their design practices in the organisations. Raising awareness among
users and health professionals is also crucial. Users should drive the demand for more
privacy-preserving apps. Mental health professionals should carefully evaluate the apps to
recommend privacy-friendly and safe apps to their clients.

Besides, there are also initiatives that the app distribution platforms (e.g., Google Play
Store) and the smartphone platform providers (e.g., Android) can take to enhance privacy in
the ecosystem. App stores can increase the vetting process for high-risk apps, such as those
in medical, health and fitness application categories. Also, as suggested by (Bal and Ran-
nenberg 2014), the app stores can provide more helpful privacy information about the apps
(e.g., using privacy rating scale), and smartphone platforms can provide privacy-enhancing
mechanisms in the operational systems.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10664-022-10236-0.

Acknowledgements The authors thank Dr Minhui Xue (Jason Xue) and Dr Constantinos Patsakis for their
early advice regarding the implications of performing security testing of mHealth apps on the market.

Funding Open access funding provided by Karlstad University.

https://doi.org/10.1007/s10664-022-10236-0
https://doi.org/10.1007/s10664-022-10236-0


Empir Software Eng            (2023) 28:2 Page 37 of 42    2 

Data Availability Statement Part of the data generated and analyzed during this study is included in this
published article and as supplementary material in the file “Mapping Apps’ Issues to LINDDUN”. Other
datasets generated and analyzed during this study are not publicly available in order to maintain the studied
apps de-identified.

Declarations

The work has been supported by the Cyber Security Cooperative Research Centre (CSCRC) Limited, whose
activities are partially funded by the Australian Governments Cooperative Research Centres Programme. The
work of L.H. Iwaya has also been partially supported by the European Commissions H2020 Programme via
the CyberSec4Europe project (Grant: 830929), the Swedish Foundation for Strategic Research (SSF) Secure
and Private Connectivity in Smart Environments (SURPRISE) Project, and the Region Värmland via the Dig-
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