
The Sum of Two Integer Cubes –
Restricted

Kenny Jonsson

Department of Mathematics and Computer Science

Mathematics

Degree Project 15ECTS, Bachelor Level

Supervisor: Martin Lind

Examiner: Sorina Barza

Date: September 13, 2022

Abstract

We study the size of sets containing sums of two integer cubes such that their
representation is unique and also fit between two consecutive integer cubes. We
will try to write algorithms that efficiently calculate the size of these sets and also
implement these algorithms in Python�.

Although we will fail to find a non-iterative algorithm, we will find different ways
of approximating the size of these sets. We will also find that techniques used in
our failed algorithms can be used to calculate the number of integer lattice points
inside a circle.

Keywords— Diophantine equations, lattice points, number theory

Acknowledgements

I would like to thank my supervisor, Martin Lind, for his valuable guidance and
support.

My thanks goes out to my family for their love and support.
I am very grateful to Anders Hedin for rekindling my love for mathematics.
Last but not least, I would like to thank Ulrika Knape Lindberg, Lars Lundberg,

Malin Hedlund and The Pirate Bay for inspiring me to pursue higher education.

Contents

1 Some classical results in additive number theory 2
1.1 Introduction . 2
1.2 Auxiliary results . 4
1.3 Proof of Fermat’s two squares theorem 5

2 Cube sums 6
2.1 Counting solutions to Diophantine equations 6
2.2 Initial algorithm . 7
2.3 Improved algorithm . 9
2.4 Color coded . 10
2.5 The x, y plots . 12
2.6 Fast algorithm . 13
2.7 Heuristic asymptotic . 16
2.8 Application . 17

I Calculations 19
I.1 First pattern break . 19
I.2 Limits of x, y . 20
I.3 Overlapping points conjecture . 22
I.4 xmin, xmax . 23

II Code 25
II.1 For cube sums . 25
II.2 For points in circle . 27
II.3 Performance . 28

1

Chapter 1

Some classical results in additive
number theory

1.1 Introduction

In number theory, polynomials play a fundamental role. This thesis is devoted to the
study of integral solutions to polynomial equations, so-called Diophantine equations.
One of the most famous result of this type is Fermat’s last theorem, which states
that the polynomial equation

xn + yn = zn

has no positive integer solutions if n > 3.
A similar but different question can be formulated generally in the following way.

If P = P (x1, x2, ..., xd) is a polynomial defined on Rd, which integers belong to the
image of P (Z)? For instance, let P (x, y) = x2 +y2, for which positive integers n can
one find x, y ∈ Z such that n = P (x, y)? This problem was solved independently by
Girard and Fermat in the 17th century. It is in fact sufficient to solve the problem
for n = prime number, the result is called Fermat’s two-squares theorem.

Theorem 1 (Fermat’s two squares theorem). Let p be a prime such that p > 2 and
x, y ∈ Z, then

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4). (1.1.1)

The standard modern proof of the previous result uses the fact that

x2 ≡ −1 (mod p)

has a solution if and only if p ≡ 1 (mod 4), together with Dirichlet’s approximation
theorem. (see Hardy-Wright [1]).

D. R. Heath-Brown [2] suggested a completely different approach to derive The-
orem 1 based on group actions on sets. Later in this chapter we present a short
proof of Theorem 1, largely based on the approach used by S. Dolan [3].

Theorem 1 suggests several generalizations. First, we mention Lagrange’s four-
squares theorem which states that any positive integer n can be represented

n = x2 + y2 + z2 + w2 (x, y, z, w ∈ Z).

2

A deeper result is Legendre’s three-squares theorem, which characterizes the
positive integers that are sums of three squares. Finally, questions of the above type
are all contained in the famous Waring’s problem. For k > 2 and m ∈ N, denote

Sk(m) =

{
n ∈ N : n =

m∑
j=1

xkj for x1, x2, . . . xm ∈ Z
}
.

Define
g(k) = min{m : Sk(m) ∈ N}.

Lagrange’s four-squares theorem can equivalently be formulated as g(2) = 4.
Waring’s problem is to calculate g(k) for k > 3. Hilbert showed that g(k) < ∞ for
all k > 2. Much work has been devoted to the computation of g(k) but the problem
remains wide open.

In the second part of the thesis, we consider the question of counting solutions to
nonlinear Diophantine equations. Such problems are central to analytical number
theory. Our counting problem is a rather subtle one: we want to compute the
number of unique sums of cubes between two consecutive integer cubes. Letting
Σ(a) denote the set of these cube sums, we use

#Σ(a) = #{x3 + y3 | (a− 1)3 < x3 + y3 < a3, a, x, y ∈ N, 0 < x 6 y},

to describe its size. We devise, implement and analyze several algorithms to compute
#Σ(a) using both algebraic and geometrical arguments. Furthermore, we consider
the asymptotic behavior of #Σ(a) for large a and observe experimentally that

lim
a→∞

#Σ(a)

a
≈
√
πΓ(4/3)

22/3Γ(5/6)
= 0.8833 . . . ,

where Γ denotes the Gamma-function. We give a heuristic derivation of the above
limit.

3

1.2 Auxiliary results

As previously stated, Theorem 1 can be solved by different means. The approach
used by Heath-Brown is to show that the equation p = x2 + 4yz has an odd number
of solutions (the odd one being when y = z). Since our proof uses a similar approach,
we will find the following results useful.

Lemma 2. All perfect squares1 are congruent to 0 or 1 modulo 4.

Proof. Let n be an even integer. We write n = 2k for k ∈ Z. Then

n2 = 4k2 ≡ 0 (mod 4). (1.2.1)

If instead n is odd, we write n = 2k + 1, and get

n2 = 4k2 + 4k + 1 ≡ 1 (mod 4). (1.2.2)

By combining the results of (1.2.1) and (1.2.2), we see that all perfect squares are
congruent to 0 or 1 modulo 4.

Lemma 3. For a, b, c ∈ N, any 4k + 1 prime can be written on the form

p = (a+ b+ c)2 − 4ac. (1.2.3)

Proof. Let a = c = k and b = 1 in (1.2.2):

(2k + 1)2 = 4k2 + 4k + 1 ⇐⇒ (1.2.4)

(a+ b+ c)2 = 4ac+ p ⇐⇒ (1.2.5)

p = (a+ b+ c)2 − 4ac. (1.2.6)

Lemma 4. Let

(x+ α)2 = β, (1.2.7)

(x− α)2 = β, (1.2.8)

for x, α, β ∈ N such that α2 6= β. For fixed α, β we see that if x = a is a solution to
(1.2.7), then x = −a solves (1.2.8) and vice versa. This leads to exactly one of the
following possibilities:

a) (1.2.7) and (1.2.8) both have no solutions.

b) Every solution to (1.2.7) gives us a solution to (1.2.8).

Both of these outcomes can be summed up as to say that (1.2.7) and (1.2.8) have
an even number of solutions between them.

1A perfect square is of the form n2, where n ∈ N.

4

1.3 Proof of Fermat’s two squares theorem

Theorem 1 states that for a prime p > 2 and x, y ∈ Z,

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4).

Proof. We know that the sum of two squares is congruent to 0, 1 or 2 modulo 4,
from Lemma 2. As all odd numbers can be written as either 4k + 1 or 4k + 3 (for
k ∈ Z), a prime cannot be written as the sum of two squares if it is on the form
4k + 3, since we cannot get a residue of 3 for any sum of two squares.

∴ p = x2 + y2 =⇒ p ≡ 1 (mod 4). (1.3.1)

Given a prime p on the form 4k + 1, the solutions of

(a+ b+ c)2 = p+ 4ac, (1.3.2)

come in pairs (a, b, c), (c, b, a). The only possibility for these pairs to be equal is if
c = a. Letting c = a in (1.3.2), gives us

(2a+ b)2 = p+ 4a2 ⇐⇒
p = 4ab+ b2

= b(4a+ b). (1.3.3)

Since p is prime it only has two factors (1 and p). So the only solution to (1.3.3)
is (a, b, c) = (k, 1, k). Rearranging (1.3.2) gives us

(a+ b+ c)2 = p+ 4ac ⇐⇒
a2 + 2ab+ 2ac+ b2 + 2bc+ c2 = p+ 4ac ⇐⇒
a2 + 2ab− 2ac+ b2 − 2bc+ c2 = p− 4bc ⇐⇒

(a+ b− c)2 = p− 4bc. (1.3.4)

Observe that the left-hand side of (1.3.4) is a square and must therefore be
greater than or equal to 0, which implies p > 4bc. Since p is finite, the number of
solutions to (1.3.4) must also be finite2. Lemma 4 shows that the number of solution
to (1.3.4) is even when b 6= c. Since (1.3.2) has an odd number of solutions, there is
at least one solution where b = c. Letting b = c in (1.3.4), gives us

a2 = p− 4c2 ⇐⇒
p = a2 + (2c)2. (1.3.5)

∴ p ≡ 1 (mod 4) =⇒ p = x2 + y2. (1.3.6)

Combining (1.3.1) and (1.3.5), gives us

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4).

2At least non-negative ones.

5

Chapter 2

Cube sums

As many equations, proofs and code that belongs to this chapter are quite lengthy
and not that interesting, unless you are already fascinated by this subject, they are
being presented in appendices I and II. See I for calculations and II for source code
(written in Python�).

2.1 Counting solutions to Diophantine equations

While working on problems involving different ways of summing powers of natural
numbers1 the author, out of curiosity, plotted some of the results. A few tangents
later the question that spawned this paper arose - how many unique numbers on
the form x3 + y3, x, y ∈ N fit between two consecutive integer cubes? Letting Σ(a)
denote the set of these x, y sums, we use

#Σ(a) = #
{
x3 + y3 | (a− 1)3 < x3 + y3 < a3, a, x, y ∈ N, 0 < x 6 y

}
(2.1.1)

to describe the size of Σ(a) and

K =
#Σ(a)

a
(2.1.2)

to denote the approximate relation between a and #Σ(a). The values of Σ(a) were
calculated manually for 1 6 a 6 10, mainly to determine if finding K would prove
to be a trivial task. These first ten values can be viewed in Table 2.1.7 but let us
first find the elements and size of Σ(a) for some small a-values, to get a feel for what
we are looking for.

1Initially the idea was that this paper would explore natural density, where Waring’s problem
was one of the topics to research. Since this paper no longer has that much in common with natural
density, that part has been omitted.

6

#Σ(1) = #
{
x3 + y3 | 03 < x3 + y3 < 13

}
= #{ } = 0, (2.1.3)

#Σ(2) = #
{
x3 + y3 | 13 < x3 + y3 < 23

}
= #{1 + 1} = #{2} = 1, (2.1.4)

#Σ(3) = #
{
x3 + y3 | 8 < x3 + y3 < 27

}
= #{1 + 8, 8 + 8} = 2, (2.1.5)

#Σ(4) = #
{
x3 + y3 | 27 < x3 + y3 < 64

}
= #{1 + 27, 8 + 27, 27 + 27} = 3. (2.1.6)

Thus far, K seems rather ordinary. For a 6 4, Σ(a) contains elements of the
form y3 = (a − 1)3 and x3 6 (a − 1)3. Looking at Table 2.1.7, this pattern is
broken at a = 5 and Equation (I.1.5) explains why. Even though this pattern2 is
broken, #Σ(a) does not seem that interesting until a = 10. This was the authors
first indication that these type of cube sums might be worth exploring. The second
one being that the integer sequence generated by calculating #Σ(a) for a ∈ [1, 10]
could not be found in The On-Line Encyclopedia of Integer Sequences® (OEIS®)3,
at the time of writing this paper.

Table 2.1.7: The first ten values of #Σ(a).

a 1 2 3 4 5 6 7 8 9 10
#Σ(a) 0 1 2 3 3 5 6 6 8 7

2.2 Initial algorithm

Wanting to visualize the relation between a and #Σ(a) the author dipped their
toes into programming and learned some of the basics for generating sets/lists and
plotting the results. While there are dynamic mathematical software out there, the
ones known to the author seemed ill-fitted for this task. The choice of programming
language fell on Python�, based on the number of tutorials, guides and videos that
are available to anyone with an internet connection. Algorithm 2.2.1 contains the
pseudocode for one of the first functioning algorithms.

2That we can add 1 6 x 6 a− 1 to y = a− 1.
3While one could probably spend a life time coming up with sequences that is not in OEIS®,

this still seemed quite exciting, at the time.

7

Algorithm 2.2.1 Pseudocode of II.1.1

1 SumList = []

2

3 For x in [1, a− 1]

4 For y in [1, a− 1]

5 Sum = x3 + y3

6 If (a− 1)3 < Sum < a3 and

7 If Sum is not in SumList4

8 Add Sum to SumList

9 Else do nothing

10 Else do nothing

11

12 Return the length of Sumlist

Any reader that knows a bit of programming will see that using Algorithm 2.2.1
is not a very efficient way of calculating #Σ(a). This algorithm will perform (a−1)2

loops in order to find the value of #Σ(a). A value that, based on the information
at hand, seems to be less than a. Despite its lack of efficiency, Algorithm 2.2.1 is
at least fast enough to quickly generate the first one hundred values of #Σ(a), the
results of which are visualized in Figure 2.2.2.

0 20 40 60 80 100

a

0

20

40

60

80

#Σ(a)

Ka

Figure 2.2.2: Plot of #Σ(a) and Ka.

The results seen in Figure 2.2.2, even though appearing chaotic, hints at the
possibility that the relation between #Σ(a) and a is asymptotically linear. An

4We need to exclude duplicates. One example being 13 + 123 = 93 + 103 = 1729.

8

initial hand wave approximation was that

#Σ(a)

a
= K ≈ 0.88. (2.2.3)

2.3 Improved algorithm

Wanting to calculate #Σ(a) for much larger a-values, given the poor performance
of Algorithm 2.2.1, we might be tempted to start over entirely but the general idea
of it is valid. We want to count the number of times that x3 + y3 lays between
(a − 1)3 and a3, for different x−, y−values. The simplest way of doing that is to
loop over each possible x- and y-value, but Algorithm 2.2.1 loops over much more
than just the possible values. We can reduce the number of loops significantly by
limiting the ranges of x and y. Equations (I.2.10) and (I.2.19) show that⌈

a− 1
3
√

2

⌉
6 y 6 a− 1 and (2.3.1)

max
(

1,
⌈

3
√

(a− 1)3 − y3
⌉)

6 x 6
⌊

3
√
a3 − y3

⌋
(2.3.2)

are the suitable ranges. With these, we can improve Algorithm 2.2.1.

Algorithm 2.3.3 Pseudocode of improved algorithm II.1.4

1 SumList = []

2 ymin =
⌈
(a− 1)/ 3

√
2
⌉

3

4 For y in [ymin , a-1]

5 xmin = max(1, d 3
√

(a− 1)3 − y3e)
6 xmax = b 3

√
a3 − y3c

7

8 For x in [xmin , xmax]

9 Sum = x3 + y3

10 If (a− 1)3 < Sum < a3 and

11 If Sum is not in SumList

12 Add Sum to SumList

13 Else do nothing

14 Else do nothing

15

16 return the length of Sumlist

Algorithm 2.3.3 is significantly faster5 at generating #Σ(a) than Algorithm 2.2.1
and can now be used to calculate #Σ(a) up to a = 10000 reasonably fast.

5Performance comparisons can be found in Appendix II.

9

0 2000 4000 6000 8000 10000

a

0

2000

4000

6000

8000

#Σ(a)

Ka

Figure 2.3.4: Plot of #Σ(a) and Ka, for a ∈ [1, 10000].

In Figure 2.3.4 we se that #Σ(a) still seems to be asymptotically linear up to
a = 10000. Still eyeballing our relation K, it now seems that K ≈ 0.883 might be
a slightly better fit but we have no explanation for why this could be. Even when
zooming in and looking closer at #Σ(a) a distinct pattern is not obvious.

2.4 Color coded

After many failed attempts, at finding the pattern of #Σ(a), the strange idea of
printing {13, 23, . . . , a3} as columns and highlighting the x3, y3 pairs that satisfies
our conditions (2.1.1), popped up. Instead of explaining the code, let us just look
at the results in Figure 2.4.1.

10

Figure 2.4.1: #Σ(80) highlighted.

This idea turned out to be a segue to the next idea - plotting the actual x, y pairs
in the Euclidean plane and look for patterns there rather than looking for patterns
in #Σ(a).

11

2.5 The x, y plots

If we rewrite (2.1.1) as functions, we get

y <
3
√
a3 − x3, (2.5.1)

y > 3
√

(a− 1)3 − x3, (2.5.2)

x 6 y and (2.5.3)

x > 0. (2.5.4)

These are all functions that can be represented in the Euclidean plane, provided
that we choose a specific a-value.

Letting a = 17, f = f(a, x) = 3
√
a3 − x3, g = g(a, x) = 3

√
(a− 1)3 − x3 and

h = h(x) = x we can plot f, g and h along with the x, y pairs in #Σ(17).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

g

f

h

x

y

Figure 2.5.5: #Σ(17).

In Figure 2.5.5, the black points corresponds to #Σ(17). The red point (2, 16)
has also been added. This is a point that is not included in #Σ(17) using Algorithm
2.3.3, since 23 + 163 = 93 + 153 = 4104, and the x, y pair 9, 15 gets added first.
Points like this one will however play a crippling roll in the upcoming algorithm.
Before moving on to this algorithm let us define the set D(a) which will contain
these duplicates. In the case of #Σ(17), D(17) = {23 + 163}, so #D(17) = 1.

12

2.6 Fast algorithm

Looking at Figure 2.5.5 it seems that #Σ(17) can be calculated by setting a
counter to xmax = 13, followed by increasing the counter by one each time a x-value
corresponds to more than one y-value and finally reducing the counter by one for
each duplicate value (in this case the red point). There are multiple ways of tackling
this problem and one of them is Algorithm 2.6.1.

Algorithm 2.6.1 Pseudocode of II.1.5

1 ymin =
⌈
(a− 1)/ 3

√
2
⌉

2 Counter = xmax

3

4 For y in [ymin + 1, a - 1]

5 Calculate the largest x-value for given y

6 If multiple y-values correspond to this x-value

7 Increment the counter by 1

8 Else do nothing

9

10 return counter

Line five and six of Algorithm 2.6.1 might need some explaining. In Figure
2.5.5 we see that multiple y-values can correspond to a single x-value. The proof
of Conjecture 6 (found in Appendix I) shows why multiple stacked points only
occur at the x-extreme for any given y-value, which explains why we only need to
calculate this once for every y-value, except for ymin

6. There is however still one
piece missing in this algorithm. We need to reduce the counter for every duplicate
sum (#D(a)). All attempts at writing algorithms to solve this last piece of our
puzzle have performed worse at finding #D(a) than Algorithm 2.2.1 does at finding
#Σ(a), so for now this will have to remain an approximation. Letting #S(a) =
#Σ(a) + #D(a)7, we can plot #S(a) along with #Σ(a).

6We calculate if there can be a point under a given y-value, so there is no need to check under
ymin.

7What is calculated by Algorithm 2.6.1

13

0 20 40 60 80 100

a

0

20

40

60

80

#Σ(a)

#S(a)

Figure 2.6.2: #Σ(a) and S(a), for a ∈ [1, 100].

Looking at Figure 2.6.2, it appears that #S(a) is not that far off. Letting

ε(a) =
#S(a)

#Σ(a)
, if

#S(a)

#Σ(a)
6= 1,

we can plot this function for a few a-values.

0 2000 4000 6000 8000 10000

a

1.00

1.02

1.04

1.06

1.08

1.10 ε(a)

Figure 2.6.3: ε(a), for a ∈ [1, 10000].

14

Note that Figure 2.6.3 contains less than 10000 values. This stems from the fact
that #S(a) = #Σ(a) for some values. The figure indicates that the percentual error
of #S(a) is negligible and any competent number theorist can prove why this is,
but let us move on.

Using mathematical notation, Algorithm 2.6.1 can be written as

#S(a) =

⌊
a
3
√

2

⌋
+

a−1∑
y=ymin+1

by − g(a, xmax(y))c , where (2.6.4)

g(a, x) = 3
√

(a− 1)3 − x3, (2.6.5)

and xmax(y) is the largest x-value for a given y. The first term of (2.6.4) is the ex-
pression for xmax (which is the global maximum value of x), from Equation (I.4.3).
The second term simply calculates the distance between a given point and the func-
tion g(a, x) and returns 1 if multiple y-values is found for a given x-value, and 0
otherwise.

This is, sadly, where the story about finding a closed expression of #Σ(a) ends,
for now. We can still try to get a expression for the approximation of K, at least.
While looking over some early notes that involved integration, the scribblings

#Σ(a)

a

?≈
∫ a

0
3
√
a3 − x3 dx

a2
, (2.6.6)

where found. At first glance this might seem a bit odd, but letting N(r) denote
the number of integer lattice points inside a circle with radius r, it turns out Gauss
showed[4] that

N(r) = r2π + E(r), (2.6.7)

where

|E(r)| 6 2
√

2πr. (2.6.8)

Even though the shape of our area is not circular, it is close enough that we
can apply the same logic8. There is, however, still something strange about (2.6.6).∫ a

0
3
√
a3 − x3 dx is not the area in which our points reside, so why would this make

sense? This question will be addressed in the upcoming section.

8Note that this does not apply to all areas. Consider a rectangle made up of the points
(x0, η), (x0, 1 − η), (x1, η) and (x1, 1 − η) for some infinitesimal η ∈ R. This region will not
contain any integer lattice points, no matter the values of x0, x1.

15

2.7 Heuristic asymptotic

Let f(x) = 3
√
a3 − x3 and g(x) = 3

√
(a− 1)3 − x3. Also let d, s and F denote the

areas of the highlighted sections in Figures 2.7.1, 2.7.2 and 2.7.3 respectively.

Figure 2.7.1 Figure 2.7.2 Figure 2.7.3

We see that our points belong to section d of Figure 2.7.1. Given that the area
approximates the number of integer lattice points, we get #Σ(a) ≈ d. As we have
defined F as

∫ a

0
3
√
a3 − x3 dx, (2.6.6) can be written as

d

a

?≈ F

a2
. (2.7.4)

Let us look at F from the right-hand side of (2.7.4).

F =

∫ a

0

f(x) dx

=

∫ a

0

3
√
a3 − x3 dx

=
a2
√
πΓ(4/3)

22/3Γ(5/6)
=⇒ (2.7.5)

F

a2
=

√
πΓ(4/3)

22/3Γ(5/6)
(2.7.6)

We can rewrite the left-hand side of (2.7.4) to avoid unnecessary calculations.

d

a
=

2d

2a
=

s

2a
. (by symmetry)(2.7.7)

s =

∫ a

0

f(x) dx−
∫ a−1

0

g(x) dx

=
a2
√
πΓ(4/3)

22/3Γ(5/6)
− (a− 1)2

√
πΓ(4/3)

22/3Γ(5/6)
=⇒

s

2a
=

(
1− 1

2a

) √
πΓ(4/3)

22/3Γ(5/6)
. (2.7.8)

16

The right-hand side of (2.7.8) does not equal the right-hand side of (2.7.6), but

lim
a→∞

(
1− 1

2a

) √
πΓ(4/3)

22/3Γ(5/6)
=

√
πΓ(4/3)

22/3Γ(5/6)
=⇒ (2.7.9)

lim
a→∞

F

a2
− s

2a
= 0 and

s

2a
=
d

a
, so

d

a
≈ F

a2
, for sufficiently large a.

In fact 1 − 1
2a

= 0.95, for a = 10, so the approximation is somewhat accurate
even for small a-values.

Summing up our approximation of K, we get

K =
#Σ(a)

a

≈ d

a

≈ F

a2

=

√
πΓ(4/3)

22/3Γ(5/6)

= 0.8833 . . . ,

which is very close to our initial eye ball approximation.

2.8 Application

Since this paper stemmed from curiosity, possible applications where not consid-
ered. There might be some use of the failings of Algorithm 2.6.1. Since it counts
all points in a given area, the type of reasoning behind it can be used to write an
algorithm that counts the number of integer lattice points inside a circle while loop-
ing less than r

3
times, where r is the radius. As I was not able to find out if this is

efficient or not, compared to existing algorithms, we will not go into details about
its inner workings here. Implementation of such an algorithm, along with a brief
explanation, is found in Appendix II.

17

Bibliography

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers.
Oxford Uni. Press, 1979.

[2] R. Heath-Brown, “Fermat’s two squares theorem,” Invariant, 1984.

[3] S. Dolan, “105.38 a very simple proof of the two-squares theorem,” The Mathe-
matical Gazette, vol. 105, no. 564, 2021.

[4] G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life
and Work. Cambridge Uni. Press, 1940.

18

Appendix I

Calculations

I.1 First pattern break

Let a, x, y ∈ N. For which values a is the inequality

x3 + y3 < a3 true, when (I.1.1)

x3 = y3 = (a− 1)3? (I.1.2)

Using (I.1.2) in (I.1.1) and solving for equality, gives us

2(a− 1)3 = a3 ⇐⇒
2a3 − 6a2 + 6a− 2 = a3 ⇐⇒
a3 − 6a2 + 6a− 2 = 0 ⇐⇒

a = 2 +
3
√

2 + 22/3, or a = 2− 2−2/3 − 2−1/3 ± i
(√

3 3
√

2
(
1− 3
√

2
)

2

)
. (I.1.3)

The only real solution is

a = 2 +
3
√

2 + 22/3 ≈ 4.85. (I.1.4)

Recalling that we only are looking for positive integer solutions, we conclude that
(I.1.1) holds true when

a ∈ [1, 4]. (I.1.5)

19

I.2 Limits of x, y

This section will be devoted to finding different limits of x and y that satisfies
(a− 1)3 < x3 + y3,

x3 + y3 < a3,

0 < x 6 y,

a, x, y ∈ N.

(I.2.1)

Wanting to find the smallest y-value (ymin), we can use the equality from (I.2.1)
to get

2y3min > (a− 1)3 ⇐⇒ (I.2.2)

y3min >
(a− 1)3

2
⇐⇒ (I.2.3)

ymin >
a− 1

3
√

2
. (I.2.4)

Since there is no a ∈ N such that a−1
3√2 ∈ N, we know that⌈

a− 1
3
√

2

⌉
>
a− 1

3
√

2
. (I.2.5)

∴ ymin =

⌈
a− 1

3
√

2

⌉
. (I.2.6)

Wanting to find the largest y-value (ymax), the first solution that comes to minds
is y = a− 1. Solving the second inequality of (I.2.1) for x, using y = a− 1, we get

x3 < a3 − (a− 1)3 ⇐⇒ (I.2.7)

x3 < 3a2 − 3a+ 1. (I.2.8)

We see that x = 1 is a solution, as long as a > 1.

∴ ymax = a− 1, for a > 1. (I.2.9)

Combining (I.2.6) and (I.2.9), we get⌈
a− 1

3
√

2

⌉
6 y 6 a− 1, for a > 1. (I.2.10)

When it comes to the limits on x, we have to define two types of extremes.
We are going to calculate x as a function of y, and since y is found in a range, x
will assume a minimum and maximum value for each y-value. Let us denote these

20

by xmin(y) and xmax(y), respectively. Since one out of these min and max values
will also be the global min and max for x, we will need notation for these too.
Let xmin, xmax denote the global minimum and maximum. We will start by finding
xmin(y) and xmax(y).

Solving the first inequality of (I.2.1) for x, gives us

xmin(y)3 > (a− 1)3 − y3 and (I.2.11)

xmax(y)3 < a3 − y3. (I.2.12)

Starting with the minimum value:

xmin(y)3 > (a− 1)3 − y3 ⇐⇒ (I.2.13)

xmin(y) > 3
√

(a− 1)3 − y3. (I.2.14)

Since there is no a, y ∈ N such that 3
√

(a− 1)3 − y3 ∈ N, we know that⌈
3
√

(a− 1)3 − y3
⌉
> 3
√

(a− 1)3 − y3, for y < a− 1. (I.2.15)

∴ xmin(y) =
⌈

3
√

(a− 1)3 − y3
⌉
, for y < a− 1 and (I.2.16)

xmin(y) = 1, for y = a− 1, a > 1. (I.2.17)

When y = ymin we might run into a symmetry problem, which we will tackle later
on. For now, let us use the same reasoning for xmax(y) as for xmin(y) and make the
weaker statement:

xmax(y) 6
⌊

3
√
a3 − y3

⌋
. (I.2.18)

Combining (I.2.16), (I.2.17), (I.2.18) and letting x(y) = [xmin(y), xmax(y)], we
get

max
(

1,
⌈

3
√

(a− 1)3 − y3
⌉)

6 x(y) 6
⌊

3
√
a3 − y3

⌋
. (I.2.19)

Before moving on to xmin and xmax, let us make a statement. For every y-value,
there might be multiple x-values that satisfies (I.2.1).

21

I.3 Overlapping points conjecture

Lemma 5. α− β < 1 =⇒ bαc − dβe 6 0, for α, β ∈ R+.

The proof of Lemma 5 is elementary calculations.

Conjecture 6. xmax(yi+1) 6 xmin(yi), for a > 1.

Proof. For some arbitrary y ∈ [a−13√2 , a− 1), we know that

xmax(yi+1) =
⌊

3
√
a3 − y3

⌋
, (I.3.1)

xmin(yi) =
⌈

3
√

(a− 1)3 − (y − 1)3
⌉
. (I.3.2)

Letting fa(y) = 3
√
a3 − y3, we can plot fa(y) and fa−1(y− 1) to help visualize our

upcoming argument.

a

fa−1(y − 1)

fa(y)

y

f(y)

Figure I.3.3: Plot of 3
√
a3 − y3 and 3

√
(a− 1)3 − (y − 1)3.

We know that y ≮ 1, when a > 0, so let us look at what happens when y = 1.

fa(1) =
3
√
a3 − 1 < a, (I.3.4)

fa−1(1− 1) = 3
√

(a− 1)3 = a− 1. (I.3.5)

Since fa(1)− fa−1(1− 1) < 1, we know that xmax(1)− xmin(1) 6 0, by Lemma 5.
In Figure I.3.3 we can see that fa(y) − fa−1(y − 1) is a decreasing function, which
implies that xmax(yi+1) ≯ xmin(yi) for any y-value, in its domain.

∴ xmax(yi+1) 6 xmin(yi), for a > 1.

22

I.4 xmin, xmax

For a > 1, xmin is simply 1, which can be proven by elementary calculation.
While we have already calculated the ranges for x in our previous algorithm

(2.3.3), these are of no use if we want the actual value of xmax. This stems from the
fact that we are calculating the range for x, not a value. Some of the values in this
range does not satisfy our initial condition

0 < x 6 y, (I.4.1)

and gets filtered out in line 9 of Algorithm 2.3.3 - ”If x is less than or equal to
y”. Recall our calculation of ymin,

ymin =

⌈
a− 1

3
√

2

⌉
.

It might be tempting to think that we can remove the ceiling function from the
calculation of ymin when calculating xmax, but this will lead to errors like when
a = 5:

ymin =

⌈
5− 1

3
√

2

⌉
= 4.

y =
5− 1

3
√

2

≈ 3.174802

xmax
?
= 3
√
a3 − y3 ≈ 4.530655

b4.530655c = 4, but

43 + 43 = 128 ≮ 53.

The reason that this problem arises stems from the fact there will not always be
a point on the line y = x, as seen in Figure I.4.2.

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 f

g

h

x

y

Figure I.4.2: #Σ(15), where ymin = 12 and xmax = 11.

There is, however, an easy way to solve this problem. Following the same line of

reasoning as when calculating ymin, we see that 2
⌊

a
3√2

⌋3
< a3, which in turn leads

to

xmax =

⌊
a
3
√

2

⌋
. (I.4.3)

24

Appendix II

Code

II.1 For cube sums

Note that the following algorithms are optimized for readability rather than speed.

Algorithm II.1.1 Working version of the first algorithm (2.2.1)

1 def first_algorithm(a):

2 """

3 :param a: Integer

4 :return: Number of unique cube sums between (a-1)**3 and a**3:

5 """

6 if type(a) == int and a > 0:

7 sumlist = []

8

9 for x in range(1, a):

10 for y in range(1, a):

11 calc = x**3 + y**3

12 if (a-1) **3 < calc < a**3:

13 if calc not in sumlist:

14 sumlist.append(calc)

15

16 return len(sumlist)

17 else:

18 print(’This function only handles integers greater than 0.’)

19 return

The first algorithm have no dependencies but all of the following requires im-
plementations of both the ceiling and floor functions, so let us define them before
moving on. To save space we will skip the docstrings and input checks in the fol-
lowing code.

25

Algorithm II.1.2 Ceiling function

1 def cf(x):

2 return int(-1*x//1* -1)

Algorithm II.1.3 Floor function

1 def fl(x):

2 return int(x//1)

Algorithm II.1.4 Working version of improved algorithm (2.3.3)

1 def second_algorithm(a):

2 mylist = []

3 ymin = cf((a-1) /(2**(1/3)))

4 for y in range(ymin , a):

5 xmin = max(1, cf(((a-1)**3-y**3) **(1/3)))

6 xmax = fl((a**3-y**3) **(1/3))+1

7 for x in range(xmin , xmax):

8 if 0 < x <= y:

9 temp = y**3 + x**3

10 if temp not in mylist:

11 mylist.append(temp)

12 return len(mylist)

Algorithm II.1.5 Working version of fast algorithm 2.6.1

1 def fast_calc(a):

2 counter = fl(a/2**(1/3))

3 for y in range(a-1, counter , -1):

4 xmax = fl((a**3-y**3) **(1/3))

5 deltay = y - ((a-1) **3 - xmax **3) **(1/3)

6 counter += fl(deltay)

7 return counter

26

II.2 For points in circle

Algorithm II.2.1 Circle point algorithm

1 def circle_points(r):

2 if r == 0:

3 number_of_points = 1

4 return number_of_points

5 elif r == 1:

6 number_of_points = 5

7 return number_of_points

8

9 sq_points = (2*r+1)**2

10 base = cf(r*(2 -2**(1/2)))

11 tri_points = int(base*(base +1)/2)

12 x_init = cf(r/2**(1/2))

13 it_end = r + 1

14 iter_points = 0

15

16 for i in range((it_end - x_init)):

17 x_it = x_init + i

18 ymax = cf (2**(1/2)*r - x_it)

19 ymin = (r**2-x_it **2) **(1/2)

20 diff = ymax - ymin

21 iter_points += fl(diff)

22 if diff - fl(diff) == 0:

23 iter_points -= 1

24

25 number_of_points = sq_points - 4*(tri_points + 2* iter_points)

26

27 return number_of_points

Instead of commenting the code of II.2.1, let us draw a figure to help us under-
stand it. By symmetry we only need to look at a quarter of a circle.

27

8

8

x

y

Figure II.2.2: Calculated points in circle with r = 8.

Thinking inside the box, we see that there are far fewer points outside the circle
but inside the square with side length 2r. So instead of counting all the points inside
the circle, we calculate the points in the square, subtract four times the number of
red points and eight times the number of green points. The number of points in
the square is simply (2r + 1)2, while the number of red points is b(b+1)

2
, where b =

the number of points in the base of the red triangle. The only points left are the
green ones, which are calculated by using the same approach as in the fast algorithm
(2.6.1).

II.3 Performance

In table II.3.1 we see some performance comparisons of our algorithms. Note that
these where carried out in an virtual environment on a old laptop, so the actual
calculation times are less relevant then how they scale.

Table II.3.1: Calculation times in seconds.

PPPPPPPPPAlgorithm
a

100 1000 10000 100000

First 0.01459 1.76689 155.59696 -
Improved 0.00019 0.01149 0.94286 89.13900

Fast 0.00007 0.00070 0.00710 0.07515

28

	Some classical results in additive number theory
	Introduction
	Auxiliary results
	Proof of Fermat's two squares theorem

	Cube sums
	Counting solutions to Diophantine equations
	Initial algorithm
	Improved algorithm
	Color coded
	The x,y plots
	Fast algorithm
	Heuristic asymptotic
	Application

	Calculations
	First pattern break
	Limits of x, y
	Overlapping points conjecture
	xmin, xmax

	Code
	For cube sums
	For points in circle
	Performance

