
Faculty of Health, Science and Technology
Master thesis in Computer Science
Second Cycle, 30 hp (ECTS)
Supervisor: Assoc. Prof. Sebastian Herold, University of Karlstad, sebastian.herold@kau.se
Examiner: Assoc. Prof. Muhammad Ovais Ahmad, University of Karlstad, ovais.ahmad@kau.se
Karlstad, June 20th, 2022

Improving information gathering
for IT experts.
Combining text summarization and individualized information
recommendation.

Förbättra informationsinsamling för IT-experter.

Kombinationen av textsammanfattning och individuell
informationsrekommendering.

Anton Bergenudd
antonbergenudd@hotmail.com

Abstract

Information gathering and information overload is an ever growing topic of concern
for Information Technology (IT) experts. The amount of information dealt with
on an everyday basis is large enough to take up valuable time having to scatter
through it all to find the relevant information. As for the application area of IT,
time is directly related to money as having to waste valuable production time in
information gathering and allocation of human resources is a direct loss of profits
for any given company. Two issues are mainly addressed through this thesis: texts
are too lengthy and the difficulty of finding relevant information. Through the use
of Natural Language Processes (NLP) methods such as topic modelling and text
summarization, a proposed solution is constructed in the form of a technical basis
which can be implemented in most business areas. An experiment along with an
evaluation session is setup in order to evaluate the performance of the technical basis
and enforce the focus of this paper, namely ”How effective is text summarization
combined with individualized information recommendation in improving information
gathering of IT experts?”. Furthermore, the solution includes a construction of user
profiles in an attempt to individualize content and theoretically present more relevant
information. The results for this project are affected by the substandard quality and
magnitude of data points, however positive trends are discovered. It is stated that
the use of user profiles further enhances the amount of relevant articles presented
by the model along with the increasing recall and precision values per iteration and
accuracy per number of updates made per user. Not enough time is spent as for the
extent of the evaluation process to confidently state the validity of the results more
than them being inconsistent and insufficient in magnitude. However, the positive
trends discovered creates further speculations on if the project is given enough time
and resources to reach its full potential. Essentially, one can theoretically improve
information gathering by summarizing texts combined with individualization.

Keywords
Text summarization, information gathering, individualization, topic modelling,
natural language processes, profiling.

iii

Sammanfattning

Informationsinsamling
och informationsöverbelastning är ett ständigt växande problem för IT-experter.
Mängden information som hanteras på en daglig basis är tillräckligt stor för att
ta upp värdefull tid på så sätt att berörda behöver sålla igenom mängder med
information för att hitta relevant innehåll. När det gäller tillämpningsområdet IT
är tid direkt relaterat till pengar eftersom att utvecklare behöver lägga värdefull
produktionstid på informationsinsamling vilket är en direkt ekonomisk förlust för
de flesta företag. Denna avhandling hanterar i huvudsak två problem: texter
är ofta för långa och svårigheter med att hitta relevant information. Genom
användning av NLP-metoder såsom ämnesmodellering och textsammanfattning
kommer ett förslag på en lösning att konstrueras i form av ett tekniskt underlag
som kan användas vid implementetation till nya användingsområden. Ett experiment
tillsammans med en utvärderingssession sätts upp för att utvärdera prestationen för
den tekniska basen och förstärka fokuset av denna uppsats, nämligen ”Hur effektiv är
textsammanfattning kombineradmed individualiserad informationsrekommendering
för att förbättra informationsuppsamling för IT-experter?”. Dessutom inkluderar
lösningen en konstruktion av användarprofiler i ett försök att individualisera innehåll
och teoretiskt presentera mer relevant information. Resultaten för detta projekt
påverkas av den undermåliga kvaliteten och storleken på datapunkter, men positiva
trender upptäcks. Det anges att användningen av användarprofiler ytterligare
ökar mängden relevanta artiklar som presenteras av modellen tillsammans med de
ökande återkallelse- och precisionsvärdena per iteration och noggrannhet per antal
uppdateringar som görs per användare. Det ägnas inte tillräckligt mycket tid med
avseende på utvärderingsprocessens omfattning för att med säkerhet ange giltigheten
av resultaten mer än att de är inkonsekventa och otillräckliga i omfattning. De
positiva trenderna som upptäckts skapar dock ytterligare spekulationer om projektet
får tillräckligt med tid och resurser för att nå sin fulla potential. I huvudsak kan
man teoretiskt förbättra informationsinsamlingen genom att sammanfatta texter i
kombination med individualisering.

Nyckelord
Textsammanfattning, informationsinsamling, individualisering, ämnesmodellering,
naturliga språkprocesser, profilering.

iv

Acknowledgements

I would like to give my thanks to all the people who contributed to the progress of
this paper. Firstly, a substantial thanks to Elvenite who provided me with knowledge
as well as the topic of this thesis itself. Further, a special thanks to Niclas Lovsjö, an
employee at Elvenite at the time who personally helped me a lot with analyzing data,
problem solving and all over generating ideas. Thank you to Agnes Lindell, also an
employee of Elvenite at the time, who helped me generate the topic of this thesis. I
would also like to give a special thank you to SebastianHeroldwho acted as a supervisor
for this thesis. Sebastian contributed with a lot of valuable input in many different
areas throughout the text and continuously helped with feedback to this paper.

v

Acronyms

LDA Latent Dirichlet Allocation
NLP Natural Language Processes
NLU Natural Language Understanding
NLG Natural Language Generation
DF Data Frame
AI Artificial Intelligence
IP Internet Protocol
SQL Structured Query Language
AJAX Asynchronous JavaScript and XML
TF-IDF Term Frequency Inverse Document Frequency
IDF Inverse Document Frequency
ML Machine Learning
LSA Latent Semantic Analysis
HTML Hyper Text Markup Language
DOM Document Object Model
NER Name Entity Recognizer
CSV Comma-Separated Values
TF Term Frequency
URL Uniform Resource Locator
TP True Positive
TN True Negative
FP False Positive
FN False Negative
FPR False Positive Rate
BS Beautiful Soup
NLTK Natural Language Toolkit
AWS Amazon Web Services
IT Information Technology
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Thesis Goal . 2
1.4 Ethics and Sustainability . 3
1.5 Methodology . 4

1.5.1 Building the prototype . 4
1.5.2 Evaluation . 4

1.6 Stakeholders . 4
1.7 Delimitations . 5
1.8 Outline . 5

2 Background 6
2.1 Natural language processing . 6
2.2 Text summarization . 7

2.2.1 Extractive vs abstractive . 7
2.2.2 TF-IDF . 9
2.2.3 Multi- vs single document . 10

2.3 Topic modelling . 10
2.3.1 Latent Dirichlet Allocation . 11

2.4 Evaluation techniques . 12
2.4.1 Topic model . 12
2.4.2 Article relevance scoring . 13

2.5 Related Work . 13

3 Methodology 16
3.1 Overview . 16
3.2 Scrape data . 17

3.2.1 Data sources . 18
3.2.2 Data pre-processing . 20

3.3 Update model . 21
3.3.1 Enhancing the topics . 22

3.4 Profile articles . 23
3.5 Summarize texts . 24

vii

CONTENTS

3.6 Present to user . 24
3.7 Update user profile . 25

3.7.1 Normalizing distribution values 26
3.7.2 Answer weighting . 27
3.7.3 Reducing importance progressively 27

4 Implementation 28
4.1 Running the pipeline . 28
4.2 Setup . 28
4.3 Scrape data . 30

4.3.1 Data pre-processing . 34
4.4 Update model . 36
4.5 Profile articles . 37
4.6 Update user profile . 38
4.7 Summarize texts . 40
4.8 Present to user . 41

4.8.1 Login . 41
4.8.2 Home page . 42
4.8.3 Predictions . 43
4.8.4 Explore . 44
4.8.5 Database . 45
4.8.6 Notifying users . 46

5 Evaluation and Results 49
5.1 Study protocol . 49
5.2 Evaluation . 50

5.2.1 LDA model . 50
5.2.2 Topics . 50
5.2.3 User profile . 51
5.2.4 Article profile . 51
5.2.5 Summarized text . 52

5.3 Results . 53
5.3.1 Number of data points . 53
5.3.2 Prediction relevance threshold 54
5.3.3 Results based on threshold . 56
5.3.4 Text summarizer evaluation . 58
5.3.5 Problems . 58

6 Discussion 60
6.1 Contribution . 60
6.2 Problems . 60

6.2.1 Implementation of ML models 61
6.2.2 Swedish models . 61
6.2.3 Articles . 61

viii

CONTENTS

6.2.4 Evaluation . 62
6.3 Future work . 62

6.3.1 Organisation names . 62
6.3.2 More news sources . 63
6.3.3 Abstractive text summarizer . 63
6.3.4 Extended evaluation . 63

6.4 Experience . 63

7 Conclusions 65

References 66

ix

Chapter 1

Introduction

Under this chapter there is a general introduction in order to get a quick overview
over the project. The motivation, goals, structure and problem description
will first be presented. Then ethical discussions, presentation of stakeholders,
delimitations of the project as well as a brief presentation of the methodology are
all presented. The final source code for the evaluation website can be found under
https://github.com/antonbergenudd/thesis-survey-app and the final source code for
the pipeline can be found under https://github.com/antonbergenudd/exjobb.

1.1 Motivation

Information gathering today is a process of filtering through multiple sources of
information in an attempt to find what is relevant. There is no easy way to manually
scatter through these massive amounts of data presented through different sources of
information efficiently, instead it is easy to simply get lost in a jungle of data where a
lot of unnecessary time is spent on barren work. An area where information gathering
is key is the area of IT development, more specifically software developers within
IT who constantly have to find new information to help progress within their line of
work. The everyday struggle of IT developers involves information gathering processes
where tasks like bug fixing, general information seeking, information about specific
programming problems or just information about their business area are all present.
All of these areas have a commondenominator in the formof a problemwhere having to
find the correct information in as little time as possible is prevalent [35]. In BrianDorn,
Adam Stankiewicz and Chris Roggis’ paper they enforce the fact that programmers
are facing this issue with information seeking all too often within their everyday work
which confirms the presented hypothesis [10].

1

CHAPTER 1. INTRODUCTION

1.2 Problem Description
A lot of time is spent trying to find relevant information to specific problems, the topic
of information gathering becomes more and more popular involving both financial
losses as well as negative impacts to the distribution of human resources to any given
IT company. From this, there are three different problems depicted where two of them
are approached through this thesis.

1. There are tons of informational sources to choose from.

2. The texts are too lengthy.

3. Difficult to find relevant information.

These three problems often boil down to a matter of time wasted which in business
terms translates to a waste of money and hence becomes relevant problems for most
companies. In terms of the first and second issue, the difficulty of keeping track of all
informational sources for any individual creates a problem which calls for a need to
further improve information gathering processes in order to save time and efficiently
progress everyday work. Furthermore, the information provided by found sources
often have a lot of text along with them, making them hard to read and might consist
of irrelevant content. These massive amounts of information calls for a need to be
reduceddown to smallermore concise pieces of textwhich contextually gives the reader
the same information but in less words. As to the third issue; first there has to be a
relevant concise text reducing time needed to read any information provided by any
informational source, second there has to be some sort of filter to remove potentially
irrelevant information, basically by individualizing the information gathering process.
These two issues forms the core of the problem which is sought to be solved through
this project.

1.3 Thesis Goal
As mentioned, this project focuses mainly on addressing two problems, the issues of
informational text being too lengthy and the difficulty in finding relevant information.
The combination of these two proposed problems emerge into a tool of filtering out
irrelevant information as well as reducing time needed to read relevant information,
which together forms a strong suggestion of improving information gathering as a
concept. The processes of individualizing and summarizing information forms the
basis for this project, where the central hypothesis to address is ”How effective is
text summarization combined with individualized information recommendation in
improving information gathering of IT experts?” which further acts as the backbone
of this thesis. Similarly to how Brian Dorn et al. proposes a solution to information
gathering issues in the shape of a model [10], this thesis will propose a solution in the
shape of a technical basis in an attempt to further help improve information gathering
processes in general. Specifically for this project, the information seeking will be

2

CHAPTER 1. INTRODUCTION

targeted to specific domain area information. Through the use of text summarization,
topic modelling, and user profiling; a prototype is constructed which then is evaluated
by a selected group of participants. The prototype makes use of newsletters as
informational feed input in which the user is presented an information feed of
summarized articles from the domain area. User feedback on the perceived relevance
and quality of these articles is used to adapt the information feed individually.

1.4 Ethics and Sustainability
The techniques used and developed approach fall into the area of Machine Learning
(ML), ML is an area within Artificial Intelligence (AI) which essentially boil down to
algorithms being trained with data in order to discover hidden rules or patterns to
solve a specific task [36]. When usingML there is always a risk of potential biases, this
project is no exception to the rule since an algorithm computes user profiles and thus
essentially breaks down human interests and human judgement into digits, which in
turn introduces human biases [51]. The bias becomes obvious when trying to analyze
the results of any arbitrary user profile, as for example, if a user only is presented with
articles within one topic for some reason, the conclusion can eventually be that the user
may only find one topic interesting and hence the construction of a human bias arises.
To condense information for the sake of time saving is a process which eventually
progresses into laziness and comfort. All research contributing to further development
of human comfort may be seen as destructive in the far run as comfort is often payed
with mental or physical challenges. Not exposing our minds and bodies to mental or
physical challenges can be harmful to anyone to an extent [40]. Therefore an ethical
issue arises if it is really a necessity to further condense informational sources and ease
the process of manual filtering, relieving developers of their mental stimuli. In other
words, will the development of this project affect humanmanual informational seeking
skills negatively?
Although, as it can be considered a warning to try to optimize information seeking with
the motivation of laziness, it also contributes to something good. The research has the
potential to make informational gathering processes more sustainable by reducing the
resources needed to perform the same amount of work today but in less time and effort.
This may lead to, as earlier mentioned, improved management of human resources or
a decrease in money spent on the work hours of developers trying to find information.
Since the development of technology in general is progressing in a rate never seen
before it is hard for users to adapt to user profiling and recommendation systems. A
lot of people see profiling as an intrusive act where a machine tries to define them
or also abuse personal information for company profits. User profiling may lead to
users feeling exposed and insecure depending on the quality of the profiles. This will
continuously be an issue as long as science keep on progressing in the current speed
not letting the commonman to keep up. User profiling also involves handling sensitive
user information as the profiling can lead to detailed information about the user in
the long run and thus the area is automatically a relevant ethical issue of today where

3

CHAPTER 1. INTRODUCTION

internet privacy is becoming bigger and bigger [34][54].

1.5 Methodology

As previously mentioned, this project aims to build a prototype of text summarization
and individualization of information in the form of text using different NLP techniques
along with an evaluation of the performance for the prototype.

1.5.1 Building the prototype

Existing newspapers are to be harvested of articles within the domain area of food and
beverage. The collected article texts are then shortened into concise and contextually
rich paragraphs with a shorter length than the original text. The articles are also
given a user relevance prediction according to computed user profiles before they are
presented on an article evaluation website.

1.5.2 Evaluation

In order to evaluate the relevancy of articles and compute user profiles there has to
be some sort of tool to present articles and collect answers from users. By the use
of prior knowledge within the area web development a customized website is set up
where articles are presented and evaluated. Furthermore, the evaluation of the entire
prototype will be a comparison between the predictions of user article relevance and
the actual user article relevance input to the evaluation website.

1.6 Stakeholders

The benefits from this project can be useful to anyone who faces the issue of gathering
information in any way. Since a basic foundation to improve information gathering
is concluded from this project, one can simply apply this technical basis to their
own domain area and make use of its computations. The focus for this project
however is specifically software consultancy and will hence target aspects of software
informational gathering issues. The target company in the attempt to prove the
viability of this project is Elvenite. Elvenite specializes in the food and beverage
area where they provide sustainable solutions for larger companies. With four offices
scattered around Scandinavia, Elvenite has around 80 employees which all strive for a
better tomorrow. Elvenite benefits from this project directly sinceElvenite’s employees
faces the challenges of information seeking in their everyday work, having to find the
latest relevant information about their domain application [11].

4

CHAPTER 1. INTRODUCTION

1.7 Delimitations
This project focuses on individualized and summarized information gathering, it will
not be a prototype of newsletter generation nor focus on the best way to present
the results of the project. The main focus is the technical basis regarding text
summarization as well as information individualization. The constructed data crawler
is created for the purpose of crawling specific web pages which helped the cause of
this project. Hence, the data used is also conducted in a way promoting the domain
area relevant to the prototype concept. The evaluation website is tailored to fit the
needs of this project’s algorithm features and will only provide results relevant to the
prototype’s produced articles. Lastly, the computed user profiles are not final products
of user interests andwill only represent the participating test users’ interests within the
specific application domain of Elvenite.

1.8 Outline
Under chapter 2 the theoretical background needed for this project is presented,
introducing the reader to concepts and keywords needed to comprehend the context of
the thesis. Chapter 3 describes the process of how the problem description is answered.
Theoretical descriptions of parts of the prototype that needs to be implemented along
side with some explanation. Chapter 4 introduces the implementation theoretically
described under chapter 3. Which scripts were created, what they do and why they
came to place, in other words a more hands on perspective of chapter 3. Moving
on to chapter 5 the results from the project will be presented. The final accuracy
percentage from the predictions will be presented as well as anonymous user profiles
and summarized texts. Chapter 6 discusses eventual problems and further work
extracted from the project. The author’s experience with the project will also be at
hand. Finally, chapter 7 introduces a final conclusion to the entire project. Answers
to if the thesis question is answered, if the project could be considered a success, and
thoughts about the results are presented.

5

Chapter 2

Background

Under this section a brief presentation of background information is presented in order
for the reader to be able to understand the context of this thesis.

2.1 Natural language processing

Quoted from Kai Jiang and Xi Lu’s paper, the definition of NLP is the following,
”Natural language processing is defined as a discipline that studies language issues
in human-to-human and human-to-machine communication” [18]. Some example
tasks typically found within the area of NLP with a varying range of complexities
starting with basic tasks are email filtering and auto-correct used inmost smartphones.
Examples of more tasks are virtual assistants and voice recognition software as for
exampleGoogle’s Alexa andApple’s Siri [3]. Voice recognition is basically programmed
to receive input in the form of speech, convert it to text, process the text and respond
with a correct answer to whatever the input was. Combining rule based modelling of
human languages, agent intent and sentiment, AI can make precise conclusions about
conversations or texts fully automatic [18]. Furthermore, two of the tasks relevant
for this project are topic modelling and text summarization. Topic modelling is used
for identifying hidden topics through the use of patterns across sets of documents or
more specifically through any arbitrary corpus as in this case, further explanation of
what a corpus is is found under section 2.2.2. A task man would have taken a lot of
time to perform manually, if possible at all for the same quality. More information
about topic modelling can be found under section 2.3. The task of text summarization
takes one or more documents and reduces them to shorter more concise versions
of the same documents. Under section 2.2 more details can be found about text
summarization.

6

CHAPTER 2. BACKGROUND

2.2 Text summarization
All over the internet today there is more and more information presented in
innumerable different forms. The need for text summarization is evident in order to
efficiently grasp all of the information presented. Performing the summarization by
hand would take too much unnecessary time, therefore automatic text summarization
is becoming more and more popular. The process of automatic text summarization
could be defined as automatically extracting essential context from a text of length X
reduced down to a length smaller than X making it more concise and efficient to read,
all without the need of a human moderator. What then is considered a good summary
is left to be decided by the eyes of the reader, since a summary might be good enough
for someone who has prior knowledge in the subject but may not be extensive enough
for someone who does not know anything about the subject. There are twomethods of
text summarization of today, extractive and abstractive.

2.2.1 Extractive vs abstractive
Extractive text summarization techniques extract the most relevant sentences from a
text based on a calculated score and concatenates them together in order to formamore
condensed version of the text, keeping the grammatical structure of the sentences. This
way, the most important parts of a text, according to the scoring algorithm, no matter
the size is included in the final summary.

+ Intuitively easy to evaluate and work with.

+ Easy to integrate.

+ Do not require any prior data or setup to be used.

− Relies on the original sentences being well structured.

− Excels in single document summarization though as the document number grows
the longer the summary get.

− Hard to determine where to place sentences in relation to other extracted
sentences.

− Hard to control the length of the summary.

The abstractive text summarization technique relies more heavily on AI to construct
completely new sentences based on previously read or learned articles which themodel
has been fed. An AI is trained with an immense set of data in order for it to become
familiar with the semantics and grammars of any existing language within the data set.
Once it has been trained on the data set and eventually tweaked or re-learnt until it is
considered good enough, themodel can be fed a fresh article never seen before in order
to construct its own paraphrased text summary.

+ Potentially optimal length of summaries.

7

CHAPTER 2. BACKGROUND

+ Great at computing summaries over several different documents.

− Usually complex implementation and usage.

− Can take a lot of time to compute a readable text through the early stages of the
model.

− Requires a large amount of data in order to train the model.

The abstractive summarization method is in general considered less accurate than
the one of extractive summarization but has a bigger potential to create more
condense texts as well as easier reads overall. Extractive text summarization tends
to perform more consistent and overall better in most aspects of smaller projects
[53]. Further, a presentation of both an extractive summarizer as well as an
abstractive summarizer, taken from Ramsri Goutham’s example summary in his pa-
per about simple abstractive text summarization [45]. The original text is shown below.
The US has ”passed the peak” on new coronavirus cases, President Donald Trump said
and predicted that some states would reopen this month.The US has over 637,000
confirmed Covid-19 cases and over 30,826 deaths, the highest for any country in the
world.At the daily White House coronavirus briefing on Wednesday, Trump said new
guidelines to reopen the country would be announced on Thursday after he speaks
to governors.”We’ll be the comeback kids, all of us,” he said. ”We want to get our
country back.”The Trump administration has previously fixed May 1 as a possible date
to reopen the world’s largest economy, but the president said some states may be able
to return to normalcy earlier than that.
The final result of using an extractive summarizer is shown in listing 2.1.

1 The US has ”passed the ”peak on new coronavirus cases, President Donald
Trump said and predicted that some states would reopen this month.The
US has over 637,000 confirmed Covid -19 cases and over 30,826 deaths,
the highest for any country in the world.At the daily White House
coronavirus briefing on Wednesday , Trump said new guidelines to reopen
the country would be announced on Thursday after he speaks to governors
”.’Well be the comeback kids, all of us”, he said.

Listing 2.1: Example results of an extractive summarization technique.

The sentences that were not included for the summary are the following:

• ”We want to get our country back.”

• The Trump administration has previously fixedMay 1 as a possible date to reopen
the world’s largest economy, but the president said some states may be able to
return to normalcy earlier than that.

These sentences were left out due to the fact that a sentence scoring algorithm
considered these sentences to be off less importance, compared to the total average
sentence score.

8

CHAPTER 2. BACKGROUND

Further, the mentioned abstractive summarization example from Ramsri Goutham’s
paper can be seen in listing 2.2 computed on the same original text.

1 The us has over 637,000 confirmed Covid -19 cases and over 30,826 deaths.
President Donald Trump predicts some states will reopen the country in
April, he said. "we'll be the comeback kids, all of us," the president
says.".

Listing 2.2: Example results of an abstractive summarization technique.

The cornerstone of the extractive text summarization is the importance of determining
a strategy of selecting sentences to be extracted. A common strategy to apply is simple
sentence scoring, where sentences are given a score based on whatever the user finds
important, and the top X scoring sentences are selected for the final summary. A
concept called TermFrequency InverseDocument Frequency (TF-IDF) plays a key role
in this sentence scoring for this project [53].

2.2.2 TF-IDF

To compile a concise version of a text using an extractive text summarizer, there
needs to be some sort of scoring method to decide how informative a sentence is,
a common scoring algorithm to use for this is called TF-IDF. TF-IDF targets to
measure a word’s relevance inside of a document which in turn is part of a collection
of documents, a so called corpus [6]. Through this project a corpus is represented by a
two dimensional array containing a collection of documents alongwith their respective
word frequencies. A dictionary is all words occurring within a set of documents
collected into one vector which can be described as a lexicon for all documents. To
understand how the scoring calculation works within TF-IDF each term of TF-IDF are
separately described startingwith TermFrequency (TF). Thewords across one ormore
documents are gathered as well as the frequency of each word is counted, and later the
words are saved into the form of a corpus of the documents, which then represents the
term frequency (TF). Inverse Document Frequency (IDF) is then used to calculate how
unique a word is across one or more documents which helps putting weight to more
informative words. These two measurements TF (word frequency) and IDF (word
weight) are then multiplied resulting in a final score for each word inside the entire
corpus. Finally, each sentence within the documents can be given a score according to
each word’s TF-IDF score. The highest scoring sentences are most likely the sentences
with the highest contextual information based off of the constructed corpus [7]. The
mathematical definition of TF-IDF can be seen below where x represents a word, y
represents a documentwhere theword x can be found, tf represents the term frequency,
df represents the document frequency, and N is the total number of documents used.
The product of a specific term frequency and the logarithmic computation of the total
number of documents over the number of documents containing a specific word results
in the final TF-IDF score for the given word based on a set of documents.

9

CHAPTER 2. BACKGROUND

wx,y = tfx,y ∗ log(
N

dfx
)

2.2.3 Multi- vs single document
Summarizingmultiple documents focuses on extracting essential points over a number
of documents all somewhat related to each other in terms of topic distribution aswell as
combining these points into a joint summary. Summarizing a single document simply
means to reduce a longer text into a more concise text of smaller length than of the
original version [48].

2.3 Topic modelling
Topic modelling is an ML approach used to identify hidden topics within a set
of documents, where during the process, words are clustered from one or more
documents to form the topics. As seen in figure 2.3.1 there are many application
areas for a topic model, the figure in specific shows application areas for industrial
usages. The topics are efficiently used when clustering related documents by simply

Figure 2.3.1: Industrial application of a topic model [13].

comparing the topics assigned by a topic model to the documents. There are several
different models to use when speaking of topic modelling where the most notable ones
are the Latent Dirichlet Allocation (LDA) model and the Latent Semantic Analysis
(LSA) model [20]. Both LDA and LSA expects documents in the form of a bag-of-
words format which represents word frequencies across all documents. Bag-of-words
simply refer to the way each document is represented, which is an array of words along

10

CHAPTER 2. BACKGROUND

with their word frequencies inside of the document, which in turn infer that LDA and
LSA both ignore syntactic composition of sentences [44]. A document can further
be divided into k number of topics which are based on the grouping and frequencies
of the words inside the document. Each topic has a set of words which per se has
an importance score equivalent to the word’s contribution to the topic itself. The
words inside of a topic are represented as clusters where the outline of a cluster can
differentiate a lot depending on the different setup of calculations used for computing
topics. These topics are then used as a basis for the topic distribution given to each
respective document input to themodel where each topic is given a percentile as to how
much the document correspond to that specific topic. This process is made possible
by the use of topic modelling where this project will make use of an LDA topic model.
Since LDA and LSA are fairly similar in performance as well as similar in usage the only
key difference for this project is that LSA requires a larger data set whereas a smaller
data set is used in this thesis [20].

2.3.1 Latent Dirichlet Allocation

LDA is an unsupervised probabilistic approach to labeling documents whereas a
predetermined number of topics are given a percentage of relevance to each document
fed to the model. The abbreviation LDA stands for Latent Dirichlet Allocation, where
Latent indicate finding hidden topics by the use of patterns through a corpus, Dirichlet
is a probability distribution algorithm which here indicates that the distribution of the
words in the topics as well as the topics per se are distributed in a Dirichlet manner, the
output is a vector of probability distributions, and Allocation refers to the distribution
of topics within a document [6]. The core process of LDA begins with randomly
assigning a topic to each word within a corpus of documents. Each topic for each
word is then counted inside the entire corpus in order to summarize how many times
a word is associated with a specific topic. Now there is a count of how many times a
word is associated with a specific topic inside the corpus as well as how many times a
topic appears in a specific document inside the corpus. After this random initialization
of topics, the process begins to make an attempt of converging the words to a non-
randomized topic. This is done by removing the currently assigned random topic one
by one and re-process the word accordingly. The reassignment is done through the use
of two calculations presented below.

1. How many times a word appears inside a topic based on all documents inside a
corpus.

2. How many times a topic appears within a specific document.

Let us call a word from any arbitrary iteration X inside document Y. The first
calculation is how many appearances X has in each topic based on other documents
than Y. The second calculation calculates how many times a topic appears inside of
Y. Lastly, the product between these two calculations results in a final assignment of
the topic with the highest product, and so the iteration continues for every word in the

11

CHAPTER 2. BACKGROUND

corpus, giving each word a topic according to the highest possible product of the two
calculations. Howmany times this iteration takes place is determined during the LDA
setup where the number of iterations is called passes [6]. LDA expects a dictionary as
well as a corpuswhich represents the scope ofwords that are to be used for the task. The
words necessary for themodel has to be processed in order to optimize the performance
of the model. There are several optional methods of processing the data beforehand,
whereas one necessarymethod is the so called stopword removalmethod. LDAexpects
thewords delivered to the task to be of certain importance,meaning thatwordswithout
any context such as stop words should be removed beforehand, otherwise the model
will not be able to compute accurate topics [20]. ”a”, ”with” or ”can” is an example of
what stop words could look like, intuitively it is possible to see that these words would
not contribute to any context if part of a topic.

2.4 Evaluation techniques

Through this project’s technical approach there are two things in need of evaluation.
The first is an evaluation of the topic model performance and the second is an
evaluation of the constructed article relevance scoring approach.

2.4.1 Topic model

Because of the complexity of evaluating a topic model, one of the most simple ways
of evaluating the performance of a topic model is to simply eye ball the results and
manually judge if the topics makes any sense. This seemingly trivial approach of
evaluation becomes an issue whenwanting to confidently state the quality of generated
topics from a NLP based model, as the results are presented in a text further obeying
syntactic rules and grammars. As LDA has an unsupervised training approach which
makes the process of evaluating themodel hard. The evaluation comes down to human
intuition. The evaluation can be divided into two approaches, using human judgement
or using intrinsic evaluation metrics to try to prove the quality of generated topics.
Typically one can identify the top few words from each topic to determine if the words
correlate to one another. This, combinedwith looking atwhichdocuments are assigned
to which topics, gives the user a good sense as to the performance of the model.

Furthermore, an intrinsic evaluationmetric whichmeasures relevance of words within
a specific topic is called the coherence score. Topic coherence helps distinguish
between interpretable topics and topics created from simple statistical inference.
Coherence per se suggests that a set of statements or facts, in this case patterns,
enforce one another. By optimizing the coherence score one can find more relevant
and interpretable topics created by the LDA model. Lastly, one can use simple human
judgement to determine what a topic is in order to judge whether or not the LDAmodel
performs well or not, which of course leaves room for human errors [52].

12

CHAPTER 2. BACKGROUND

2.4.2 Article relevance scoring

The evaluation of the approach for article relevance scoring boil down to the
question of if the proposed approach is good enough for the constructed personalized
recommendation system. One efficient way of setting up this evaluation is to focus
on user evaluation feedback, where it is common to use a survey to collect data as it
is a great tool to quickly assess and group user feedback from many different project
types. As per definition a survey can be described as ”.. to obtain the same kind of data
from a large group of people (or series of events), in a standardized and systematic
way.”[39]. Furthermore, there are different ways to setup a survey where the choice
between a quantitative and a qualitative survey has to be made. If a survey has a
questionnaire with answers scaled in numbers or any other scalar measurement then
it is a quantitative survey, as opposed to if it has elaborate answers then the most
fitting type of survey is most likely a qualitative survey. One can also determine if
a quantitative or qualitative survey is needed if the requested data collected from the
surveys are in a numeric or textual format whichmost often distinguish the two, where
the former is for quantitative surveys and the latter for qualitative [1].

2.5 Related Work

A number of papers were found with the focus of extending the knowledge and getting
a greater understanding of information seeking problems and approaches. These
articles are presented below.
Brian Dorn, Adam Stankiewicz and Chris Roggi conducts a study where they setup an
experiment in a lab setting in order to answer two central questions ”What foraging
and search behaviors are employed by end-user programmers to overcome learning
barriers?” and ”Towhat extent do information seeking behaviors correlatewith various
measures of success in completing scripting tasks?”. They mention the difference
between information seeking for people without prior knowledge about programming
opposed to people with prior knowledge. Their results came to be that both parties had
some issues with the source of the information and not the actual act of information
seeking itself. Furthermore, they found information about how the users found the
information which essentially is the method of information seeking. The amount of
testers were low with a bare 19 people attending the experiment and thus the results
may vary a lot depending on the attending people. As the authors mentioned in the
paper another limitation with the study was that they did not allow participants to
communicate with friends or colleagues which limits a part of a general information
seeking approach. Even though the amount of participants were low, the results are
still useful for future research within the area of information seeking as it breaks
down the basic methods of information seeking regardless of prior knowledge. This
work is a more hands on approach of trying to find the essence of the issues with
information seeking, the authors focus on research and expanding the knowledge
about information seeking instead of trying to find any improvement to the subject

13

CHAPTER 2. BACKGROUND

[10].
Yihan Lu, I-Han Hsiao and Qi Li uses a different approach of study where they explore
popular sources of information specifically for programmers seeking information. In
thework they first study how students search and explore the different online forums of
programming. The purpose of the paper is to explore and analyze information seeking
behaviour of programmers navigating programming discussion forums. A mentioned
limitation of the study by the authors were for example searchesmade in Google which
redirected users to a programming discussion forum could not be registered for this
experiment. This paper however further helps the understanding of how information
seeking is conducted in a more controlled environment within a specific domain area.
This work is directly related to this thesis as the general knowledge about information
gathering gained is applied to the same foundational thinking. As this thesis focus on
constructing a technical basis for improving information seeking, the study conducted
by Yihan Lu, I-Han Hsiao and Qi Li focus on gaining knowledge about the act of
information seeking within the controlled environment earlier mentioned [32] .
A study to investigate the interaction effect of task difficulty and domain knowledge
on user’s search behaviors was conducted by Chang Liu et al. where the task of
information gathering was thoroughly examined. The study conducted was essentially
an experiment where people of different levels of domain knowledge was presented
with different levels of tasks ranked easy or hard. Theparticipantswere thenmonitored
as to how much dwell time was spent for each participant and which informational
sources they entered. The study could have included more levels of difficulty for the
tasks in order to retrieve a more nuanced result. The conclusion however was that
users that had a higher domain knowledge, spent less time on pages users of less
domain knowledge spent a lot of timeon, showing adifference in information gathering
regarding previous domain knowledge. This finding contributes to the understanding
of information gathering as to how users navigate using previous experiences as well as
it poses an example of how much time is spent on trying to find related content. This
work is proof as to why the area of information gathering need more work in every
aspect as much time is spent in dwell time trying to find the relevant information in for
example different documentations [28].
Furthermore, there are papers who present a solution of improving information
seeking in different areas. These articles are presented below.
Michael P. O’Brien and Jim Buckley discuss the problems of information seeking as
well as provide a solution in the form of a model specifically for programmers in their
paper named ”Modelling the Information-Seeking Behaviour of Programmers – An
Empirical Approach”. The paper focus on reviewing existing models of information
seeking in order to propose a better non-linear model as opposed to the existing
model they present, along side this the authors explore the definitions and scope of
information seeking in order to try to comprehend the entirety of the problem [38].
The limitation of this paper is the small amount of case studies proposed whereas
the scenarios might be specifically beneficial for their case. The benefits from their
paper however is that it proposes a model of thought processes to faster and better
gain information and reach a solution faster than the compared models. As to how

14

CHAPTER 2. BACKGROUND

this is related to the work of this thesis is that the main goal of improving information
seeking is evident.
An attempt to improve information gathering in terms of source code information
extraction is made by Paul Gross and Caitlin Kelleher in their paper about non-
programmers attempt to understand source code and retrieve information. The paper
presents a study performed where non-programmers were gathered and given a task
of finding specific functionality in open-source code. The task involved barriers such
as interpreting the code and formulating correct search queries to find the correct
section in the source-code. Quoted from the paper the purpose is ”.. explore non-
programmers’ natural search processes to guide the design of new tools that will
explicitly support natural search processes”. The authors further suggest design
guidelines for software supporting non-programmers in order to contribute to the
area of information gathering but specifically for the purpose of users with little to
no competence about the area. Limitations of the study is the instrumentals used for
the study, namely the Storytelling Alice software used. The findings from this paper
is highly relevant as it emphasizes the gap found in information gathering for people
without prior knowledge of IT processes. The issue of information gathering is not only
relevant speaking of programmers, but may also be applied to non-programmers who
has less experience in the matter [17].
Another paper implemented information ranking and selection in order to improve
programming productivity. Mik Kersten and Gail C. Murphy identified a waste of
productivity in programmers having to switch tasks whereas the authors present a
task context model in order to prevent information overload. The proposed technical
implementation is validated and proven to improve the productivity of the users. The
identified problems by the authors are that often programmers work with more than
one source repository which contradicts with the found assumptions of the Integrated
Development Environment (IDE) they focus their work on, as well as the information
gap between existing modules and different programmers. The authors propose
limitations in their work such as a misinterpretation of input and issues with their
implementation as for example when handling multiple related tasks. This work add
technical depth to information gathering issues as well as the physical solution in the
shape of software. It is an alternative approach to solving the same issue as presented
in this thesis however specifically targeting a programmer’s IDE [21].
To summarize the findings about related work, there are a lot of articles who focus
on extending the knowledge about information gathering issues within the area of
IT. A few articles found propose a solution to specific problems where technical
implementations are described. However, no paper found provided a technical basis
constructed from text summarization and individualization in an attempt to improve
information gathering making this thesis project unique in contribution.

15

Chapter 3

Methodology

Under this chapter one can find a theoretical explanation of the entire project pipeline,
explaining each step throughout the process. First a brief overview is presented in
order to grasp the full context, the following sections explains each step within the
pipeline more thoroughly.

3.1 Overview
In order to answer the question ”How effective is text summarization combined
with individualized information recommendation in improving information gathering
of IT experts?” introduced under section 1.2, the following scenario is setup. A
simulation of a newsletter feed is constructed by the use of scraped articles from
selected news sources. Then users of the tool are to evaluate the articles’ context
and understandability systematically and iteratively in order to analyze a progressive
process of article selection. The articles are first scraped, processed, and topic
distributed, then presented to the users, evaluated and lastly used to update the user
profiles which eventually reflects the project results. The accuracy of the user profile
represents the accuracy of the entire process. Figure 3.1.1 visualizes the steps of the

Figure 3.1.1: Visualization of the overall approach.

entire project pipeline. For this project there is a differentiation between the first
iteration run, the so called iteration zero, and the coming iterations. The first iteration

16

CHAPTER 3. METHODOLOGY

is run in order to setup and prepare data for the coming articles, as for example creating
the topic model, generating user profiles and populating the database with an initial
batch of articles. The coming iterations are run with the purpose of refining this topic
model, improving the user profiles and further extend the database with data. The
processed steps from figure 3.1.1 through the first iteration is limited to ”scrape data”
and ”update model” only. All available articles up until a given date are scraped from
two data sources. The topic model is then updated based on these scraped raw articles
in order to continuously be able to distribute topics over articles with words never seen
before. This makes the article topic distribution keep the same logical standard as the
process progresses. Under section 3.3 this is further described. After the articles are
scraped, they are run through a data pre-processing step where the data is refined in
order tomake the computed topics of higher relevance. This is described inmore detail
under section 3.2. As for the first iteration the scraping process differs as it is setup
to scrape a larger amount of data instead. The data is collected from the same data
sources as the coming iterations, though as much data as possible is collected instead
of limiting the data size by a given date. Furthermore, the first set of articles for the
coming iteration after iteration zero are not scraped but rather a careful selection of 15
articles are extracted from the larger data set. The purpose of this is to retrieve articles
of minimal similarity in terms of the articles’ internally distributed topics. In this way
the users’ initial profile creation process is enhanced, where greater adjustments can
be made initially through the variation of selected articles.

Continuing on the path for the coming iterations, the articles are then used in both
of two ways, one which is text summarization and one model updating. The first path
described is the updatemodel path where the LDAmodel is updated, introduced under
section 2.3. As for iteration zero, themodel is not yet created and therefore is here setup
and saved for coming iterations. Using the LDAmodel, articles are profiled where they
are given topic distributions based on the setup of the model. Further details are given
in sections 3.3 and 3.4.

The results of the evaluation process combined with the profiled articles are used
to update each respective user’s profile based on their respective answers. This is
discussed more under 3.7. As to the second path, deviating from the path of updating
the model, the text summarization process summarizes articles into more condensed
versions of the texts. More information about this can be found under section 3.5.
The summarized texts are further presented to the users who evaluate the articles via
a website discussed under section 3.6. The website is essentially setup in order to
generate evaluation results which are used for the update of the user profiles previously
mentioned.

3.2 Scrape data
To simulate a newsletter feed, a scraping of article data from different newsletter
organisations is completed to gain training data for the project. The information

17

CHAPTER 3. METHODOLOGY

needed is found on websites containing domain specific news which frequently
publishes new articles. In order to retrieve this data one needs to understand the
concept of a Document Object Model (DOM) tree which will be used for this purpose.
A DOM tree is a website’s logical structure described with tags, elements within
Hyper Text Markup Language (HTML). Inside the DOM tree, the entire website’s
content is located, as well as the article data which is to be scraped [47]. For
this purpose, two Swedish data sources will be used ”www.livsmedelifokus.se” and
”www.livsmedelsnyheter.se”. The selection mainly originates from tips by colleagues
at Elvenite combined with trivial research to see which data sources could be found
useful followed by quick analyses over how many articles the data sources publish as
well as the frequency and quality of the articles.

3.2.1 Data sources
Livsmedelifokus is essentially a network for people working with or are interested
in the food and beverage industry. They have their own newsletter which consists
of articles as the ones used for the mentioned data set. The network is headed
by representatives across the entire food and beverage chain, giving the network a
broad perspective on the topic [30]. The process of scraping was made possible
by, as earlier mentioned, inspecting each website’s DOM structure to identify key
elements to extract. As can be seen in figure 3.2.1 the data which are of relevance in
livsmedelifokus.se are the articles seen to the left, more specifically the article links are
of importance in this matter.

Figure 3.2.1: Image of livsmedelifokus.se/nyhetsarkiv/.

Once the article links have been collected, the article web page can be scraped. Seen in
figure 3.2.2 the entire article information can be seen on this page.

Here the data of importance is the title found in bold on top of the page, the publish
date found just beneath the title in a smaller greyish color and lastly the body of the
article which are all paragraphs following the publish date.

Livsmedelsnyheter on the contrary is a daily news website also within the area of food

18

CHAPTER 3. METHODOLOGY

Figure 3.2.2: An article from livsmedelifokus.se/nyhetsarkiv/.

and beverage which has its own newsletter as well as an online news feed [31]. Seen in
figure 3.2.3 data of importance is the articles found to the left in the image, the website
layout is similar to the one of livsmedelsnyheter and hence the same logic applies.

Figure 3.2.3: Image of livsmedelsnyheter.

The article links are retrieved and iterated in the same way where the layout of any
arbitrary article page is displayed in figure 3.2.4.

The data of importance on this page are the title found on the top of the page, the
publish date found between the initial paragraph and the content of the article, and
lastly the content of the article.

19

CHAPTER 3. METHODOLOGY

Figure 3.2.4: An article from livsmedelsnyheter.

3.2.2 Data pre-processing
In order to get the best results from the topic model computation, there is a need to
clean the data before using it for the model. This process includes several steps such
as removing punctuation, converting all words to lower case, removing stop words,
tokenizing texts and lemmatizing words. The general motivation for pre-processing
the data is to removewords that are considered non-informational words, making each
word within a data set as informative as possible [52]. For this project the following
steps are used for the pre-processing step.

• Removal of stop words, punctuations, and numbers

• Converting words to lower case.

• Identify and remove names of people.

• Finding the root of each word.

• Tokenize texts.

• Identify bigrams.

Removal of stop words, punctuation, and numbers

The removal of punctuation is the simple process of removing special characters such
as ”!#/(=?...” since they do not contribute to any informational context in most cases
but rather helps the reader to interpret the sentences correctly. Furthermore, numbers
are removed since yet again they mostly did not contribute to any context in this
scenario of NLP after analyzing the generated topics. All of the words are further
converted to lower case in order to be able to compare capitalized words to non-
capitalized words, specifically important during the process of stop word removal as
the specified stop words are in lower capital letters. Lastly, the stop words are removed
as it is known to not contribute to the context of documents but rather help in reading
sentences efficiently. Examples of stop words are as following: ”bara, vara, vi, ni, ta,

20

CHAPTER 3. METHODOLOGY

åtta, etc..”, as can be seen, these words are intuitively not rich with information.

Identification and removal of names

In order to remove names from a text there first needs to be some kind of algorithm to
identify and define what a name is within a text, a typical task to use for this is the NLP
task called Name Entity Recognizer (NER). The essence of a NER task is to identify all
key words or entities within a text, for example, names, places, times, company names
etc. NER iterates a text where the output is a list of words with their corresponding
entities. For this project a NER was solely used to identify names of people as this
was considered to be of negative impact for the LDAmodel to consider for distributing
topics [41].

Finding the root of words

This process is essentially performed in order to prevent conjugates of words to occur,
as for example ”running” and ”run”. The process more or less identifies the dictionary
form of a word, this is often referred to as lemmatizing. This will further improve the
LDAmodel topic distribution as removing conjugate words will reduce repeated words
to inflate a higher score during the topic computation [29].

Tokenizing

Tokenizing simply means to iterate sentences and represent the words in the shape
of an array instead of its original text format. Essentially converting a text into its
atomic elements. This way it is simpler to work with andmanipulate programmatically
[52].

Bigrams

Identifying bigrams is an optional step which is included due to its relatively good
performance. Bigrams can be described as the word suggest: a pair of words, as for
example ”Coca Cola”, if two words often occur together they should be handled as one
word as for the topic computations of the LDA model [9].

3.3 Update model
As the LDA and LSA models are similar in performance and usage, LDA is chosen
as topic model for this project due to the simple fact that LSA requires a larger
data set [20]. During the setup phase mentioned under section 3.1 the initial LDA
model is created which then is used for future iterations during the topic distribution
computations. The LDAmodel is given a corpus and a dictionary setup from a number
of articles as input, the output is then a cluster of x number of topics represented
as a statistical distribution where each document is assumed to be a mix of topic

21

CHAPTER 3. METHODOLOGY

distributions. Before using the LDA model to compute topic distributions for new
articles, the LDA model first needs to be given a dictionary encapsulating the scope
of the model’s words. Essentially the model has to be taught which words should
be included and which are of weight for the topic distributions for the articles. This
model is then saved for future use where it later can be loaded and fed a new corpus
representing a smaller amount of articles to be given topic distributions. To the
left in figure 3.3.1 one can see the principal component representation of clustered
topics which is computed by the LDA model. Principal component is used when
visualizing data and helps presenting data sets of higher dimensions by reducing them
to lower dimensions easier to comprehend. As for example, seen in figure 3.3.1 a two
dimensional space is presented instead of the original dimension of number of topics-
space [19]. Clusters that are closer together in the principal component presentation
are seemed to be of closer relevance to one another. The numbers simply represents
their unique id for this presentation and has nothing to do with any technical details.
On the right side of the figure the top 30 most frequent words inside of the model’s
initial corpus are displayed along with the words per se and their frequency seen
on the x-axis. After the model has distributed topics over each given article, the

Figure 3.3.1: Visualization of the inferred topics from the LDA model.

words encapsulating the articles are added to the LDA model to be included in future
computations. In this way the LDA model continuously grows and become more
complex as more articles are given topic distributions, which makes the model more
sustainable over time.

3.3.1 Enhancing the topics
Asmentioned under chapter 2 it is difficult to evaluate the output of an LDAmodel. For
this purpose an iteration of coherence score optimization is performed in an attempt to
make the topics easier to interpret andmore logical. This optimization ismade through

22

CHAPTER 3. METHODOLOGY

an iteration of the input variable representing the number of topics. By iterating the
amount of topics input to the model a coherence score is calculated and saved for each
respective iteration in order to compare coherence score along with the input number
of topics. The coherence score simply projects how well the top contributing words
within a topic relate to one another, which enforces the optimal consistency of topics.
Since time is of the essence, together with the fact that the optimal number of topics is
difficult to evaluate in real-time, the extent of the decisionmade for the chosen number
of topics is not further examined in this thesis.

3.4 Profile articles
Once the LDA model has been created and saved, it is then used to give each article
a topic distribution. An example of this distribution is shown in listing 3.1 where the
numbers represent the distributions in a scale between one and zero, if multiplied by
100 it is equivalent to the percentage distribution for each topic. The listing displays a
computation of 30 topics.

1 [0.014725511, 0.012386235, 0.020735823, 0.029861271, 0.017775781,
0.01884111, 0.06323811, 0.04970541, 0.014441768, 0.01892052,
0.02154401, 0.026241202, 0.0153603535, 0.036928583, 0.22159831,
0.026318142, 0.015856918, 0.057931796, 0.032639958, 0.012127681,
0.059777327, 0.012750805, 0.06431568, 0.018088603, 0.011657009,
0.012662709, 0.011657009, 0.03770184, 0.03245206, 0.011758414]

Listing 3.1: Example of a computation of 30 topics distributed over an article.

Furthermore, each topic consists of a distribution of words where the top four most
relevant words for the topics displayed in listing 3.1 are display in listing 3.2, for this
example only ten topic word distributions are displayed.

1 0.382*"projekt" + 0.200*"bidra" + 0.194*"stärka" + 0.104*"styrelse"
2 0.442*"information" + 0.430*"exempel" + 0.036*"rapport" + 0.006*"europeisk"
3 0.152*"värld" + 0.151*"bygga" + 0.151*"utveckla" + 0.149*"teknik"
4 0.397*"tid" + 0.395*"odla" + 0.130*"direkt" + 0.014*"handla"
5 0.315*"effekt" + 0.315*"mjölk" + 0.162*"människa" + 0.160*"kalla"
6 0.357*"möjlighet" + 0.182*"genomföra" + 0.178*"förutsättning" + 0.178*"

samhälle"
7 0.140*"använda" + 0.102*"minska" + 0.094*"jordbruk" + 0.075*"restprodukt"
8 0.622*"öka" + 0.151*"svår" + 0.151*"följd" + 0.011*"hög"
9 0.245*"butik" + 0.213*"märka" + 0.213*"matbutik" + 0.201*"ladda"
10 0.227*"livsmedel" + 0.225*"pris" + 0.179*"forskare" + 0.090*"undersöka"

Listing 3.2: Example of article topic word distributions.

Each line represents a topic where the number displayed next to a word is the
percentual contribution of the word, with the same logic as the topic distribution.
Further, the topic distribution represents the article profile which per se is used to
update the user profile in a later step. The user profile topic distribution is compared to
each article topic distribution where the difference combined with the user evaluation
relevance answer is the final factor of how to adjust the user profile.

23

CHAPTER 3. METHODOLOGY

3.5 Summarize texts
By summarizing a text or a set of documents one can easily conclude important key
points inside the texts by having less words and sentences in total, making texts more
efficient to read. In this way the reader can save time by easily filtering out what
is important or relevant and what is not. The process of text summarization can
essentially be done through either an extractive or abstractive summarization. The
basic difference between the two is the way to extract important content. For this
project the chosen extraction method is extractive summarization as it is considered
easier to use and overall more consistent. Bymaking use of simple TF-IDF scoring and
scoring sentences according to the relevance score of the words they consist of, the top
scoring sentences is chosen for the final summary.

3.6 Present to user
The evaluation for the entire project is made possible by setting up a website where
users participating in the evaluation process can evaluate articles for each iteration.
On this website the scraped articles for each iteration are presented along with their
header and body. Users are then to choose a relevance score, as for the context of the
article, a length score as to the length of the body, and an understandability scorewhich
essentially score the readability of the texts. All of these scores scale between one to five.
An example of an article presentation is displayed in figure 3.6.1. Before the articles

Figure 3.6.1: Example of article presentation along with questions to answer from the
website.

are presented, an algorithm predicts whether any given article will be of interest to the
users based on their respective user profile compared to the articles’ user profiles. The
prediction of relevant answers for any user is computed through retrieving all articles
for the respective iteration along with their topic profiles. Then collecting the current

24

CHAPTER 3. METHODOLOGY

user profile computed from the previous iteration. The two profiles make up a one-
dimensional array of distributions among the same set of topics in the same order,
therefore these two arrays can be compared in similarity in an attempt to find which
article will be relevant to the user in question. Through the use of angular distance
one can compute angular similarities between profiles from which a similarity score
is given showing the similarity between an article profile and a user profile. Then a
threshold is set for this similarity scorewhichwill act as the difference between relevant
and non-relevant articles. This threshold is altered according to the performance of
different thresholds. From these relevancy predictions an accuracy measurement can
be computed for each iteration which represents how well the algorithm predicted the
relevance for each user. In this way it is possible to analyze the feedback of users
by looking at the prediction accuracy value. The accuracy is a measurement between
number of correctly predicted evaluation answers versus the total amount of answered
evaluations, which results in a percentage. Each iteration should theoretically enhance
the user profiles in order to increase the user relevancy prediction accuracy for each
user and therefore eventually lead to a higher overall prediction score.

Furthermore, a basic database structure along side with a simple front end will be
constructed in order for the project’s evaluation to take place. In order to retrieve
answers from the evaluation, a data extraction fromaUniformResource Locator (URL)
is setup where if entered, downloads all user evaluation answers for any given iteration.
In order for users to identify themselves on the website they are assigned a unique id
which will act as their personal login for the evaluation process.

3.7 Update user profile
As earliermentioned, computing the user profile ismade possible by first exporting the
answers from any iteration of the evaluation, then retrieving the latest updated user
profiles in order to update them based on the downloaded answers. The difference
between each evaluated article’s topic distribution and the current user profiles make
up the magnitude of alteration where all differences are first summed up to later
be added to an updated version of the user profiles. This way the user profiles
are continuously updated as the evaluation process progresses and will theoretically
tilt users toward more and more relevant content, or as for this project make the
prediction algorithm predict which articles are relevant with higher accuracy. The
user profile computation include processes such as normalizing distribution values,
weighting article answers and reducing importance of each evaluated article the more
articles are evaluated. In order to visualize the process, the sketch presented in figure
3.7.1 simplifies the process in a more educational manner. The figure represents the
initial placement of a user profile in a theoretical two dimensional space of topics
represented as C1 (topic 1) and C2 (topic 2). In practice the dimension is of k number
of topics closer to 30, though for illustration purposes two topics are sufficient. This
placement represents the initial user profile creation based on the initial batch of
articles mentioned under section 3.1. The red crosses symbolize article profiles in this

25

CHAPTER 3. METHODOLOGY

two dimensional room where the blue circle symbolize a user profile in the same room.
Figure 3.7.1 illustrates the user profile initially placed in an arbitrary place in the room.
After the first iteration is run, the user’s answers are collected whereas each article

Figure 3.7.1: Visualization of user profile and article profiles in a two dimensional
room.

profile difference to the user profile is calculated. A weighting and a scaling gradient
is added to the difference based on the user relevance score and number of articles
evaluated. This difference is then added to the user profile, which will shift the profile
in the space towards a spot which better represents the user’s interests as seen in figure
3.7.2. This way, the user’s interest is continuously shifted towards its real position

Figure 3.7.2: Visualization of updating the user profile in a two dimensional room.

inside of the space of topics where a combination of article topic distributions are of
theoretical interest for the user.

3.7.1 Normalizing distribution values
The articles which are evaluated has been given topic distributions within the scale of
100% where if one sums all of the percentiles of the topic distributions up within an

26

CHAPTER 3. METHODOLOGY

article topic distribution they will all add up to 100. Because of this structure, it will
also be important to normalize the values of the user profile distributions in order to
match the same scalar of values. This is necessary as the user profile will directly be
compared to each article’s individual topic distribution.

3.7.2 Answer weighting
Due to the psychological nature of human evaluations of different articles there has to
be compensation to different aspects of evaluating articles. Firstly, extreme evaluation
scores (as for this project, one and five) should be treated with higher impact as they
should represent a more confident choice by the user. A five most likely means that
the user finds the article highly interesting and should be of a greater weight than
compared to a four. Secondly, the more articles a user evaluates, the lower the impact
will be, since the longer an evaluation process goes on, the more accurate the user
profile should become and thus should not be in need of much alteration.

3.7.3 Reducing importance progressively
As mentioned, the further into the evaluation process a user goes, the more defined
the user profile should be. Taking this into regard there has to be some kind of
implementation compensating the amount of time spent evaluating, or the amount
of updates made for each user profile. This is measured through counting the amount
of evaluated articles and applying a gradient accordingly, lowering the impact of each
respective article past a certain threshold. This gradient is then of increasing impact
the further into the evaluation process a user goes.

27

Chapter 4

Implementation

Under this section the actual implementation of the methodology introduced under
chapter 3 will be presented. Following the same structure of the presented overview
from the beginning of chapter 3. Here detailed examples and explanations are present
showing how the implementation was carried out.

4.1 Running the pipeline
A script is run for each iteration which per se runs the four separate iteration
scripts. The iteration number is first programmatically calculated by counting the past
iterations’ article data stored in a data folder, once complete the first script is executed
including the calculated iteration number. The scripts are written in Python and are
named as the following along with their functionality.

1. 1_scrape_iteration.py: Scrape data.

2. 2_compute_label_distributions.py: Profile articles & update model.

3. 3_summarize_texts.py: Summarize texts.

4. 4_predict_answers.py: Predict answers for the evaluation.

In comparison to figure 3.1.1 found in section 3.1 these scripts cover the entire pipeline
displayed except for two activities which are ”present to user” and ”update user profile”.
The ”present to user” activity is manually run through importing the scraped articles
collected from the first script shown in the enumeration to the website database. The
”update user profile” activity is automatically run every time a user submits their
evaluation answers and is handled from the website described under section 4.8.

4.2 Setup
As previously mentioned under section 3.1 the first iteration involved setting up
an initial batch of articles in an attempt to boost the initial user profile creation.

28

CHAPTER 4. IMPLEMENTATION

These articles need to have their topic distributions of minimal similarity, optimally
representing one topic each in order to help the user determine which topics are
relevant to themandwhich are not, further described under section 3.1. The creation of
the initial batch of articles ismadepossible by calculating an angular similarity between
all article profiles collected from the initial scraping of the larger data set. The angular
similarity is based on a cosine similarity which first needs to be calculated before the
angular similarity. The cosine similarity represents, quoted from Selva Prabhakaran’s
paper on cosine similarity, ”Mathematically, Cosine similarity measures the cosine
of the angle between two vectors projected in a multi-dimensional space.”[42]. A
vector in this example is equivalent to a complete article profile. In cosine similarity,
smaller angles have similar cosines, therefore further calculating the angular similarity
on top of the cosine similarity will help in finding more accurate distances. The
minimum angular similarity represent the articles with themaximal difference in topic
distributions in comparison to one another. Listing 4.1 shows an example of an angular
similarity calculation made between an article profile and a user profile.

1 cosine_distance = spatial.distance.cosine(article_dist , profile_dist)
2 cos_sim = 1 - cosine_distance
3 angular_distance = (2 * np.arccos(cos_sim)) / math.pi
4 angular_similarity = 1 - angular_distance

Listing 4.1: Example of angular similarity computation

Bymultiplying the arccosine of the cosine similarity divided by pi, the angular distance
is retrieved. Then deducting the angular distance from one represents the distance
in terms of similarity between zero to one where one represents 100% similarity. As
for the initial batch of articles creation, first an array mapping the distances between
all combination of data points inside the data set is created by constructing a Python
Data Frame (DF) which from the official Python documentation is described as ”Two-
dimensional, size-mutable, potentially heterogeneous tabular data.”[43]. The DF is
created including the cells from, to and distance. The cell from contains an article id
which represents the article profile where the distance is calculated fromwhere the cell
to is an article id representing the destination article profile which the former article
profile is compared to. Lastly, the distance cell simply is the angular distance between
the two article profiles. This data is then saved to further be iterated upon in order to
find maximal distances between a set of num_articles size which is the initial article
batch. In order to find the num_articles set of articles an arbitrary starting point inside
the space of articles computed from the previous mentioned articles DF is chosen at
random. The first node (article) with the largest angular distance to the initial node
is selected as the first connection and added to the final article batch array as seen in
listing 4.2 line 22.

1 num_articles = 15 - 2 # Remove initial articles
2 for i in range(0, num_articles):
3 other_points = []
4

5 # Add all points connecting node and distance for each point added to
final articles

29

CHAPTER 4. IMPLEMENTATION

6 for point in final_articles.copy():
7 all_points = df_points[df_points['from'] == point]
8 other_points.append([(t, d) for t, d in zip(all_points["to"],

all_points["dist"])])
9

10 # Flatten list of tuples
11 all_values = [val for x in list(zip(*other_points)) for val in x]
12

13

14 # Add up all distances grouped on ids
15 summed_values = [(key, sum(num for _, num in value)) for key, value in

itertools.groupby(all_values , lambda x: x[0])]
16

17 # Retrieve max distance from all summaries and get id
18 max_dist_point = max(summed_values , key=itemgetter(1))[0]
19 value = max(summed_values , key=itemgetter(1))[1]
20

21 # Add id to final article array
22 final_articles.append(max_dist_point)
23 test_values.append(value)

Listing 4.2: Selecting articles for initial batch.

This process is then repeated for num_articles amount of iterations. Each iteration
step from selecting articles is further explained as the following:

1. For each node currently in the final article array: Add all possible node
connections from current node to a temporary collective array, line 6-11.

2. Summarize all distances based on node id, line 15.

3. Retrieve the maximum distance from the summarized distances, line 18-19.

4. Add the retrieved maximum distance node id and add it to the final article batch
array, line 22.

5. Repeat steps 1-4 for num_articles amount of times.

In this way articles with the largest summarized angular distance to a given set of nodes
is iteratively selected until a batch of size equivalent to num_articles is selected and
saved into a final initial article batch file which will be used to populate the evaluation
website database as the first articles to evaluate.

4.3 Scrape data
In order to limit the amount of articles scraped per iteration a saved date from the
latest scraped iteration is automatically compared to each article’s publish date. For
each iteration run the date of which the scraping was completed is appended to a
text file. The latest saved date to said file is fetched and used as comparison for the
upcoming scraping session. During the setup iteration where the data used for the

30

CHAPTER 4. IMPLEMENTATION

setup of the LDA model is gathered, this step is excluded. The saved date is used later
in this process, if the iteration is not a setup iteration. Through the use of a Python
package called Selenium a scraper could be implemented in order to extract articles
from two different news sources called livsmedelifokus and livsmedelsnyheter [46].
Initially a web driver is setup using Selenium’s web driver instance to simulate a web
session where the first news source livsmedelsnyheter’s website is opened under the
URL https://www.livsmedelsnyheter.se/. As mentioned under section 3.2 the data is
retrieved through targeting specific elements in the website’s DOM tree. Selenium
comes with several functionalities helping the user programmatically navigate a
website by the use of DOM element selections. Initially before any article data can
be loaded, the web session simulation first has to programmatically close all eventual
popups and cookie banners initially encountered when entering the website in order
to start navigating the main contents of the website. When entering livsmedelsnyheter
one is presented with a popup followed by a cookie banner. The closing of these is
made possible by the use of the chained web driver methods find_element(selector)
followed by click() where the popup close button selector is given as input to
the find_element() method, which here is the class sgpb-popup-close-button-6.
As for the cookie banner close button the ID cn-accept-cookie is fed into the
find_element() method. The data is now ready to be retrieved, this wraps up the
process for the iterations, for the initial setup phase of the LDA model all available
articles needs to be scraped. This is done through an iteration of continuously
programmatically executing a click action on the ”load more” button found on the
bottom of the page in order to load all of the available articles to the website.

1 <div class="gdlr-core-load-more-wrap gdlr-core-js gdlr-core-center-align
gdlr-core-item-pdlr" data-ajax="gdlr_core_post_ajax" data-settings="{
TEMPORARILY -HIDDEN}" data-target="gdlr-core-blog-item-holder" data-
target-action="append">

2 <a href="#" class="gdlr-core-load-more gdlr-core-button-color" data-
ajax-name="paged" data-ajax-value="2">Load More

3 </div>

Listing 4.3: HTML code of load more button from livsmedelsnyheter.

The ”load more” button is selected in the DOM tree using the web driver and targeting
the data property data-ajax-name='paged', the DOM tree element can be seen in
listing 4.3. After a ”load more” button click action has been executed, the process
is put to sleep for five seconds to make sure the load animations has finished. A
fail-safe functionality is implemented which waits until all of the animation classes
gdlr-core-animate are invisible in the DOM tree, which means that the articles are
all loaded into the website, before trying to press the ”load more” button once more.
This fail-safe is implemented by the use of Selenium’s WebDriverWait functionality
which takes the web driver and a command to wait for as input. The command given as
input here is a Selenium support condition called invisibility_of_element_located
which does what the name suggests: waits until the given element is invisible, whereas
gdlr-core-animate is given as input. However, this process is not included when
scraping articles for an iteration. After either the code failed to perform another ”load

31

CHAPTER 4. IMPLEMENTATION

more” button press during the initializing phase, or if it is a scraping iteration, the
current state of the DOM tree is downloaded using an HTML parser called Beautiful
Soup (BS) which is used to iterate the DOM tree programmatically and retrieve
information, similar to the Selenium web driver logic. Read more about BS from
their documentation [5]. All articles in the DOM tree are now to be selected and
iterated to extract a URL to access more extensive information about the article, this is
done by targeting the id adplccount with the scraper. Livsmedelsnyheter’s condensed
article representation can be seen in figure 4.3.1. As seen in listing 4.4 a DOM tree is

Figure 4.3.1: Condensed article from Livsmedelsnyheter.

represented by HTML code whereas the indentation represents the different levels of
the tree.

1 <div id="adplccount" class="gdlr-core-item-list gdlr-core-blog-medium
clearfix gdlr-core-blog-left-thumbnail gdlr-core-item-pdlr">

2 <div class="gdlr-core-blog-thumbnail -wrap clearfix">
3 <div class="gdlr-core-blog-thumbnail gdlr-core-media-image gdlr-

core-opacity-on-hover gdlr-core-zoom-on-hover">
4 <a href="https://www.livsmedelsnyheter.se/coop-i-test-for-att-

fa-kora-langre-och-tyngre-godstag/">
5 <img src="https://www.livsmedelsnyheter.se/wp-content/

uploads/2022/05/̊cooptag.jpg" alt="" width="1024" height="778">
6
7 </div>
8 </div>
9 <div class="gdlr-core-blog-medium-content-wrapper clearfix">
10 <h3 class="gdlr-core-blog-title gdlr-core-skin-title" style="font-

size: 26px ;font-weight: 600 ;">
11 <a href="https://www.livsmedelsnyheter.se/coop-i-test-for-att-

fa-kora-langre-och-tyngre-godstag/">Coop i test för att få köra längre
och tyngre godståg

12 </h3>
13 <div class="gdlr-core-blog-info-wrapper gdlr-core-skin-divider">
14 <span class="gdlr-core-blog-info gdlr-core-blog-info-font gdlr-

core-skin-caption gdlr-core-blog-info-date">
15 <i class="icon_clock_alt"></i>

16 13 maj, 2022
17
18 </div>

32

CHAPTER 4. IMPLEMENTATION

19 <div class="gdlr-core-blog-content">
20 Coop har provkört ett 838 meter långt godståg för att utreda om

längre tåg kan köras i reguljär godstrafik , så att mer gods kan
flyttas från väg till järnväg.

21 <div class="clear"></div>
22 </div>
23 </div>
24 </div>

Listing 4.4: DOM tree representation a condensed article from livsmedelsnyheter.

Seen in listing 4.4 the header is selected by targeting the classes gdlr-core-blog-title
and gdlr-core-skin-title using the BS method find(selector), then selecting the
anchor tag with its respective hyperlink attribute enclosed by the selected target which
contains the URL for the extended data of the article. Further extensive article data is
then retrieved by making use of a basic Hypertext Transfer Protocol (HTTP) method
called GET, which simply fetches the given URL and as a response returns the DOM
tree, however as opposed to a Selenium instance it is not programmatically interactive.
In figure 3.2.4 one can see an example of the extensive article information page. From
the returnedDOM tree a newBS instance, now of the extensive article informationweb
page, is initialized and further iterated. The following elements are targeted using BS’s
find(selector) method along with their respective extracted contents.

• Title: Targeted class infinite-single-article-title.

• Publish date: Targeted class date-article.

• Full body: Targeted class infinite-single-article-content and then all
paragraph elements encapsulated by the target class.

The DOM tree representing the title, date and body is found in listing 4.5 on line 5,6
and 9 respectively.

1 <div class="infinite -single-article">
2 {IMAGE}
3 <header class="infinite -single-article-head clearfix">
4 <div class="infinite -single-article-head-right">
5 <h1 class="infinite -single-article-title">Coop i test för att

få köra längre och tyngre godståg</h1>
6 13 maj, 2022
7 </div>
8 </header>
9 <div class="infinite -single-article-content">
10 <p>{ARTICLE TEXT}</p>
11 <p>{ARTICLE TEXT}</p>
12 {MORE PARAGRAPHS..}
13 </div>
14 </div>

Listing 4.5: DOM tree representation of an extensive article from livsmedelsnyheter.

33

CHAPTER 4. IMPLEMENTATION

The articles with a body length lower than 200 characters are skipped as they are
considered to be of insufficient data for the project. As for each scraping for the
iterations, thus not the setup iteration, the article publish date is directly compared
to the date fetched mentioned in the beginning of this section. If the date is within the
correct scope and the body length is of enough length, the article is added to a final
Comma-Separated Values (CSV) data file. Once the iteration of livsmedelsnyheter is
completed and all data is saved, the iteration of the next news source livsmedelifokus
is started. The process is similar to the one recently described except for the
selected DOM elements. Instead of repeating the description of the process, a simple
presentation of the elements along with their targeted DOM selector is presented.

• Load more button: Target class fusion-load-more-button.

• Condensed articles: Target classes fusion-post-medium, post, and
status-publish.

• Article link: Target classes entry-title, fusion-post-title and then retrieve
the anchor tag encapsulated by the target classes.

• Title: Target class title-heading-center.

• Publish date: Target class post-date and small.

• Full body: Target classes fusion-text, fusion-text-2, caslon and then select
all the paragraph tags encapsulated by the target classes.

These articles are appended to the sameCSV files as the ones of livsmedelsnyheter. The
results varied between4-15 articles per iteration depending on the amount of published
articles between the given dates from each news source.

4.3.1 Data pre-processing
As seen under section 3.2.2 there are a number of steps implemented for cleaning the
data. The collected data from the previous scraping process is first loaded from the
data file and stored inside of a Python DF.

Removal of punctuations and numbers

The removal of punctuations is done by iterating the data set and filtering out
punctuations using regular expressions. Regular expressions are reassembling rules
for specific symbols and when applied to texts will target specific pieces of the text.
In order to apply the regular expression to each word, all of the words inside of an
article has to be iterated. This is made possible by Python’s built-in method map()
which applied to a DF iterates each row one by one where a regular expression can be
applied. The regular expression used to filter punctuations for this project is [^\w]
which translates to ”match any character that is not an alphanumeric or underscore
character”. Removing numbers is done in a similar way where the regular expression
is written as [0-9]+where the translation is ”match one ormore character in the range

34

CHAPTER 4. IMPLEMENTATION

0-9”. The results after applying the above regular expressions are strings stripped off
of punctuations and numbers.

Name entity recognizer

The NER used for this task is a pre-trained Swedish cased BERT based NER
which can be downloaded and read more about on Hugging Face’s website [12].
The implementation of the model is made possible by a Python module named
transformers which allows for the use of general Natural Language Understanding
(NLU) and Natural Language Generation (NLG) architectures where the method
pipeline() is used to load the NER module. Each article text is run through the
NER model where the output is collected in a two-dimensional array which is going
to be handled later. Unfortunately, the proposed NER model can only handle texts
of sizes less than or equal to 500 characters due to unknown reasons which were not
explored for this thesis, and therefore only the first 500 characters of each text can be
analyzed for name recognition. This does not pose a threat to the performance since
this only improves the overall performance and does not effect any output negatively
if not completely applied. The resulting output from the NER module is a tokenized
version of each article along side with computed entities for each word. Each word is
then iterated where a filter ignores all entities not matching the entity called PERwhich
stands for Person in this context. The NER module also applies an accuracy as to how
confident the entity matching is to the given word, words that has at least a 95% entity
confidence and has the PER entity are added to an array of all unique names found for
all texts. This array of retrieved names will later be used during the lemmatisation
process.

Stop words

First, all words are transformed to lower case by using Python’s built in method called
lower()which is applied to each text. After the lower case transformation is completed,
the removal of stop words is executed. The regular expression applied for this filtering
is the following \b(all|bara|borta|ge|ha...)\b where the list of stop words simply
is a string with the words separated by a vertical bar character |, which means ”or”.
The full list of stop words are retrieved from a text file originally written by Peter M.
Dahlgren[8] and can be found under appendix A.

Lemmatizing

As for the implementation of a lemmatizer, a module called Stanza is imported. Stanza
offers a multilingual default pipeline which is setup to use a Swedish configuration in
order to apply a lemmatizer over Swedish texts [49]. The pipeline’s default processors
is set to be a tokenizer, part of speech tagger, lemmatizer and a depparser. This project
is only going to make use of the tokenizer and the lemmatizer but since the other two
processors do not interfere with the ones to be used, they are left as they are. Once the
Stanza pipeline is initiated it is applied to the article texts. Each article is iterated and

35

CHAPTER 4. IMPLEMENTATION

run through the pipeline, which in term returns a tokenized and lemmatized format
of the text. Each word is then matched with the names from the NER computation
where, as earlier mentioned under section 4.3.1, if matching any name from the array,
the word is removed. Otherwise, the lemmatized version of the word is appended to
the final output of the lemmatized article text.

Bigrams

Bigrams are constructed from analyzing all of the article bodies by the use of a Gensim
model called Phrases which identifies common sentences throughout a corpus [15].
The model setup can be seen in listing 4.6.

1 Phrases(df_copy['parsed_content'], min_count=5, threshold=10)

Listing 4.6: Python code of the setup of a Phrases model.

df_copy represents the corpus, min_count is the minimum word count to include as a
common sentence and lastly the threshold is a simple arbitrary scoring number which
is not put much thought into. From applying this model, bigrams are identified and
added to the final version of the processed data which completes the pre-processing
steps of the article data.

4.4 Update model
The data set has now been processed and is ready to be handed to an LDA model to
compute its topic distributions. In order to create the initial LDA model, there first
has to be a dictionary which will be put into the LDA model. A dictionary is created
based on all of the article texts from the processed data set mentioned under section
4.3.1. By the use of amodule called Gensimwhich in turn has a class called Dictionary
the dictionary could easily be initialized as can be seen in listing 4.7

1 dict = Dictionary(df['content'])

Listing 4.7: Initialization of a Gensim dictionary.

df['content'] is the DF of the article data where the content is a cell in the DF
representing the article bodies. The dictionary is then filtered to remove extreme
wordswherewords frequently occurring or not occurring frequent enough are removed
to further improve the quality of the data. This is done by the use of a Dictionary
class function called filter_extremes() which automatically handles the process
of filtering out extreme words. Once filtered, the dictionary is saved for future
iteration computation in a text file. After the dictionary is created a corpus based on
the dictionary is constructed using another Gensim Dictionary class function called
doc2bow() which converts the input into a bag-of-words format. Lastly, both the
corpus and dictionary is added as input to an LDAmodel also provided by the Gensim
module which can be seen in listing 4.8

36

CHAPTER 4. IMPLEMENTATION

1 lda_model = LdaModel(
2 corpus = corpus,
3 id2word = dict,
4 minimum_probability = 0.0,
5 num_topics = 30,
6 random_state = 100,
7 alpha = 50/num_topics ,
8 eta = 200/len(dict),
9 chunksize = 500,
10 passes = 100,
11 per_word_topics=True
12)

Listing 4.8: Initialization of a Gensim LDA model.

The first two parameters represent the corpus respectively the dictionary which is the
scraped data. minimum_probability represent the minimum probability to include
when generating topic distributions. If this number is not set to zero, the resulting
amount of computed topics may be less than of the maximal amount of topics possible
to obtain, which further causes inconsistencies. random_state is set in order to be
able to reproduce the same computation over several iterations. The alpha and eta
values are both important to find a good balance between a low and high value of each
respective parameter. Hence, the following computation of 50/{number of topics} is
suggested by Thomas L. Griffiths and Mark Steyvers in their study regarding LDA.
However, the eta value is based on an experimental number found to be fit [16].
The chunksize and passes refers to the iterations of the LDA model computations,
how big chunks of the data set should be tested into how many passes. Lastly, the
per_word_topic refers to the output type of the data where the set value simply is
easier to work with for this project. After the LDA model has processed the given
input variables, included the dictionary data and corpus data, the model is saved for
further use. Through each iteration the previously constructed LDA model is loaded
as well as the saved dictionary which forms a basis for the topic distributions. Once
the topic distribution has been computed for the articles, the LDA model is updated
to include the new article contents and then once again gets saved. This way the
model is continuously updated through every iteration. The update is made possible
by Gensim’s default LDA model method update(corpus) which simply is the corpus
data scraped for the current iteration.

4.5 Profile articles
All articles from the processed article data set are given their respective topic
distributions taken from the computation of the constructed LDA model from section
4.4. Article profiles are created based on the LDAmodel computationwhere the output
from the model is topic distributions for all articles, seen in listing 4.9.

1 for i in df_copy.index:

37

CHAPTER 4. IMPLEMENTATION

2 df_copy.at[i, 'label_dist'] = str([j[1] for j in lda_model[new_corpus][
i][0]])

Listing 4.9: Python code of creating article profiles using LDA.

The code loops all articles inside of the DF named df_copy and assigns the computed
topic distributions computed by the LDA model to a new column called label_dist
inside of the DF.

4.6 Update user profile
The first action to take when calculating a user profile is to either fetch an existing
profile or, if no existing profile is found, create a new standardized profile. The
standardized profile is created by filling an array with a percentage reflecting an equal
distribution of every topic as seen in listing 4.10.

1 if (! isset($user_profile))
2 $user_profile = array_fill(0, $num_topics , (1/$num_topics));
3 else
4 $user_profile = json_decode($user_profile ->profile);

Listing 4.10: Python code of the creation of a user profile.

After the user profile is fetched, each article evaluated by the user in question is iterated
in order to weigh each respective article distribution according to the user’s evaluation
data. All evaluations are first iterated before any adjustment is made to the user profile
in order to ignore the order of which the articles are iterated through. The weighting of
each article topic distribution is done through iterating the articles topic distribution
values one by one in order to simply subtract the user profile topic distribution value
which corresponds to the current value with the current value, see listing 4.11 line
5.

1 $total_diff = [];
2 foreach($article_dist as $j => $single_topic_dist) {
3

4 // Get abs. difference between profiles
5 $diff = $single_topic_dist - $user_profile[$j];
6 $total_diff[] = $diff;
7

8 // Decrease impact of articles the more you answer
9 // Roughly every other iteration (30 articles)
10 $gradient = $num_answers >= 30 ? (1 / ($num_answers/$num_topics)) : 1;
11

12 // Add weighted difference to user profile. This weight decides the
impact of a single article.

13 $scale = [-0.75, -0.25, 0, 0.25, 0.75];
14

15 // Add weighted difference (Is deducted if negative)
16 $sum_weighted_diff[$j] += $diff * $scale[$article->pivot->relevance -

1] * $gradient;

38

CHAPTER 4. IMPLEMENTATION

17 }

Listing 4.11: PHP code of the iteration of article topic distribution.

A gradient is then calculated based on the amount of articles evaluated in order to
make sure that the further the user progresses through the evaluation process, the
smaller steps the user profile will compute for each iteration of articles. The gradient
is programmed to apply when the total number of evaluations for a specific user are
above 30. The final difference then gets decrementally lower the more evaluations are
completed, see listing 4.11 line 10. Furthermore, the weighting factor is one value of
a set between -0.75, -0.25, 0, 0.25 and 0.75 and depends on the user relevance score
as for the evaluation, the higher the relevance the larger the value. The reason behind
the non-linear scaling is that of the extreme answers of one and five are considered
to be more reliant than of those being closer to the middle of the scale where the user
is considered to be more uncertain of the answer. Thus technical implementation of
the total difference with applied gradient and weightage comes down to line 16 seen
in listing 4.11. This line translates to: The difference is calculated by multiplying the
above mentioned scaling of the answer with the original difference and the calculated
gradient. After all of the differences has been calculated for every article topic
distribution and summarized to a final value, the values has to be normalized in order
to properly fit the user profile. Firstly, the values are scaled down to be values between
one and zero by iterating each topic value and perform the following computation seen
in listing 4.12 line 2.

1 $max = max($user_profile);
2 $min = min($user_profile);
3 foreach($user_profile as $j => $val) {
4 $user_profile[$j] = ($val - $min) / ($max - $min);
5 }

Listing 4.12: PHP code of normalizing a user profile topic distribution.

The code in listing 4.12 translates to: adjust the current topic distribution value to be
the same value deducting the lowest topic value found, then dividing by the maximum
topic value found deducted by the minimum topic value found. The values are now
scaled down to be values between one and zero, though they do not summarize to be a
total of 100%, this is done through a new computation found in listing 4.13.

1 $sum = array_sum($user_profile);
2 foreach($user_profile as $j => $val) {
3 $user_profile[$j] = $val / $sum;
4 }

Listing 4.13: PHP code of adjusting profile values up to a total of 100%.

The total summarized value of the current user profile is calculated, then each value is
iterated and adjusted to be a result of the division between the current value and the
total summarized value. The effect of this computation is all of the values adding up to
a maximum of one or in other words, all topics percentiles adding up to 100%. Lastly,
the updated user profile is saved and used for the coming iteration.

39

CHAPTER 4. IMPLEMENTATION

4.7 Summarize texts
Once the data is collected and processed, the next step is to summarize the
texts. The summarization is setup as an extractive summarizer using text tokenizer
functions imported from a Natural Language Toolkit (NLTK) tokenizer module called
word_tokenize() and sent_tokenize() [37]. A word count computation is performed
by manually counting the word frequencies from one article at a time and appending
the count to an arraywhich essentially represents the articles in a bag-of-words format,
see listing 4.14.

1 words = word_tokenize(df_copy.loc[row, 'content'], language="swedish")
2 freqTable = dict()
3 for word in words:
4 word = word.lower()
5 if word in stopwords:
6 continue
7

8 if word in freqTable:
9 freqTable[word] += 1
10 else:
11 freqTable[word] = 1

Listing 4.14: Python code of calculating word frequency used for text summarization.

The sentence tokenizer is further executed in order to keep track of which sentence
contain which words, in addition to the previous word tokenizer where essentially
the sentence structure is lost. The sentences collected from the sentence tokenizer
are scored based on the sentence word frequencies calculated in listing 4.14, the
more frequent the words inside a sentence are, the higher the score for the sentence.
In listing 4.15 one can see the computation of the sentence scoring using the word
frequencies as a basis.

1 sentences = sent_tokenize(df_copy.loc[row, 'content'], language="swedish")
2 sentenceValue = dict()
3 for sentence in sentences:
4 for word, freq in freqTable.items():
5 if word in sentence.lower():
6 if sentence in sentenceValue:
7 sentenceValue[sentence] += freq
8 else:
9 sentenceValue[sentence] = freq

Listing 4.15: Python code of calculating sentence scores used for text summarization.

Since only one article is iterated at a time, the word frequency and sentence scoring
will be based on the article’s scope of words and contextual meaning and thus provide
a content rich summary for each individual article. Lastly, all of the scored sentences
in an article are compared to a given threshold which is the basis for determining if a
sentence is included in the final summary seen in listing 4.16.

1 sumValues = 0

40

CHAPTER 4. IMPLEMENTATION

2 for sentence in sentenceValue:
3 sumValues += sentenceValue[sentence]
4

5 average = int(sumValues / len(sentenceValue))
6 summary = ''
7 tmp_sentence_score_threshold = sentence_score_threshold
8 while summary == '':
9 for sentence in sentences:
10 if (sentence in sentenceValue) and (sentenceValue[sentence] > (

tmp_sentence_score_threshold * average)):
11 summary += " " + sentence
12

13 tmp_sentence_score_threshold -= 0.05 # Lower with 0.05 because we want
longer summaries

Listing 4.16: Python code of the computation of a sentence score threshold.

Line 1-3 in listing 4.16 calculates all of the sentence scores and summarize them inorder
to find the average sentence score, found on line 5, which further is used for comparing
to the final threshold. Line 8-13 is the iteration where the sentence is decided if it is
going to be added or not, the original logic is to add a sentence if the sentence value is
above the average value multiplied by a predetermined threshold value. The threshold
value is set to be 1.2 which roughly translates to a score 20% higher than the average
value. A fail-safe loop wraps the entire iteration checking if no sentence in the article is
above the threshold. Then the threshold is decrementally lowered by 0.05 until at least
one sentence is added. The threshold is then reset for the next summary computation,
and so it continues. Each article text summary is then saved to the same article data
set in a new column called sum_content.

4.8 Present to user
The construction of the evaluation website is made possible by the use of a PHP
platform called Laravel [22]. The website is hosted using Laravel Forge[26] which
takes care of the server distribution and update as well as database hosting by the use
of Amazon Web Services (AWS) [4].

4.8.1 Login
When entering the website one is first prompted to login in order to start their
individual article evaluation session. Each user is handed a unique login token
connected to their respective account which their user profile and article evaluations
are connected to. The login code can be entered from the login page which will, if
correct, redirect the user to the home page consisting of the articles to be evaluated.
Otherwise the website will simply prompt the user that the login code is invalid. The
login session is setup by the use of a URL header parameter representing the token
which is an implementation made for efficiency and not security. The user token is

41

CHAPTER 4. IMPLEMENTATION

visible in the URL and if removed from the URL, it will redirect the user back to the
login page. Users can not enter any website without having a valid token present in
the header as the article page is protected by amiddleware called EnsureTokenIsValid
where a token validation is performed prior to entering the site, see listing 4.17.

1 if (! in_array($request ->token, User::all()->pluck('token')->toArray())) {
2 return redirect('login');
3 }

Listing 4.17: PHP code of the EnsureTokenIsValid middleware.

The code simply checks if the passedURL parameter called token does not exist among
any user stored in the database and in that case redirects the user back to the login page,
otherwise the user is redirected to the home page. Other URLs setup for the website
are protected by a ValidateAdminIP middleware which only allows specific Internet
Protocol (IP) addresses to enter, these pages can not be reached by any user if they do
not originate from specific IP addresses, see listing 4.18.

1 $ip_addresses = [
2 {IP ADDRESSES}
3];
4

5 if(! in_array($request ->ip(), $ip_addresses)) {
6 abort(403, 'Tough luck buddy!');
7 }

Listing 4.18: PHP code of the ValidateAdminIP middleware.

4.8.2 Home page
Once logged in with a correct user token, the user is redirected to the home page.
Here the user is presented with articles from all iterations which has not yet been
evaluated, optimally there should only be one set of articles from one iteration if the
user has answered articles for every past iteration on time. The articles are fetched via a
Laravelmodel called Article alongwith eloquent syntax codewhich behind the scenes
construct a Structured Query Language (SQL) query based on the given arguments
[25]. As can be seen in listing 4.19 line 2, the Article model is setup to use the query
condition whereDoesntHave along with a nested where condition, which translates to:
find all articles where no users with the current user token are attached.

1 // Retrieve user's non-answered articles
2 $articles = Article::whereDoesntHave('users', function($q) use ($request) {
3 $q->where('user_id', User::where('token', $request->token)->first()->id

);
4 })->get();
5

6 $user = User::where('token', $request->token)->first();
7 $user->last_accessed = Carbon::now();
8 $user->save();
9

42

CHAPTER 4. IMPLEMENTATION

10 return view('welcome')->with('articles', $articles);

Listing 4.19: PHP code of the home page data retrieval.

Lastly, through line 6-8 a ”last accessed” date is saved to the current user in order
to simply keep track of user activity on the website. Each article presented on the
website has three different questions to evaluate where each question is a scalar of
five steps ranging from zero ”completely disagree” to five ”completely agree”. The
first question is about relevance, second is text length and third is understandability.
The input gets stored as a number and is then used as a weight towards the update
of the user profile, as mentioned under section 4.6. Once the user has chosen a
scale for every presented article, the user can press submit where the answers are
submitted to the profile computation algorithm discussed under section 4.6 using a
simple Asynchronous JavaScript and XML (AJAX) post query seen in listing 4.20
[2].

1 $.post('/submit-answer', {"data": articleData , "token": token}).then(() =>
{

2 window.location.reload();
3 });

Listing 4.20: Javascript code of the action after pressing submit from the home page.

The articleData variable is all the answers from the home page and the token is the
current user token. After the request is complete the website is reloaded which should
then display a feedback message thanking the user for its contribution as no articles
are left to be evaluated.

4.8.3 Predictions
Predictions can be made as to the users’ evaluations based on their computed
user profiles from previous iterations. Each user profile is collected from
an exported CSV file from the evaluation website database, namely the URL
”/export/answers?iteration=X” which conveniently returns a CSV file with all the
evaluations from all users for the given iteration. Each user is then iterated one
at a time in order to compute predictions for the coming iteration. The prediction
algorithm is displayed in listing 4.21.

1 cosine_distance = spatial.distance.cosine(article_dist , profile_dist)
2 cos_sim = 1 - cosine_distance
3 angular_distance = (2 * np.arccos(cos_sim)) / math.pi
4 angular_similarity = 1 - angular_distance
5 prediction = angular_similarity >= threshold

Listing 4.21: Python code of the relevancy prediction for an arbitrary user and article.

The spatial.distance.cosine() method calculates the cosine distance between two
arrays which here are arrays of topic distributions for both the article profile and
the user profile. Deducting the cosine distance from one represents the output in

43

CHAPTER 4. IMPLEMENTATION

a form of cosine similarity which then is used for the angular distance calculation.
The calculation of the angular distance can be seen in listing 4.21 on line 3. As
well as for the cosine distance, the angular distance is deducted from one where the
result is the angular similarity. This similarity score is then compared to a prediction
threshold value which makes up the foundation of the prediction algorithm. The final
result is a binary answer of one or zero whether the user will find the article relevant
or not. The predictions are saved for each user in a separate file. After all of the
predictions are computed for the given iteration and the users has evaluated all articles,
an accuracy score can be calculated as to how many correct predictions the algorithm
made based on the users’ evaluations. All user predictions are iterated and compared
to their corresponding evaluation downloaded from the previously mentioned URL
”export/answers?iteration=X” in order to determine howmany correct predictions the
algorithmmade. A correct prediction is both if the user find an article interesting or if
the user has not found the article interesting. The summary of all correct predictions
made can be seen in listing 4.22.

1 correct_pred = 0
2 answers = df_user_answers["Rel"][0]
3 for idx, prediction in enumerate(article_predictions["relevant"]):
4 prediction = prediction >= predict_rel_threshold
5 answer = answers[idx] >= answer_rel_threshold
6 if prediction == answer:
7 correct_pred += 1

Listing 4.22: Python code of the accuracy calculation summary.

The evaluation answer has a relevance threshold of four taken from the scalar of
one to five through the evaluation process. A four or higher is considered to be of
relevance. If the predictionmatches the evaluationmade, regardless of it being positive
or false, the correct_pred variable is incrementedby onewhich keep track of all correct
predictions. correct_pred is then divided by the total amount of predictions in order
to retrieve a final accuracy score for the predictionmodel from the iteration in question.
The score is saved for future analysis.

4.8.4 Explore
In order to analyze data in real-time in an easy and controlled way, two explorative
pages are setup, protected behind the ValidateAdminIP middleware explained under
section 4.8.1. The two URLs are ”/explore” and ”/explore/articles”. For each URL one
can provide a URL parameter called iteration which filters results on the URL web
page based on the given iteration parameter. If no iteration parameter is found then
results from all iterations are presented, see listing 4.23.

1 $articles = isset($request ->iteration) ? $user->answers()->get()->where('
iteration_id', $request->iteration) : $user->answers;

Listing 4.23: PHP code of the filtering of data based on an iteration parameter.

44

CHAPTER 4. IMPLEMENTATION

Under the URL ”/explore” one can analyze each user’s current user profile distribution
visualized on a graph as well as average length scoring and average understandability
scoring. The graph is constructed by the use of a Laravel package class called
LabelDistChart provided by Laravel Charts[24]. The graph setup can be seen in
listing 4.24.

1 $labelDistChart = new LabelDistChart;
2 $labelDistChart ->labels(array_keys($profile));
3 $labelDistChart ->options([
4 'scales' => [
5 'yAxes' => [
6 [
7 'ticks' => [
8 'max' => 1.0
9],
10],
11],
12],
13]);
14 $labelDistChart ->dataset('Labels by distribution', 'bar', $profile);

Listing 4.24: PHP code of the setup of user profile graph visualization.

Under the URL ”/explore/articles” one can analyze the articles topic distributions in
the same way using the same graph implementation as mentioned in listing 4.24.

4.8.5 Database
The database setup for the website contains four tables called article_user, articles,
user_profiles and users. Under this section all of the tables are described along with
their respective data columns.

article_user: All the user answers stored as a one-to-many relationship. The columns
are article_id, user_id, relevance, understandability, length and difference.
The article and user id are foreign keys connecting article answers to users. Relevance,
understandability and length are the scoring of each article as input by the user and
the difference column is the computed change made to the user profile based on the
profile computation saved for safety measurements.

articles: All articles from each iteration are stored here. The columns are id,
publish_date, title, content, sum_content, label_dist and iteration_id. The
publish_date, title and content are simply information for each article. The
sum_content is the final summary of the original content of the article once processed
through the summarization script. label_dist is the label distribution computed by
the LDA model and finally the iteration_id is which iteration the given article is
related to in order to filter out and analyze articles for each iteration.

users: The users table is the table where all users are stored, the columns here are

45

CHAPTER 4. IMPLEMENTATION

id, token, email, last_accessed, and created_at and updated_at. The token is the
unique token used for the user to login with which is manually created for each user
from a random number between 1 and 99999. last_accessed is a date stored every
time the user enters the article home page in order to somewhat track users.

user_profiles: Finally, all computed user profiles are stored herewith their belonging
iteration. The columns are id, created/updated_at, user_id, token, profile and
iteration_id. The user_id is the foreign key relating the profile to a user and the
token simply is the user token redundantly saved for easier access. profile simply is
the user profile computed from the previously mentioned user profile update scripts
and lastly, the iteration_id is the current iteration the user profile has been computed
from.

4.8.6 Notifying users
Lastly, a Laravel command is constructed in order to conveniently automatically notify
all users of newly imported articles. Each user’s email is stored along with the user
in the database where the email is used for the notification. The code for the user
notification command is displayed in listing 4.25.

1 $iteration = Article::orderBy('iteration_id', 'desc')->first()->
iteration_id;

2

3 $notAnsweredUsers = User::whereDoesntHave('answers', function($q) use (
$iteration) {

4 $q->where('iteration_id', $iteration);
5 })->get();
6

7 foreach($notAnsweredUsers as $user) {
8 if(isset($user->email) && !$user->email == '') {
9 $details = [
10 'title' => 'Det har nu anlänt nya artiklar på hemsidan.',
11 'body' => 'Din kod är: '.$user->token,
12 'link' => env('APP_URL').'?token='.$user->token
13];
14

15 Mail::to($user->email)->send(new NotifyMail($details));
16

17 dump("Notified ".$user->email);
18 }
19 }

Listing 4.25: PHP code of the notify users command.

First, all users which has articles not yet answered are fetched seen in line 3-5 and then
iterated through seen on line 7 where each user is sent an email using Laravel’s Mail
facade, line 15 [27]. The email is sent from a Gmail account specifically created for
this purpose, which is used as a dummy account. The command is executed using
Laravel artisan[23] through the following line entered to a terminal: php artisan

46

CHAPTER 4. IMPLEMENTATION

survey-app:notify-users.

Final layout

After the implementation and some alterations to the evaluation website the final
layout is displayed in this coming section. First, the login page is shown in figure 4.8.1.
Once logged in, the homepage design ended up as shown in figure 4.8.2. The smaller

Figure 4.8.1: Login page.

box seen on the top is an instruction box helping users faster understand what they see
and how to perform the evaluation.

Figure 4.8.2: Home page.

47

CHAPTER 4. IMPLEMENTATION

After the evaluations are submitted by a user a feedback message is displayed, if a user
tries to enter the web page once more before any new articles have been imported,
the same message is displayed. The explore user profile page is a simple page only
displaying boxes as shown in figure 5.2.3, thus there is noneed to present it here. Lastly,
the explore article page is a replica of the explore user profile page, however it included
a summarized profile for all articles on the top of the page for further analysis of the
article profiles. This page is shown in figure 4.8.3.

Figure 4.8.3: All articles exploration page.

48

Chapter 5

Evaluation and Results

Under this section, results from the project is presented. The final model used for
the computation of topics, presentation of the topics along with examples of user
profiles, article profiles and a summarized article are here presented. The study
protocol is explained. Finally, the project results are presented as to the predictions
and progression of the user profiles.

5.1 Study protocol
Under this section the evaluation study protocol is presented. The study is setup
to run for ten iterations, updating the website with new articles every Monday and
Thursday followed by a notification in an attempt to activate the users. The evaluation
is setup in order to evaluate the performance of the predictionmodel as well as the text
summarizer where users will be able to score both relevancy of articles presented and
length/understandability of the texts. Before the actual evaluation begins, a test phase
is setupwhere a number of testers tried out the evaluationwebsite in order to find some
bugs and errors to be eliminated before the real evaluation could begin. This process is
only run for one week as the consequence of a live bug is not of great impact since the
evaluation is run in a controlled closed environment. Furthermore, the real evaluation
consist of 20 employees from Elvenite at the time participating all somewhat related
to the domain area the articles are scraped from since their workplace specializes
in the area. For each iteration, each participant entered the website and scored a
number of articles, depending on the amount scraped from the news sources. The
score ratings are between one and five and as mentioned concerned the article length,
understandability and relevance. The evaluations are submitted by each respective
user and saved to a database where it could later be analyzed. Prior to this, the
evaluations are used in order to update each specific user’s profile. The data collected
is analyzed through a prediction algorithm which compares each user’s evaluation
submissions based on the pre-computed prediction of the relevancy score related to
their respective user profiles in order to compute an accuracy for the prediction model.
After iteration ten is completed, the evaluation will come to a stop and the data is

49

CHAPTER 5. EVALUATION AND RESULTS

collected, saved and further analyzed.

5.2 Evaluation
Here a presentation of the final outcomes from the implementation is presented. First,
a presentation of the final LDA model, second, the final topics, and last, examples of
an actual user profile, article profile and text summarization taken from the evaluation
is presented.

5.2.1 LDA model
The data set ended up being around 6200 articles scraped from the two news sources
mentioned under section 4.3 which further was used to train the original LDA model
according to section 4.3. The final LDA model setup can be seen in code 4.8 under
section 4.4. The final number of topics chosen for the LDA model is 30 after
running a coherence optimization script in order to find the optimal number of topics
reflecting the highest coherence score combined with a tangible number of topics. The
optimization results can be seen in figure 5.2.1. The highest coherence number found

Figure 5.2.1: Coherence scores after altering different number of topics put into the
LDA model.

is when using 15 topics, however more topics is needed in order to properly compute a
solid user profile. Therefore, 30 was chosen as number of topics as it is a high enough
number of coherence score with a difference of only 0.9 and a high enough number of
topics to properly compute a user profile.

5.2.2 Topics
From the final LDA model the computed topics used for the topic distribution among
the articles are presented in figure 5.2.2. The figure displays the top ten most
contributingwords to each respective topic alongwith the percentual contribution next
to the word.

50

CHAPTER 5. EVALUATION AND RESULTS

Figure 5.2.2: All computed articles by the final LDA model.

5.2.3 User profile
An example distribution of the topics found in figure 5.2.2 is found in figure 5.2.3. The
example is taken from a final user profile computed after the evaluation process was
completed. The number shown on top is the unique user token for that specific user.

Figure 5.2.3: Example user profile.

5.2.4 Article profile
Another example showing the topic distribution inside of an article profile is shown in
figure 5.2.4. This example depicts an arbitrary article taken from iteration number two.
On the very top the identification number of the article, header and which iteration the
article was added to is shown.

51

CHAPTER 5. EVALUATION AND RESULTS

Figure 5.2.4: Example article profile.

5.2.5 Summarized text
Lastly, a final summarized text example is presented under this section. The original
text taken from one of the articles from iteration number one is shown in listing
5.1.

1 "Kafferosteriet Löfbergs vinner kategorin ”Newsroom of the ”Year i årets
upplaga av MyNewsdesks kommunikationstävling Digital PR Awards.Löfbergs
får priset i hård konkurrens med Foodora, Tradera, Bauer Media och

Advenica för att de med kreativ och meningsfull kommunikation lyckats
engagera sin publik på ett innovativt sätt.Juryns motivering: Löfbergs
visar med en genomtänkt och kreativ strategi hur man engagerar sin
publik och bygger ett community i sitt nyhetsrum. Det är uppenbart vad
deras huvudprodukt är, men med meningsfull och innovativ kommunikation
använder de sitt nyhetsrum för att berätta historier och skapa känslor
relaterade till sin produkt istället för att bara marknadsföra den.
Enastående arbete”!Superkul! Det här är ett resultat av ett målmedvetet
arbete där både kommunikationsgänget och andra på Löfbergs bidrar.
Därför är vi många som är glada och stolta ”idag, säger Anders Thorén,
kommunikationschef på Löfbergs.Digital PR Awards delas ut av MyNewsdesk
som vill uppmärksamma företag och organisationer som lyckats extra bra
med sina PR- och kommunikationsinsatser. Tävlingen arrangerades i år

för tionde gången.MyNewsdesk är en nordisk plattform för digital PR.
Över 5 000 varumärken använder sina nyhetsrum på MyNewsdesk för att
publicera nyheter och knyta relationer med media och journalister"

Listing 5.1: Original text of an article from iteration one.

Where after run through the final text summarizer is condensed into the text depicted
in listing 5.2.

52

CHAPTER 5. EVALUATION AND RESULTS

1 "Kafferosteriet Löfbergs vinner kategorin ”Newsroom of the ”Year i årets
upplaga av MyNewsdesks kommunikationstävling Digital PR Awards.Löfbergs
får priset i hård konkurrens med Foodora, Tradera, Bauer Media och

Advenica för att de med kreativ och meningsfull kommunikation lyckats
engagera sin publik på ett innovativt sätt.Juryns motivering: Löfbergs
visar med en genomtänkt och kreativ strategi hur man engagerar sin
publik och bygger ett community i sitt nyhetsrum. Därför är vi många
som är glada och stolta ”idag, säger Anders Thorén, kommunikationschef
på Löfbergs.Digital PR Awards delas ut av MyNewsdesk som vill
uppmärksamma företag och organisationer som lyckats extra bra med sina
PR- och kommunikationsinsatser."

Listing 5.2: Summarized text of an article from iteration one.

Which is the final version presented for the evaluation process used to evaluate the
article.

5.3 Results
Under this section the final data analysis is found. Initially presenting the chosen
threshold of relevancy prediction for the prediction model, then going into detailed
graphs of accuracy, precision and recall from the results. Lastly, a brief discussion
on the evaluation for the text summarizer. Through the evaluation a total of 20
participants took part during a ten iteration long session, two iterations per week, in a
total of five weeks.

5.3.1 Number of data points
In table 5.3.1 data for each iteration can be seen. Table 5.3.2 represents the number of
people who performed x updates.

Iteration 1 2 3 4 5 6 7 8 9 10
Participants 17 17 15 13 12 10 9 7 3 6
Articles 14 7 11 4 7 4 14 5 12 4

Data points 238 119 165 52 84 40 126 35 36 24
Relevant answers 154 68 70 26 48 24 69 19 17 9
Neutral answers 46 21 42 13 19 10 42 10 13 10

Non-relevant answers 38 30 53 13 17 6 15 6 6 5

Table 5.3.1: Data for each iteration.

Updates 1 2 3 4 5 6 7 8 9 10
Participants 16 14 7 6 3 2 2 2 1 0

Table 5.3.2: Display of number of participants per update made.

The optimal number of contributors for each iteration is 20 as this is the total
number of participants, however as can be seen from both tables the number of

53

CHAPTER 5. EVALUATION AND RESULTS

data points collected for each iteration respectively the number of participants who
performed more than five updates are low which causes instability in the data
presented below. Only one user managed to participate for nine iterations, whereas
16 people contributed with at least one update. Keep in mind that if a user submits
evaluation answers for iteration one and six only, a total of six iterations is accounted
for whereas only one update is performed regarding the user profile.

5.3.2 Prediction relevance threshold
The data from the evaluation is based on the prediction algorithm presented under
section 4.8.3 where a threshold is introduced as the foundation for the prediction
model performance. Altering this threshold will cause themodel to predict in different
ways producing more or less False Positive (FP)s relative True Positive (TP)s as well
as False Negative (FN)s relative True Negative (TN)s. These values are used to then
calculate a precision, recall and accuracy score for the model which is what is going to
be presented later. Precision is ameasurement of howmany of the relevant predictions
made were in fact correct and is calculated through

precision =
TP

TP + FP

Recall depicts howmany relevant predictions were found in the total scope of relevant
evaluations by the model and is calculated through

recall =
TP

TP + FN

Lastly, accuracy is a measurement of how many correct predictions the model made,
regardless of if the prediction is relevant or irrelevant, this measurement is calculated
through

accuracy =
TP + TN

TP + FP + TN + FN

Generally, if a model is in its initial phase where the creation of user profiles is to be
done, then a high recall value is wanted as it will in practice supply the user with a
lot of irrelevant articles which essentially speeds up the user profile creation process
by providing very different types of articles. On the other hand, a more productive
model which presents as much relevant content as possible to a user is necessary for
later stages when actually applying the model to a real life scenario. Here the highest
possible precision value is wanted. This said, depending on where in the process an
evaluation is, different values of precision and recall is wanted. Table 5.3.3 depicts
the average measurements along with the resulting prediction values represented in
TP, TN, FN, and FP. These values are taken as an average number from all iterations
whereas the prediction relevancy threshold is altered for every run, as seen in the
header of the table. The overall best combination of recall, precision and accuracy
is seen to be 0.25, though the False Positive Rate (FPR) is high in relation to other
thresholds, which essentially means that the model will suggest a lot of irrelevant

54

CHAPTER 5. EVALUATION AND RESULTS

articles using this threshold. It is possible to reduce the amount of false positives while
still retrieving a fairly good number for recall, accuracy and precision by picking the
threshold 0.5, which then will suggest less irrelevant articles.

Threshold 0.25 0.4 0.5 0.6 0.75 0.9
Accuracy 0.723 0.677 0.574 0.385 0.276 0.273
Recall 0.994 0.871 0.615 0.232 0.004 0.000

Precision 0.726 0.734 0.754 0.75 1.0 0.000
FPR 1.000 0.841 0.534 0.206 0.000 0.000
TP 501 439 310 117 2 0
TN 0 30 88 150 189 189
FP 189 159 101 39 0 0
FN 3 65 194 387 502 504

Table 5.3.3: Values for average measurements for each threshold with a changing user
profile.

By analyzing the same model using a user profile which is created using default values
and thus does not use a profile which updates over time, the following values are
computed, as seen in table 5.3.4.

Threshold 0.25 0.4 0.5 0.6 0.75 0.9
Accuracy 0.727 0.703 0.657 0.558 0.312 0.273
Recall 0.857 0.759 0.637 0.393 0.044 0.000

Precision 0.651 0.636 0.607 0.541 0.199 0.000
FPR 1.0 0.96 0.820 0.471 0.101 0.0
TP 504 480 421 287 46 0
TN 0 7 34 100 170 189
FP 189 182 155 89 19 0
FN 0 24 83 217 458 504

Table 5.3.4: Values for average measurements for each threshold with a default user
profile.

The measurements of accuracy, recall and precision are slightly higher but still
comparable to the ones of the data shown in table 5.3.3 which uses an updating user
profile. This leaves room for speculations as to if the user profiles really is necessary for
this project, or rather if the articleswere of sufficient quality to support the user profiles.
However, solely looking at recall, precision and accuracy is insufficient in concluding
that the user profiles did not contribute to the predictionmodel. Once again, looking at
the FPR in table 5.3.4, one can see a higher value for almost every threshold compared
to table 5.3.3, and as earlier mentioned, this means that the model with a default user
profile will in general suggest more irrelevant articles to users overall.

55

CHAPTER 5. EVALUATION AND RESULTS

5.3.3 Results based on threshold
First under this section results for threshold 0.5 will be presented split into two
different analyses. First an analyze ofmeasurements over iterations, second an analyze
of measurements over number of updates. After the analysis of different metrics,
the evaluation results for the text summarizer is introduced and briefly discussed.
Lastly, problems found with the results are discussed. The following graphs presented
in figure 5.3.1 depicts the average numbers of accuracy, recall, precision and FPR
according to each iteration.

(a) Accuracy. (b) Recall.

(c) Precision. (d) False positive rate.

Figure 5.3.1: Measurement qualities for different iterations.

The accuracy per iteration is fairly stable but overall slowly decreasing over the
iterations. This is not desirable results for this project as it indicates that the
prediction model did not make more accurate predictions while progressing through
the evaluation. However, due to the inconsistency in submitted evaluations and
amount of articles to evaluate per iteration, this data is considered to be unstable and
not very reliable. One iteration may consist of 5 articles and 7 participants (as seen
in table 5.3.1, iteration 8), whereas another iteration may include 14 articles and 17
participants (iteration 1 in table 5.3.1). However, recall shows a decreasing pattern

56

CHAPTER 5. EVALUATION AND RESULTS

as the further into the evaluation process users go, the more the profiles should be
updated, and as shown the recall value decreases, providing less irrelevant articles. As
for the opposite to the recall value, the precision increases per iterationwhich indicates
the opposite behaviour, providing more correct suggestions. Lastly, the false positive
rate is dramatically decreasing per iteration which indicates an improvement in the
model per iteration as per the amount of irrelevant articles presented. The further
into the process the evaluation progresses, the more defined the user profiles should
theoretically be and hence the model should be able to present less irrelevant articles
in relation to the graph shown in 5.3.1d.

Further, since not every user participated in each iteration, a presentation of the same
measurements but for the x amount of performed updates relative to each user is of
interest.

The following graphs depicted in 5.3.2 shows the average numbers of accuracy, recall
and precision compared to the amount of updates a user performed. Seen in table 5.3.4,
there are not many data points for the higher number of update values, however there
is a trend where the accuracy is increasing ever so slightly according to the amount of
updates.

(a) Accuracy. (b) Recall.

(c) Precision. (d) False positive rate.

Figure 5.3.2: Measurement qualities for different updates performed by users.

57

CHAPTER 5. EVALUATION AND RESULTS

It is hard to draw any conclusions to the amount of data retrieved for this project,
however a slight positive growth is noticed as for accuracy and precision coming for
update number five and upwards, which indicates a positively developing model. The
precision as well as the recall values here are rather stable over the amount of updates
performed with a somewhat high base value of around 0.7 and 0.65 respectively. As
previously discussed, the wanted recall value should be lower the more updates a user
completes as well as the precision should go up in the same manner, which could be
indicated looking at the measurements over iterations and not at the measurements
over the amount of updates. One minor detail is the steady increase of precision from
update six and forth as compared to the overall decreasing value of recall also seen
from update six, which indicates a small improvement of provided articles per update.
Lastly, the analysis of the FPR in relation to amount of updates made is fairly hard
to conclude as this measurement rather targets the models progress and not each
individual. The numbers for the higher amount of updates are distorted due to the
few amount of participants of the project who participated with a high amount of
updates.

5.3.4 Text summarizer evaluation
In order to somewhat evaluate the text summarizer and see if the performance is
sufficient twometrics are used. First, the understandability of the text, essentially if the
text summarizer concatenated well enough summaries, second the length of the text.
The length of the text is altered through the use of a score threshold mentioned under
section 4.7, the metric of the length evaluation reflects on how well the chosen value is.
By taking the average of each answer and summarizing this, a number representing the
two factors is presented. The average understandability score is 3.867 and the average
length score is 3.731. Since the average values of 3.867 for the understandability
and 3.731 for the length are both above average, no further adjustment is made to
the text summarizer as for this project. The results leave room for improvement,
though realistically a near perfect score for a text summarizer is hard to achieve as
the summarizer depends on a lot of factors which here can not be controlled such
as the original content of the article. Though, by implementing an abstractive text
summarizer instead of an extractive which is used here, the results may potentially
be of better quality. Further, trying out different score thresholds for the extractive
summarizer might increase the values further as well. This is not carried out through
this project as the evaluation of the text summarizer had to be done in real-time by end
users, and thus not enough time could be spent in validating these theories.

5.3.5 Problems
Due to the low amount of data points discussed under section 5.3.1 the confidence
of final statements and conclusions is fairly weak. What further contributes to the
low amount of data points is data points which do not reflect reality well enough. A
scenario where a usermisunderstands the evaluation technique and accidentally sends

58

CHAPTER 5. EVALUATION AND RESULTS

in answers without scoring relevancy effects the overall analyze of the model. Further,
depending on the day to day mood of any user, the answers may differ a lot. One day
a given user may feel more interested in topic A than topic B, whereas another day the
same user might only be interested in topic B and not at all in A. This is something that
can be neglected in an extensive researchwith a lotmore data, however due to the small
amount of time spent on this research, this factor may effect the results. Another issue
is with the lack of variation in data where there is a majority of relevant evaluations vs
non-relative evaluations. This may effect the results as to the high recall values found
under table 5.3.3 asmost evaluations found are relevant and thus increases the number.
A data set where the proportion of relevant to non-relevant answers are closer to 50%
wouldmake it easier to evaluate the data andmore confident conclusions. Other issues
include user’s cascading affect of reading several articles in a row, the further down the
process one user goes the less theymight consider the text or get tired of reading which
per se impacts the answers.

59

Chapter 6

Discussion

Under this chapter there will first be a discussion about thesis contribution to the
research area, then problems with the project will be discussed as well as potential
future work. Lastly, the author’s personal experience with the project is shared.

6.1 Contribution

The objective of this thesis was to retrieve information about how effective text
summarization and information individualization would be to improve information
gatheringwithin the area of IT. From spending time on researching relevant topics and
areas related to this topic the conclusion could be made that there is not much work
done trying to optimize thematter of information gathering. The results of this project
showno clear answer towhether or not this ultimatelywill be a feasible approach. More
data of better quality and a larger evaluation session is needed as well as more effort
into fine tuning the topicmodel alongwith the text summarizer. However, there clearly
is a problem where developers within IT face massive amounts of information and has
to scatter through the texts manually whereas much time is spent. It is also proven to
be taking more time than needed from a couple of studies conducted showing the time
spent and possible improvements to be made. Moreover, the focus of this project is to
construct a technical basis to contribute to the solution of the problem whereas most
papers found focuses on the exploration of the issue as well as possible approaches to
solve it. Hence, the work of this paper will contribute with a new approach of solution
to the issue which is the technical basis.

6.2 Problems

Throughout the project there has been a number of problems discovered along the way.
Most problems will be presented and discussed under this section.

60

CHAPTER 6. DISCUSSION

6.2.1 Implementation of ML models
A problem which originated early in the process was a lack of understanding of how
the process of computing topic distributions would work in its technicality. Initially,
a supervised ML model called Support Vector Machine [14] was setup to label articles
based on previous examples of labeled articles, where one article is given one topic.
This of course lost its purpose fast as the essence of topic distributing was completely
lost through this approach. Once a complete understanding of how LDA worked in
an unsupervised matter and the understanding that the output is non-binary, the ML
model implementations was completely removed.

6.2.2 Swedish models
The topic of NLP is constantly growing and has been for a few years now [50]. However,
since it is fairly new technology the language support is largely in English. There
were some issues trying to find models such as the NER model and the lemmatizer
with the correct language dictionary, which for this project is Swedish. The NER
model introduced under 4.3.1 was the only choice of NER model available at the time
supporting Swedish as computational language. Because of this, it was hard to evaluate
the performance of the model since no comparison was available. One issue with
that model was that it could only compute texts with a max length of 500 characters
for reasons which were not further investigated, which had to be addressed when
implementing the model. Further, the lemmatizer faced the same issue where not
many Swedish alternatives were found and thus the presented lemmatizer in section
4.3.1 was selected. However the model is not complete as to the Swedish dictionary
and thus had to be provided manual corrections to some words. This of course affects
the accuracy of the lemmatizer as not every faulty word could be manually fixed since
the scope of words in total were +20000 words. Though some words were found
and manually fixed, such as ”hindret” which was lemmatized to ”hindr” and fixed to
represent the correct lemmatization ”hinder”. If the words differ with just one letter
they will not match the final computation of topic distributions which analyses the
words of the articles, thus this poses a threat to the performance of the final model.
The conclusion from this is that the research and progress of NLP for the Swedish
language is fairly new as not many examples of models are found supporting Swedish.
Looking at the English contributions to the same area one can find plenty of
alternatives.

6.2.3 Articles
As previously mentioned there is a language barrier accompanied with the research of
NLP techniques. Since the articles in question collected from livsmedelsnyheter and
livsmedelifokus are mostly in Swedish, this was the chosen language for the project.
There were considerations as to translating the texts to another language or finding a
foreign news source, however it would end up being unauthentic as to the user’s actual

61

CHAPTER 6. DISCUSSION

work environment. There still is the issue of if an article happens to be in English,
or the mix of English words inside of an article, then the model would not be able to
compute the articles, or rather it would compute but the output would be nonsense.
This is unfortunately not addressed as for this model and does pose a threat to the
results. Not only is the language barrier an issue coming from the articles, the amount
of published articles do also differ a lot depending on choice of news sources. From
observations, the two news sources did publish around five articles one day and the
next few days none of the sources would publish anything. Since the scraper is setup to
scrape between specific dates, this posed a problem as to the inconsistency in number
of scraped articles per iteration. The amount varied from some iterations consisting
of just four articles to other iterations having around 15 articles. Because of the small
amount of news sources scraped, a rather small amount of data was originally scraped
for the setup of the LDAmodel as well. As any otherMLmodel, themore data fed to the
model, the more accurate the model will be (as long as the data keeps certain quality).
Finally, since there constantly erupts new companies and names of people around the
area of food and beverage, it is hard to handle new names of organizations and people
in a consistent way through the processing of the article texts. An attempt to handle
the names of people is integrated by the use of a NER model, however organisations
were ignored since organisation names may also be the names of people and thus hard
to distinguish.

6.2.4 Evaluation
As to the evaluation process there could bemore time spent on this in amore extensive
study in order to generate more evaluations and more concrete results. The time
span was only about one month and included ten iterations which in practice is an
insufficient amount for any solid conclusions. Practically, the evaluation process could
run for a much longer time where the results can be analysed in real-time and the
pipeline can be enhanced during the evaluation process and in this way create themost
optimal conditions for this project.

6.3 Future work
Under this section potential future work and research is presented. A discussion of
organisation names is presented as well as the need for more news sources and an
alternative implementation of a text summarizer. Lastly, a discussion of an extended
evaluation session is found.

6.3.1 Organisation names
As mentioned under section 6.2.3 there is an issue with having organisation names
and names of people in the same text. In future work one can put more time into
trying to solve this issue in order to potentially further enhance the computed topics

62

CHAPTER 6. DISCUSSION

in terms of quality. The proposed NERmodel is supposed to handle the recognition of
a company name and differentiate it to a human name, however there are work to be
done for Swedish NERmodels in particular in order to make this happen. If one could
successfully identify company names then it could be used to force categorize articles
under company names to further gather information whereas an implementation of
recommending interesting companies along with articles could be in place.

6.3.2 More news sources
More news sources could be added to further increase the amount of data points used
for this project. This would increase each iteration data and thus could improve the
results further. It might even come to a point where if enough data is scraped for
each iteration, an algorithm could be constructed to choose which articles are to be
added for maximal impact. Not only will this help the iterations, but also the initial
setup of the LDA model where the more articles input the more accurate the model
becomes, theoretically. Furthermore, this opens up the use for an abstractive text
summarizer. What could be further interesting is to include irrelevant data sources in
order to snowball the user profile updates. Themore irrelevant versus relevant data the
model is presented with along with the actual user relevance scores, the more accurate
the user profiles becomes.

6.3.3 Abstractive text summarizer
The proposed extractive text summarizer works well with the small amount of data
collected for this project. However, if enough data was collected, an abstractive
text summarizer could be constructed and compared to the extractive one in order
to retrieve the optimal summarization. There are existing interesting models which
support abstractive text summarization such as Google’s BERT [33] which is a pre-
trained model on hundreds of thousands of articles.

6.3.4 Extended evaluation
The evaluation process for this project was limited in amount of testers and amount
of time. If more people could attend the evaluation process, more data points can be
collected and thus a more precise conclusion can be made.

6.4 Experience
This project was meant to further improve the knowledge about information gathering
by the use of text summarization and individualization. In my opinion this has been
achieved to some extent. Even though the results are not of the best quality or
magnitude, the backbone of this thesis still contributes to the research and progress of
information gathering within the area of IT. The conceptual prototype is constructed

63

CHAPTER 6. DISCUSSION

and assessed over time, however not enough participants evaluated their articles for
every iterationwhich left a gap as to the final analysis of the evaluation results. Another
factor was that most articles were in fact relevant, and thus the user profiles could not
be properly updated. In terms of project plan and execution the overall process and
implementation was according to plan. The implementation of the pipeline was fairly
smooth but lacks in technical depth in some places such as adjustments of the LDA
model and the extent of the implementation of Swedish models, where not enough
models exists as of today. The constructed technical basis can once again be used for
an extended study in order to gathermore confident results in the future using the same
implementations described under chapter 4. The proposed problems under section 1.2
were both addressed and solved in two separate ways where both were evaluated and
assessed. The issue of too much information was targeted through a text summarizer
where users could evaluate the length and understandability to the text whereas the
difficulty of finding relevant information is addressed through the construction of user
profiles.

64

Chapter 7

Conclusions

Introduced under section 1.3 the question of focus for this thesis is ”How effective
is text summarization combined with individualized information recommendation in
improving information gathering of IT experts?”. After evaluating the results of the
constructed technical basis, unfortunately not much can confidently be said about
the performance. Though through analyzing graphs of the results a trend can be
seen as to the positive increase of accuracy in amount of updates performed by users.
The precision and recall measurements per iteration shows an increasing tendency
as well, theoretically making the model produce more relevant content over time.
Furthermore, it could be stated that by the use of user profiles the prediction model
predicted fewer false positives and thus in theory also provides fewer irrelevant articles
based on this. The text summarization performed well enough where it on average
resulted in a score higher than average. This could not be further investigated as the
evaluation of the text summarizer requires real-time analysis where for this project the
time came as a limitation. Even though the results are fairly inconsistent, the potential
of performing this experiment in a bigger setting is good where the data shows slight
tendencies of improvements. Properly applying the technical basis to a more robust
and prolonged experiment has a greater chance of producing much better end results.
Regardless of the insufficient amount of data points, this paper contributes to the
research of efficient information gathering as well as proposes a technical solution
with some analysis of the area. The paper proposes an alternative solution to the
issue of information gathering and a foundation for a technical basis which can
be further improved and implemented in a more authentic scenario. As for the
research contributions of this paper, there are evident contributions to the research
of information gathering, text summarization for Swedish language, topic modelling
for the Swedish language and user profiling in general.

65

Bibliography

[1] Ahmad, Sharique, Wasim, Saeeda,
Irfan, Sumaiya, Gogoi, Sudarshana, Srivastava, Anshika, and Farheen, Zarina.
“Qualitative v/s Quantitative Research”. In: 6 (Oct. 2019), pp. 2828–2832. DOI:
10.18410/jebmh/2019/587.

[2] Ajax. Ajax Documentation. 2022. URL: https://www.w3schools.com/js/js_
ajax_intro.asp (visited on 05/17/2022).

[3] Alagha, Emily Couvillon and Helbing, Rachel Renee. “Evaluating the quality
of voice assistants responses to consumer health questions about vaccines: an
exploratory comparison of Alexa, Google Assistant and Siri”. In: BMJ Health
& Care Informatics 26.1 (2019). DOI: 10.1136/bmjhci-2019-100075. eprint:
https://informatics.bmj.com/content/26/1/e100075.full.pdf. URL:
https://informatics.bmj.com/content/26/1/e100075.

[4] Amazon. AWS. 2022. URL: https://aws.amazon.com/?nc2=h_lg (visited on
05/17/2022).

[5] BeatifulSoup. Beatiful Soup. 2022. URL: https://www.crummy.com/software/
BeautifulSoup/bs4/doc/ (visited on 05/15/2022).

[6] Blei, David M., Ng, Andrew Y., and Jordan, Michael I. “Latent Dirichlet
Allocation”. In: J. Mach. Learn. Res. 3.null (Mar. 2003), pp. 993–1022. ISSN:
1532-4435.

[7] Christian, Hans, Agus, Mikhael Pramodana, and Suhartono,
Derwin. “SingleDocument Automatic text summarization using term frequency-
inverse document frequency (TF-IDF)”. In: ComTech: Computer, Mathematics
and Engineering Applications 7.4 (2016), p. 285. DOI: 10 . 21512 / comtech .
v7i4.3746.

[8] Dahlgren, Peter M. Swedish stop words. 2021. URL: https : / / gist .
github . com / peterdalle / 8865eb918a824a475b7ac5561f2f88e9 (visited on
05/27/2022).

[9] David, Johnson, Malhotra, Vishv, and Vamplew, Peter. “More Effective Web
Search Using Bigrams and Trigrams”. In:Webology 3 (Dec. 2006).

66

https://doi.org/10.18410/jebmh/2019/587
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://doi.org/10.1136/bmjhci-2019-100075
https://informatics.bmj.com/content/26/1/e100075.full.pdf
https://informatics.bmj.com/content/26/1/e100075
https://aws.amazon.com/?nc2=h_lg
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://doi.org/10.21512/comtech.v7i4.3746
https://doi.org/10.21512/comtech.v7i4.3746
https://gist.github.com/peterdalle/8865eb918a824a475b7ac5561f2f88e9
https://gist.github.com/peterdalle/8865eb918a824a475b7ac5561f2f88e9

BIBLIOGRAPHY

[10] Dorn,
Brian, Stankiewicz, Adam, and Roggi, Chris. “Lost while searching: Difficulties
in information seeking among end-user programmers”. In: Proceedings of the
American Society for Information Science and Technology 50.1 (2013), pp. 1–
10. DOI: https://doi.org/10.1002/meet.14505001059. eprint: https://
asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.14505001059.
URL: https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/meet.
14505001059.

[11] Elvenite.Om oss - Elvenite. 2022. URL: https://elvenite.se/om-oss/om-oss
(visited on 05/19/2022).

[12] Face, Hugging. Hugging Face. 2022. URL: https://huggingface.co/ (visited
on 05/15/2022).

[13] Fatma, Fatma. Industrial applications of topic model. 2019. URL: https : / /
medium . com / @fatmafatma / industrial - applications - of - topic - model -
100e48a15ce4 (visited on 05/20/2022).

[14] Gandhi, Rohith. Support Vector Machine — Introduction to Machine Learning
Algorithms. 2018. URL: https://towardsdatascience.com/support-vector-
machine- introduction- to- machine- learning- algorithms- 934a444fca47
(visited on 05/22/2022).

[15] Gensim. Gensim. 2022. URL: https://pypi.org/project/gensim/ (visited on
05/15/2022).

[16] Griffiths, Thomas L. and Steyvers, Mark. “Finding scientific topics”. In:
Proceedings of the National Academy of Sciences 101.suppl_1 (2004),
pp. 5228–5235. DOI: 10.1073/pnas.0307752101. eprint: https://www.pnas.
org/doi/pdf/10.1073/pnas.0307752101. URL: https://www.pnas.org/doi/
abs/10.1073/pnas.0307752101.

[17] Gross, Paul and Kelleher, Caitlin. “Non-programmers identifying functionality
in unfamiliar code: strategies and barriers”. In: Journal of Visual Languages &
Computing 21.5 (2010). Part Special issue on selected papers from VL/HCC’09,
pp. 263–276. ISSN: 1045-926X. DOI: https://doi.org/10.1016/j.jvlc.
2010.08.002. URL: https://www.sciencedirect.com/science/article/pii/
S1045926X10000431.

[18] Jiang, Kai and Lu, Xi. “Natural Language Processing and Its Applications in
Machine Translation: A Diachronic Review”. In: 2020 IEEE 3rd International
Conference of Safe Production and Informatization (IICSPI). 2020, pp. 210–
214. DOI: 10.1109/IICSPI51290.2020.9332458.

[19] Jolliffe, Ian T. and Cadima, Jorge. “Principal component analysis: A review and
recent developments”. In: Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 374.2065 (2016), pp. 1–16.
DOI: 10.1098/rsta.2015.0202.

67

https://doi.org/https://doi.org/10.1002/meet.14505001059
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.14505001059
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.14505001059
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/meet.14505001059
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/meet.14505001059
https://elvenite.se/om-oss/om-oss
https://huggingface.co/
https://medium.com/@fatmafatma/industrial-applications-of-topic-model-100e48a15ce4
https://medium.com/@fatmafatma/industrial-applications-of-topic-model-100e48a15ce4
https://medium.com/@fatmafatma/industrial-applications-of-topic-model-100e48a15ce4
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://pypi.org/project/gensim/
https://doi.org/10.1073/pnas.0307752101
https://www.pnas.org/doi/pdf/10.1073/pnas.0307752101
https://www.pnas.org/doi/pdf/10.1073/pnas.0307752101
https://www.pnas.org/doi/abs/10.1073/pnas.0307752101
https://www.pnas.org/doi/abs/10.1073/pnas.0307752101
https://doi.org/https://doi.org/10.1016/j.jvlc.2010.08.002
https://doi.org/https://doi.org/10.1016/j.jvlc.2010.08.002
https://www.sciencedirect.com/science/article/pii/S1045926X10000431
https://www.sciencedirect.com/science/article/pii/S1045926X10000431
https://doi.org/10.1109/IICSPI51290.2020.9332458
https://doi.org/10.1098/rsta.2015.0202

BIBLIOGRAPHY

[20] Kalepalli, Yaswanth, Tasneem, Shaik, Phani Teja, Pasupuleti Durga, andManne,
Suneetha. “Effective Comparison of LDA with LSA for Topic Modelling”. In:
2020 4th International Conference on Intelligent Computing and Control
Systems (ICICCS). 2020, pp. 1245–1250. DOI: 10.1109/ICICCS48265.2020.
9120888.

[21] Kersten, Mik andMurphy, Gail C. “Using Task Context to Improve Programmer
Productivity”. In: Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. SIGSOFT ’06/FSE-14.
Portland, Oregon, USA: Association for Computing Machinery, 2006, pp. 1–11.
ISBN: 1595934685. DOI: 10.1145/1181775.1181777. URL: https://doi.org/
10.1145/1181775.1181777.

[22] Laravel. Laravel. 2022. URL: https://laravel.com/ (visited on 05/17/2022).

[23] Laravel. Laravel Artisan. 2022. URL: https : / / laravel . com / docs / 9 . x /
artisan (visited on 05/17/2022).

[24] Laravel. Laravel Chart. 2022. URL: https://v6.charts.erik.cat/getting_
started.html#why-a-laravel-library (visited on 05/17/2022).

[25] Laravel. Laravel Eloquent Documentation. 2022. URL: https://laravel.com/
docs/9.x/eloquent (visited on 05/17/2022).

[26] Laravel. Laravel Forge. 2022. URL: https://forge.laravel.com/ (visited on
05/17/2022).

[27] Laravel. Laravel Mail Facade. 2022. URL: https://laravel.com/docs/9.x/
mail (visited on 05/17/2022).

[28] Liu, Chang, Liu, Jingjing, Cole, Michael, Belkin, Nicholas J., and Zhang,
Xiangmin. “Task difficulty and domain knowledge effects on information search
behaviors”. In: Proceedings of the American Society for Information Science
and Technology 49.1 (2012), pp. 1–10. DOI: https://doi.org/10.1002/meet.
14504901142. eprint: https://asistdl.onlinelibrary.wiley.com/doi/pdf/
10.1002/meet.14504901142. URL: https://asistdl.onlinelibrary.wiley.
com/doi/abs/10.1002/meet.14504901142.

[29] Liu, Haibin, Christiansen, Tom, Baumgartner Jr, William, and Verspoor,
Karin. “BioLemmatizer: A lemmatization tool for morphological processing of
biomedical text”. In: Journal of biomedical semantics 3 (Apr. 2012), p. 3. DOI:
10.1186/2041-1480-3-3.

[30] Livsmedelifokus. Livsmedelifokus - om oss. 2022. URL: https : / / www .
livsmedelifokus.se/om/ (visited on 05/10/2022).

[31] Livsmedelsnyheter. Livsmedelsnyheter - om oss. 2022. URL: https : / / www .
livsmedelsnyheter.se/om-livsmedelsnyheter/ (visited on 05/10/2022).

[32] Lu, Yihan, Hsiao, I-Han, and Li, Qi. “Exploring Online Programming-Related
Information Seeking Behaviors via Discussion Forums”. In: 2016 IEEE 16th
International Conference on Advanced Learning Technologies (ICALT). 2016,
pp. 283–287. DOI: 10.1109/ICALT.2016.63.

68

https://doi.org/10.1109/ICICCS48265.2020.9120888
https://doi.org/10.1109/ICICCS48265.2020.9120888
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1181775.1181777
https://laravel.com/
https://laravel.com/docs/9.x/artisan
https://laravel.com/docs/9.x/artisan
https://v6.charts.erik.cat/getting_started.html#why-a-laravel-library
https://v6.charts.erik.cat/getting_started.html#why-a-laravel-library
https://laravel.com/docs/9.x/eloquent
https://laravel.com/docs/9.x/eloquent
https://forge.laravel.com/
https://laravel.com/docs/9.x/mail
https://laravel.com/docs/9.x/mail
https://doi.org/https://doi.org/10.1002/meet.14504901142
https://doi.org/https://doi.org/10.1002/meet.14504901142
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.14504901142
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/meet.14504901142
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/meet.14504901142
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/meet.14504901142
https://doi.org/10.1186/2041-1480-3-3
https://www.livsmedelifokus.se/om/
https://www.livsmedelifokus.se/om/
https://www.livsmedelsnyheter.se/om-livsmedelsnyheter/
https://www.livsmedelsnyheter.se/om-livsmedelsnyheter/
https://doi.org/10.1109/ICALT.2016.63

BIBLIOGRAPHY

[33] Lutkevich, Ben. BERT language model. 2020. URL: https://www.techtarget.
com / searchenterpriseai / definition / BERT - language - model (visited on
05/22/2022).

[34] Milano, Silvia, Taddeo, Mariarosaria, and Floridi, Luciano. “Recommender
Systems and their ethical challenges”. In: AI & SOCIETY 35.4 (2020), pp. 957–
967. DOI: 10.1007/s00146-020-00950-y.

[35] Murphy, Gail. “Attacking information overload in software development”. In:
2009 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 2009, pp. 4–4. DOI: 10.1109/VLHCC.2009.5295312.

[36] Nichols, James A., Herbert Chan, Hsien W., and Baker, Matthew A. “Machine
learning: Applications of artificial intelligence to imaging and diagnosis”. In:
Biophysical Reviews 11.1 (2018), pp. 111–118. DOI: 10.1007/s12551-018-0449-
9.

[37] NLTK. NLTK. 2022. URL: https://www.nltk.org/ (visited on 05/16/2022).

[38] O’Brien, M.P. and Buckley, J. “Modelling the information-seeking behaviour of
programmers - an empirical approach”. In: 13th International Workshop on
Program Comprehension (IWPC’05). 2005, pp. 125–134. DOI: 10.1109/WPC.
2005.24.

[39] Oates, Briony J.,
Griffiths, Marie, and McLean, Rachel. Researching Information Systems and
computing. SAGE, 2022.

[40] Ortiz, Marco A., Kurvers, Stanley R., and Bluyssen, Philomena M. “A review of
comfort, health, and energy use: Understanding daily energy use and wellbeing
for the development of a new approach to study comfort”. In: Energy and
Buildings 152 (2017), pp. 323–335. ISSN: 0378-7788. DOI: https://doi.org/
10.1016/j.enbuild.2017.07.060. URL: https://www.sciencedirect.com/
science/article/pii/S0378778816319089.

[41] Perera, Nadeesha, Dehmer, Matthias, and Emmert-Streib, Frank.
“Named entity recognition and relation detection for Biomedical Information
Extraction”. In: Frontiers in Cell and Developmental Biology 8 (2020). DOI:
10.3389/fcell.2020.00673.

[42] Prabhakaran, Selva. Cosine Similarity – Understanding the math and how it
works (with python codes). 2018. URL: https://www.machinelearningplus.
com/nlp/cosine-similarity/ (visited on 05/22/2022).

[43] Python. Python DataFrame. 2022. URL: https://pandas.pydata.org/docs/
reference/api/pandas.DataFrame.html (visited on 05/15/2022).

[44] Qader, Wisam A., Ameen, Musa M., and Ahmed, Bilal I. “An Overview of Bag
ofWords;Importance, Implementation, Applications, and Challenges”. In: 2019
International Engineering Conference (IEC). 2019, pp. 200–204. DOI: 10 .
1109/IEC47844.2019.8950616.

69

https://www.techtarget.com/searchenterpriseai/definition/BERT-language-model
https://www.techtarget.com/searchenterpriseai/definition/BERT-language-model
https://doi.org/10.1007/s00146-020-00950-y
https://doi.org/10.1109/VLHCC.2009.5295312
https://doi.org/10.1007/s12551-018-0449-9
https://doi.org/10.1007/s12551-018-0449-9
https://www.nltk.org/
https://doi.org/10.1109/WPC.2005.24
https://doi.org/10.1109/WPC.2005.24
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.07.060
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.07.060
https://www.sciencedirect.com/science/article/pii/S0378778816319089
https://www.sciencedirect.com/science/article/pii/S0378778816319089
https://doi.org/10.3389/fcell.2020.00673
https://www.machinelearningplus.com/nlp/cosine-similarity/
https://www.machinelearningplus.com/nlp/cosine-similarity/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://doi.org/10.1109/IEC47844.2019.8950616
https://doi.org/10.1109/IEC47844.2019.8950616

BIBLIOGRAPHY

[45] Ramsri, Goutham. Simple abstractive
text summarization with pre-trained T5 Text-To-Text Transfer Transformer.
2020. URL: https://towardsdatascience.com/simple-abstractive-text-
summarization-with-pretrained-t5-text-to-text-transfer-transformer-
10f6d602c426 (visited on 05/02/2022).

[46] Selenium. Selenium. 2022. URL: https : / / www . selenium . dev/ (visited on
05/15/2022).

[47] Shin, Kilho, Ishikawa, Taichi, Liu, Yu-Lu, and Shepard, David Lawrence.
“Learning DOM Trees of Web Pages by Subpath Kernel and Detecting Fake e-
Commerce Sites”. In:Machine Learning and Knowledge Extraction 3.1 (2021),
pp. 95–122. ISSN: 2504-4990. DOI: 10.3390/make3010006. URL: https://www.
mdpi.com/2504-4990/3/1/6.

[48] Srivastava, Ridam, Singh, Prabhav, Rana, K.P.S., and Kumar, Vineet. “A
topic modeled unsupervised approach to single document extractive text
summarization”. In: Knowledge-Based Systems 246 (2022), p. 108636. ISSN:
0950-7051. DOI: https : / / doi . org / 10 . 1016 / j . knosys . 2022 . 108636.
URL: https : / / www . sciencedirect . com / science / article / pii /
S0950705122002878.

[49] Stanza. Stanza. 2022. URL: https : / / stanfordnlp . github . io / stanza /
pipeline.html#basic-example (visited on 05/15/2022).

[50] Statista. Revenues from the natural language processing (NLP) market
worldwide from 2017 to 2025. 2020. URL: https : / / www . statista . com /
statistics / 607891 / worldwide - natural - language - processing - market -
revenues/#:~:text=The%5C%20NLP%5C%20market%5C%20is%5C%20predicted,
interpret%5C%20and%5C%20manipulate%5C%20human%5C%20language. (visited
on 05/22/2022).

[51] Sun, Wenlong, Nasraoui, Olfa, and Shafto, Patrick. “Evolution and impact of
bias in human andmachine learning algorithm interaction”. In: PLOSONE 15.8
(2020). DOI: 10.1371/journal.pone.0235502.

[52] Svensson, Karin and Blad, Johan. Exploring NMF and LDA Topic Models of
Swedish News Articles. 2020.

[53] Widyassari, Adhika Pramita, Rustad, Supriadi, Shidik,
Guruh Fajar, Noersasongko, Edi, Syukur, Abdul, Affandy, Affandy, and Setiadi,
De Rosal Ignatius Moses. “Review of automatic text summarization techniques
& methods”. In: Journal of King Saud University - Computer and Information
Sciences 34.4 (2022), pp. 1029–1046. ISSN: 1319-1578. DOI: https://doi.org/
10.1016/j.jksuci.2020.05.006. URL: https://www.sciencedirect.com/
science/article/pii/S1319157820303712.

[54] Zoetekouw, K.F.A. A critical analysis of the negative consequences caused by
recommender systems used on social media platforms. July 2019. URL: http:
//essay.utwente.nl/78500/.

70

https://towardsdatascience.com/simple-abstractive-text-summarization-with-pretrained-t5-text-to-text-transfer-transformer-10f6d602c426
https://towardsdatascience.com/simple-abstractive-text-summarization-with-pretrained-t5-text-to-text-transfer-transformer-10f6d602c426
https://towardsdatascience.com/simple-abstractive-text-summarization-with-pretrained-t5-text-to-text-transfer-transformer-10f6d602c426
https://www.selenium.dev/
https://doi.org/10.3390/make3010006
https://www.mdpi.com/2504-4990/3/1/6
https://www.mdpi.com/2504-4990/3/1/6
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108636
https://www.sciencedirect.com/science/article/pii/S0950705122002878
https://www.sciencedirect.com/science/article/pii/S0950705122002878
https://stanfordnlp.github.io/stanza/pipeline.html#basic-example
https://stanfordnlp.github.io/stanza/pipeline.html#basic-example
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/#:~:text=The%5C%20NLP%5C%20market%5C%20is%5C%20predicted,interpret%5C%20and%5C%20manipulate%5C%20human%5C%20language.
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/#:~:text=The%5C%20NLP%5C%20market%5C%20is%5C%20predicted,interpret%5C%20and%5C%20manipulate%5C%20human%5C%20language.
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/#:~:text=The%5C%20NLP%5C%20market%5C%20is%5C%20predicted,interpret%5C%20and%5C%20manipulate%5C%20human%5C%20language.
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/#:~:text=The%5C%20NLP%5C%20market%5C%20is%5C%20predicted,interpret%5C%20and%5C%20manipulate%5C%20human%5C%20language.
https://doi.org/10.1371/journal.pone.0235502
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.05.006
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.05.006
https://www.sciencedirect.com/science/article/pii/S1319157820303712
https://www.sciencedirect.com/science/article/pii/S1319157820303712
http://essay.utwente.nl/78500/
http://essay.utwente.nl/78500/

Appendix A

List of stop words

aderton adertonde adjö
aldrig all allra alla allas allt
alltid alltså andra andras
annan annat artonde ar-
tonn att av bakom bara be-
höva behövas behövde be-
hövt beslut beslutat beslu-
tit bland blev bli blir blivit
borde bort borta bra bäst
bättre båda bådas både dag
dagar dagarna dagen de
del delen dem den denna
deras dess dessa det detta
dig din dina dit ditt dock
dom du där därför då efter
eftersom elfte eller elva en
enkel enkelt enkla enligt
er era ert ett ettusen fall
fanns fast fem femte fem-
tio femtionde femton fem-
tonde fick fin finnas finns
fjorton fjortonde fjärde fler
flera flesta fram framför
från fyra fyrtio fyrtionde
få får fått följande för före
förlåt förra första ge genast
genom ger gick gjorde gjort
god goda godare godast
gott gälla gäller gällt gärna
gå gång går gått gör göra

ha hade haft han hans
har hela heller hellre helst
helt henne hennes heter
hit hjälp hon honom hun-
dra hundraen hundraett
hur här hög höger högre
högst i ibland idag igen
igår imorgon in inför inga
ingen ingenting inget in-
nan inne inom inte inuti
ja jag jämfört kan kanske
knappast kolla komkomma
kommer kommit kr kunde
kunna kunnat kvar kör
legat ligga ligger lika lik-
ställd likställda lilla lite
liten litet lägga länge län-
gre längst lätt lättare lät-
tast långsam långsammare
långsammast långsamt
långt manmedmellan men
menar mer mera mest mig
min mina mindre minst
mitt mittemot mot my-
cket många måste möjlig
möjligen möjligt möjligtvis
ned nederst nedersta ne-
dre nej ner ni nio nionde
nittio nittionde nitton nit-
tonde nog noll nr nu num-

mer när nästa någon nå-
gonting något några nån
nåt nödvändig nödvändiga
nödvändigt nödvändigtvis
och också ofta oftast olika
olikt om oss på rakt redan
rätt sade sagt samma samt
sedan sen senare senast
sent sex sextio sextionde
sexton sextonde sig sin sina
sist sista siste sitt sju sjunde
sjuttio sjuttionde sjutton
sjuttonde själv sjätte ska
skall skulle slutligen små
smått snart som stor stora
stort står större störst säga
säger sämre sämst sätt så ta
tack tar tidig tidigare tidi-
gast tidigt till tills tillsam-
mans tio tionde tjugo tju-
goen tjugoett tjugonde tju-
gotre tjugotvå tjungo tolfte
tolv tre tredje trettio tret-
tionde tretton trettonde tro
tror två tvåhundra under
upp ur ursäkt ut utan utan-
för ute vad var vara varför
varifrån varit varje varken
varsågod vart vem vems
verkligen vet vi vid vidare

71

APPENDIX A. LIST OF STOPWORDS

viktig viktigare viktigast
viktigt vilka vilken vilket
vill visst väl vänster vän-

stra värre vår våra vårt än
ändå ännu är även åtmin-
stone åtta åttio åttionde

åttonde över övermorgon
överst övre nya procent ser
skriver tog året

72

	Introduction
	Motivation
	Problem Description
	Thesis Goal
	Ethics and Sustainability
	Methodology
	Building the prototype
	Evaluation

	Stakeholders
	Delimitations
	Outline

	Background
	Natural language processing
	Text summarization
	Extractive vs abstractive
	TF-IDF
	Multi- vs single document

	Topic modelling
	Latent Dirichlet Allocation

	Evaluation techniques
	Topic model
	Article relevance scoring

	Related Work

	Methodology
	Overview
	Scrape data
	Data sources
	Data pre-processing

	Update model
	Enhancing the topics

	Profile articles
	Summarize texts
	Present to user
	Update user profile
	Normalizing distribution values
	Answer weighting
	Reducing importance progressively

	Implementation
	Running the pipeline
	Setup
	Scrape data
	Data pre-processing

	Update model
	Profile articles
	Update user profile
	Summarize texts
	Present to user
	Login
	Home page
	Predictions
	Explore
	Database
	Notifying users

	Evaluation and Results
	Study protocol
	Evaluation
	LDA model
	Topics
	User profile
	Article profile
	Summarized text

	Results
	Number of data points
	Prediction relevance threshold
	Results based on threshold
	Text summarizer evaluation
	Problems

	Discussion
	Contribution
	Problems
	Implementation of ML models
	Swedish models
	Articles
	Evaluation

	Future work
	Organisation names
	More news sources
	Abstractive text summarizer
	Extended evaluation

	Experience

	Conclusions
	References
	List of stop words

