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the notion of a veined fusion category, which is generated by a finite set of simple 
objects but is larger than its skeleton. Every fusion category C contains veined fusion 
subcategories that are monoidally equivalent to C and which suffice to compute 
many categorical properties for C. The notion of a veined fusion category does not 
assume the presence of a pivotal structure, and thus in particular does not assume 
unitarity. We also exhibit the geometric origin of the algebraic statements for the 
6j-symbols.
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1. Introduction

Any monoidal category is monoidally equivalent to a strict one, i.e. to a monoidal category with trivial 
associativity and unit constraints. Crucially, under such an equivalence non-trivial information about the 
tensor product is preserved. Specifically, in case the monoidal category is linear and semisimple with simple 
monoidal unit and the tensor product of two simple objects is isomorphic to a finite direct sum of simples, 
the remnants of the associator are encoded in linear isomorphisms⊕

p∈S

H l
i,p ⊗H p

j,k −→
⊕
q∈S

H l
q,k ⊗H q

i,j (1.1)

between finite-dimensional vector spaces. Here S labels the isomorphism classes of simple objects and, 
with a choice of representatives (Xi)i∈S in these classes, the vector spaces are the morphism spaces 
H k

i,j = Hom(Xi ⊗Xj , Xk) for i, j, k∈S.
The 6j-symbols, also called fusing matrices [22] or F-matrices [26], of such a monoidal category C are 

the matrix blocks of the linear isomorphisms (1.1) with respect to a choice of bases in all spaces H k
i,j [8, 

Ch. 4.9]. The term 6j-symbol is also used for the entries of those matrices. 6j-symbols are of direct relevance 
in various applications, ranging from recoupling theory in quantum mechanics [10] and rational conformal 
field theory [22,11] to state-sum invariants of three-manifolds [29,7,4] and the classification of semisimple 
monoidal categories with prescribed Grothendieck ring [26].

The numerical values of the 6j-symbols depend, in general, on the choice of basis, albeit certain specific 6j-
symbols, or combinations of 6j-symbols, are basis independent. 6j-symbols can be geometrically interpreted 
in terms of labeled tetrahedra, see e.g. Section VII.1.2 of [28]. It is therefore natural to ask whether, or in 
what sense, the numerical values of 6j-symbols enjoy the symmetry S4 of a tetrahedron. Such tetrahedral 
symmetries have already been discussed a lot in the literature, for instance in the context of state-sum 
constructions and their Hamiltonian realization in quantum spin systems, see e.g. [4,21,17].

However, in existing treatments typically restrictions on the class of categories considered are imposed 
which, while motivated by specific applications the authors have in mind, are not necessary. For instance, the 
treatment in [4] is in the setting of spherical fusion categories, while [28] is in the setting of unimodal mod-
ular tensor categories. In applications in condensed matter physics one typically deals with unitary fusion 
categories (see e.g. [20,27]), which in addition are sometimes required to be braided or to be multiplicity-free 
(i.e. dim(H k

i,j ) ≤ 1).
Indeed, to the best of our knowledge, the tetrahedral symmetry of 6j-symbols has so far not been studied 

in the what would seem the most natural approach, namely the minimal setting in which the associator can 
be characterized through the isomorphisms (1.1). The purpose of the present paper is to fill this gap. More 
precisely, our approach is as follows. First of all we impose the indispensable conditions that the monoidal 
category C in question is k-linear, with k a commutative ring, that it is semisimple and has simple monoidal 
unit, and that the spaces H k

i,j are free k-modules of finite rank. Further, in order to be able to sensibly 
manipulate 6j-symbols, we require that the Grothendieck ring of C has a structure of a unital based ring
in the sense of Definition 3.1.3 of [8]. Finally, we restrict our attention to the situation that k is actually 
an algebraically closed field of characteristic zero, and that the number |S| of isomorphism classes of simple 
objects is finite. Neither of these latter two restrictions (which are also present in the treatments cited 
above) are strictly necessary. But they allow us to invoke various pertinent results from the literature, in 
particular from the theory of fusion categories [8].
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Imposing these (almost) minimal requirements leads us to a class of monoidal categories which we call 
veined near-fusion categories (see Definition 2.1) and generically denote by D. A veined near-fusion category 
is appreciably larger than its skeleton, but its isoclasses of objects are just small enough such that we can 
address the isomorphisms (1.1) for a definite set S of simple objects in terms of a generating skeleton of 
the category, without any further isomorphisms to be accounted for. It is worth noting that in this setting 
we do not have to presume that D is rigid. Rather, the role of rigidity is largely taken over by covector 
duality of finite-dimensional k-vector spaces. Provided that a certain non-degeneracy condition is satisfied 
– namely, that the specific 6j-symbols F(i i i) i

1,1 are invertible for all i ∈S – right and left rigidity functors 
(−)∩ and ∩(−) for D can be constructed from the input data of a veined near-fusion category. Thereby D
naturally acquires the structure of a fusion category. We refer to the resulting class of fusion categories as 
veined fusion categories, see Definition 2.5. The so-obtained rigidity functors (−)∩ and ∩(−) automatically 
coincide on objects, and the double dual functors (−)∩∩ and ∩∩(−) are the identity on objects.

This paper contains one basic result: Given a veined fusion category D such that the double dual (−)∩∩

is the identity as a functor, there is a distinguished action of the symmetric group S4 on the vector space

⊕
i,j,k,p,q,l∈S

(
H p

j,k ⊗Hq,k
l ⊗H l

i,p ⊗Hi,j
q ⊕ Hj,k

p ⊗H l
q,k ⊗Hi,p

l ⊗H q
i,j

)
(1.2)

which results in non-trivial identities for the 6j-symbols of D, and thereby also for any fusion category C
that is monoidally equivalent to D. In Definition 4.1 this S4-action is introduced in terms of generators. 
That these indeed obey the relations required for obtaining S4 is established in Proposition 4.3.

A geometric interpretation of the so-obtained S4-action on the space (1.2) in terms of labeled tetrahedra 
is given in Section 4.2. Those labeled tetrahedra can, in turn, be identified with 6j-symbols (the precise 
expressions are given in Equation (3.8)). Hereby the S4-action translates to the desired tetrahedral symme-
tries of 6j-symbols. Similarly as in [7,12], the resulting relations are obtained as an invariance property of 
a function F from the space (1.2) to the ground field whose values on basis elements are given by rescaled 
6j-symbols, as described in Definition 4.5. Necessary and sufficient conditions for F to be S4-invariant are 
formulated in Theorem 4.8 for veined fusion categories and in Corollary 4.9 for general fusion categories.

In the multiplicity-free case, in the literature these tetrahedral symmetries are frequently expressed as 
equalities between the numerical values of (rescaled) 6j-symbols. Such equalities are, however, directly 
valid only under additional conditions. Indeed, according to Definition 4.1 the S4-transformations involve 
a specific S3-action on the basic morphism spaces H k

i,j and their duals, and generically this S3-action is 
non-trivial even when these spaces are one-dimensional. We specify this S3-action in terms of generators in 
Definitions 3.16 and 3.18. That they satisfy the S3-relations, under the same conditions as in Proposition 4.3, 
is seen in Proposition 3.22.

We stress that unitarity of the fusion category does not play any direct role in our considerations – after 
all, the ground field k can be any algebraically closed field of characteristic zero. Still, unitarity is of interest 
because, as follows from Lemma 3.13(ii), the conditions of Corollary 4.9 are fulfilled for every pseudo-unitary 
C-linear fusion category with its canonical spherical structure. It is also worth pointing out that pivotality 
of the category is not sufficient for the invariance property of F to hold, compare Lemma 3.11. On the other 
hand, even when F is not S4-invariant – and thus in particular, even in the absence of a pivotal structure 
– according to the explicit formulas recorded in Proposition 4.6 there are still non-trivial relations among 
6j-symbols that are connected by tetrahedral transformations. As compared to the case that F is invariant, 
they contain additional sign factors. These sign factors have been studied, in a somewhat different setting 
and for k =C, in [3]; they are obtained as eigenvalues of certain involutive matrices that are constructed 
from special 6j-symbols, see Equations (3.40) and (3.42).

To arrive at the results described above, we introduce a few technical tools and, along the way, discuss 
further aspects of veined fusion categories, some of which may be of independent interest. We organize our 
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discussion as follows. We start in Section 2 by specifying our setting, including in particular our conventions 
for 6j-symbols, the definition of a veined fusion category and pertinent aspects of covector duality. In 
Section 3.1 we summarize the graphical calculus using simplices that we use in our discussion of morphisms 
and 6j-symbols. We then explain, in Section 3.2, the construction of distinguished left and right rigidity 
functors (−)∩ and ∩(−) for a veined fusion category. These allow us in particular to introduce, in Section 3.3, 
dimension functions. The definition of the functors (−)∩ and ∩(−) involves a choice of an invertible number 
μi ∈k for each i ∈S; this freedom can be fixed in such a way (see Equation (3.29)) that the left and right 
dimension functions coincide, but for the sake of generality we refrain from imposing this choice.

The dimension functions do not rely on the existence of a pivotal structure. Their relation with pivotal 
dimensions, as well as other aspects of the double dual (−)∩∩ and pivotality, are the subject of Section 3.4. 
As a final preparation for the discussion of tetrahedral symmetries, in Section 3.5 we introduce the maps 
L̆ and R̆ which are the generators of the S3-action alluded to above. We refer to them as partial duals, 
owing to the fact that they can be composed so as to yield the rigidity duals of morphisms, as described in 
Lemma 3.21. Finally, Section 4 provides our results on tetrahedral symmetry, as already described above, 
while in Appendix A and B we collect pertinent information about 6j-symbols and string diagrams, and 
about structures that underlying our use of simplicial diagrams, respectively.

2. Preliminaries

Let k be a commutative ring.

Definition 2.1. A veined near-fusion category is a k-linear monoidal category D with a finite set S =SD of 
pairwise non-isomorphic simple objects such that the following holds:

(i) The monoidal unit object 1 is in S.
(ii) For any pair i, j ∈S, HomD(i, j) is a free k-module of rank δi,j .
(iii) For every i ∈S there exists a unique i∈S such that for any j ∈S, HomD(j⊗ i, 1) and HomD(i⊗ j, 1)

are free k-modules of rank δi,j .
(iv) Every object is a finite direct sum of tensor products (with arbitrary bracketing) of finitely many 

objects in S.
(v) Every object is isomorphic to a direct sum of objects in S.

This notion of veined near-fusion category makes sense for any commutative ring k. However, for the 
purposes of the present paper we restrict (as is commonly done, e.g. in most of Chapter 9 of [8]) to the case 
that k is an algebraically closed field of characteristic zero. In this case the imposed conditions are redundant, 
in particular it follows directly from simplicity of i that HomD(i, i) ∼= k. Still we give the definition as it 
stands, in order to cover the general case.

Remark 2.2. (i) By the uniqueness condition on the object i one has i= i for every i ∈S.
(ii) As we take k to be an algebraically closed field of characteristic zero, an object x is simple iff it is 
absolutely simple, i.e. iff HomC(x, x) ∼=k. This will no longer be true if one replaces k-linearity by super-k-
linearity, which allows one to consider superfusion categories (as is e.g. done in [30,6]). The latter have 
recently become of interest in the context of fermionic topological orders in condensed matter physics (see 
e.g. [1,31]).
(iii) Finiteness of the set S guarantees that summations appearing in our constructions are finite. But 
provided that the latter summations are still finite, some statements (like the definition of 6j-symbols) 
remain valid for infinite S, and thus e.g. for representation categories of finite-dimensional complex simple 
Lie groups.
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To explain our choice of terminology, we need to tell what the relevant non-degeneracy condition is. To this 
end we first recall the concept of 6j-symbols. Let C be a monoidal category that is monoidally equivalent to 
a veined near-fusion category. We denote by ⊗ the tensor product of C and by a its associativity constraint. 
For simplicity, and without loss of generality, we take the monoidal unit 1 to be strict. In the sequel we also 
abbreviate

HomC(i⊗ j, k) =: H k
i,j and HomC(k, i⊗ j) =: Hi,j

k (2.1)

for every triple (i, j, k) ∈S×3. Since C is semisimple (by property (v) in Definition 2.1), the associativity 
constraint a amounts to a collection of linear isomorphisms F(i j k) l such that the diagram

⊕
p∈S H l

i,p ⊗k H p
j,k

⊕
q∈S H l

q,k ⊗k H q
i,j

HomC(i⊗ (j ⊗ k), l) HomC((i⊗ j) ⊗ k, l)

◦

F(i j k) l

∼=

◦

HomC(ai,j,k,l)
∼=

(2.2)

commutes for i, j, k, l∈S.

Definition 2.3. Let C be monoidally equivalent to a veined near-fusion category. The 6j-symbols of C are 
the matrix blocks of the isomorphisms F(i j k) l with respect to a chosen basis.

Thus concretely, denoting by N k
ij := dimk(H k

i,j ) =dimk(Hi,j
k) the (finite) dimension of the space H k

i,j , 
and choosing a framing set of basis vectors for each of these spaces, the 6j-symbols are represented by the 
collection {

F(i j k) l
αpβ,γqδ

}
(2.3)

of numbers that are defined by

α ◦ (idi ⊗β) ◦ ai,j,k =
∑
q∈S

N q
ij∑

γ=1

N l
qk∑

δ=1

F(i j k) l
αpβ,γqδ δ ◦ (γ⊗ idk) (2.4)

for each quadruple of basis elements

α∈H l
i,p , β ∈H p

j,k , γ ∈H q
i,j , δ ∈H l

q,k . (2.5)

Note that for ease of notation here we do not distinguish between a basis morphism α and its ‘numbering’ 
which is an integer in the range {1, 2, ... , N k

ij }. Also, by a common slight abuse of terminology, the term 
6j-symbol will be used both for the matrix blocks of the associativity constraint and for the collection (2.3)
of matrix elements with respect to a given choice of bases of the spaces H k

i,j .

Remark 2.4. The convention for the labeling of 6j-symbols chosen here is taken from [13, Eq. (2.36)]. In the 
literature various other conventions are in use. For instance, the notation in [8, Ch. 4.9] is related to ours 
by 

(
Φl

ijk

)
pq

= G(i j k) l
p,q , where G denotes the matrix inverse of F, and the relation with the notation in [30]

is 
(
F ijp,αβ
klq,γδ

)
Usher =G(i j k) l

αpβ,γqδ.

In the particular case of 6j-symbols for which k= l= i, j = i and p = q= 1, each of the morphism labels 
α, β, γ, δ can take only a single value. We then often drop those labels from the definition and just write 
F(i i i) i

1,1 for such a 6j-symbol.
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Definition 2.5. A veined fusion category is a veined near-fusion category D for which the numbers F(i i i) i
1,1 ∈k

are invertible for all i ∈SD .

Remark 2.6. Our terminology is motivated by the fact, to be formulated in Proposition 3.2, that any veined 
fusion category can be endowed with left and right rigidity structures, whereby it acquires the structure 
of a fusion category. The qualification veined is chosen to indicate that the isomorphism classes of objects 
are much smaller than for a generic fusion category, but still considerably larger than for a skeletal fusion 
category. Conversely, for any veined fusion category D there is a fusion category C such that D is a full 
and dense k-linear monoidal subcategory of C. Indeed, given a fusion category C, select any set S of 
representatives for the isoclasses of simple objects of C such that 1 ∈S and take D =SC to be the category 
generated by the objects in S by taking formal finite direct sums and tensor products, see Definition B.9(ii). 
The involution i 	→ i on the set S of simple objects of the category SC is induced by the rigidity of C.

For discussing various aspects of 6j-symbols, it is convenient to make use of the graphical description 
of morphisms by string diagrams.1 This is done in Appendix A, in which we collect pertinent information 
about 6j-symbols. Specifically, the defining formula (2.4) is graphically represented in Equation (A.1).

The numerical values of the 6j-symbols depend on the arbitrary basis choices for the spaces H k
i,j or, 

in other words, on the reference frame or gauge. It is important to keep track of the impact that this 
gauge choice may have in our investigations. Specifically, one can readily determine the effects of arbitrary 
transformations of the frame upon the 6j-symbols. For instance, whether or not the numbers F(i i i) i

1,1 are 
invertible is a gauge-independent statement.

Let now D be a veined fusion category. By the semisimplicity of D, given any basis {α} ⊂H k
i,j there is 

a unique dual basis {α} ⊂Hi,j
k such that

α′ ◦ α = δα,α′ idk . (2.6)

Dual bases satisfy the completeness relation

idi ⊗ idj =
∑
k∈S

N k
ij∑

α=1
α ◦ α . (2.7)

Note that the chosen bases generate all morphisms of D via sums, products and covector dualities. In 
particular, in the morphism spaces HomD(x, i) for i ∈S and any x ∈D we can choose bases that consist 
of combinations (via tensor product and composition) of the elements of the chosen bases of the spaces 
H l

j,k. Further, we can then choose coherently dual bases in the spaces HomD(i, x) by applying the linear 
covector duality map that maps H l

j,k �α 	→α∈Hj,k
l to all constituents of each of the basis vectors in the 

chosen bases of the spaces H l
j,k. From here on we assume that such basis choices have been made. This 

way the covector duality map extends to HomD(x, i) � f 	→ f ∈HomD(i, x) for all i ∈S and x ∈D. We can 
then in particular endow each of these spaces with a non-degenerate k-bilinear form 〈−, −〉 by setting 
〈f, g〉 :=f ◦ g ∈HomD(i, i) ∼= k for f, g ∈HomD(x, i), and similarly for HomD(i, x).

It is worth noting that the covector duality map does not behave as well under arbitrary gauge transfor-
mations as the 6j-symbols do – had we chosen ξα instead of α as a basis vector, for ξ ∈k

×, the resulting 
covector duality map would map ξα to ξ−1α rather than ξα and so is a different map. To avoid any com-

1 When using string diagrams it is common to replace the monoidal category under consideration by an equivalent strict monoidal 
category. In our context this is fully justified because the 6j-symbols retain the essential information about the associativity 
constraint when replacing a monoidal category by a monoidally equivalent one. Note, however, that as long as one is only dealing 
with equalities between morphisms, it is not really necessary to work with a strict monoidal category, see e.g. Section 2.1 of [3].
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plications arising from this feature, from here on we only admit gauge transformations that preserve the 
covector duality maps and, as a consequence, preserve the inner products 〈−, −〉.

3. Duality in veined fusion categories

3.1. Simplicial semantics for veined near-fusion categories

One of the tools in our study of tetrahedral symmetries of fusion categories will be to manipulate tetra-
hedra that represent associators. To render such manipulations computationally palatable, we need to know 
precisely how manipulating a simplex diagram can correspond to an algebraic operation. This is achieved by 
adopting the simplicial formalism that is outlined in Appendix B and by working with a veined near-fusion 
category D in the sense of Definition 2.1, so that in particular the class of simple objects is the finite set 
S =SD . For instance, for D =SC the full and dense linear monoidal subcategory of a fusion category C

generated by a choice of representatives for the simple objects, as considered in Remark 2.6, the simplicial 
diagrams we draw exist in the single-object quasi-category QSC constructed by enriching over SC (see 
Definition B.9(iii)).

The diagrammatic reasoning allows us to make statements that are independent of the choice of basis 
while at the same time they are easily translated to concrete (possibly basis-dependent) formulas once any 
specific choice of bases is made. In the sequel we work with a fixed veined near-fusion category D and 
simplify the notation by just writing Hom without a subscript for the morphism spaces of D.

We take 2-simplices to indicate both specific morphisms and spaces of morphisms. This is achieved by us-
ing labeled and unlabeled faces for individual morphisms and for morphism spaces, respectively. Specifically, 
the statement that the morphisms f and g lie in the spaces Hom(i ⊗ j, k) and Hom(k, i ⊗ j), respectively, is 
expressed graphically as

k

i j

f
∈

k

i j
= Hom(i⊗ j, k) (3.1)

and
i j

k

g ∈
i j

k

= Hom(k, i⊗ j) . (3.2)

This convention has the advantage that we can treat the composition of individual morphisms and of 
morphism spaces uniformly. On the other hand, as we will only be concerned with the 2-morphisms derived 
from the associator, the tetrahedra we consider here do not have their volumes labeled.

To illustrate, let us consider the simplicial description of the composite of two morphisms g∈Hom(i ⊗ j, p)
and f ∈Hom(p, k⊗ l) (compare also (B.12) in Appendix B.2):

f ◦ g =

k l

p

f

ji
g

∈

k l

p

ji

⊆

k l

ji

= Hom(i⊗ j, k⊗ l) . (3.3)



8 J. Fuchs, T. Grøsfjeld / Journal of Pure and Applied Algebra 227 (2023) 107112
For computational purposes it is often desirable to translate such pictures to coefficient matrices. This is 
accounted for by working with framed values of the simplices, for which faces are labeled by framing basis 
vectors. When drawing such framed simplices we employ the following conventions:

– We use one and the same symbol for a basis vector α and for its dual α, leaving the orientation of the 
diagram to witness the domain and codomain of the morphism.

– For the chosen basis of any one-dimensional morphism space we often use the special symbol “◦” (com-
pare e.g. formula (A.8) in Appendix A), and for each simple object i ∈S we take ◦∈Hom(i, i) ∼= k to be 
the identity morphism idi.

– We omit trivial faces or edges and multiplication symbols when they are already evident from context.
– Sometimes we abbreviate αpβ ≡ α ◦ (idi ⊗β) when denoting the basis of Hom(i ⊗ (j⊗ k), l) that is 

obtained from the basis of Hom(i ⊗ p, l) ⊗k Hom(j⊗ k, p).

It is also worth pointing out that we typically suppress summation symbols when working with unframed 
diagrams. For instance, whilst merely labeling all faces of the picture (3.7) below would not result in a 
sensible equality, it does become sensible once one in addition sums over the index set S for the edge with 
label q as well as over the corresponding framings on its adjacent faces.

Let us provide a few simple examples of framed diagrams. First, the completeness relation (2.7) for the 
framings is expressed as

∑
k∈S

∑
α

α ◦ α =
∑
k,α

i j

k

α

ji
α

=

j

ji

i

1◦ ◦ (3.4)

Second, the defining relation (2.4) satisfied by the 6j-symbols F can be written as

α ◦ (idi ⊗ β) =

l

i k

j

α p

β
=

∑
q,γ,δ

F(i j k) l
αpβ,γqδ γ

δ

qi

j

l

k (3.5)

while the one for the inverse symbols G can analogously be expressed as

α ◦ (β ⊗ idi) =

l

i k

j

α p

β
=

∑
q,γ,δ

G(i j k) l
αpβ,γqδ

γ

δ

q
i

j

l

k (3.6)

Finally, note that the equality (3.5) is to be interpreted as a framed version of the associativity constraint. 
The unframed version of the constraint is an isomorphism between the relevant tensor products of morphism 
spaces and reads
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l

i k

j

p
=

i j

k

q

p

l

◦ qi

j

l

k (3.7)

Accordingly, the 6j-symbols can be thought of as the matrix coefficients of the 2-morphism that is realized 
by the tetrahedron in (3.7), and analogously for the inverse 6j-symbols. This amounts to the identifications

δ

α β

γ

i j

k

q

p

l

= F(i j k) l
αpβ,γqδ and

i j

k

q

p

l δ

α β

γ

= G(i j k) l
γqδ,αpβ . (3.8)

This is the simplicial counterpart of the string diagram expressions (A.6) and (A.7) for the 6j-symbols. 
Note that these coefficient values of F and G are independent of whether one uses basis or dual basis labels 
for the faces, since dualizing such a label at the same time reverses the orientation of the respective face.

Put differently, the proper way to read the labeled tetrahedra displayed in (3.8) is as the matrix coefficients 
of the abstract tetrahedra with spine ijk. Note that these can either be interpreted as a passive basis 
transformation of spaces or as an active transformation of framed spaces. Computationally, we can proceed 
as is depicted in Equation (3.7): glue the in-faces of a tetrahedron to the appropriate input and use the 
completeness relation to erase them from the tetrahedron, leaving the out-faces as output. Alternatively, 
we can think of the tetrahedron as expanding the out-faces in terms of the in-faces.

3.2. From covector duality to rigidity

The considerations in Section 3.1 apply to arbitrary veined near-fusion categories. We now study issues 
for which we will have to restrict to non-degenerate ones, i.e. to veined fusion categories.

Let us introduce a special notation for the pair of dual basis vectors in the one-dimensional morphism 
spaces Hom(1, i⊗ i) and Hom(i⊗ i, 1) for i ∈S:

i∨i ∈ Hom(1, i⊗ i) and i∧i ∈ Hom(i⊗ i, 1) . (3.9)

Besides the covector duality relation i∧i ◦ i∨i =1 these morphisms satisfy

(i∧i ⊗ idi) ◦ (idi ⊗ i∨i) = G(i i i) i
1,1 idi (3.10)

and (idi ⊗ i∧i) ◦ (i∨i ⊗ idi) = F(i i i) i
1,1 idi , (3.11)

with G(i i i) i
1,1 the inverse 6j-symbol analogous to F(i i i) i

1,1 (compare (A.8)), which according to (A.10) satisfies 
G(i i i) i

1,1 = F(i i i) i
1,1 . In particular, in the special case that all coefficients F(i i i) i

1,1 are equal to 1, we simply have

(i∧i ⊗idi) ◦ (idi ⊗ i∨i) = idi = (idi ⊗ i∧i) ◦ (i∨i ⊗idi) . (3.12)

When considered for both i and i, these equalities can be recognized as both the right and left rigidity 
constraints, or snake identities, for the simple object i, with the left and right dual object of i being i. 
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Moreover, we can actually extend this structure to left and right rigidity structures ∧(−) and (−)∧ on the 
category D: On objects we define (i ⊗ j)∧ := j∧ ⊗ i∧ ≡ j⊗ i as well as ∧(i ⊗ j) := j⊗ i, and analogously for 
multiple tensor products and for direct sums; thus the left and right duals of any object x ∈D coincide, and 
accordingly we just write both of them as x. We then set

i⊗j∧i⊗j := j∧j ◦ (idj ⊗ i∧i ⊗ idj) (3.13)

etc., and for any pair of composable morphisms x y z
f g we set

f∧ := (y∧y ⊗ idx) ◦ (idy ⊗ f ⊗ idx) ◦ (idy ⊗ x∨x) (3.14)

and ∧f := (idx ⊗ y∧y) ◦ (idx ⊗ f ⊗ idy) ◦ (x∨x ⊗ idy) . (3.15)

It is then immediately checked that the snake identities are fulfilled for every object x, as well as 
(g◦f)∧ = f∧ ◦ g∧ and ∧(g◦f) = ∧f ◦ ∧g. Also note that the double duals act on objects as the identity, 
x∧∧ =x = ∧∧x.

The assumption that all F(i i i) i
1,1 are equal to 1 is a strong restriction on the category C, though. If this 

requirement is not satisfied, then the associator term breaks functoriality and hence also rigidity. Indeed, 
the definitions (3.15) immediately lead to id∧i = G(i i i) i

1,1 idi, and e.g. for the basis element αpβ on the left 
hand side of (3.5) they give (using also (A.10)) (idi ⊗β)∧ ◦α∧ =F(p p p) p

1,1 F(i i i) i
1,1 (α ◦ (idi ⊗β))∧.

However, in case the veined near-fusion category D is non-degenerate, i.e. is a veined fusion category in 
the sense of Definition 2.5, then owing to the invertibility of the numbers F(i i i) i

1,1 ∈k this problem can be 
resolved by rescaling: We start with

Definition 3.1. Let D be a veined fusion category with generating set S, and let i∨i and i∧i be the basis 
morphisms (3.9). We set

i∪i := μi
i∨i and i∩i := 1

μi F(i i i) i
1,1

i∧i (3.16)

for i ∈S, with arbitrary invertible scalars μi.

These definitions can be extended to all objects of D by the analogous prescription as in (3.13). We then 
use these rescaled morphisms to define candidate rigidity functors on morphisms as

f∩ := (y∩y ⊗ idx) ◦ (idȳ ⊗ f ⊗ idx) ◦ (idy ⊗ x∪x)

and ∩f := (idx ⊗ y∩y) ◦ (idx ⊗ f ⊗ idy) ◦ (x∪x ⊗ idȳ) (3.17)

for f ∈Hom(x, y). We then immediately satisfy the snake identities for all objects and have (g◦f)∩ = f∩ ◦ g∩
and ∩(g◦f) = ∩f ◦ ∩g as well as (idx)∩ = idx = ∩(idx) for all x ∈D. Also note that

(∩f)∩ = f = ∩(f∩) (3.18)

on the nose. We can also extend the rescaling factors to all objects of D, by defining iteratively Fx⊗y := Fx Fy

with Fi ≡F(i i i) i
1,1 and Fx⊕y := Fx ⊕Fy (as diagonal matrices). We then have

f∩ = (Fy)−1
f∧ and ∩f = (Fy)−1 ∧f (3.19)
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for all morphisms f ∈Hom(x, y).
We summarize these observations as

Proposition 3.2. Let D be a veined fusion category. Then the functors (−)∩ and ∩(−) from D to Dop defined 
on objects by x∩ :=x=: ∩x and on morphisms by (3.17) constitute left and right rigidities on D, respectively. 
This endows D with the structure of a fusion category.

Recall that in any monoidal category the (left or right) dual of an object, if it exists, is unique up to 
unique isomorphism [8, Prop. 2.10.5]. In a veined fusion category, the freedom given by these isomorphisms 
for all objects reduces to automorphisms of the simple objects in S. The invertible numbers μi introduced 
in 3.1 precisely account for this freedom. Also, we immediately have (compare also [2, Prop. 5.3.13])

Corollary 3.3. A veined near-fusion category is rigid, and is thus a fusion category, if and only if it is 
non-degenerate.

3.3. Traces and dimensions

From now on we assume that D is a veined fusion category, so that left and right rigidity functors as 
constructed above exist. It is then natural to ask whether D admits a pivotal structure, i.e. a monoidal 
natural transformation π : (−)∩∩ −→ Id from the (right, say) double rigidity dual to the identity functor; this 
question will be studied in Section 3.4 below. The datum of a pivotal structure is equivalent to the one of a 
sovereign structure, i.e. a monoidal natural transformation between left and right rigidities. Note that the 
evaluation and coevaluation morphisms (3.16) appear in the definition (3.17) of both left and right rigidity. 
This makes it easy to handle composite morphisms that involve both rigidities, even in the absence of a 
pivotal structure. 2 In particular we can directly define two traces as follows.

Definition 3.4. For any endomorphism f ∈Hom(x, x) in D we set

trL(f) := f ◦

x∩x

x∪x

and trR(f) := f◦

x∩x

x∪x

(3.20)

The numbers trL(f) and trR(f) are called the left trace and right trace, respectively, of the endomorphism 
f .

In order that the traces trL(f) and trR(f) become cyclic, a pivotal structure on D is needed. But note 
that owing to the fact that the double dual functors ∩∩(−) and (−)∩∩ act trivially on objects, the traces 
are indeed defined on endomorphisms. As a consequence, even without assuming a pivotal structure we can 
introduce dimension functions by considering the traces of identity morphisms:

Definition 3.5. The left and right dimensions of an object x ∈D are the numbers

dimL(x) := trL(idx) and dimR(x) := trR(idx) , (3.21)

2 Thus in case k =C the left and right rigidities are automatically related according to the “pairing convention” that is explained 
in Section 3.2 of [3].
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respectively.

Remark 3.6. Since the traces do not involve a pivotal structure, they are not cyclic on the nose, but rather 
satisfy

trL(f ◦ g) = trL(g ◦ ∩∩f) and trR(f ◦ g) = trR(g ◦ f∩∩) (3.22)

(compare [8, Prop. 4.7.3(4)]). In contrast to the traces, for a general fusion category dimensions can only be 
defined in the pivotal case [8, Def. 4.7.11]. But since i∩∩ = i, for a veined fusion category D we can still define 
non-pivotal dimensions as in (3.21). In case D does have a pivotal structure π, these must be distinguished 
from the ‘pivotal’ dimensions

dimπ
L(i) := trL(π−1

i ) and dimπ
R(i) := trR(πi) . (3.23)

The latter functions are also called ‘quantum dimensions’ or sometimes ‘categorical dimensions’, which hides 
their dependence on the pivotal structure.

Using (3.16) we directly get

dimL(i) = μi

μi F(i i i) i
1,1

and dimR(i) = dimL(i) . (3.24)

Note that by construction the dimensions of simple objects are invertible numbers, and that dimL,R(1) =1. 
Also, while the left and right dimensions individually depend on the choice of the numbers μi (and are thus 
not canonical), their product does not: we have

dimL(i) dimR(i) = 1
F(i i i) i

1,1 F(i i i) i
1,1

. (3.25)

For fusion categories over C, such a product of left and right dimensions has first been studied in [23, 
Prop. 2.4]. It is also known as squared norm [8, Sect. 7.21] or as paired dimension [3, Def. 3.2] of the object 
i. We will use the latter term; the formula (3.25) amounts to Corollary 4.7 of [3]. Besides being independent 
of the μi, the paired dimension is also gauge-independent, and by a suitable rescaling one can achieve 
F(i i i) i

1,1 = F(i i i) i
1,1 (see Remarks A.1 and A.2 in Appendix A), whereby the paired dimension is written as a 

square. We do not introduce a separate notation for the paired dimension, but it will be convenient to use a 
separate symbol for the quotient of the left and right dimensions of an object, which we also call the relative 
dimension:

δx := dimL(x)/dimR(x) . (3.26)

In the sequel we also abbreviate

dx := dimL(x) . (3.27)

The left and right traces are very similar. Indeed, using the relation (3.16) between covector and rigidity 
dualities, one checks that trL(f)/didj = trR(f)/didj for f ∈End(i ⊗ j, i ⊗ j), and analogously for general 
endomorphisms. In particular the relative dimensions obey

δi ≡
di

di

=
F(i i i) i

1,1

F(i i i) i

(μi

μi

)2
. (3.28)
1,1



J. Fuchs, T. Grøsfjeld / Journal of Pure and Applied Algebra 227 (2023) 107112 13
Thus if and only if the freedom present in the scalars μi is partially fixed in such a way that

μ2
i

μ2
i

=
F(i i i) i

1,1

F(i i i) i
1,1

, (3.29)

then the two dimension functions as well as the two traces coincide.

3.4. Pivotality

Next we ask under which conditions the category D has a pivotal structure. To this end we first compute 
the expansion coefficients of the double duals of basis elements α∈H k

i,j and α∈Hi,j
k with respect to the 

chosen bases. We find

Lemma 3.7. (i) The right and left double duals of the basis morphisms in the spaces H k
i,j and Hi,j

k can be 
expressed as

α∩∩ = di dj

dk

∑
β

Mα,β β and α∩∩ =
di dj

dk

∑
β

Mβ,α β (3.30)

and as

∩∩α =
di dj

dk

∑
β

Mα,β β and ∩∩α = di dj

dk

∑
β

Mβ,α β , (3.31)

respectively, where M ≡M(i j k) is the N k
ij ×N k

ij -matrix with entries

M(i j k)
α,β :=

∑
μ

F(i j j) i
◦1◦,βkμ

G(i j j) i
αkμ,◦1◦ =

∑
μ

G(i i j) j
◦1◦,μkβ

F(i i j) j
μkα,◦1◦ . (3.32)

(ii) α∩∩ is covector dual to α∩∩, and ∩∩α is covector dual to ∩∩α.
(iii) The quadruple dual satisfies

α∩∩∩∩ = δi δj δk α (3.33)

with δx the relative dimension (3.26), and analogously for ∩∩∩∩α. In particular, if left and right dimensions 
coincide, then the (right or left) quadruple dual functor is the identity as a functor.

Proof. (i) We first note that by combining the Definitions 3.1 and 3.4 we have

α∩∩ = 1
dk

∑
β

trL(β ◦α)β (3.34)

and α∩∩ = 1
dk

∑
β

trR(β ◦α∩∩)β (3.22)= 1
dk

∑
β

trR(α ◦β)β (3.35)

as well as

∩∩α = 1
dk

∑
β

trR(β ◦α)β (3.36)

and ∩∩α = 1
dk

∑
β

trL(β ◦ ∩∩α)β (3.22)= 1
dk

∑
β

trL(α ◦β)β . (3.37)
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On the other hand, the matrix M can be expressed in terms of string diagrams as in (A.15), from which it 
directly follows that

Mα,β = 1
di dj

trL(β ◦α) = 1
di dj

trR(β ◦α) . (3.38)

Note that the equalities of string diagrams in (A.15) imply in particular the equality of the two expressions 
for M in (3.32).
(ii) By (i) we have in particular

dk

di dj
α∩∩ = dk

di dj

∩∩α (3.39)

(and thus α∩∩ = ∩∩α in case the left and right dimensions coincide). It follows further that, up to a prefactor 
dkdk/dididjdj , the morphism ∩∩α∩∩ is obtained from α by applying the matrix M2. However, we already 
know from (3.18) that ∩∩α∩∩ =α. Hence we learn that the matrix with entries

√
di di dj dj

dk dk

M(i j k)
α,β

(3.25),(3.32)=

√√√√ F(k k k) k
1,1 F(k k k) k

1,1

F(i i i) i
1,1 F(i i i) i

1,1 F(j j j) j
1,1 F(j j j) j

1,1

∑
μ

F(i j j) i
◦1◦,βkμ

G(i j j) i
αkμ,◦1◦ (3.40)

is involutive. As a consequence, the relations (3.30) imply that

α∩∩ ◦β∩∩ = di dj

dk

di dj

dk

∑
γ,δ

Mα,γ Mδ,β γ ◦ δ =
di di dj dj

dk dk

(
M2)

α,β
= δα,β . (3.41)

The statement for the double left duals is seen in the same way.
(iii) follows directly from (3.30) via the last equality in (3.41). �

Since the matrix (3.40) is involutive, it can be diagonalized with eigenvalues ±1. We refer to the basis 
consisting of the corresponding eigenvectors briefly as an eigenbasis of the morphism space H k

i,j . In an 
eigenbasis the diagonal elements of M read

Mα,α =
√

dk dk

di di dj dj

εα with εα ≡ ε k
i,j;α ∈ {±1} . (3.42)

Remark 3.8. (i) For fusion categories over k =C, the linear automorphism realized by the involutive matrix 
(3.40) has already been used in the proof of Theorem 2.3 of [9]. Thus in this case the matrix coincides with 
what is called a pivotal operator in Definition 3.7 of [3]. Accordingly, Lemma 3.7(iii) amounts to Theorem 
3.10 of [3] (compare also [16, Thm. 3]). The eigenvalues εα appear in [3] as pivotal symbols, with the formula 
(3.42) corresponding to Lemma 3.15 [3].
(ii) In the square-root expressions in (3.40) and (3.42) (as well as below, e.g. in (3.47)), the paired di-
mension (3.25) appears. As already noted, the paired dimension can be written explicitly as a square if 
the basis choice described in Remark A.2 is made. In this case a natural choice of square root is to take √

di di = 1/F(i i i) i
1,1 = 1/F(i i i) i

1,1 for every i ∈S. In case k =C, another possible prescription is to take the 

positive square root; this is done in [3]. If some of the numbers F(i i i) i
1,1 are negative, the two prescriptions 

are different. In particular, also the values of the sign factors ε k
i,j;α differ, but only by an (α-independent) 

coboundary, so that various results involving these sign factors, like e.g. Lemma 3.11 below, are not affected.

The following observations are now immediate:
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Lemma 3.9. (i) The basis {α} of H k
i,j can be chosen in such a way that the left and right double duals of the 

basis vectors are given by

α∩∩ = εα
√

δi δj δk α and ∩∩α = εα

√
δi δj δk α , (3.43)

respectively, with εα ∈{±1}.
(ii) With this choice, the elements of the covector-dual basis of Hi,j

k satisfy

α∩∩ = εα

√
δi δj δk α and ∩∩α = εα

√
δi δj δk α . (3.44)

In short, we can write εα = εα.
(iii) For the standard basis elements idi ∈H i

i,0, idi ∈H i
0,i and i∧i ∈H 0

i,i
we have

εidi
= +1 = ε

i∧i
. (3.45)

(iv) For every quadruple α∈H l
i,p, β ∈H p

j,k, γ ∈H q
i,j , δ ∈H l

q,k the implication

F(i j k) l
αpβ,γqδ �= 0 =⇒ εα εβ = εγ εδ (3.46)

holds.
(v) The paired dimensions satisfy the sum rule

∑
k∈S

√
dk dk

N k
ij∑

α=1
ε k
i,j;α =

√
di di dj dj (3.47)

for i, j ∈S.

Proof. When taking the basis of H k
i,j to be an eigenbasis, the equalities (3.43) and (3.44) follow directly 

from Lemma 3.7(i). The equalities (3.45) hold because we have, trivially, (idi)∩∩ = idi as well as, as seen by 
direct calculation, (i∧i)∩∩ = i∧i for every i ∈S.
The formula (3.46) is obtained by specializing the equality

α∩∩ ◦ (idi ⊗β∩∩) ◦ ai,j,k =
∑
q∈S

∑
γ,δ

F(i j k) l
αpβ,γqδ δ

∩∩ ◦ (γ∩∩ ⊗ idk) (3.48)

to bases of eigenvectors in each of the spaces H l
i,p, H

p
j,k, H

q
i,j and H l

q,k. The latter equality, in turn, follows 
directly from the definition (2.4) of the 6j-symbols by the fact that (−)∩∩ is a linear functor. (For a different 
proof of (3.46) see [3, Cor. 3.26].)
Finally, the sum rule (3.47) is obtained by combining the formula (3.42) with the identity

∑
k∈S

N k
ij∑

α=1
Mα,α

(3.32)=
∑
k,α,β

G(i i j) j
◦1◦,αkβ

F(i i j) j
αkβ,◦1◦ =

(
G(i i j) j F(i i j) j)

◦1◦,◦1◦
= 1 , (3.49)

which is the “covector trace” of the completeness relation (2.7). �
The formula (3.45) and the sum rule (3.47) correspond to Lemma 3.16 and Proposition 3.17 of [3], 

respectively.
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Remark 3.10. (i) The square root factors in (3.43) and (3.44) are equal to 1 iff

δi δj = δk for N k
ij �= 0 . (3.50)

According to (3.33) this is the case iff the quadruple dual is the identity functor.
(ii) If we choose the parameters μi as in (3.29) so that left and right dimensions coincide, then in an 
eigenbasis of H k

i,j we just have α∩∩ = εα α. More generally, according to (3.28) we have

α∩∩ = εα
μi μj μk

μi μj μk

√√√√F(i i i) i
1,1 F(j j j) j

1,1 F(k k k) k
1,1

F(i i i) i
1,1 F(j j j) j

1,1 F(k k k) k
1,1

α . (3.51)

Thus in particular for some triples (i, j, k) ∈S×3 involving non-self-conjugate objects we can compensate 
the signs εα (uniformly for all members of an eigenbasis) by judiciously modifying the choice of parameters 
μi.
(iii) As an immediate consequence of the fact that (α∩)∩∩ =(α∩∩)∩, in the eigenbasis we also have

(α∩)∩∩ = εα

√
δi δj δk α

∩ (3.52)

for each basis vector α, as well as analogous formulas involving left rigidities and/or dual basis vectors α.
(iv) In the multiplicity-free case, i.e. when dimk(H k

i,j ) ∈{0, 1} for all i, j, k∈S, every basis is automati-
cally an eigenbasis. Accordingly, in applications in condensed matter physics that restrict attention to the 
multiplicity-free case, the diagonalization of the matrix M is not an issue.

Since trL(α ◦β) = δα,β dk and trR(α ◦β) = δα,β dk, the formulas (3.30) and (3.31) imply that D can be 
endowed with a strict pivotal structure if and only if the traces trL and trR are cyclic. More generally, any 
pivotal structure π on D is completely determined by its components πi on the simple objects i ∈S: for any 
object x we have

πx =
∑
i∈S

∑
γ

γ ◦ πi ◦ γ∩∩, (3.53)

where the γ-summation is over a basis of Hom(x, i). Moreover, since the double dual is the identity on 
objects, πi is just an invertible multiple of the identity morphism. It is convenient to express this as

πi =
√
δi 	i idi (3.54)

with some invertible scalars 	i, for i ∈S. We then get (compare Theorem 5.4 and Lemma 5.7 of [3])

Lemma 3.11. (i) A veined fusion category D admits a pivotal structure only if for every triple (i, j, k) ∈S×3

the matrix M(i j k) is a multiple of the identity matrix, so that

ε k
i,j;α = ε k

ij (3.55)

does not depend on the specific element α of an eigenbasis of H k
i,j , and hence every basis is an eigenbasis.

(ii) A pivotal structure on a veined fusion category D is characterized by a collection {	i | i ∈S} of roots 
of unity satisfying the coboundary equation

	i 	j = ε k
i,j 	k (3.56)
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for N k
ij �= 0, as well as

	i 	i = 1 (3.57)

for all i ∈S and 	1 = 1.

Proof. Since all morphisms can be expressed in terms of the ones in the basic morphism spaces, the require-
ment that π is a monoidal natural transformation boils down to the condition that

πk ◦ α∩∩ = α ◦ (πi ⊗πj) (3.58)

for all α∈H k
i,j , for all i, j, k∈S. Once we restrict to bases of the spaces H k

i,j consisting of eigenvectors of 
the double dual, we can use (3.43) and (3.54) to rewrite the condition (3.58) as 	i 	j = ε k

i,j;α 	k whenever 
N k

ij �= 0. This can only hold if ε k
i,j;α actually does not depend on α, thus proving (i). Further, in this case 

the scalars 	i defined by (3.54) satisfy (3.56). That 	1 = 1 follows from the fact that ε i
i1 =1 = ε i

1i any i ∈S, 
and then 	i	i = 1 follows from ε 1

ii
= 1 which, in turn, is a consequence of (3.45). Finally observe that the 

squares of the so-obtained numbers 	i furnish a grading of the Grothendieck ring Gr(D) and thus, by 
Corollary 3.7 of [15], a one-dimensional representation of the universal grading group of Gr(D); since the 
latter group is finite, this implies that the numbers 	i are roots of unity. �
Remark 3.12. (i) If the signs (3.55) are all equal to 1, then the coboundary equation (3.56) is satisfied 
trivially with 	i = 1 for all i ∈S. Thus in this case D does admit a pivotal structure.
(ii) The collection of involutive matrices of which the signs ε k

i,j;α are the eigenvalues can be extended uniquely 
to a natural transformation T from the tensor product functor to itself, which endows the identity functor 
with the structure of a monoidal functor [3, Prop. 3.25]. Moreover, there is (canonically) a monoidal natural 
isomorphism between the so-obtained monoidal functor T and the double dual functor [3, Thm. 3.29]. Since 
the functor T is the identity as a monoidal functor iff all the ε k

i,j;α are equal to 1, this reproduces in particular 
the observation of part (i).

Note that the assertions of Lemma 3.11, while formulated for veined fusion categories, are preserved 
under monoidal natural equivalence and therefore apply in fact to all fusion categories.

Next recall that the Frobenius-Perron dimensions dFP
i are the unique positive real numbers dFP

i obeying ∑
k∈S N k

ij dFP
k = dFP

i dFP
j . A pivotal fusion category over k =C is pseudo-unitary if and only if the paired 

pivotal dimension of every simple object coincides with the square of its Frobenius-Perron dimension [8, 
Sect. 9.4], i.e.

dimπ
L(i) dimπ

R(i) =
(
dFP
i

)2 (3.59)

for every i ∈S. We have

Lemma 3.13. (i) The pivotal dimensions of a pivotal veined fusion category obey

dimπ
R(i) = dimπ

L(i) (3.60)

and

dimπ
L(i) dimπ

R(i) = di di . (3.61)
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(In particular, the paired pivotal dimension actually does not dependent on the pivotal structure.)
(ii) In a pseudo-unitary veined fusion category D the matrix (3.42) is the identity matrix, for every triple 
(i, j, k) ∈S×3, so that in particular

ε k
i,j;α = 1 (3.62)

for all i, j, k∈S and all basis elements α∈H k
i,j .

Proof. (i) Combining (3.56) with the expressions (3.23) for the pivotal dimensions gives

dimπ
L(i) =

√
di di 	

−1
i and dimπ

R(i) =
√

di di 	i . (3.63)

Together with (3.57) this implies both (3.60) and (3.61).
(ii) For k =C the paired dimensions are positive [8, Thm. 7.21.12], hence the numbers 

√
di di are real, and 

we may choose square roots such that they are positive. Further, the sum rule (3.47) implies that the 
√

di di

furnish a character of the Grothendieck ring Gr(D) if and only if ε k
i,j;α = 1 for all i, j, k and α. Being positive, 

they must then coincide with the Frobenius-Perron dimensions, whereby the equality (3.61) amounts to the 
characterization of (3.59) of pseudo-unitarity. �

Part (ii) of Lemma 3.13 corresponds to Corollary 3.22 of [3].

Remark 3.14. (i) The formulas (3.63) also show that the pivotal structure π is spherical if and only if 
	i ∈{±1} for every i ∈S, compare [3, Thm. 5.4]. Note that owing to (3.57) this condition is automatically 
satisfied if all objects i ∈S are self-conjugate.
(ii) A pseudo-unitary fusion category C admits a canonical spherical structure [9, Prop. 8.13]. By (3.62) and 
(3.56), for that structure the signs 	∈{±1} furnish a Z2-grading of the Grothendieck ring of C.
(iii) A fusion category over C is called Hermitian if every morphism space is endowed with a non-degenerate 
Hermitian form in such a way that some natural compatibility conditions are fulfilled. If all these forms 
are positive definite, then the category is called unitary. It is known (see [32, Sect. 4] and [14, Rem. 2.2(ii)]) 
that a fusion category over C is unitary if and only if there is a choice of bases in the morphism spaces 
H k

i,j such that the matrices F(i j k) l
p,q formed by the 6j-symbols are unitary. A unitary fusion category is in 

particular pseudo-unitary; while the unitarity of F-matrices can be technically convenient, in our context 
pseudo-unitarity is the more interesting property. (However, no example is known of a pseudo-unitary fusion 
category over C that does not admit a unitary structure.)

Remark 3.15. For any pivotal fusion category C, with pivotal structure π and with chosen set S of repre-
sentatives Xi for the isomorphism classes of simple objects, one defines the Frobenius-Schur endomorphism
Vi of Xi by

Vi :=
(
evX∨

i
⊗σ−1

i

)
◦
(
idX∨∨

i
⊗σi ⊗ idX∨

i

)
◦
(
π−1
Xi

⊗ coevXi

)
∈ Hom(Xi, Xi) , (3.64)

where i is the label such that Xi is isomorphic to X∨
i and, for each i,

σi ∈ Hom(Xi, X
∨
i

) (3.65)

is a fixed selection of isomorphism. By definition, Vi is an invertible multiple of the identity morphism. 
Accordingly we can write Vi =: νi idXi

with invertible numbers νi. It is straightforward to show that

νi νi trR(πi) = trL(π−1) (3.66)

i
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or, when expressed in terms of the pivotal dimensions (3.23), νi νi dimπ
R(Xi) =dimπ

L(Xi). Using further that 
dimπ

L(Xi) = dimπ
L(X∨

i ) and that (see e.g. [8, Exc. 4.7.9]) πX∨
i

=(πXi
)∨−1 , this simplifies to

νi νi = 1 (3.67)

for every i ∈S. In case the simple object Xi is self-conjugate, i.e. i= i, the number νi is independent of the 
choice of isomorphism σi and takes values in {±1}; this number is called the Frobenius-Schur indicator of 
Xi. If Xi is not self-conjugate., then σi and σi can be chosen in such a way that νi = 1 = νi.
In the special case of a pivotal veined fusion category D, we have X∨

i =Xi and can identify Xi≡ i, so that 
in particular πi as well as σi are automorphisms and thus just multiples of the identity. Writing πi =	i idi
as above, as well as σi = σ̄i idi, the number νi is expressed as

νi = σ̄i

σ̄i

1
	i

. (3.68)

This implies e.g. νi νi = (	i 	i)−1 in agreement with (3.67), and for self-conjugate i the identification 
νi =	−1

i =	i of the Frobenius-Schur indicator with the scalar given by the pivotal structure. In particular, 
in view of (3.25), and making the root choice 

√
(F(i i i) i

1,1 )2 =F(i i i) i
1,1 , we can express the pivotal dimension 

of a self-conjugate simple object as

dimπ
L(i) = dimπ

R(i) = νi

F(i i i) i
1,1

(3.24)= νi di (3.69)

in terms of its Frobenius-Schur indicator and its non-pivotal dimension. This illustrates in particular the 
dependence of the Frobenius-Schur indicator on the pivotal structure.

3.5. Deconstructing rigidity

It turns out to be instructive to disassemble the action of the rigidity functors on basis morphisms into 
simpler operations on the generating morphism spaces H k

i,j . To this end we introduce two operations L and 
R which in the diagrammatic description amount to gluing unit-bounded faces:

Definition 3.16. (i) The operations L and R on the morphism spaces Hi,j
k = Hom(k, i ⊗ j) and

H k
i,j = Hom(i ⊗ j, k), for (i, j, k) ∈S×3, are given by taking the tensor product with the one-dimensional 

spaces H 1
i,i

and H 1
j,j

, respectively with Hi,i

1 and Hj,j
1, according to the diagrammatic prescription

i j

k

ī

1

L←−�

i j

k

R	−→
i j

k

j̄

1

(3.70)

and

k

i j

ī

1

L←−�

k

i j
R	−→

k

i j

j̄

1

(3.71)
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respectively. We call the operation L the partial left dual and R the partial right dual.
(ii) The framed partial left dual and framed partial right dual, also to be denoted by L and R, respectively, 
are the linear maps that are obtained analogously when instead acting with chosen basis vectors in the 
one-dimensional spaces that are being glued in the prescriptions (3.70) and (3.71).

Convention 3.17. As the monoidal unit 1 is taken to be strict, in the diagrammatic description we draw edges 
labeled by the object 1 without orientation. Moreover, from now on the label of such unoriented edges will 
be omitted.

Let us exhibit the matrix coefficients of the linear maps L and R. Denote the component of L that acts 
on the space H k

i,j by Lk
ij and the one acting on Hi,j

k by Lij
k , and similarly for R. Then we have (omitting 

the labeling of the trivial faces by their unique basis morphisms)

Lk
ij(α) = i

i j

k

α =
∑
δ

F(i i j) j
δkα,◦1◦δ , Lij

k (α) = i j

k

α
i

=
∑
δ

G(i i j) j
◦1◦,δkα

δ (3.72)

and

Rk
ij(α) =

j

i j

k

α =
∑
δ

G(i j j) i
δkα,◦1◦δ , Rij

k (α) = i j

k

α
j

=
∑
δ

F(i j j) i
◦1◦,δkα

δ . (3.73)

The partial duals are obviously involutive as operations on the fundamental morphism spaces. In contrast, 
the framed partial duals are, in general, not involutive. However, L and R do become involutive as linear maps 
if we modify them by suitable scalar factors, namely if we replace the basis morphisms in the prescription 
in Definition 3.16(ii) by rigidity morphisms,3 according to the following prescription:

Definition 3.18. The modified left and right framed partial duals, denoted by L̆ and R̆, are the maps obtained 
from L and R by using the morphism i∪i in place of i∨i and i∩i in place of i∧i. Thus diagrammatically we 
have

L̆k
ij(α) = i

i j

k

α∪ and R̆k
ij(α) =

j

i j

k

α ∪ (3.74)

and analogously for L̆ij
k (α) and R̆ij

k (α).

The matrix coefficients of L̆ and R̆ are given by

L̆k
ij = μi L

k
ij and L̆ij

k = 1
μi F

(i i i) i
1,1

Lij
k

and by R̆k
ij = μj R

k
ij and R̆ij

k = 1
μj F(j j j) j

1,1

Rij
k ,

(3.75)

3 Owing to (i∩i)
∩ = i∪i these form a rigidity-dual pair rather than a covector-dual pair, so one has to be careful when using 

them in the diagrammatic semantics.
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respectively.

Lemma 3.19. The modified framed partial duals square to the identity: we have

L̆2 = id = R̆2 (3.76)

as linear maps on each of the fundamental morphism spaces.

Proof. It is instructive to exhibit how the result arises when starting out with the original linear maps L
and R. By definition, applying R to Hi,j

k twice, or L to H k
j,i twice, amounts to gluing with the diagram

j 1

j̄

j1

= G(j j j) j
1,1

j

j

j

(3.77)

Using further that the monoidal unit is strict, this yields

R2∣∣
Hi,j

k
= G(j j j) j

1,1 idHi,j
k

and L2∣∣
H k

j,i
= G(j j j) j

1,1 idH k
j,i

. (3.78)

Moreover, replacing L and R according to (3.75) by L̆ and R̆, respectively, precisely cancels the prefactor 
G(j j j) j

1,1 , and thus shows (3.76) for R̆2 acting on Hi,j
k and for L̆2 acting on H k

j,i .
Analogously we have

i

i

ī = F(i i i) i
1,1

i

i

i (3.79)

and thus

L2∣∣
Hi,j

k
= F(i i i) i

1,1 idHi,j
k

and R2∣∣
H k

j,i
= F(i i i) i

1,1 idH k
j,i

. (3.80)

Again upon replacing L and R by L̆ and R̆, the prefactor F(i i i) i
1,1 is canceled, showing that (3.76) also holds 

for L̆2 acting on Hi,j
k and for R̆2 acting on H k

j,i . �
Remark 3.20. (i) The proof of Lemma 3.19 shows that the statement boils down to the snake identities for 
the rigidities (−)∩ and ∩(−). Diagrammatically it reads

i ī

i
i∩i

i∩i = idi and
i ī

ī
i∩i

i∩i = idi . (3.81)
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(ii) The operations L and R make sense for any veined near-fusion category D, whereas L̆ and R̆ are only 

defined for non-degenerate D. However, as illustrated by the presence of the factors G(j j j) j
1,1 in (3.78) and 

F(i i i) i
1,1 in (3.80) in the degenerate case L and R are uninteresting.

We now describe the relation between L̆ and R̆ and the rigidity functors. By direct calculation one checks:

Lemma 3.21. The left and right rigidity duals can be expressed as combinations of the modified framed partial 
duals L̆ and R̆ according to

α∩ = R̆L̆R̆(α) , α∩ = L̆R̆L̆(α)

and as ∩α = L̆R̆L̆(α) , ∩α = R̆L̆R̆(α) ,
(3.82)

respectively, for α∈H k
i,j . In particular, the two composites R̆L̆R̆ and L̆R̆L̆ result in the same morphism 

spaces, and they are equal as linear maps if the left and right dimensions coincide.

Diagrammatically the action of these combinations of L̆ and R̆ on Hi,j
k is given by

i j

k

R̆L̆R̆	−−−−→

i j

k

j̄

ī

k̄

∼=
ī j̄

k̄

(3.83)

i j

k

L̆R̆L̆	−−−−→

i j

k

j̄

k̄

ī
∼=

ī j̄

k̄

(3.84)

and analogously for the action on H k
i,j .

For the double dual, the equalities (3.82) mean

α∩∩ = (L̆R̆)3(α) and ∩∩α = (R̆L̆)3(α) . (3.85)

Thus explicitly we have

(L̆R̆)3(α) (3.30)= di dj

dk
Mα

(3.32)= di dj

dk

∑
β,μ

F(i j j) i
◦1◦,βkμ

G(i j j) i
αkμ,◦1◦ β (3.86)

for α∈H k
i,j , and similarly for (R̆L̆)3.

Combining (3.85) with Lemma 3.19 we arrive at

Proposition 3.22. The linear maps L̆ and R̆ generate a genuine action of the symmetric group S3 on the 
collection of morphism spaces H k

i,j and Hi,j if and only if the double dual (−)∩∩ is the identity as a functor.
k
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Let us also provide alternative expressions for the linear maps (R̆L̆)3 and (L̆R̆)3, which are obtained by 
iterating the maps R̆L̆ and L̆R̆, respectively. It turns out to be notationally convenient to choose object 
labels such that R̆L̆ and L̆R̆ are linear maps H k

i,j →H i
j,k and H k

i,j →H j
k,i , respectively. Doing so we obtain

RL(α) =
i i

j

k

k

α
=

∑
δ

G(i j k) 1
αk◦,◦iδ i i

j

ī

k

δ = F(i i i) i
1,1

∑
δ

G(i j k) 1
αk◦,◦iδ

δ (3.87)

for α∈H k
i,j , and similarly LR(α) = F(j j j) j

1,1
∑

δ F(k i j) 1
◦kα,δj◦

δ. With the chosen convention of object labels, iter-
ation just amounts to permuting those labels cyclically. We thus arrive at

(R̆L̆)3(α) = di dj dk F(i i i) i
1,1 F(j j j) j

1,1 F(k k k) k
1,1

∑
δ,δ′,δ′′

G(i j k) 1
αk◦,◦iδ

G(j k i) 1
δi◦,◦jδ′

G(k i j) 1
δ′j◦,◦kδ′′

δ′′ (3.88)

and

(L̆R̆)3(α) = di dj dk F(i i i) i
1,1 F(j j j) j

1,1 F(k k k) k
1,1

∑
δ,δ′,δ′′

F(k i j) 1
◦kα,δj◦

F(j k i) 1
◦jδ,δ′i◦

F(i j k) 1
◦iδ′,δ′′k◦

δ′′ (3.89)

for α∈H k
i,j . Note that, using the fact that the numbers F(i j k) 1

◦iα,βk1
form an invertible matrix in the la-

bels α and β alone, with inverse matrix given by G(i j k) 1
◦iβ,γk1

, it directly follows from these identities that 
(LR)3 ◦ (RL)3 = id, in agreement with Lemma 3.19.

It is also worth recalling the diagonalized form of the double dual functors, as given in formulas (3.43)
and (3.44). It is natural to study the compatibility of the operations L̆ and R̆ with the diagonalization of 
the double dual. We find

Lemma 3.23. The linear maps L̆ and R̆ are interchanged by the rigidity dualities: we have

(L̆(α))∩ = R̆(α∩) , (L̆(α))∩ = R̆(α∩)

and (R̆(α))∩ = L̆(α∩) , (R̆(α))∩ = L̆(α∩)
(3.90)

and similarly for left duals. As a consequence we have

εL̆(α) = εα = εR̆(α) , (3.91)

and hence the entire orbit of an eigenvector α under iterated actions of L̆ and R̆ consists of eigenvectors 
with the same eigenvalue as α under the double dual. The same conclusion is obtained for α.

Proof. We first note that by direct calculation one has

L̆(α) ◦ L̆(α) = di Mα,α idj and R̆(α) ◦ R̆(α) = dj Mα,α idi . (3.92)

It follows that

L̆α = di Mα,α L̆α (3.93)
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and analogously for R̆. Invoking (3.82) this, in turn, implies the equalities (3.90). Given these equalities, 
it follows in particular that (L̆(α))∩∩ = L̆(α∩∩) etc. When expressing the double dual through the signs 
obtained from diagonalization, this amounts to (3.91). �
Remark 3.24. Let us, as in the proof of Theorem 2.3 of [9], define Ti to be the square matrix with entries 
(Ti)j,k :=

∑
α ε k

i,j;α, for i, j, k∈S. Then the sum rule (3.47) states that the length-|S| vector D with entries 
Di :=

√
di di given by the square roots of the paired dimensions of simple objects is a simultaneous eigen-

vector to all matrices Tj , with respective eigenvalues Dj . Moreover, by combining (3.91) with Lemma 3.9(ii) 
one sees that the matrix Ti is the transpose of the matrix Ti, and thus D is also an eigenvector to the 
matrix TiT

t
i =TiTi, with eigenvalue di di. Let now k =C. Then TiT

t
i is non-negative definite, and hence its 

eigenvalue di di must be non-negative, and thus in fact positive. By the formula (3.25) for di di this implies 
that the product F(i i i) i

1,1 F(i i i) i
1,1 of 6j-symbols is positive and thus, once we make the basis choice described 

in Remark A.2, F(i i i) i
1,1 is a real number for every i ∈S.

4. Tetrahedral symmetry

4.1. An S4-action on morphism spaces

We are now ready to address the main theme of this paper: tetrahedral symmetries of 6j-symbols. We first 
establish an action of the symmetric group S4 on the four-fold tensor products of basic morphism spaces 
which appear in the definition of 6j-symbols. To this end we make use of the action of S3 by linear maps on 
the spaces H k

i,j and Hi,j
k that is generated by the framed partial duals L̆ and R̆, as seen in Proposition 3.22. 

Concretely, we define linear endomorphisms τ12, τ23 and τ34 of the direct sum vector space

H(4) :=
⊕

i,j,k,p,q,l∈S

(
H(i j k) l

p,q ⊕ H̃(i j k) l
p,q

)
, (4.1)

where

H(i j k) l
p,q := H p

j,k ⊗Hq,k
l ⊗H l

i,p ⊗Hi,j
q and H̃(i j k) l

p,q := Hj,k
p ⊗H l

q,k ⊗Hi,p
l ⊗H q

i,j . (4.2)

These maps will eventually play the role of the standard transpositions that generate the group S4. The 
order of tensor product factors in H(i j k) p

q,l and H̃(i j k) p
q,l has been chosen so as to match that interpretation.

Definition 4.1. Let D be a veined fusion category with distinguished set S of simple objects. The maps 
τij : H(4) −→H(4), for (i, j) ∈{(1, 2), (2, 3), (3, 4)}, are defined by linearly extending the following assignments 
for the basis of H(4) that consists of tensor products of basis elements of the basic morphism spaces:

τ12(β⊗δ⊗α⊗γ) := δ⊗β⊗L̆α⊗L̆γ ∈ H̃(i q k) p
l,j ,

τ23(β⊗δ⊗α⊗γ) := L̆β⊗α⊗δ⊗R̆γ ∈ H̃(q j p) l
k,i ,

and τ34(β⊗δ⊗α⊗γ) := R̆β⊗R̆δ⊗γ⊗α ∈ H̃(i p k) q
j,l

(4.3)

for (i, j, k, p, q, l) ∈S×6 and α∈H l
i,p, β ∈H p

j,k, γ ∈H q
i,j , δ ∈H l

q,k, as well as

τ12(β⊗δ⊗α⊗γ) := δ⊗β⊗L̆α⊗L̆γ ∈ H(i q k) p
l,j (4.4)

etc. for β⊗δ⊗α⊗γ ∈ H̃(i j k) l
p,q .
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To see under which conditions the so defined maps generate an action of the group S4 on the vector 
space H(4), we note the following identities, which are obtained by direct calculation:

Lemma 4.2. The maps (4.3) and (4.4) satisfy

τ2
12(β⊗δ⊗α⊗γ) = β⊗δ⊗L̆2α⊗L̆2γ ,

τ2
23(β⊗δ⊗α⊗γ) = L̆2β⊗δ⊗α⊗R̆2γ ,

τ2
34(β⊗δ⊗α⊗γ) = R̆2β⊗R̆2δ⊗α⊗γ ,

τ12 τ34(β⊗δ⊗α⊗γ) = R̆δ⊗ R̆β⊗ L̆γ⊗ L̆α = τ34 τ12(β⊗δ⊗α⊗γ) ,

τ12 τ23 τ12(β⊗δ⊗α⊗γ) = L̆α⊗L̆δ⊗L̆β⊗L̆R̆L̆γ ,

τ23 τ12 τ23(β⊗δ⊗α⊗γ) = L̆α⊗L̆δ⊗L̆β⊗R̆L̆R̆γ ,

τ23 τ34 τ23(β⊗δ⊗α⊗γ) = L̆R̆L̆β⊗R̆γ⊗R̆α⊗R̆δ ,

τ23 τ34 τ23(β⊗δ⊗α⊗γ) = R̆L̆R̆β⊗R̆γ⊗R̆α⊗R̆δ

(4.5)

for all β⊗δ⊗α⊗γ ∈Hi,j,k,p,q,l ⊂H(4).
Analogous identities hold when acting on δ⊗β⊗ γ⊗α∈ H̃i,j,k,p,q,l ⊂H(4).

When combined with Proposition 3.22, this gives

Proposition 4.3. Let D be a veined fusion category such that (−)∩∩ = IdD. Then the maps τ12, τ23 and τ34
generate an S4-action on the space H(4).

Proof. According to Proposition 3.22 we have L̆2 = id= R̆2 and L̆R̆L̆= R̆L̆R̆ if (−)∩∩ = IdD . The equalities 
(4.5) then imply that τ12, τ23 and τ34 satisfy the relations for the standard transpositions that generate the 
group S4. �
Remark 4.4. The precise form of the maps L̆ and R̆, and thus also the S3-action on the fundamental 
morphism spaces, depends on the choice of the parameters μi. In the S4-action obtained from Definition 4.1, 
this dependence on the μi drops out.

4.2. Simplicial origin of the S4-action

The group S4 is the symmetry group of the tetrahedron (including orientation reversing transformations). 
That this symmetry group plays a role in our context is not a coincidence. Indeed, recall that in diagrammatic 
terms the action of the group S3 generated by L̆ and R̆ on the basic morphism spaces amounts to an S3-
action on framed 2-simplices. In a similar vein, the maps τij introduced in Definition 4.1 can be interpreted 
diagrammatically as mappings of the framed 3-simplices that realize the basis elements of the spaces H(i j k) p

q,l

and H̃(i j k) p
q,l . Concretely, these maps amount to transpositions of the vertices of a framed 3-simplex, which 

are effected on its framed faces by a transposition combined with suitably applying the operations L̆ and 
R̆. 4 For instance, the map τ12 can be described as

4 This diagrammatic interpretation is well known. In the setting of spherical fusion categories it is described in Definition 3.10 
and Lemma 3.11 of [4].
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τ12 :

1

2

δ

α β

γ

i j

k

q

p

l

	−→

2

1

ī q

k

j

l

p β

L̆α δ

L̆γ

(4.6)

(Here and below the labels of the faces on the back of a tetrahedron are drawn mirrored and in smaller 
font.) Thus τ12 turns a tetrahedron of type F(i j k) l

p,q into one of type G(i q k) p
j,l and vice versa, exchanging 

the morphisms β and δ and in addition carrying with it the L̆-transformations on the morphisms α and γ. 
Similarly descriptions are obtained for τ23 and τ34.

Furthermore, the so-obtained diagrammatic prescription can conveniently be encoded in a suitable 4-
simplex. Let us illustrate this again for the case of τ12. Consider the following two decompositions of a 
labeled 4-simplex into two and three, respectively, of the five 3-simplices that make up its boundary:

�

ī

l

q

k

∪

p

j

k

i j

k

q

p

l

ī

� i j

k

q

p

l

∪
ī

i j

q

∪
i

p

l

i

(4.7)
Accounting for the orientations of the tetrahedra, we can think of the 4-simplex as describing a mapping of 
its in-boundary, which is given by the three tetrahedra in the second row, to its out-boundary, given by the 
two tetrahedra in the first row.

Moreover, via the identification (3.8), the two tetrahedra that do not contain the unoriented edge (which 
is labeled by the monoidal unit of D) correspond to generic 6j-symbols, while the other three are of a special 
type: the second and third tetrahedron in the second row can be recognized as describing the action of L̆
on the faces of the first tetrahedron in the second row that are labeled by Hi,j

q and on H l
i,p, respectively, 

while the second tetrahedron in the first row amounts to F(1 j k) p
◦jβ,βp◦ = 1. Taken together, this means that the 

4-simplex in (4.7) precisely describes the mapping (4.6).
Analogous considerations apply to the maps τ23 and τ34. In summary, we arrive at the following inter-

pretation of the maps τij (for better readability we suppress some of the structure of the 4-simplices, which 
can unambiguously be restored):
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τ12 =̂

1

2

δ

α β

γ

i j

k

q

p

l

ī

:

1

2

δ

α β

γ

i j

k

q

p

l

	−→

2

1

ī q

k

j

l

p β

L̆α δ

L̆γ

(4.8)

τ23 =̂

2

3

δ

α β

γ

i j

k

q

p

l

j̄

:

2

3

δ

α β

γ

i j

k

q

p

l

	−→

3

2

q j̄

p

i

k

l
α

δ L̆β

R̆γ

(4.9)

τ34 =̂

3

4
δ

α β

γ

i j

k

q

p

l

k̄ :

3

4
δ

α β

γ

i j

k

q

p

l

	−→

4

3

i p

k̄

l

j

q R̆δ

γ R̆β

α

(4.10)

for α∈H l
i,p, β ∈H p

j,k, γ ∈H q
i,j , δ ∈H l

q,k.

4.3. Symmetries of 6j-symbols

Next we turn the action of S4 obtained above into a source of statements about 6j-symbols. To this end 
we consider the induced action (τ(F))(−) =F(τ−1(−)) on a suitable function F on the space H(4) defined 
in (4.1) with values in k. In the definition of this function F we introduce some factors involving dimensions 
which are chosen with some hindsight:

Definition 4.5. The function F : H(4) −→k is the direct sum over (i, j, k, p, q, l) ∈S×6 of linear maps

F (i j k) l
p,q : H(i j k) l

p,q −→ k and G(i j k) l
q,p : H̃(i j k) l

p,q −→ k (4.11)

on the direct summands H(i j k) l
p,q and H̃(i j k) l

p,q of H(4). These maps are defined on basis elements by

F (i j k) l
p,q (β⊗δ⊗α⊗γ) :=

√
dl dl F

(i j k) l
αpβ,γqδ

and G(i j k) l
p,q (δ⊗β⊗γ⊗α) :=

√
dl dl G

(i j k) l
αpβ,γqδ ,

(4.12)

respectively, and extended by linearity to all of H(i j k) l
p,q and H̃(i j k) l

p,q .

With the chosen ordering of the tensor factors in H(i j k) l
p,q and H̃(i j k) l

p,q (and with our convention that the 
faces of a tetrahedron are ordered by face-vertex duality), each of the operations τij in particular exchanges 
the ith and jth argument of the maps F . Accordingly we have
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(
τ12(F)

)
(β⊗δ⊗α⊗γ) = G(i q k) p

j,l (δ̄⊗β⊗L̆α⊗L̆γ̄) , (4.13)(
τ23(F)

)
(β⊗δ⊗α⊗γ) = G(q j p) l

i,k (L̆β⊗α⊗δ⊗R̆γ) (4.14)

and
(
τ34(F)

)
(β⊗δ⊗α⊗γ) = G(i p k) q

l,j (R̆β⊗R̆δ⊗γ⊗α) (4.15)

for β⊗δ⊗α⊗γ ∈H(i j k) l
p,q , and analogous formulas are obtained for the values of τij(F) on the summands 

H̃(i j k) l
p,q . These maps can actually be expressed as simple diagonal matrices acting on the summands of H(4):

Proposition 4.6. Let D be a veined fusion category. For β⊗δ⊗α⊗γ ∈H(i j k) l
p,q we have

(
τ23(F)

)
(β⊗δ⊗α⊗γ) = F(β⊗δ⊗α⊗γ) . (4.16)

Moreover, when working with eigenbases for the basic morphism spaces, we have in addition

(
τ12(F)

)
(β⊗δ⊗α⊗γ) =

√
δi ε

l
i,p;α F(β⊗δ⊗α⊗γ)

and
(
τ34(F)

)
(β⊗δ⊗α⊗γ) =

√
δk ε

l
q,k;δ F(β⊗δ⊗α⊗γ) , (4.17)

with δx the relative dimension (3.26) and ε the signs defined in (3.42). Analogous formulas hold when acting 
with the maps τij(F) on the summands H̃(i j k) l

p,q of H(4).

Proof. We first rewrite the expressions on the right hand sides of (4.13) – (4.15) in terms of 6j-symbols. 
By straightforward manipulations of string diagrams, details of which are presented in Example A.5 in 
Appendix A, one finds

(
τ12(F)

)
(β⊗δ⊗α⊗γ) = di

√
dp dp

N l
ip∑

μ=1
M(i p l)

α,μ F(i j k) l
μpβ,γqδ , (4.18)

(
τ23(F)

)
(β⊗δ⊗α⊗γ) =

√
dl dl F

(i j k) l
αpβ,γqδ (4.19)

and
(
τ34(F)

)
(β⊗δ⊗α⊗γ) = dk

√
dq dq

N l
qk∑

μ=1
F(i j k) l

αpβ,γqμ M(q k l)
μ,δ (4.20)

for β⊗δ⊗α⊗γ ∈H(i j k) l
p,q , with M(i j k) the matrix defined in (3.32). The equality (4.19) can directly be 

rewritten as (4.16), while upon invoking (3.42) the equalities (4.18) and (4.20) yield (4.17). �
Remark 4.7. (i) According to the proof, the rewriting of the right hand sides of (4.13) – (4.15) given in 
Proposition 4.6 is achieved without any reference to the definition of the maps τij . The interpretation 
(4.8) – (4.10) of those maps shows that the so-obtained identities are not accidental, but have a definite 
geometric origin.
(ii) Inserting the explicit form of the maps L̆ and R̆ from (3.72), (3.73) and (3.16), Proposition 4.6 gives 
the equalities

F(i j k) l
αpβ,γqδ = 1√

di di

ε l
i,p;α

∑
α′,γ′

F(i i p) p
α′lα,◦1◦ G(i i j) j

◦1◦,γ′qγ G(i q k) p
γ′jβ,δlα′

= F(j j j) j
1,1

∑
′ ′

F(j j k) k
β′pβ,◦1◦ F(i j j) i

◦1◦,γqγ′ G(q j p) l
γ′iα,β′kδ
β ,γ
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= 1√
dk dk

ε l
q,k;δ

∑
β′,δ′

G(j k k) j
βpβ′,◦1◦ F(q k k) q

◦1◦,δlδ′ G(i p k) q
αlδ′,β′jγ . (4.21)

When combined with Proposition 4.3, the previous result implies in particular

Theorem 4.8. Let D be a veined fusion category. Then the linear maps τ12, τ23 and τ34 from Definition 4.1
generate an S4-action that leaves the function F from Definition 4.5 invariant if and only if left and right 
dimensions coincide and the signs εα defined by the relations (3.43) are all equal to 1.

Now recall from Remark 2.6 that from any fusion category C we can construct a monoidally equivalent 
veined fusion category D, namely the full subcategory D =SC. Monoidally equivalent fusion categories 
have the same 6j-symbols, and thus, upon a coherent choice of the square root in the expression (3.42), 
in particular the same eigenvalues ε k

i,j;α of the involutive matrices (3.40). Moreover, by making use of the 
freedom in the specification of the rigidity of C we can achieve that the left and right dimension functions 
for the induced rigidity of D coincide (i.e. that the scalars μi satisfy (3.29)). Thereby we arrive at

Corollary 4.9. Let C be a fusion category. Then with a judicious choice of the rigidity functor the linear 
maps τ12, τ23 and τ34 generate an S4-action that leaves the function F invariant if and only if the signs εα
are all equal to 1.

When expressing the so-obtained tetrahedral relations as identities between numerical values of 6j-sym-
bols, it is vital to keep in mind that – as indicated by the extra factors of 6j-symbols with matrix label ◦1◦ in 
(4.21) – for a given choice of (eigen)bases of the basic morphism spaces, the morphisms L̆α and R̆α need not 
be basis morphisms again, not even in the multiplicity-free case. It is also worth noting that the identities 
(4.13) – (4.15), including L̆ and R̆, are gauge independent, whereas generically the numbers F(i j k) l

αpβ,γqδ and 
G(i j k) l

αpβ,γqδ do depend on a choice of gauge, compare Remark A.1. On the other hand, even if the function F
is not S4-invariant, Proposition 4.6 does provide non-trivial numerical identities between 6j-symbols.

Still, it would certainly be convenient if, with a suitable gauge choice, one could impose the requirement 
that for each basis element α of any of the spaces H k

i,j also L̆α and R̆α are again basis elements. However, 
this is in general not possible. For instance, our conventions that the basis elements of H i

i,1 and H i
1,i are 

taken to be idi while those of H 1
i,i

and Hi,i
1 are i∨i and i∧i, respectively, are clearly incompatible with this 

requirement unless F(i i i) i
1,1 =1. A partial remedy for this problem is to modify the fundamental convention 

that the basis of Hi,j
k is covector dual to the one of H k

i,j by a suitable scalar. Concretely, let us demand that 
in place of (2.6) we have

α′ ◦ α = δα,α′

√
di dj

dk
idk (4.22)

for α, α′ ∈H k
i,j . (This is indeed a standard convention in the quantum and condensed matter physics litera-

ture, see e.g. Appendix A.2 of [27] for a recent exposition.) Switching to the convention (4.22) leads to mod-
ifications in various identities. These boil down to making the replacement F(i j k) l

αpβ,γqδ 	−→
√

di dj dk dl F
(i j k) l
αpβ,γqδ

in formulas like (A.6).
The prescription (4.22) indeed eliminates the incompatibility problem with the basis choices in the spaces 

H i
i,1 etc. However, in general neither (4.22) nor any other choice can lead to a basis such that any basis 

vector α is mapped to basis covectors by L̆ and R̆. This is demonstrated by the following example.

Example 4.10. Consider the fusion categories over C with three isoclasses of simple objects, S = {1, x, y}, 
and with tensor products
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y⊗ y ∼= 1 , x⊗ y ∼= x ∼= y⊗x , x⊗x ∼= 1 ⊕ x⊕ x⊕ y . (4.23)

Up to monoidal equivalence there are four such fusion categories; their 6j-symbols were computed in [16]. 
There exists a gauge choice for which the numerical values of all 6j-symbols are elements of the number 
field Q[

√
3, 
√
−1], and these are given in [16, App.A] for one of the four equivalence classes of categories; 

the other three cases are obtained as Galois conjugates. With these values one finds e.g. dy = 1, dx =1 +
√

3
and ε x

x,x;α =1 independently of α.
As is shown by direct calculation in [18, Sect. 4.2], there does not exist any basis choice in the spaces H x

x,x

and Hx,x
x for which the two basis elements α∈H x

x,x both map to basis elements via L̆ and R̆ at the same 
time.

On the other hand, there are many fusion categories for which a suitable choice of gauge and covector 
duality reduces the tetrahedral symmetries to equalities between 6j-symbols on the nose. As a demonstra-
tion, let us restrict our attention to the case that N k

ij ∈{0, 1} and ε k
i,j = 1 for all i, j, k∈S×3, assume that 

the left and right dimensions coincide, and impose the convention (4.22). In this case the morphisms L̆α
and R̆α are basis elements for each basis element α of any of the one-dimensional spaces H k

i,j if and only if 
there is a gauge choice for which the equalities

F (i i k) k
p,1 = F (i k k) i

1,p = G(i k k) i
p,1 = G(i i k) k

1,p =
√

dp

di dk
(4.24)

hold for all i, k, p ∈S. And if this is the case, then Proposition 4.6 reduces to

F(i j k) l
p,q =

√
dp dq

dj dl
G(i q k) p

j,l =
√

dp dq

di dk
G(q j p) l

i,k =

√
dp dq

dj dl
G(i p k) q

l,j . (4.25)

Well known categories for which one can achieve (4.24) are the following:

Example 4.11. Consider the fusion categories over C with two isoclasses of simple objects, S = {1, x}, and 
with tensor product x ⊗x ∼= 1 ⊕ x. Up to monoidal equivalence there are two such fusion categories [24, 
Sect. 2.5]. They can be characterized in terms of the general solution to the pentagon equations: With the 
convention (A.14), the non-trivial 6j-symbols are [5, Lemma 5]

F(x x x) 1 = 1 and F(xxx)x =
(
− a − a b−1

b a

)
, (4.26)

with b ∈C an arbitrary invertible number and a ∈C a solution of the quadratic equation a2 = a + 1 (and 
with the first row and column of F(xx x)x referring to the monoidal unit). Note that F(xx x)x is involutive.
The two equivalence classes of fusion categories correspond to the two solutions a± = (1 ±

√
5)/2 for a. The 

one with a = a−, often called the Fibonacci category, admits a unitary structure, while the one with a =a+, 
known as the Yang-Lee category, does not. The gauge choice for which the matrix F(xx x)x of the Fibonacci 
category is unitary is given by b =β

√−a− with |β| = 1. Inserting the 6j-symbols (4.26) into (3.24) and 
(3.32) we have e.g. dx =−a−1 and M(xx x) =−a and thus, by (3.42), ε x

x,x = 1. It is then readily checked that 
some of the tetrahedral relations (4.25) are fulfilled automatically, while those involving the 6j-symbols 
F(xxx) x

1,x or F(xx x)x
x,1 are satisfied iff

F(x x x)x
1,x =

√
−a = F(xxx)x

x,1 , (4.27)

i.e. iff the free parameter b is fixed to b =
√
−a. Note that in the unitary case this means that the gauge 

choice is fixed further in such a way that β = 1.
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Appendix A. 6j-symbols

Here we collect a few useful facts about the 6j-symbols F(i j k) l
αpβ,γqδ of a veined near-fusion category C. Some 

of these are still valid beyond the class of veined near-fusion categories (compare Remark 2.2), but for 
brevity we will not spell this out. For further specific information about 6j-symbols see e.g. Chapter VI of 
[28] (in the context of unimodal modular tensor categories), Section 4.9 of [8] (in the context of semisimple 
tensor categories), and Section 2.1 of [30] (in the context of fusion categories).

Let us first present the defining equality (2.4) in terms of string diagrams: we have

i

α

j

β

k

p

l

=
∑
q,γ,δ

F(i j k) l
αpβ,γqδ

i

γ

j k

δ
q

l

(A.1)

Recall that when using string diagrams, C is tacitly assumed to be strict. Thus any inherent non-triviality 
of the 6j-symbols has to arise from the choice of composition maps. Indeed, since the two binary operations 
of morphism composition and tensor product are strictly associative by themselves, the 6j-symbols can be 
thought of as a measure of the mutual associativity of all the binary operations involved in diagram (A.1).

The numbers F(i j k) l
αpβ,γqδ are naturally combined into matrices, with the rows and columns labeled by the 

multilabels αpβ and γqδ, respectively. This way we get square matrices F(i j k) l of size
N l

ijk :=
∑

p∈S N p
jk N l

ip =
∑

q∈S N q
ij N l

qk . Henceforth we only consider the case that N l
ijk is non-zero. 

Then F(i j k) l is invertible; we denote the inverse by 5 G(i j k) l and its matrix elements by G(i j k) l
αpβ,γqδ. In terms 

of string diagrams, the latter obey

i

α

j k

β
p

l

=
∑
q,γ,δ

G(i j k) l
αpβ,γqδ

i

γ

j

δ

k

q

l

(A.2)

The same coefficients appear when comparing compositions of the spaces Hp,q
r instead of H r

p,q. With the 
convention (2.6) on dual bases we have

5 This should not be mixed up with the use of the symbol G for a rescaled version of F, as e.g. in [21, App. B] and [17, App.B].
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i

γ

j k

δ

q

l

=
∑
p,α,β

F(i j k) l
αpβ,γqδ

i

α

j

β

k

p

l

(A.3)

and

i

γ

j

δ

k

q

l

=
∑
p,α,β

G(i j k) l
αpβ,γqδ

i

α

j k

β

p

l

(A.4)

Composing the defining formula (2.4) with the morphism (γ′ ⊗ idXk
) ◦ δ′ leads to

F(i j k) l
αpβ,γqδ idl = α ◦ (idi ⊗β) ◦ (γ⊗ idk) ◦ δ . (A.5)

Tensoring this equality with idl and pre- and post-composing further with the dual basis elements of the 

one-dimensional spaces Hl,l
1 and H 1

l,l
, or alternatively with those of Hl,l

1 and H 1
l,l

, yields the two expressions

F(i j k) l
αpβ,γqδ =

l
δ

q
γ

j
β

p
α

l

i

k

◦

l

◦

=

l

δ
q

γ
j

β

p
α

l

i

k

◦

l

◦

(A.6)

for F(i j k) l
αpβ,γqδ. Analogously we have

G(i j k) l
αpβ,γqδ =

l

γ
q

δ
j

α

p
β

l

i

k

◦

l

◦

=

l
γ

q
δ

j

α

p
β

l

i

k

◦

l

◦

(A.7)

Here, and henceforth, the special symbol “◦” stands for the chosen basis of a one-dimensional morphism 
space. One particular situation in which such one-dimensional spaces occur is the case that k= l= i, j = i
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and p = q= 1; as already done in the Introduction, we abbreviate the corresponding 6j-symbols, and likewise 
the corresponding G-coefficients, as

F(i i i) i
1,1 ≡ F(i i i) i

◦1◦,◦1◦ and G(i i i) i
1,1 ≡ G(i i i) i

◦1◦,◦1◦ . (A.8)

As a special case of (A.5), these numbers satisfy

F(k k k) k
1,1 =

k

k

k

k

k

◦

◦

and G(k k k) k
1,1 =

k

k

k

k

k

◦

◦

(A.9)

from which we also get the special cases

F(k k k) k
1,1 = G(k k k) k

1,1 =

k k

k k◦

◦ ◦

◦

=
k k

k k
◦

◦

◦ ◦

(A.10)

of (A.6) and (A.7).
The pentagon identity for the associator a of C translates into a collection of polynomial equations for 

the 6j-symbols. While we do not need to refer to these equations explicitly in this paper, for completeness 
we present them anyway:

∑
w∈S

N y
ws∑

κ=1

N x
pw∑

λ=1

N w
qr∑

η=1
F(p q r) x

λwη,αuδ F(pw s) t
μyκ,λxν F(q r s) y

βvγ,ηwκ =
N t

uv∑
σ=1

F(p q v) t
μyβ,αuσ F(u r s) t

σvγ,δxν (A.11)

for all p, q, r, s, t, u, v, x, y∈S.

Remark A.1. The choice of bases in the morphism spaces H k
i,j and Hi,j

k is arbitrary. Clearly, the numerical 
values of 6j-symbols generically depend on these choices. Following physics parlance, altering the choice 
is often called a gauge transformation. We reserve this term for those transformations which preserve the 
covector duality, in the sense that the transformed basis vector is sent to the transformed covector under the 
covector duality map. (In case k =C, this means that the basis transformation is unitary.) As an example, 
if i �= i, then by a gauge transformation that treats the bases i∧i of H 1

i,i
and i∧i of H 1

i,i
differently, we can 

change the value of F(i i i) i
1,1 ; the value of G(i i i) i

1,1 = F(i i i) i
1,1 will then change as well, in such a way that the 

product F(i i i) i
1,1 G(i i i) i

1,1 is unchanged, i.e. is gauge independent. If, on the other hand, i= i, then already 

F(i i i) i
1,1 = G(i i i) i

1,1 is gauge independent.

Remark A.2. Trivially, F(k k k) k
1,1 =F(k k k) k

1,1 if k= k. Provided that F(k k k) k
1,1 �= 0, this equality can also be 

achieved for k �= k by a suitable rescaling (which generically, unlike a gauge transformation, modifies 
the convention for the covector duality). Indeed, we may then multiply the basis morphism k∧k by 
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ξk := (F(k k k) k
1,1 /F(k k k) k

1,1 )1/4 (with some choice of root) and correspondingly rescale k∨k by ξ−1
k . The re-

sulting redefined values of the 6j-symbols (A.10), which we indicate by a tilde, obey

F̃(k k k) k
1,1 =

√
F(k k k) k

1,1 F(k k k) k
1,1 = F̃(k k k) k

1,1 . (A.12)

One can utilize the gauge freedom so as to get convenient values for specific 6j-symbols and thereby 
simplify some relations. In particular, the spaces HomC(i ⊗ 1, i) etc. are canonically isomorphic to 
EndC(i) =k idi, and as we take the monoidal unit to be strict we can identify

HomC(i⊗ 1, i) = HomC(1⊗ i, i) = HomC(i, i⊗ 1) = HomC(i, 1⊗ i) = EndC(i) . (A.13)

This allows us to make the following

Convention A.3. We take the identity morphism idi as the basis of each of the one-dimensional spaces (A.13).

With this convention we have

F(i j 1) k
αp◦,βq◦ = F(k 1 j) i

αp◦,◦qβ = F(1 k i) j
◦pα,◦qβ = δp,j δq,k δα,β . (A.14)

We finally mention further specific examples of the use of 6j-symbols.

Example A.4. The numbers M(i j k)
α,β defined in (3.32) for α, β ∈H k

i,j can be expressed in terms of string 
diagrams as follows:

M(i j k)
α,β := k

i

i

i

j

j

j

α

β

◦

◦

◦

◦

= k

i

i

i

j

j

j

α

β

◦ ◦

◦ ◦

= k

j

j

j

i

i

i

α

β

◦

◦

◦

◦

(A.15)

Equality of the three morphisms described by these string diagrams is an immediate consequence of covector 
duality. (In the setting of [3], the equality amounts to [3, Lemma 3.9]. In terms of simplicial diagrams, the 
morphisms (A.15) are realized by two tetrahedra that share a face.)

Example A.5. We may use the formulas just obtained to arrive at convenient expressions for the numbers

g12 :=
√

1/dp dp G(i q k) p
j,l (δ⊗β⊗L̆α⊗L̆γ) ,

g23 :=
√

1/dl dl G
(q j p) l
i,k (L̆β⊗α⊗δ⊗R̆γ)

and g :=
√

1/d d G(i p k) q(R̆β⊗R̆δ⊗γ⊗α)

(A.16)
34 q q l,j
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with G the functions defined by (4.12), and with the square root factors compensating the ones in G, which 
are not needed for the discussion here. In terms of string diagrams we can express g12 as

g12 =

p
L̆α

l
δ

q
L̆γ

j
β

p

i

k

p

◦

◦

(3.24), (3.72)= di

p

β

j
γ

q

δ
l

α

p

i

i

i
k

p

◦

◦

◦

◦

(A.17)

Noting that

p

β

j
γ

q
δ

l

i

k =
N l

ip∑
ν=1

F(i j k) l
νpβ,γqδ ν , (A.18)

this can be rewritten as

g12 = di

N l
ip∑

μ=1
F(i j k) l

μpβ,γqδ M(i p l)
α,μ (A.19)

with M as in (3.32) and (A.15). A very similar calculation can be performed for g34. We have

g34 =

q

R̆δ
l

α

p

R̆β
j

γ
q

i

kq

◦

◦

(3.24), (3.73)= dk

q

δl
α

p β
j

γ
q

i

k

k

k

q

◦

◦

◦

◦

(A.20)

By a similar identity as (A.18), this is rewritten as
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g34 = dk

N l
qk∑

μ=1
F(i j k) l

αpβ,γqμ M(q k l)
μ,δ . (A.21)

Finally for g23 we have

g23 =

l
α

i
R̆γ

j
L̆β

k
δ

l

q

p
l

◦

◦

(3.72), (3.73)= 1
F(j j j) j

1,1

l
δ

q

γ

j
j j

β

p

α
l

i

k

l

◦

◦

◦

◦

(A.22)

Invoking (A.9) this gives

g23 = F(i j k) l
αpβ,γqδ . (A.23)

Appendix B. From simplicial sets to fusion categories

One of the ingredients in our study of 6j-symbols is the graphical calculus based on simplicial diagrams. 
This calculus is somewhat less standard than the string diagram calculus that is described in Appendix A. 
Both diagrammatics have their own advantages and disadvantages. The present appendix provides the 
proper categorical setting for the simplicial semantic. In more fancy terms, what we are doing in this 
appendix is to formulate facts from simplicial homology of the geometric realization of linear monoidal cat-
egories in the light of the (∞, 2)-categorical structure of a category enriched over a vectk-enriched category. 
Comprehensive information on these topics is given in [19] and [25].

B.1. Simplicial sets and quasi-categories

The natural domain of simplicial semantic is the theory of quasi-categories. As this is not commonly used 
in the fusion categorical context that we consider in the main text, we offer a brief general introduction to 
this topic, before specializing to linear monoidal categories.

Definition B.1. (i) The simplex category Δ is a skeleton of the category of non-empty finite ordered sets. 
The objects of Δ are denoted by n= {0, 1, 2, ... , n}. The morphisms between them are order-preserving 
functions.
(ii) The face maps δi and degeneracy maps σj are those morphisms

n n+1
δi

σj
(B.1)

in Δ which skip the ith element of an ordered set and identify j with j+1, respectively.
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The face and degeneracy maps satisfy σi ◦ δi = id, and they generate the category Δ. Note that here and 
below we slightly abuse notation by not specifying the domains n and n+1, respectively, of these morphisms. 
That is, each of the symbols δi and σj can refer to a multitude of morphisms which coincide up to inclusion 
maps.

Definition B.2. A simplicial set is a contravariant functor from Δ to the category of sets.

We may think of a simplicial set C as a countable family {Cn} of sets Cn ≡C(n) together with the 
data of what the generators of Δ are mapped to. By the Yoneda lemma, the elements of the set Cn are 
determined by natural transformations from HomΔ(−, n) to C. We may visualize HomΔ(−, n) as follows. 
We draw an ordered n-simplex in such a way that its m-subsimplices represent the iterated face maps in 
HomΔ(m, n). We omit labels for the non-injective maps, since those factor through the subsimplices by 
restriction. Specifically, for n =3 this prescription looks as follows.

HomΔ(0, 3) =

0

1

2

3 HomΔ(1, 3) =

01 12

23

02

13

03

HomΔ(2, 3) =

023

013 123

012
HomΔ(3, 3) =

(B.2)

To facilitate the appreciation of the three-dimensional structure of the simplices, here and below we 
emphasize that structure by drawing the “back” of a simplex in greyscale and displaying their labels laterally 
reversed.

Next, to visualize each of the sets Cn, we replace the labels by the values they take under a natural 
transformation φ : HomΔ(−, n) →C. Following the standard Yoneda Lemma argument, we use the naturality 
condition φm(f) =C(f)(φn(idn)) arising from the diagram

HomΔ(n,n) HomΔ(m,n)

C(n) C(m)

HomΔ(f,n)

φn φm

C(f)

(B.3)

to conclude that each such natural transformation φ is specified by a unique element φn(idn) ∈Cn.
For n ∈{1, 2, 3}, two alternative ways of executing this visualization are shown in the following diagrams:

C1 � f = f0 f1
f01

= f1 f0
f

(B.4)
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C2 � γ =
γ0

γ1

γ2

γ01 γ12

γ02

γ012 =
γ0

γ1

γ2

γ2 γ0

γ1

γ (B.5)

C3 � F =

F0

F1

F2

F3

F023

F013 F123

F012

F01 F12

F23

F02

F13

F03

F0123 =

F0

F1

F2

F3

F1

F2 F0

F 3

F01 F12

F23

F02

F13

F03

F (B.6)

(Here the use of superscripts versus subscripts indicates the face-vertex duality ordering when applicable.)
As is apparent from these pictures, we quickly run out of dimensions with which to visualize the geometries 

involved, and out of space needed to project the labels. It is therefore advisable to omit some of the labels 
when they are unambiguous from the context and we only wish to access some of the data related to a given 
natural transformation. In case more precision is needed, we may alternatively draw a diagram multiple 
times, each time labeling subsimplices of different dimension, as we have indeed done for Hom(−, n) in the 
pictures above. In practice, this amounts to giving the simplex a cell decomposition as a topological object.

Further terminology that is useful when discussing simplicial sets is as follows:

Definition B.3. (i) A face of a simplex is a subsimplex of codimension one. We use the bijection furnished 
by face-vertex duality to define an ordering of faces according to which 0-simplex they do not contain; faces 
are then given by face maps as C(δi)(F ) =F i.
(ii) A degenerate simplex is an image of a degeneracy map, which we visualize by extending the simplex 
with equality symbols as labels. As an illustration, we have

C(σ2) : x y
f

	−→
x

y

y

f =

f

= (B.7)

(iii) The boundary ∂X of a simplex X is the union of all its faces. The only additional information needed 
to recover a simplex from its boundary is its filling.
(iv) An ordered sequence {fn} of 1-simplices is compatible if the target of any one of them matches the 
source of the next, i.e. if fn

1 = fn+1
0 .

(v) The spine of a simplex is the longest compatible ordered sequence of 1-subsimplices. The spine of an 
n-simplex has length n.

We are now ready to introduce the notion of a quasi-category.

Definition B.4. (i) A k-horn of a simplex is a union of all faces except the kth face. A k-horn is called inner
if k is neither 0 nor n.
(ii) A quasi-category is a simplicial set for which every inner horn has at least one filling.
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(iii) In a quasi-category, a compatible ordered sequence of 1-simplices is called composable, as it can be 
recovered as the spine of some n-simplex for which the 0n-edge is considered a composite.

In the rest of this appendix we assume the simplicial sets that we consider to be quasi-categories. The 
justification for the terminology “horn” and “quasi-category” comes from the ability to fill – albeit non-
uniquely – horn-shaped composition-like diagrams. For instance,

for any diagram of type
x

y

z

f g there exists a filling
x

y

z

f g

h

γ (B.8)

Here h can be considered a composite of f and g. Note, however, that it is not the composite, as there 
may be many different ones. Thus this ability to fill horns does not quite make the quasi-category into 
a category. The connection with ordinary category theory is made more precise by the homotopy-nerve 
adjunction between quasi-categories and categories, which is furnished by the following two definitions.

Definition B.5. [25, Def. 1.1.7] Two 1-simplices x y
f

g
are called homotopic – an equivalence relation 

denoted by f ∼ g – if there exists a 2-simplex α of either of the equivalent types

x

y

y

f =

g

α or

x

x

y

= f

g

β (B.9)

Definition B.6. (i) Let C be a small category. The nerve NC is the quasi-category with NC0 = ObjC and 
higher simplices generated by composition of morphisms.
(ii) Let C be a quasi-category. The homotopy category hC of C is the category with objects given by 
ObjhC = C0 and morphisms given by homotopy classes of 1-simplices.
(iii) In a quasi-category C, a 1-simplex f is called an isomorphism if it is mapped to an isomorphism in the 
homotopy category. Equivalently, for f an isomorphism there is a 1-simplex f−1 and a pair

a

b

a

f f−1

=

α
and

b

a

b

f−1 f

=

β
(B.10)

of 2-simplices.

B.2. From monoidal categories to quasi-categories

Recall the simplex category Δ from Definition B.1.

Definition B.7. The augmented simplex category Δ∗ is the monoidal category constructed from Δ by ad-
joining an initial object −1= ∅, with the tensor product given by disjoint union and with −1 the monoidal 
unit.
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Every monoid object in any category is given by a monoidal functor from Δ∗, making Δ∗ the diagram 
category for monoids, with string diagrams as the standard semantic. This mirrors how Δ is the diagram 
category for simplicial objects, with its own diagrammatic semantic.

While related, the two semantics have their own strengths and weaknesses. String diagrams are algebraic 
in nature, and when extended to a third dimension, they readily also model braided monoidal categories. But 
since objects are 1-dimensional and morphisms 0-dimensional, the standard semantic is not able to describe 
also higher-dimensional simplices. Meanwhile, simplices are combinatorial and can describe quasi-categories, 
but the standard semantics are not very useful for describing products of objects. However, alternative sim-
plicial semantics are available when one constructs higher categories by enriching over monoidal categories.

To utilize these observations in our context, we introduce a single-object C-enriched quasi-category QC

as follows.

Definition B.8. Let C be a monoidal category. Then QC is the quasi-category that is obtained from C by 
lifting the dimension of every simplex by 1. More explicitly, we introduce a single object ∗ to serve as the 0-
cell, the objects of C become 1-simplices, the 1-morphisms of C become 2-simplices, and 2-morphisms become 
3-simplices. The monoidal product in C becomes the (not necessarily associative) morphism composition in 
QC. For n > 3 we set QCn to be trivial, i.e. consisting of only the simplices generated by lower-dimensional 
ones. (The latter accounts for the fact that the monoidal categories of our interest have no extra higher 
morphisms.)

To elaborate on this semantic, we usually omit labels for the vertices, since they can take only a single 
value. (We may label vertices by their ordering, though, in case we need to refer to them in some other 
context.) Further, for n ∈{2, 3} we use the orientation given by the right hand rule to partition the boundary 
of a simplex into an in- and an out-boundary, and we read a labeled n-simplex as an n-morphism in QC

from its in-boundary to its out-boundary, while an unlabeled simplex stands for the space of possible labels. 
Thus we have e.g.

x y

z

f = f ∈ HomC(z, x⊗ y) =
x y

z

(B.11)

There are two ways to compose 2-simplices; they are determined by whether the simplices connect via an 
initial/final vertex (1-composition over a 0-simplex) or via an edge (2-composition over a 1-simplex). The 
two possibilities look like

f ⊗ g =
x y

z

f

k

i j

g and f ◦ g =

i j

k

f

nm
g

(B.12)

respectively.
A crucial observation is now that every planar graph generated by these triangles is graph-dual to a 

planar string diagram, by way of the prescription
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α
i j

k

(B.13)

The unlabeled empty regions of string diagrams become unlabeled vertices, strands become edges, and 
vertices become surfaces. It is therefore merely a matter of convenience and clarity to decide which semantic 
to employ in a given argument.

B.3. From Hochschild homology to fusion quasi-categories

In the sequel we assume that k is an algebraically closed field of characteristic zero and C is a semisimple 
k-linear monoidal category with a finite number of isomorphism classes of simple objects. We choose a set 
S of representatives of these classes containing the monoidal unit 1 and assume further (compare (ii) and 
(iii) of Definition 2.1) that for i, j ∈S the morphism space HomC(i, j) has dimension δi,j and that to any 
i ∈S there exists a unique i∈S such that HomC(j⊗ i, 1) and HomC(i⊗ j, 1) have dimension δi,j , for every 
j ∈S.

To such a category C we can associate its Grothendieck ring Gr(C) by taking the projective module 
generated by the simple objects, with multiplication inherited from the tensor product [8, Def. 4.5.2]. By 
a slight abuse of notation, we here use the symbol Gr(C) for the corresponding associative algebra over 
the ground field k. In this section, we seek to go the opposite way, by considering the minimal full and 
dense monoidal subcategory of C that contains all the information necessary to compute the 6j-symbols. 
To do so, we will utilize simplicial set theory to invoke some homological structures that let us relate the 
ring-theoretic and category-theoretic properties of the given category.

Recall that the Hochschild complex of a ring A with coefficients in an A-bimodule M is given by the 
formal tensor powers of A: it is the chain complex

M
∂←−− M ⊗A

∂←−− M ⊗A2 ∂←−− M ⊗A3 ∂←−− . . . (B.14)

with boundary map ∂ =
∑n

i=0(−1)i∂i with

∂i(a0 ⊗ · · ·⊗ an) = (a0 ⊗ · · ·⊗ ai−1 ⊗ (aiai+1)⊗ ai+2 ⊗ · · ·⊗ an) (B.15)

for i ∈{1, 2, ... , n−1} and

∂n(a0 ⊗ · · ·⊗ an) = ((ana0)⊗ a1 ⊗ · · ·⊗ an−1) . (B.16)

In terms of simplices, each ∂i amounts to the list of 1-subsimplices of each face of the simplex of which 
the domain lists the spine, with overall sign given by the orientation of the face. The homology of this chain 
complex is called the Hochschild homology of A with coefficients in M .

To explore how we can make use of this tool, let us as a warmup consider the special case that the fusion 
category C is pointed. Then the associator of C amounts to a group 3-cocycle on Gr(C) [8, Ch. 9.7] or, 
equivalently, to a 3-cocycle in the dual Hochschild complex of Gr(C) with coefficients in k. The possibility 
to make use of the dual Hochschild complex rests on the coboundary structure that is naturally induced 
on functions from the Hochschild complex to the ground field k (we denote the corresponding chain map 
by F ) and from the fact that in the pointed case k is isomorphic to both the 1-morphism-spaces H i⊗j

i,j

and the 2-morphism spaces Homk(H i⊗j
i,j ⊗H (i⊗j)⊗k

, H i⊗(j⊗k) ⊗H j⊗k). Thus after fixing a “framing”, 
i⊗j,k i,j⊗k j,k



42 J. Fuchs, T. Grøsfjeld / Journal of Pure and Applied Algebra 227 (2023) 107112
i.e. basis choice b: k −→H, for each such space H, Hochschild cochains may be interpreted as elements of 
indexed sets of homomorphisms from Gr(C)⊗n to k, so that we arrive at

∗ Gr(C) Gr(C)⊗2 Gr(C)⊗3 . . .

k k k k

∗ QC1 QC2 QC3 . . .

F1

∂

F2

∂

F3 F4

b

∂ ∂

(B.17)

This way we obtain “framed values” of the maps Fi. Specifically, for F2 we get α ·F2(i ⊗ j) ∈H i⊗j
i,j for 

i, j ∈Gr(C) and basis b =α≡αi,j : k −→H i⊗j
i,j . (We use the symbol “·” to indicate that the basis choice 

furnishes an action of k of QC2, whereby we may think of α as a number.) Likewise we have “framed 
6j-symbols” given by (α⊗β) ·F3(i ⊗ j⊗ k) · (γ̄⊗ δ̄) with α≡αi,j⊗k, β≡βj,k, γ≡ γi,j and δ≡ δi⊗j,k. The 
framed coboundary of F2 is thus

(α⊗β) · dF2(i⊗ j⊗ k) · (γ⊗ δ) = (α⊗β) ·F2(∂(i⊗ j⊗ k)) · (γ⊗ δ)

=
(
α ·F2(i⊗ jk) ⊗ β ·F2(j⊗ k)

)
◦
(
γ ·F2(i⊗ j)−1 ⊗ δ ·F2(ij⊗ k)−1) . (B.18)

When interpreting the cochain structure categorically, some caveats are to be noted. First of all, 1-cochains 
do not necessarily frame the 1-simplices even for a pointed fusion category (put differently, F1 cannot be 
interpreted as an object), as indicated by the lack of a corresponding vertical map in (B.17). Second, as 
there are several notions of sums and products involved, with some of them constructed from each other, 
some abuse of notation is inevitable. Third, the coboundary of an n-cochain is defined computationally by 
reinterpreting dFn≡Fn∂ as an (n+1)-cochain, and replacing the n-framing with the (n+1)-framing.

More explicitly, we may consider the associator-values F3 to be a coboundary of F2, and hence F3 satisfies 
the pentagon equation since that is the group 3-cocycle equation. We can always choose a frame such that 
the framed values of F2 are our basis vectors, which we can consider the composer maps of the simple 
objects, in analogy of F3 being the associator.

In the general case that the fusion category C is not pointed, the reasoning above will typically fail. 
Specifically, the various morphism spaces will have different dimensions, so that a coboundary computed 
in the way described above cannot, in general, be directly reframed as a higher morphism. In fact, the 
numerical coefficients for different basis vectors in the framing will not generally coincide. Instead, we have 
to consider the framed values of F2 to be vectors and the framed values of F3 to be block matrices, and so 
on. In order to extend the formalism, we must then know where the cochains should be valued, know how 
to compute coboundaries, and be able to interpret the data in terms of higher morphisms. To this end we 
adopt the following conventions.

Definition B.9. Let C be a semisimple k-linear monoidal category satisfying the additional properties listed 
at the beginning of this subsection and let S be the corresponding finite set of representatives for the 
isomorphism classes of simple objects. Let QC be the associated C-enriched quasi-category as given in 
Definition B.8.
(i) By GQCn we denote the groupoid of isomorphisms in QCn – by which we mean composition-invertible 
morphisms for n > 1, and isomorphisms in the sense of Definition B.6(iii), but restricted to non-zero fillers, 
for n =1.
(ii) By SC we denote the full and dense monoidal subcategory of C that is generated (via composition and 
tensor products) by the objects in S, i.e. the full subcategory that has as objects all expressions that can 
be built out of elements of S and of ⊕, ⊗ and parentheses.
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(iii) By QSCn we denote the set of n-simplices in the quasi-category associated with SC, i.e. the n-simplices 
for which every edge is an object in SC.
(iv) By RSC we denote the free unital non-associative ring generated by the set of isomorphism classes of 
simple objects of C.

We now take the Hochschild complex (B.14) for A =RSC and M the trivial bimodule QC0 = ∗, and 
consider isomorphism-valued spine-filling maps that send the generators of RSC to their representatives in 
S. Thereby we have a chain map

∗ RSC RSC×2 RSC×3 ...

∗ 〈GQSC1〉 〈GQSC2〉 〈GQSC3〉 ∗
F1

∂

F2

∂

F3

∂ ∂

(B.19)

Here we denote by 〈Xn〉 the free Z-module generated by a variable Xn.
Properties of these chain maps are related to categorical properties of the full and dense monoidal 

subcategory SC as follows:

1. F1 selects the objects of SC, i.e. the representative simple objects and the objects constructed by them 
according to Definition B.9(ii).

2. In order for SC to be a monoidal subcategory in the standard sense, F2 must map the basis elements 
to identity morphisms. (Otherwise, F2 yields a twisted monoidal product, defined as for twisted group 
algebras, according to [x] ∗ [y] = f(x, y) [xy] with f a group 2-cocycle.)

3. In order for SC to be strict, F3 must map the basis elements to identity 2-morphisms.
4. In order for the tensor product of SC to satisfy the pentagon equation, F4 must map the basis elements 

to identity 3-morphisms.
5. Strict unitality amounts to the 0-simplex ∗ lifting to the unit 1-simplex by the face map.
6. The filling of a 2-horn, considered as an F1∂-value, determines a value of F2.
7. The filling of a 3-horn, considered as an F2∂-value, determines a value of F3.

By construction, the monoidal category SC comes equipped with rules for the fillings of horns; the i⊗j-
horn is filled by idi⊗j , and any horn with the spine i ⊗ j⊗ k and oriented F2-valued faces is filled by 
the 2-morphism F3(i ⊗ j⊗ k) = F(i j k) i⊗j⊗k

(j⊗k),(i⊗j) . It is this filling that provides the coboundary structure d. In 
particular, at level 3 we can note that F3 is a 3-cocycle in the sense that its coboundary is trivial when 
evaluated with concrete indices. (On the other hand, for coboundaries of indexed 3-morphisms that are 
linearly independent of F3 there need not exist such a notion of coboundary – the filling prescription is part 
of the data that comes with the monoidal structure.)

Making basis choices allows us to compute matrix coefficients by projection to the simple objects. Specif-
ically we recognize

F2(i⊗ j)α =
i j

α ∈ HomSC(k, i⊗ j) (B.20)
k
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and F3(i⊗ j⊗ k)βδ̄αγ̄ =

δ

α β

γ

i j

k

q

p

l

(B.21)

Example B.10. Let us also mention how the case of C being pointed is formulated in the so-obtained setting. 
We may identify the one-dimensional spaces H k

i,j with the ground field k, with the frame of F2 as the chosen 
basis. Then F3 takes values in the multiplicative group of k, and covector duality corresponds to inversion 
in k. Thereby addition in the ring RSC coincides with multiplication in k, and the filling procedure provides 
an explicit cochain complex on the chain maps F∗ when restricted to the simple objects. This endows QSC1
with the structure of a twisted group algebra over k, while

F1(j)F1(i) = F2(i, j)F1(ij) =⇒ dF1 = F2 ,

F2(j, k)F2(i, jk) = F3(i, j, k)F2(ij, k)F2(i, j) =⇒ dF2 = F3 ,

F3(j, k, l)F3(i, jk, l)F3(i, j, k) = F4(i, j, k, l)F3(ij, k, l)F3(i, j, kl) =⇒ dF3 = F4

(B.22)

provides the prescription for computing the coboundaries of F1, F2 and F3.

References

[1] D. Aasen, E. Lake, K. Walker, Fermion condensation and super pivotal categories, J. Math. Phys. 60 (2019) 121901_1-112, 
arXiv :1709 .01941 [cond -mat].

[2] B. Bakalov, A.A. Kirillov, Lectures on Tensor Categories and Modular Functors, American Mathematical Society, Provi-
dence, 2001.

[3] B.H. Bartlett, Fusion categories via string diagrams, Commun. Contemp. Math. 18 (2016) 1550080_1-39, arXiv :1502 .02882
[math .QA].

[4] J.W. Barrett, B.W. Westbury, Invariants of piecewise-linear 3-manifolds, Trans. Am. Math. Soc. 348 (1996) 3997–4022, 
arXiv :hep -th /9311155.

[5] T. Booker, A.A. Davydov, Commutative algebras in Fibonacci categories, J. Algebra 355 (2012) 176–204, arXiv :1103 .3537
[math .CT].

[6] P. Bruillard, C. Galindo, T. Hagge, S.-H. Ng, J.Y. Plavnik, E.C. Rowell, Z. Wang, Fermionic modular categories and the 
16-fold way, J. Math. Phys. 58 (2017) 041704_1-31, arXiv :1603 .09294 [math .QA].

[7] B. Durhuus, H.P. Jakobsen, R. Nest, Topological quantum field theories from generalized 6j-symbols, Rev. Math. Phys. 5 
(1993) 1–67.

[8] P.I. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor Categories, American Mathematical Society, Providence, 2015.
[9] P.I. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. Math. 162 (2005) 581–642, arXiv :math .QA /0203060.

[10] U. Fano, G. Racah, Irreducible Tensorial Sets, Academic Press, New York, 1959.
[11] G. Felder, J. Fröhlich, G. Keller, On the structure of unitary conformal field theory II: representation theoretic approach, 

Commun. Math. Phys. 130 (1990) 1–49.
[12] J. Fuchs, A.Ch. Ganchev, K. Szlachányi, P. Vecsernyées, S4-symmetry of 6j-symbols and Frobenius-Schur indicators in 

rigid monoidal C∗-categories, J. Math. Phys. 40 (1999) 408–426, arXiv :physics /9803038.
[13] J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators I: partition functions, Nucl. Phys. B 646 (2002) 

353–497, arXiv :hep -th /0204148.
[14] C. Galindo, On braided and ribbon unitary fusion categories, Can. Math. Bull. 192 (2014) 506–5100, arXiv :1209 .2022

[math .QA].
[15] S. Gelaki, D. Nikshych, Nilpotent fusion categories, Adv. Math. 217 (2008) 1053–1071, arXiv :math .QA /0610726.
[16] T. Hagge, S.-m. Hong, Some non-braided fusion categories of rank 3, Commun. Contemp. Math. 11 (2009) 615–637, 

arXiv :0704 .0208 [math .GT].
[17] A. Hahn, R. Wolf, Generalized string-nets for unitary fusion categories without tetrahedral symmetry, Phys. Rev. B 102 

(2020) 115154_1-21, arXiv :2004 .07045 [quant -ph].
[18] S.-m. Hong, On symmetrization of 6j-symbols and Levin-Wen Hamiltonian, preprint, arXiv :0907 .2204 [math .GT], unpub-

lished.
[19] A. Joyal, The Theory of Quasi-Categories and Its Applications, Lecture Notes, CRM Barcelona, 2007, http://mat .uab .

cat /~kock /crm /hocat /advanced -course /Quadern45 -2 .pdf.
[20] A.Yu. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321 (2006) 2–111, arXiv :cond -mat /0506438.

http://refhub.elsevier.com/S0022-4049(22)00108-6/bibC78456E50D12A31588CE9687EEC15CCCs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibC78456E50D12A31588CE9687EEC15CCCs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib4A4846E843B0F8BB36A36BA2E2831296s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib4A4846E843B0F8BB36A36BA2E2831296s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib84DCFE8EF37AE9ADA3768CAB36BE90A6s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib84DCFE8EF37AE9ADA3768CAB36BE90A6s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib4E580C9EE1A11103C80BF405DAA62452s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib4E580C9EE1A11103C80BF405DAA62452s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibE2FE1F186826320B64A29D9FEA187E10s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibE2FE1F186826320B64A29D9FEA187E10s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib67060A423BD6A36554319C2A5EEC1622s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib67060A423BD6A36554319C2A5EEC1622s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib5B0BCF7B5EF63A439124D1D8BB8DA0C4s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib5B0BCF7B5EF63A439124D1D8BB8DA0C4s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib324636B856A908EDA9B007CB721DACA2s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib24583CCDB8DEC4696774345ACB32B07Bs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib0EDDABAFD9E6DB79B838861C57BBFEF3s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib180FCBEC4333C6DCAFEF6CB469561803s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib180FCBEC4333C6DCAFEF6CB469561803s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib141CECF2328B6AE752191BA19C185007s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib141CECF2328B6AE752191BA19C185007s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibFF9F2FB7D45A891E72AB3C025670FD2Ds1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibFF9F2FB7D45A891E72AB3C025670FD2Ds1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib2E005C0E4BACE351CD50C8DE29DE2201s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib2E005C0E4BACE351CD50C8DE29DE2201s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib7B239E5060A034D570B91D9854158523s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibF9E3D3129ED8B60D3B93BA32D1F241DFs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibF9E3D3129ED8B60D3B93BA32D1F241DFs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib0BDE26994301A860CB3837D50576B9D1s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib0BDE26994301A860CB3837D50576B9D1s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib88163C52FDB7520D2DA5295DCB52BFF0s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib88163C52FDB7520D2DA5295DCB52BFF0s1
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib9932D8DE8AA1BFBAB7425680DD435DFDs1


J. Fuchs, T. Grøsfjeld / Journal of Pure and Applied Algebra 227 (2023) 107112 45
[21] M.A. Levin, X.G. Wen, String-net condensation: a physical mechanism for topological phases, Phys. Rev. B 71 (2005) 
045110_1-21, arXiv :cond -mat /0404617.

[22] G. Moore, N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177–254.
[23] M. Müger, From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories, 

J. Pure Appl. Algebra 180 (2003) 81–157, arXiv :math .CT /0111204.
[24] V. Ostrik, Fusion categories of rank 2, Math. Res. Lett. 10 (2003) 177–183, arXiv :math .QA /0203255.
[25] E. Riehl, D. Verity, Elements of ∞-Category Theory, Cambridge University Press, Cambridge, 2022.
[26] E.C. Rowell, R. Stong, Z. Wang, On classification of modular tensor categories, Commun. Math. Phys. 292 (2009) 343–389, 

arXiv :0712 .1377 [math .QA].
[27] A. Schotte, G. Zhu, L. Burgelman, F. Verstraete, Quantum error correction thresholds for the universal Fibonacci Turaev-

Viro code, Phys. Rev. X 12 (2022) 021012_1-39, arXiv :2012 .04610 [quant -ph].
[28] V.G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter, New York, 1994.
[29] V.G. Turaev, O. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (1992) 865–902.
[30] R. Usher, Fermionic 6j-symbols in superfusion categories, J. Algebra 503 (2018) 453–473, arXiv :1606 .03466 [math .QA].
[31] Q.-R. Wang, Z.-C. Gu, Construction and classification of symmetry-protected topological phases in interacting fermion 

systems, Phys. Rev. X 10 (2020) 031055_1-64, arXiv :1811 .00536 [cond -mat].
[32] S. Yamagami, Polygonal presentations of semisimple tensor categories, J. Math. Soc. Jpn. 54 (2002) 61–88.

http://refhub.elsevier.com/S0022-4049(22)00108-6/bib959237B1A54963AF474B8F7BA140E054s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib959237B1A54963AF474B8F7BA140E054s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib3BFACA5C6D1AECFC4C7C0FBED54FBD46s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib8E48BB6E8EAB62983CAC42B19670FECAs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib8E48BB6E8EAB62983CAC42B19670FECAs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib7F34FABA881B65BB8FF0ED81AC28B748s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib9175D8A6D872DB766208159983D7BDFEs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib9EFCEE44FEEE7EE68404FE5D0EAC362Es1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib9EFCEE44FEEE7EE68404FE5D0EAC362Es1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib2B986A21E4DC15E139D55A2AF71F8C79s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib2B986A21E4DC15E139D55A2AF71F8C79s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibE0B9D5D55ED11CAF38489C43A76204DAs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibCF37E21D7CE99E122074A68571590CDBs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bibC7A6462633749BF163CAC86B5598ECE0s1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib5487B8E8D8F0EE06234914FFB474689Cs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib5487B8E8D8F0EE06234914FFB474689Cs1
http://refhub.elsevier.com/S0022-4049(22)00108-6/bib1F7E1D6ED54E3CCDF3D0B586D340EE96s1

	Tetrahedral symmetry of 6j-symbols in fusion categories
	1 Introduction
	2 Preliminaries
	3 Duality in veined fusion categories
	3.1 Simplicial semantics for veined near-fusion categories
	3.2 From covector duality to rigidity
	3.3 Traces and dimensions
	3.4 Pivotality
	3.5 Deconstructing rigidity

	4 Tetrahedral symmetry
	4.1 An S4-action on morphism spaces
	4.2 Simplicial origin of the S4-action
	4.3 Symmetries of 6j-symbols

	Acknowledgements
	Appendix A 6j-symbols
	Appendix B From simplicial sets to fusion categories
	B.1 Simplicial sets and quasi-categories
	B.2 From monoidal categories to quasi-categories
	B.3 From Hochschild homology to fusion quasi-categories

	References


