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1  |  INTRODUC TION

The growing demand for fossil-free energy makes hydroelectric 
power generation an important technology for flexible and re-
newable energy (Ashraf et al., 2018). Hydropower plants alter the 
natural flow regime of up- and downstream river reaches, how-
ever, with potential negative effects on aquatic organisms (Kuriqi 
et al., 2021; Poff et al., 1997). Particularly when electricity is gener-
ated to meet sub-daily fluctuations in energy demand, rapid changes 
in discharge downstream of hydropower plants can be extreme 

(Carolli et al., 2015; Cushman, 1985); these hydropeaking flow re-
gimes, which result in rapid changes in stream flow patterns, have 
been shown to severely affect riverine biota (Moreira et al., 2019; 
Smokorowski et al., 2011; Zimmerman et al., 2010). The ecological 
effects of hydropeaking on riverine organisms are linked to alter-
ations in the natural river hydrology, morphology (e.g. river depth, 
width, velocity, riverbed material and grain size) and water quality 
(e.g. temperature and turbidity) (Charmasson & Zinke, 2011; Hauer 
et al., 2014). Specific to fish and their instream habitat, alterations in 
river depths, velocity and water temperature are the major sources 
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Abstract
Sub-daily fluctuations in streamflow may have adverse effects on the biota down-
stream of dams in hydropeaking-regulated rivers. Although the stranding of salmonid 
fry is one documented effect of hydropeaking, little is known about the species-
specific behavioural and subsequent growth effects of sub-daily flow fluctuations. 
We investigated the effects of sub-daily flow fluctuation on growth, mortality and 
behaviour of sympatric Atlantic salmon (Salmo salar) and brown trout (S. trutta) fry 
(29–34 mm) in a laboratory experiment. The fluctuating flow treatment negatively 
affected growth and increased mortality for trout but not for salmon. The level of 
aggressive behaviour was similar in the fluctuating- and stable-flow treatments. 
Within the fluctuating flow treatment, there was a trend that more fishes were vis-
ibly active above the substrate during low than high flow. These findings suggest that 
hydropeaking-induced flow fluctuations may affect fry of different salmonid species 
in different ways and that brown trout fry may be more vulnerable to hydropeaking 
effects than Atlantic salmon fry. It can therefore be important to consider the pos-
sibility of divergent reactions by different fish species under hydropeaking situations 
and to incorporate species-specific strategies to conserve culturally and economically 
relevant riverine fish species.
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of negative impacts on hydropeaking (Bakken et al., 2016; Burman 
et al., 2021; Nagrodski et al., 2012). These alterations influence, for 
instance, the density of drifting invertebrates, the risk of stranding, 
spawning conditions, behaviour, growth, reproduction and mortality 
(Moreira et al., 2019; Schülting et al., 2016; Young et al., 2011), with 
potential long-term effects on population development and commu-
nity structure (Enders et al., 2017).

Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) occur 
sympatrically in many regulated rivers in northern Europe, and these 
two economically and ecologically important salmonid species have 
been studied in relation to hydropeaking for different life stages 
(e.g. eggs: Casas-Mulet et al.,  2015, parr: Sauterleute et al.,  2016, 
smolts: Alexandre & Palstra, 2017, spawners: Rocaspana, Aparicio, 
Alcazar, & Palau, 2016; Vollset et al., 2016). This body of literature, 
however, lacks information about how hydropeaking affects the 
newly emerged fry, which is surprising because this life stage is 
generally considered a critical period for survival, creating a bottle-
neck event for many salmonid populations (Elliott, 1990; Jonsson & 
Jonsson, 2011). The success of individual fry in surviving this critical 
period relies on them establishing the ability to develop energeti-
cally profitable foraging behaviours (Fausch, 1984), wherein fish bal-
ance the velocity-dependent costs of foraging against the gains of 
encountering more prey in faster water (Nislow et al., 1999; Piccolo 
et al., 2014). Sub-daily flow fluctuations such as those resulting from 
hydropeaking, therefore, might be expected to affect the growth 
and survival of fry by rapidly changing the fitness landscape by al-
tering water velocities and flow patterns.

In this study, we assessed the effects of short-term flow fluc-
tuations on the growth, mortality and behaviour of sympatric 
Atlantic salmon and brown trout (hereafter salmon and trout) fry 
(30–40 mm) in a laboratory experiment. The term flow fluctuation 
used in our study refers to variation in water velocities while keep-
ing water depth constant throughout the experiment. We predicted 
that both salmon and trout fry would grow and survive better in a 
stable, constant flow (without hydropeaking) versus in fluctuating 
flow (simulating hydropeaking conditions). We investigated poten-
tial mechanisms for this expected pattern in relation to fish activity 
and aggression. We hypothesised that there would be fewer active 
fish in fluctuating versus in stable flow treatments, due to increased 
swimming costs in fluctuating flows. We consequently hypothesised 
that reduced fish activity in a fluctuating flow would result in fewer 
aggressive interactions in fluctuating versus a stable flow treatment.

2  |  METHODS

We used salmon and trout fry reared from eggs collected from wild 
spawning adults returning to River Klarälven, Sweden (the ecology 
of these populations is described in detail in Piccolo et al.,  2012). 
The study was performed at the stream aquarium facility at Karlstad 
University, Sweden, during May–June, 2021. The fishes were kept 
in holding tanks at 11°C and fed maintenance rations (3% of fish 
body mass per day) until translocation to the test arenas in 80 L 

aquaria. We used 160 randomly selected individuals of each spe-
cies for the experiment. Each aquarium was uniformly stocked with 
a total of 20 fry (10 salmon and 10 trout). We measured fish wet 
mass and total length at the start of the experiment (mean ± SD, 
salmon: mass  =  0.19 ± 0.02 g, length  =  29.6 ± 1.0 mm; trout: 
mass = 0.27 ± 0.04 g, length = 32.4 ± 1.6 mm). Within each species, 
mean size and coefficient of variation (CV) in size did not differ be-
tween the two flow treatments (salmon: length, mass, CVlength and 
CVmass, t14 = 0.92, 0.37, 0.71 and 0.24, p > .05, trout: length, mass, 
CVlength and CVmass, t14 = 0.6, 1.69, 1.14 and 0.72, p > .05).

We equipped 16 aquaria (length × width × height = 75 × 40 × 40 c
m) with canister filters (1000 L/h Eheim, GmbH & Co. KG, Deizisav, 
Germany) and chillers (Hailea HC-300A, HC-150A, Hailea Group 
Co., Ltd, Guangdong, China; TECO TK150, TK2000 and RA200, 
TECO, Ravenna, Italy). The mean water temperature in the aquaria 
was 11.1 ± 0.4°C. Water intakes were covered with nylon cloth 
to prevent fish and food from being sucked into the filter system, 
and we covered the bottom with 10  L of coarse stone substrate 
(diameter  =  30—80 mm). Each aquarium was filled with 80 L fil-
trated, copper-free water buffered with 0.1 g L−1 NaCl and 0.1 g L−1 
Na2CO3. Mean (±SD) pH, light intensity and conductivity, measured 
throughout the experiment were pH 8.18 ± 0.18, 1647 ± 209 lx and 
415.1 ± 15.2 μS cm−1. There was no difference in temperature, light 
intensity, water conductivity or pH between the treatments (Mann–
Whitney U tests, p > .05). Lights were turned on at 04:30 and off at 
21:30 each day corresponding to the time of sunrise and sunset in 
Karlstad, Sweden in late May.

Two flow treatments were used in the experiment: stable flow 
(SF) where water velocity was kept constant and fluctuating flow (FF) 
where water velocity was varied periodically to mimic outflow from 
a peaking hydropower plant. Each of the 16 aquaria was assigned 
to one of these two treatments at random. To control the flow, we 
used two types of internal pumps: WM-101 and WM-1 (Boyu Wave-
Maker, Boyu Group, Guangdong, China). For aquaria with SF, we 
used a WM-101 pump constantly running to create a stable flow, 
whereas aquaria with FF were equipped with a WM-1 pump that 
was turned on and off at intervals using a timer (creating high flow at 
07:00–13:00 and 16:00–21:00 and low flow at all other times). The 
mean water velocity (±1 SD) in front of the pump outlet in aquaria 
with FF was too low to be measured at low flow and 0.11 ± 0.02 ms−1 
at high flow, whereas in aquaria with SF, the mean water velocity in 
front of the pump outlet was 0.05 ± 0.01 ms−1. These velocities are 
within the range of those experienced by salmonid fry in river mar-
gins of hydropeaking rivers (Korman & Campana, 2009).

Fish were subjected to the experiment for 5 weeks. We fed the 
fishes twice per day (half of the daily food ration at 10:15 and the 
other half at 13:15). During the last two weeks of the experiment, we 
collected video footage of each aquarium immediately after feed-
ing for two 30 min sequences: one at low and one at high flow for 
the FF treatment, and twice at stable flow for the SF treatment. We 
analysed the videos by counting the number of active, visibly swim-
ming fish at ten time points (each minute between minutes 15 and 
25, with the first 15 min as an acclimation period), using the mean 
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number of visible fish for further analysis. In addition, we counted 
the number of aggressive interactions (chases and nips) in each 
aquarium for 2 min (from minute 15 to 17). Due to the small size of 
the fry, we could not differentiate between the species in the video 
recordings, thus all behavioural measurements for each aquarium 
were for both species combined. At the end of the experiment, all 
the fishes in each aquarium were identified to species, weighed (wet 
mass), measured (total length) and counted (to record mortalities).

The small size of the fish precluded any form of individual mark-
ing, thus we did not keep track of individual fish. We therefore based 
our calculations of growth on the mean mass at the start and end of 
the experiment for each aquarium and species. We calculated the 
mean instantaneous growth rate (g) for each aquarium as

 where Mend and Mstart are the mean masses at the end and the start 
of the experiment and Δt is the total number of days the experiment 
lasted. Specific growth rate (SGR; % per day; Crane et al., 2020) was 
calculated as

We also calculated CV for the individual body masses for each 
species and aquarium at the end of the experiment.

To examine the effects of flow treatment on fish behaviour 
(number of visibly active swimming fish and aggressive interactions), 
we used the mean values from the two video films from each aquar-
ium (i.e. for SF the mean of two films with the same stable flow; for 
FF the mean from high and low flow conditions). In addition, we ana-
lysed the effects of low vs high flow within the FF treatment, basing 
this analysis on eight replicated aquaria only.

All response variables except mortality were normally distrib-
uted (Shapiro–Wilk's tests, p > .05), and variances between treat-
ments were similar (Levene's tests, p > .05). We analysed the effects 
of flow treatment for the two species separately on SGR and CV 
using Student's t-tests and on mortality using Mann–Whitney's U-
tests. For the behavioural analyses, we used Student's t-tests to 
compare the number of visible fishes and aggressions between flow 
treatments, whereas paired t-tests were used to compare the effects 
of high vs low flow within the FF treatment. All statistical analyses 
were performed using SPSS 28 (IMB, Armonk, USA).

3  |  RESULTS

On average, trout and salmon grew 2.92% ± 0.08% and 
2.27% ± 0.07% day−1 respectively. Trout fry grew significantly bet-
ter in SF (3.08% ± 0.10% day−1) than in FF (2.76% ± 0.10% day−1) 
(t14 = 2.32, p = .04, Cohen's d = 1.16), whereas flow treatment had 
no effect on salmon growth (SF:2.28 ± 0.11; FF: 2.26% ± 0.09% 
day−1; t14 = 0.20, p = .84, Cohen's d = 0.10) (Figure 1a). At the end 
of the experiment, the variability in trout mass (CV) was significantly 

g =
(

ln
(

Mend

)

− ln
(

Mstart

))

∕Δt

SGR = 100 ×
(

eg − 1
)

.

F I G U R E  1  Mean (±1 SE) (a) specific growth rate, (b) coefficient 
of variation in body mass and (c) mortality rate for Atlantic salmon 
and brown fry trout under fluctuating and stable flow treatments 
(n = 8) in aquaria during one month.
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higher in FF (0.23 ± 0.01) than in SF (0.18 ± 0.01) (t14 = 2.64, p = .02, 
Cohen's d = 1.32). Flow treatment did not affect the variability in 
salmon mass (SF: 0.21 ± 0.02; FF: 0.24 ± 0.11; t14  =  0.99, p  =  .34, 
Cohen's d = 0.49) (Figure 1b).

In total, 22 salmon (7 in FF and 15 in SF) and 8 (7 in FF and 1 in 
SF) trout died during the experiment. Median mortality rates (25%–
75% quartile) for salmon was 10 (0–10) % in FF and 10 (0–37.5) % in 
SF. The corresponding values for trout were 1 (0–17.5) and 0 (0–0) 
% respectively. Flow treatment had no statistical significant effect 
on the median mortality rate of salmon (U = 26, Z = 0.66, p = .51). 
Conversely, trout had higher mortality rate in aquaria with the FF 
than in the SF treatment (U = 15, Z = 2.07, p = .04; Figure 1c).

We observed a maximum of 14 visible fishes actively swimming in 
one analysed video frame. There was no difference in the number of 
visible fishes between the flow treatments (means ± SE = 8.97 ± 0.74 
and 7.67 ± 0.35 for SF and FF respectively; t14 = 1.59, p = .14, Cohen's 
d = 0.79) (Figure 2a). Furthermore, flow treatment had no effect on 
the number of observed aggressions (8.38 ± 1.52 and 6.5 ± 1.3 for SF 
and FF, t14 = 0.94, p = .36, Cohen's d = 0.47) (Figure 2b). Within the 
FF treatment, there was a nonsignificant trend that more fishes were 
visible in the low flow (mean ± SE = 8.1 ± 0.32) than in the high flow 
(7.2 ± 0.47) (t7 = 2.20, p = .06, Cohen's d = 0.78) (Figure 3a). Moreover, 
aggression did not differ between high and low flow within the FF 
treatment (t7 = 0.94, p = .38, Cohen's d = 0.33) (Figure 3b).

4  |  DISCUSSION

The present study investigates the effects of short-term fluctuations 
in flow per se on growth, mortality and behaviour of salmon and 
trout fry, omitting the effects of changing water levels and strand-
ing. We found that fluctuating flows had negative effects on the 
growth and mortality of brown trout fry but not Atlantic salmon fry. 
These results suggest that hydropeaking-induced flow fluctuations 
may affect the growth and mortality of salmonid fry through be-
havioural mechanisms in addition to possible stranding or scouring 
effects. Moreover, flow fluctuations may affect fry of different sal-
monid species in different ways; in our study, salmon fry seemed to 
cope better with sub-daily flow fluctuations than trout fry.

Studies that have examined the effects of fluctuating flow on 
salmonid fry growth are almost completely lacking although growth 
is commonly used as a proxy for fitness in juvenile salmonids (e.g. 
Martin-Smith & Armstrong, 2002, and references therein). Korman 
and Campana  (2009) showed that growth rates (as measured by 
otolith increments) of rainbow trout (Onchorynchus mykiss) fry (20–
30 mm) were greater during periods with steady than with fluctuat-
ing flows from hydropeaking: our results for brown trout corroborate 
these findings. There are relatively more studies focusing on the 
growth of parr in hydropeaking flow regimes; the results of these 
studies are ambiguous, however. For example, Puffer et al.  (2015) 
reported lower growth of Atlantic salmon parr (70–90 mm) in hy-
dropeaking than in stable flow conditions during summer. In a later 

F I G U R E  2  Mean (±1 SE) (a) number of visible fish above the 
substrate and (b) mean number of aggressive interactions between 
fry (Atlantic salmon and brown trout) under fluctuating and stable 
flow treatments (n = 8).
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study, the same authors (Puffer et al., 2017) examined the influence 
of hydropeaking on the growth of Atlantic salmon parr (60–80 mm) 
in relation to intra- and interspecific competition with brown trout, 
and they reported no statistically significant effect of hydropeaking 
or the competition regime. There was, however, a trend in reduced 
growth in hydropeaking compared to stable flow conditions (Puffer 
et al., 2017). We studied the fry life stage and found no effects of 
hydropeaking on the growth and mortality of salmon. Flodmark 
et al. (2006) reported that daily flow fluctuations in a regulated river 
did not affect the behaviour and growth rate of brown trout parr 
(158–170 mm). Contrastingly, we found a significant reduction in the 
growth rate of trout fry in fluctuating flows. The discrepancy be-
tween the findings in our study and those of Flodmark et al. (2006) 
and Puffer et al. (2015, 2017) may be related to different life stages 
studied (i.e. parr vs. fry). Furthermore, increased growth in hydro-
peaking rivers has also been demonstrated. Kelly et al.  (2017) re-
ported improved brook trout (Salvelinus fontinalis) parr growth in a 
hydropeaking river compared to a nearby river with a natural flow, 
and the discussed potential mechanism were differences in den-
sity of food resources, foraging success, reduced fishing pressure 
and presence of invasive species, all of which were likely affected 
by hydropeaking. The same pattern of high growth in a hydropeak-
ing river has been reported for juvenile (Flodmark et al., 2004) and 
adult (Rocaspana, Aparicio, Vinyoles, & Palau,  2016) brown trout. 
Likewise, several studies on the growth of nonsalmonid species in 
relation to hydropeaking have reported positive effects (e.g. Cottus 
cognatus: Bond et al., 2016; Bond & Jones, 2015; Kelly et al., 2016, 
Gila cypha: Finch et al., 2015), whereas others reported no effects 
(Luciobarbus bocagei: Oliveira et al., 2020; Micropterus henshalli and 
Micropterus coosae: Earley & Sammons, 2018).

Our experiment showed that fluctuating flow did not affect the 
number of aggressive interactions among sympatric salmon and 
trout fry, but there was a trend that more fishes were visible swim-
ming above the substrate in the stable versus in fluctuating flow 
treatments. The fluctuating flow treatment created higher flow ve-
locities, but these velocities were below the critical limit for down-
stream displacement of salmonid fry (Heggenes & Traaen, 1988). 
Perhaps reduced foraging success (e.g. Piccolo et al.,  2008) and 
net energetic profitability (Nislow et al.,  1999), led to more fry 
seeking velocity shelter in the substrate. High flow velocities 
can reduce the inter- and intra-specific aggression behaviour of 
young-of-the-year juvenile salmonid either due to increased en-
ergy cost for territorial defence (Grant & Noakes,  1988) or for 
holding positions against the water current (Vehanen et al., 2000), 
but we could not find any changes in aggression in relation to flow. 
On the other hand, low flows may induce a shift in foraging modes 
(Gibson, 1978; Grant & Noakes, 1988; Watz et al., 2012), increas-
ing active search feeding and reducing sit-and-wait foraging. Fry 
may experience reduced drift-foraging even in the relatively low 
velocities in our experiment (Nislow et al., 1999), which may have 
resulted in a low net rate of energy intake (Piccolo & Watz, 2018) 
in our experiment, with effects on growth and mortality of brown 
trout. Possibly, the salmon with a morphology adapted to higher 

F I G U R E  3  Mean (±1 SE) (a) number of visible fish above 
substrate and (b) number of aggressive interactions between fry 
(Atlantic salmon and brown trout) at high and low flows (n = 8).
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velocities (e.g. elongated body and large pectoral fins) than trout 
could partly explain why salmon was not as negatively affected by 
the fluctuating flows.

The mortality rates of juvenile salmonids under fluctuating 
flow conditions have previously been related to stranding (Casas-
Mulet et al.,  2016; Moreira et al.,  2019; Nagrodski et al.,  2012; 
Young et al., 2011). For example, high amplitude and frequencies of 
hydropeaking-induced flow fluctuation on Storåne River in Norway 
led to low survival of brown trout (Saltveit et al., 2020), and Korman 
et al. (2011) showed that occurrences of flow fluctuations with high 
amplitude shortly after the time of peak emergence of rainbow trout 
(Oncorhynchus mykiss) fry controlled their abundance. In our study, 
however, we focused on the effects of hydropeaking on mortality not 
related to stranding. Instead, the different mortality rates of brown 
trout between stable and fluctuating flow treatments appeared to 
be linked to energy spent on swimming (Puffer et al., 2015), inter-
actions with con- and hetero-specifics (Puffer et al., 2017) and food 
acquisition (Bond & Jones,  2015). Our results suggest that brown 
trout fry may survive better in steady than in fluctuating flow condi-
tions. Atlantic salmon had a higher overall mortality rate than trout, 
but the rate was not affected much by flow treatment.

The salmonid fry life stage is a vulnerable period because they 
face a high risk of displacement and mortality from predation and 
competition over scarce food resources and suitable habitats 
(Millidine et al., 2018; Nislow & Armstrong, 2012). Hydropeaking 
may exacerbate their vulnerability by further increasing the risk of 
mortality through standing (Nagrodski et al.,  2012), downstream 
drifting (Irvine,  1986; Saltveit et al.,  1995) and increased energy 
expenditures (Korman et al.,  2011; Korman & Campana,  2009; 
Scruton et al., 2003). Although the salmonid fry life stage is con-
sidered a critical period (Elliott,  1990), most studies examining 
the effects of hydropeaking on salmonids are conducted on parr. 
Conducting more research on fry will likely improve our under-
standing of how flow regimes affect population dynamics; our 
results provide evidence that flow fluctuations may affect growth 
and mortality directly in addition to the effects of stranding, which 
needs to be considered when assessing the critical period of fry in 
hydropeaking-regulated rivers.

The negative effects of fluctuating flow on the trout fry in our 
experiment could be related to decreased foraging success and in-
creased energy expenditure; salmon fry did not experience these 
effects. A better understanding of species-specific foraging abilities 
of fry under fluctuating flows would provide valuable inputs for eco-
logical population models, particularly for individual-based models 
(IBM, e.g. inSTREAM, Railsback et al., 2009). Such IBMs can be valu-
able tools for examining the consequences of alternative scenarios 
related to physical restoration projects and different flow regimes, 
for instance, how salmonid populations are affected by sub-daily 
fluctuations (Hajiesmaeili et al., 2022; Railsback et al., 2021). Further 
development of these IBMs may also benefit from species-specific 
parameters (e.g. Bjørnås et al., 2021), and our results highlight that 
even fry of congeneric species differ in their responses to hydrope-
aking flows.

Our study was limited to analysing the effects of one flow re-
gime that might simulate, for example, the flow changes near the 
river margin downstream of a hydropeaking powerplant. The ve-
locities experienced by fry in such habitats may be dynamic and 
with other velocities and bottom structures than those used in our 
study, the results might have been different. We did not simulate 
changes in depth, because our focus was specifically on how alter-
ing water velocity (and turbulence) would affect fry. In a hydrope-
aking river, dynamic flow would alter velocity as well as depth and 
water temperature (i.e. thermopeaking). Studies that test multiple 
combinations of flow and temperature regimes and field studies 
would perhaps be needed to assess the combined effects accurately 
of hydropeaking on growth and survival. We did not simulate alter-
ations in the thermal regime. The effects of temperature on foraging 
behaviour (Watz, Bergman, et al., 2014; Watz, Piccolo, et al., 2014) 
may, however, play an important role at sites affected by thermo-
peaking, and studies that investigate potential interaction effects 
between fluctuating flows and temperature may be warranted. 
Nevertheless, we showed that two species that are considered to 
occupy relatively similar niches may indeed react differently to fluc-
tuating flows, and this difference may make co-existence possible, 
perhaps by condition-specific competition (Watz et al., 2019). Since 
we could not identify fish species in the video analyses, it was not 
possible to assess inter- vs. intraspecific competition. Therefore, we 
do not know if the effects of flow fluctuations on trout growth and 
survival were caused directly by the flow treatment or indirectly by 
condition-specific competition with salmon.

Atlantic salmon and brown trout occur sympatrically in many 
northern rivers. When those rivers are subjected to hydropeak-
ing, flow fluctuations may affect these species in different ways. 
Stranding may affect population development negatively, and we 
have shown that velocity fluctuations may cause additional direct 
negative effects on the growth and survival rates of fry. Also, we 
showed that trout were more negatively affected than salmon. The 
study thereby highlights the need for life stage- and species-specific 
considerations to conserve culturally and economically important 
riverine fish species (Liu et al., 2019; Watz et al., 2022).
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