Multipath transport protocol
offloading

Rebecka Alfredsson beckaalfredsson@hotmail.com

Faculty of Health, Science and Technology

Master thesis in Computer Science

Second Cycle, 30 hp (ECTS)

Supervisor: Prof. Dr. Andreas Kassler, andreas.kassler@kau.se

Examiner: Dr. Per Hurtig, per.hurtig@kau.se

Karlstad, 2022-06-20

Abstract

Recently, we have seen an evolution of programmable network devices, where it is
possible to customize packet processing inside the data plane at an unprecedented level.
This is in contrast to traditional approaches, where networking device functionality is
fixed and defined by the ASIC and customers need to wait possibly years before the
vendors release new versions that add features required by customers. The vendors in
the industry have adapted and the focus has shifted to offering new types of network
devices, such as the SmartNIC, IPU, and DPU. Another major paradigm shift in
the networking area is the shift towards protocols that encrypt parts of headers and
contents of packets such as QUIC. Also, many devices such as smart phones have
support for multiple access networks, which requires efficient multipath protocols to
leverage the capabilities of multiple networks at the same time.

However, when using protocols inside the network that requires encryption such as
QUIC or multipath QUIC, packet processing operations for the en/decryption process
are very resource intensive. Consequently, network vendors and operators are in need
to accelerate and offload crypto operations to dedicated hardware in order to free CPU
cycles for business critical operations. Therefore, the aim of this study is to investigate
how multipath QUIC can be offloaded or hardware accelerated in order to reduce the
CPU utilization on the server.

Our contributions are an evaluation of frameworks, programming languages and
hardware devices in terms of crypto offloading functionality. Two packet processing
offloading prototypes were designed using the DPDK framework and the programming
language P4. The design using DPDK was implemented and evaluated on a BlueField
2 DPU. The offloading prototype handles a major part of the packet processing and the
crypto operations in order to reduce the load of the user application running on the
host. A evaluation show that the throughput when using larger keys are only slightly
decreased. The evaluation gives important insights in the need of crypto engines
and/or CPUs with high performance when offloading.

Keywords
QUIC, multipath, hardware offloading, DPDK, crypto, DPU

iii

Sammanfattning

Nyligen har vi sett en utveckling av programmerbara nitverkskort, dar det ar mojligt
att anpassa paketbehandling inuti dataplanet pa en niva aldrig tidigare skadad.
Detta stér i kontrast till traditionella metoder, dar funktionaliteten i natverkskort ar
definierad av ASIC och kunderna maste vanta eventuellt i ar innan leverantorerna
slapper nya versioner som lagger till funktioner som kravs. Leverantorernaibranschen
har anpassat sig och fokus har flyttats till att erbjuda nya typer av natverkskort, sasom
SmartNIC, IPU och DPU. Ett annat stort paradigmskifte i natverksomradet ar skiftet
mot protokoll som krypterar delar av packetinnehéllet i paket som QUIC. Manga
enheter som smarta telefoner har ocksa stod for flera natverk, vilket kraver effektiva
flervagsprotokoll for att utnyttja funktionerna i flera natverk samtidigt.

Men nar protokoll i natverket som kraver kryptering som QUIC eller multipath QUIC
anvands ar paketbearbetningen for kryptera och avkryptera mycket resurskravande.
Nitverksleverantorer och operatorer ar i behov av att paskynda och avlasta
kryptooperationer till dedikerad hardvara for att frigora CPU-cykler for andra kritiska
operationer. Syftet med denna studie ar darfor att undersoka hur multipath QUIC
kan avlastas eller accelereras med hardvara for att minska CPU-anvindningen pa
servern.

Véra bidrag ar en utvardering av ramverk, programmeringssprak och hardvaruenheter
nar det giller kryptoavlastningsfunktionalitet. =~ Tva prototyper for att avlasta
paketbearbetning designades med DPDK-ramverket och programmeringsspraket P4.
Designen med DPDK implementerades och utvirderades pa en BlueField 2 DPU.
Den avlastande prototypen hanterar en storre delen av paketbehandlingen och
kryptooperationerna for att minska belastningen av anvandarprogrammet for CPUn.
En utvardering visar att det datafléde som anvander storre krypteringsnycklar bara har
nagot minskad flodeshastighet. Anvandning av avlastningsprogrammet ger minskad
flodeshastighet jamfort med obearbetade paket. Utvarderingen ger viktiga insikter
om behovet av hardvarustod for kryptooperationer och/eller processorer med hog
kapacitet vid avlastning.

Nyckelord

QUIC, multipath, avlastning med harvara, DPDK, krypto, DPU

v

Acknowledgements

I want to thank my supervisors Michael Eriksson and Zaheduzzaman Sarker
at Ericsson Research for their support, motivation, curiosity, and constant
engagement.

I would also like to thank Leif Johansson and Martin Julien at Ericsson for providing
me with hardware equipment and knowledge necessary for this project.

Lastly, I would also like to thank my supervisor at Karlstad University Prof. Andreas
Kassler for his support, valuable insights, and for introducing me to the computer
networking research.

Acronyms

AEAD Authenticated Encryption with Associated Data
AES-GCM Advanced Encryption Standard - Galois Counter Mode
AES-CCM Advanced Encryption Standard - CBC counter mode
AES-NI Advanced Encryption Standard New Instructions
ASIC Application-Specific Integrated Circuit

CPU Central Processing Unit

DCCP Datagram Congestion Control Protocol

DPDK Data Plane Development Kit

DPU Data Processing Unit

DUT Device Under Test

EAL Environment Abstraction Layer

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

HTTPS Hypertext Transfer Protocol Secure

IETF Internet Engineering Task Force

IPDK Infrastructure Programmer Development Kit
IPSec Internet Protocol Security

IPU Infrastructure Processing Unit

v Initialization Vector

MAC Media Access Control

MPTCP Multipath Transmission control protocol

NIC Network Interface Card

(01 Operating System
P4 Programming Protocol-independent Packet Processors
PCle Peripheral Component Interconnect Express

PMD Poll Mode Driver

RPC Remote Procedure Call

SDK Software Development Kit

SoC System on a Chip

SPDK Storage Performance Development Kit
TCP Transmission control protocol

TLS Transport Layer Security

UDP User Datagram Protocol

Contents

1 Introduction
1.1 OVerview e e e e e e e e e e e e e
1.2 Problem Description
1.3 ThesisGoals e

1.4
1.5
1.6
1.7
1.8

Ethics and Sustainability
Methodology
Stakeholders
Delimitations
Outline

Background and Related Work

2.1

2.2

2.3

2.4

QUIC
2.1.1 QUIC Overview
2.1.2 QUIC Encryption.
213 MultipathQUIC.

....................

....................

....................

....................

Frameworks and Programming Languages
2.2.1 Data Plane Development Kit (DPDK)

222 P4 ...

2.2.3 Infrastructure Programmer Development Kit (IPDK)

224 DOCA.

....................

2.2.5 Hardware Description Language

Programmable Networking Hardware
231 SmartNIC
232 DPU.
233 IPU
234 FPGA
Related Work
241 QUIC Offloading
242 IPSecoffloading

Design of offloading application

3.1

Framework and hardware selection
311 Frameworks
3.1.2 DPDK crypto offload drivers

....................

....................

....................

OO b B, DMNOW-aa=

o OO

11
11
12
13
14
14
14
15
15
15
15
16
16
17

18
18
18
19

CONTENTS

6

313 Hardware e
3.2 Designoverview e e e e e
3.2.1 Packetformatdesign,
3.3 Offload application design usingDPDK
3.3.1 Dataplanedesign
3.3.2 Encryption e
3.3.3 Controlplanedesign
3.4 Offload application designusingP4
341 Pdparserdesign.
3.4.2 P4 match-action pipelinedesign
3.4.3 P4ddesigncontrolplane

Implementation

4.1 Initialization e

42 Dataplane e e e e

4.3 Controlplane e e e

44 Generatingtestcases
441 Generatingtableentries.,
442 Generatingpackets

Evaluation and Result

51 Testbed e
5.2 Offloading application evaluation
5.3 DPDK supported crypto device benchmarks
54 OpenSSLbenchmark

Conclusions and Future Work

References

viii

Chapter 1

Introduction

In this chapter an overview is given of the evolution of both transport layer protocols as
well as hardware devices for networking. This evolution which has led to an increased
interest in offloading and hardware acceleration is described. The problem description,
and goal of the thesis is then discussed followed by the ethical concerns and impacts
on sustainability. The methodology, stakeholders, delimitation and finally the outline
of the thesis is presented.

1.1 Overview

For along time, Transmission control protocol (TCP) has been the most used transport
layer protocol on the Internet [24]. TCP offers features such as reliability, congestion
control, and also security together with the cryptographic protocol Transport Layer
Security (TLS). Since the beginning of Internet, computer advancement has increased
drastically. The amount of different network devices and the computing power has
evolved. As this evolution has occurred, TCP has still been the de facto standard
transport layer protocol since it was first developed in 1974.

In 2012 [1] the development started of the transport layer protocol QUIC, and was
later submitted to Internet Engineering Task Force (IETF) working group in 2016
and got standardized in RFC9o00 [22]. QUIC offers similar features as TCP with
TLS, but with different implementations, to better suit today’s Internet and be more
adaptable to changes. The fast adaptability is one of the key goals of QUIC, which has
led to QUIC being implemented in the user-space, compared to many other transport
protocols, such as TCP, which are implemented in the Operating System (OS) kernel.
By implementing protocols in the OS, changes often take long time since users could
be many years behind in OS upgrades. QUIC uses Frames, further described in section
2.1.1, which allows people and companies the possibility to extend QUIC according to
their own requirements. Examples of QUIC extension frames are datagram frames
[38], used for sending and receiving unreliable datagrams, and ACK_MP frames [31],
used in multipath QUIC for sending ACK packets when multiple packet number spaces

1

CHAPTER 1. INTRODUCTION

are used.

In the beginning of the Internet, devices were communicating to each other by being
connected with a fixed network. These devices also often only used one network
interface. Today, there is a significant shift towards utilizing the resources of multiple
paths and access networks available between two communicating peers. Many devices
are multi-homed, mobile phones can use Wi-Fi and mobile network interfaces such
as 3G, 4G, and 5G. However, many of the common transport layer protocols still only
utilize a single network interface. Multipath Transmission control protocol (MPTCP)
got standardized in RFC6824 [15] and quickly got adopted by Apple’s Iphone voice
recognition application Siri, Apple Maps and Apple Music [4]. The use of MPTCP
increased the performance and seamless handover between the Wi-Fi and cellular
network. There are also ongoing work to extend the Datagram Congestion Control
Protocol (DCCP) protocol into multipath DCCP [2], to support more latency sensitive
protocols that do not require reliable communication. The work of extending the
protocol QUIC with multipath capabilities has already begun [31].

Hardware used for networking have also been evolving continuously, since the
beginning of the Internet. For example, TCP accelerators are used to make TCP better
suit today’s Internet where speed is of high importance [37]. However, many of these
devices are traditionally fixed-function, which means that the manufacturers decides
which functionality the device should support. If protocols on the Internet are modified
or new protocols are being deployed, these fixed-function might need to be updated
or replaced [5]. However, the need to buy devices to adapt to changes are expensive.
A solution to this problem is the ability to program network devices. An evolution
has occurred from fixed function devices programmed by the vendors, devices that
can be programmed by developers such as Smart Network Interface Card (NIC), Data
Processing Unit (DPU) and Infrastructure Processing Unit (IPU). With these new
programmable devices, the user can implement specific desired network behaviours
directly inside the data plane of the network. Such initiatives have their origin from
data center operators, where programmable networking equipment can be used to
adapt their operation to suit its specific needs.

A new use case with SmartNICs, DPUs, and IPUs is to implement functionality in these
devices in order to offload packet processing tasks from the Central Processing Unit
(CPU). This method is called hardware offloading and the specific packet processing
functionality is executed in these hardware devices directly instead of on the CPU.
Some examples of hardware offloading is using graphics cards for tasks such as gaming,
machine learning, and cryptocurrency mining [29]. The load of the CPU can also be
decreased by using accelerating software or hardware. Software acceleration, such
as Advanced Encryption Standard New Instructions (AES-NI), implements a special
instructions set for x86 processors which are used to increase performance. By using
AES-NI the implementation using AES can improve the speed by a factor of 3 to 10 [40].
Hardware acceleration can be integrated in multiple ways on the device, for example
into the System on a Chip (SoC) as an separate processor or core, in a coprocessor

2

CHAPTER 1. INTRODUCTION

on the circuit board, or on a chip connected to the main board by the Peripheral
Component Interconnect Express (PCle) bus [7]. Crypto libraries, such as gnutls or
openSSL, can be used for accessing the cryptographic hardware accelerator in user
space.

1.2 Problem Description

Since QUIC aims to be a competitor to TCP and become a commonly used transport
layer protocol, the disadvantages of the protocol need to be taken into account and
managed. One of the major disadvantages that affects QUIC is the heavy CPU
utilization that occurs during crypto operation which is inherited from the TLS
protocol. Measurements [46] of different QUIC implementations have shown that the
crypto operations can be responsible for up to 40 percent of the CPU utilization per
connection. The Authenticated Encryption with Associated Data (AEAD) encryption
and decryption stand for 75-80 percent of the crypto operations, which is stateless
functions. The hypothesis is that this functionality could benefit from being offloaded
from the CPU to the NIC data plane. The measurements also showed that packet I/O
can be responsible for 40 percent of the CPU usage. By offloading most of the packet
processing to the NIC or use kernel-bypass, the CPU usage for packet processing can
be decreased and CPU cycles that are freed due to the offloading could be re-used for
other tasks on the server. Such offloading should be beneficial for both QUIC and its
multipath variant multipath QUIC.

The main question this thesis aims to answer is:

How can different functions of multipath QUIC packet processing be offloaded from
the CPU or accelerated with hardware?

1.3 Thesis Goals

In order to answer the above research question, this thesis makes several contributions
in order to achieve the following goals. The first goal of this degree project is
to investigate and scout what frameworks, programming languages and hardware
are available for offloading and/or accelerating multipath QUIC packet processing
operations. Since the programmability of network devices is a fairly new concept, the
maturity of the tools and devices also need to be investigated before being used.

The second goal for the degree project is to select a framework or programming
language and a hardware device to implement a prototype for offloading crypto and
parts of the packet processing of multipath QUIC. Depending on the tool and device
selected, hardware acceleration might be supported.

The final goal is to develop a testbed and measurement setup that can be used to
evaluate the performance that can be achieved when offloading packet processing
functionality.

CHAPTER 1. INTRODUCTION

1.4 Ethics and Sustainability

This project will not contain any ethical issues. No individual data including sensitive
personal data are collected and no trade secrets are discussed.

By offloading CPU heavy tasks, such as the encryption of QUIC, to dedicated hardware
instead of the CPU aresult can be that the energy consumption is reduced which would
aid sustainability. Hardware offloading also frees the processor which then could be
used for other business critical tasks, that would otherwise be scheduled and performed
later, which also results in better energy efficiency.

1.5 Methodology

First, this degree project will start by an investigation phase, where the goal is to scout
and find which different kind of frameworks or programming languages that support
implementing AEAD crypto offload or acceleration for multipath QUIC. The hardware
devices that support this will also need to be investigated. This step will require
much reading and contacting people, both within and outside the organization for
information that is unavailable online. Choosing a feasible framework or programming
language for this project is more important than hardware, which is the reason why the
hardware decision is of lower priority. In order to make these decisions, a comparison
of the maturity and features has to be done.

The final step is to generate design concepts of the feasible solutions from the previous
step. One of these solutions is selected and implemented with the chosen hardware.
The prototype is lastly evaluated where throughput is first investigated using different
packet and key sizes, and then the latency at different sending rates. Depending
on which hardware becomes accessible, a benchmark will be made to measure the
throughput of different crypto engines. If other benchmarks related to the project are
available, they will be evaluated.

1.6 Stakeholders

This project is hosted by Ericsson Research, which is a department of the multinational
company Ericsson. Ericsson operates within telecommunication networks, cloud
software and services, and emerging businesses [14]. This degree project is beneficial
for Ericsson Research, due to multiple reasons. This project enlightens a use case
with the chosen framework or programming language and hardware device, as well as
multipath QUIC which is still under development and has a working-group at Ericsson.
It is also beneficial for Ericsson due to the results the investigation phase provides.
This project is useful to gain information of the current states of the frameworks
investigated since they are under development. This project provides information of
the maturity of the frameworks and what features are supported at the time of drafting
this thesis.

CHAPTER 1. INTRODUCTION

1.7 Delimitations

In this degree project, parts of the packet processing using multipath QUIC will be
implemented in the prototype. The packets will be sent only in the 1-RTT format,
which exclude some QUIC packet types. In these packets, for example the Initial
and Handshake packets is where parts of the crypto is performed, such as the TLS
1.3 handshake and key derivation. The evaluation of the prototype will focus on
AEAD_AES_128 GCM and AEAD_AES_256_GCM for the AEAD algorithms, and not
AEAD_CHACHA20_POLY1305 or AEAD_AES_128_CCM due to AES_GCM being
the most commonly used crypto algorithms [17]. The evaluations of the prototype will
be measured in single experiments, due to time constraints. Therefore, no average or
standard deviation will be included in the evaluation, which might have resulted in
more accurate measurements.

1.8 Outline

This thesis is structured as follows. In Chapter 2, the necessary background needed
to understand multipath QUIC is provided. The thesis continues with presenting
different frameworks, programming languages and hardware devices which could be
used for hardware offloading and/or acceleration. Lastly in Chapter 2, the related work
is presented. In Chapter 3, the design selection is discussed followed by a design of the
offloading application prototype using Data Plane Development Kit (DPDK), as well as
for an alternative Programming Protocol-independent Packet Processors (P4) design
is given. In Chapter 4, implementation details are presented for the prototype design
using DPDK. In Chapter 5, the test bed is illustrated followed by the evaluation of the
prototype and benchmarks using DPDK crypto device drivers and OpenSSL. Finally,
in chapter 6, concludes the thesis and describes future work.

Chapter 2

Background and Related Work

In this chapter, the background necessary for understanding this project is presented
together with previous related work. Section 2.1 presents the transport layer protocol
QUIC and the multipath extension multipath QUIC, which is used in this project. The
frameworks DPDK, Infrastructure Programmer Development Kit (IPDK), and DOCA,
and programming languages P4 and Hardware Description Language (HDL) are then
presented in section 2.2 followed by the hardware devices SmartNIC, IPU, DPU, and
Field Programmable Gate Array (FPGA) in section 2.3. Section 2.4 presents different
previous work this thesis is based upon.

21 QUIC

In this section, the transport layer protocol QUIC is presented followed by a more
detailed description of the encryption and multipath capabilities.

2.1.1 QUIC Overview

QUIC [1] is a transport layer network protocol, which first was developed by Google
in 2012 by the name gQUIC and with the main goal to improve Hypertext Transfer
Protocol Secure (HTTPS) in Chromium compared to using TCP with TLS. QUIC is an
alternative protocol to TCP with TLS. IETF started working on QUIC and standardized
it in May 2021 in RFC9000 [22].

QUIC packets have different formats depending on the state of the communications.
QUIC packets are divided into those having long headers (Version negotiation, Inital, o-
RTT, Handshake, and Retry packets) and short header (1-RTT packets). In this degree
project only 1-RTT packets will be used. A generic 1-RTT packet structure can be seen
in figure 2.1.1, where the size in bytes for each field can be seen in the parentheses. The
flags, destination connection ID, and packet number fields are considered the QUIC
header. A 1-RTT packet contains one or more frames, which is sent in the payload
of the packet. The frames are used to send different types of data, and uses specific

6

CHAPTER 2. BACKGROUND AND RELATED WORK

types depending on the purpose. These types can for example be Stream, Ack, or
Crypto. At the handshake of a connection between two peers, transport parameters
are exchanged. These parameters are used for setting the rules for the communication,
for example the initial maximum data, maximum acknowledgment delay, and initial
maximum unidirectional streams.

Destination Connection 1D Pack number

i (1 i (1..20) (1..4) (1..)

Figure 2.1.1: Generic 1-RTT packet format

QUIC [22] is encapsulated in User Datagram Protocol (UDP) datagrams and the
default UDP destination port used by the server is port 443, which is assigned to
HTTPS traffic. One design goal of QUIC is the fast connection setup. If two peers
have communicated before, 0-RTT connection setup could be used. The handshake
and data are then sent together. If the peers do not send 0-RTT packets, the data is
sent after the handshake in 1-RTT packets.

QUIC supports connection migration. An end point can change the IP address or
port number and the connection will survive. Multi-homed devices are allowed to
utilize different network interfaces. Connection migration is possible with QUIC
since the protocol is connection oriented and use connection IDs to keep track of
connections instead of 5-tuple (of procotol, source address, source port, destination
address, destination port).

The packet number in QUIC packets are reduced and encoded to the size of 8 to 32
bit. The full packet number is an integer which can have a value within the range of
0 to 292 — 1. This requires the sender of a connection to encode the value and the
receiver to decode. The full packet number is needed for building the nonce for the
AEAD algorithm, further described in section 2.1.2.

User applications that rely on QUIC as a transport layer protocol are structured as in
figure 2.1.2. The user application consists of the application code and a QUIC stack.
The QUIC stack is responsible for encapsulating and managing the user application
data that will be sent towards the host’s peer of the connection. The QUIC stack is also
responsible for packet reordering, scheduling, ACK packet processing etc. The QUIC
stack also derives the crypto keys and handles the encryption and decryption.

CHAPTER 2. BACKGROUND AND RELATED WORK

User application

Application code

QUIC stack

Figure 2.1.2: The structure of an application using QUIC

2.1.2 QUIC Encryption

QUIC version 1 uses TLS 1.3 for security [41]. The communication between
two end points start with a TLS handshake using transport parameters and
crypto frames to agree on which algorithms to use and to derive the keys. The
packets are protected in two steps, first the packet protection is applied for the
payload and then the header protection for specific header fields. In TLS 1.3,
five different cipher suits are defined [39] and QUIC can use AES_GCM_128,
AES_GCM_256, AES_CCM_128, and CHACHA20_POLY1305 for packet protection,
but not AEAD_AES_128_CCM_8_SHA256. All of these algorithms encrypt the
payload and produces an authentication tag of 128 bit which is used to ensure
the packet has not been tampered with or modified. The header is protected
by either AES_ECB if AES_GCM or AES_CCM are used for packet protection, or
raw CHACHA20 if CHACHA20_POLY1305 is used. The key size used for the
packet protection algorithm matches the key size used for header protection. When
encrypting the header, only the reserved bits, key phase, and packet number length
fields are masked. The structure of 1-RTT packets and which fields are masked can
be seen in figure 2.1.3. The value in the parenthesis represent the size in bits of the
field.

1-RBTT Packet {
Header Form (1) =0,

Fixed Bit (1) =1,

Spin Bit (1),

Reserved Bits (2). fmasked
Key Phase (1), fmasked
Facket Mumber Length (2], fmasked
Destination Connection 1D (0._160),

Facket Mumber (3..32), fimasked

Figure 2.1.3: 1-RTT QUIC header with masked fields marked

The packet protection key, nonce, and header protection key have static initial values

8

CHAPTER 2. BACKGROUND AND RELATED WORK

that are computed with the HKDF-Expand-Label function from TLS in the Initial
packets. QUIC has different encryption levels (Initial, Early data (0-RTT), Handshake,
and Application data (1-RTT)). For each level different keys are used. The keys are
also replaced after a specific number of packets have been sent, to ensure security. An
overview of QUIC encryption pipeline can be seen in figure 2.1.4.

Selected fields)

T Mask ¥

Header
(masked)

e e e PR Header protection key .| Header
i FPacket protection key : "lencryption
' Header protection key !

VIV : A
O | Packet protection
" Payload
v e (protected)
Packet number Monce ¥ | Sampling | '
Header i ; Packet T T
Aszsociated data i ——» Protected payload
encryption
- > ——» Authentication tag
| Plaintext

Payload

Figure 2.1.4: QUIC encryption overview

When encrypting a QUIC packet the following steps are taken:

1. The full packet number encoded using 62 bit is read in network byte order and
left padded with zeros to match the size of the Initialization Vector (IV). The
modified packet number and the IV, are calculated with exclusive OR to form the
AEAD nonce. This step differs from how multipath QUIC builds the nonce, later
described in 2.1.3

2. The nonce, plaintext (the payload), the QUIC header which is used as associated
data, and a packet protection key is input to the AEAD algorithm. The output
is the protected payload and an authentication tag. AES_GCM, AES_CCM, and
CHACHA20_POLY1305 produces a 128 bit authentication tag.

3. The protected payload replaces the plaintext payload of the packet and is sampled
into a specific number of bytes. The sample offset starts 32 bit after the start of
the packet number field. AES_ECB and CHACHA20 samples 128 bit from the
ciphertext. When using CHACHA20, the first 4 bytes are used as a counter and
the 12 remaining bytes are used as a nonce.

4. The sampling and the QUIC header protection key is used as input to AES_ECB
and CHACHA20. CHACHA20 also uses these as input together with the counter,
nonce, and 32 zero bit. The output is a five byte mask.

5. The mask and selected header fields (seen in figure 2.1.3) are calculated with
exclusive OR which is used as the resulting protected header.

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.3 Multipath QUIC

Multipath-QUIC is an extension of the QUIC protocol. Multipath QUIC has not been
standardized yet and is described in an active Internet-draft [31]. The investigation
and ideas of extending QUIC with multipath capabilities has been an ongoing work
since 2018 [43]. The connection overview can be seen in figure 2.1.5

Mobile path {cellular)

((A))

Client —| “«

L o
Server
Fixed path (WiFi)

Figure 2.1.5: Connection using multipath QUIC

QUIC’s feature connection migration makes multipath capabilities easier to implement.
Since QUIC aims for being a flexible protocol, the QUIC extension Frames allows for
changes such as multipath capabilities to be implemented. Multipath QUIC extends
QUIC by the frames PATH_ABANDON and ACK_MP, which are only sent in 1-RTT
packets. There is a debate regarding if multipath QUIC should be using multiple packet
number spaces, i.e. one packet number space for each path, or a single packet number
space for all paths [8]. In the current Internet draft [31] the suggested solution is to
use transport parameters, that the peers can use to agree on which option to use. If
the option ox2 is used, multiple packet number spaces are supported, this will impact
how the nonce is built during the AEAD encryption and decryption. A unique nonce is
normally calculated by combining the padded packet number and IV with exclusive or.
By communicating with multiple packet number spaces, the same packet number is
sent in different paths. This is not acceptable since the nonce must be unique, and
changes are required in the creation of the AEAD nonce. The full decoded packet
number, two zero bit, and a path identifier, are instead combined with exclusive or.
The packet number and the path ID are reconstructed in network byte order. The path-
and-packet number combination is then combined with the IV using exclusive or. In
this project, the only difference between QUIC and multipath QUIC that needs to be
considered is the nonce creation. The additional frame types in multipath QUIC does
not need to be taken into account.

path-and-packet-number = path identifier + 00 + packet number
nonce = path-and-packet-number & IV

10

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Frameworks and Programming Languages

Multiple vendors in the industry are developing different ecosystems and frameworks
to provide services and increase flexibility for the developers. Software Development
Kit (SDK)s [42] are programs and software tools, such as libraries, documentation, and
guides, which can be used by developers when implementing applications. Multiple
vendors offer SDKs for their network cards and silicon. Two larger ecosystems today
are DOCA and IPDK. In order to limit the scope of the investigation of which
frameworks, SDKs, or programming languages that can be used, the focus is on large
vendors in the industry and the currently available resources for this project.

2.21 Data Plane Development Kit (DPDK)

DPDK [10] is an open-source framework which offers a set of libraries and drivers
for specific environments and architectures. DPDK offers a programming framework
for x86, ARM, and PowerPC processors. With DPDK, the application is able to get
direct access to the packets received at the Ethernet port of the NIC by using Poll
Mode Driver (PMD). In DPDK, packets are completely bypassing the kernel stack
and placed in receive (rx) and transmit (tx) queues in the user-space. This avoids
context switching or intermediate copy operations needed when using kernel space
functionality. However, functionality available in the kernel such as TCP congestion
control functionality must be reimplemented when using DPDK for packet processing.
DPDK packet pipeline isillustrated in figure 2.2.1. In traditional packet processing, the
packet is received at the NIC, and for each packet being processed by the kernel space
a interrupt is thrown in order to make the CPU context switch and handle the request

[30].

One of the key components of DPDK is the Environment Abstraction Layer (EAL) [12]
which is a generic interface to gain access to low-level resources, such as hardware and
memory space. One of the main functionalities of the EAL initialization is to launch
logical cores to run the application. The initialization involves function calls to the
pthread library, which is used to create multithreaded programming. Logical cores
in DPDK are used to poll packets from the rx queues. Each core can poll from many
queues, but it is not possible for multiple cores to poll from the same queue, since it
could result in race conditions.

Another key component of DPDK is the mbuf library [11]. This library handles the
allocation of memory for message buffers which are used to store the data. The data
can be of different types, such as network packets, control data, or events. The mbuf
library contains functionality to manipulate the data, i.e. the packet, such as appending
data, removing data, and getting pointers.

DPDK offers crypto device drivers for a finite number of crypto devices [13]. This
set of drivers consists of both software crypto functionality, such as AES-NI and
openSSL, and hardware crypto support. These drivers allow the developer to accelerate

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Standard DPDK
lzer space lzer space
User
User application
application DPDK libs
DFDK PMD
kernelspace Kernel space
Stack Stack
[
Metwork Metwork
Diriver Diniver
¥ ¥

Figure 2.2.1: DPDK using PMD to handle packets received on the NIC and bypass the
kernel space

crypto functionality such as cipher, authentication, AEAD, and asymmetric crypto
algorithms. When running the EAL initialization, the supported hardware acceleration
functionality is discovered.

For this project DPDK version 21.11 is investigated, which is the latest Long Term Stable
(LTS) version.

222 P4

P4 [36] is a programming language used for programming the data plane in network
devices such as switches, routers, NICs, and filters. The idea behind P4 was first
published in 2014 and is now the de facto standard programming language for
specifying how these devices should in real-time process the packets and how to
achieve desired behaviours in the data plane. It is domain specific and compiles to
a specific architecture of the target. The target is either hardware-based, such as
FPGA, or programmable Application-Specific Integrated Circuit (ASIC)s, or software-
based if a P4 program is running on a x86 processor. Since P4 is used to program
many different devices, some functionality used in imperative programming languages
cannot be used because it is not supported by some targets. These functionalities
include loops, recursion, the arithmetic operators division and modulo, and dynamic
memory allocation [30].

A typical P4 program consists of three parts; a parser, a match-action pipeline, and
a deparser. This is illustrated in figure 2.2.2. The program begins with defining a
set of headers. At the parser, the predefined headers are extracted. The parser is a

12

CHAPTER 2. BACKGROUND AND RELATED WORK

Programmable Programmable
narser Programmable match-action pipeline deparser

== @)) D
== | 2))
_|€&

L i
h il

Y

HHEE

20
@ 2

Figure 2.2.2: A typical P4 program

o] []]
h ARV " vy

=
——=
—
=

finite state machine and different states can be reached depending on the values of the
header fields. The match-action part of the program is where the main processing is
done on packet headers or packet meta data. The match-action part is divided into
two parts; the ingress and the egress block, which is often used to perform different
tasks. A table in P4 often consists of a matching key value and parameter values that
are returned to the following action if a match has been triggered. An action in P4 is
similar to a function in imperative programming languages, such as C. At the end of a
P4 program is a deparser. The functionality of a deparser is to put the headers together
in the specified order specified by the programmer and attach the payload at the end
before the packet is serialized on the wire towards the next hop.

Externs in a P4 program are additional functions with can be used to process the
packets beyond the functionality that P4 offers. When the external functions have been
imported and declared, they can be used in the P4 code as regular functions. Externs
can be written in for example C or Micro-C, depending on the target capabilities. There
are different versions of the language with slightly different semantics and P4 version
16 is investigated for this project.

T4P4S [44] is a open-source multi-target compiler created for P4 programs to utilize a
DPDK environment. The T4P4S compiler generates platform independent C code from
P4 descriptions which are using Networking Hardware Abstraction Layer (NetHAL) in
order to support multiple targets. By using a compiler such as T4P4S, functionality that
is not supported by P4 can be added.

2.2.3 Infrastructure Programmer Development Kit (IPDK)

IPDK [20] is an open-source framework containing drivers and APIs. IPDK offers
infrastructure offload for the CPU, DPU, IPU and switch. It contains different tools
such as Storage Performance Development Kit (SPDK), DPDK and P4. Some use cases
are Infrastructure as a service (IaaS), such as network, storage, crypto, Platform as
a service (PaaS), and inline acceleration. It is target agnostic, i.e. the content of
IPDK is independent of each device’s functionality, the device’s SDK, drivers, and
compiler backend. IPDK is used as an aggregation point with scripts and containers

13

CHAPTER 2. BACKGROUND AND RELATED WORK

to centralize open source projects into a single framework. It offers two standard
interfaces: an infrastructure application interface and a target abstraction interface.
The infrastructure application interface is Remote Procedure Call (RPC)-based, which
means procedures can be called directly while existing in a remote program and using
separate memory address spaces [32]. The controlling application can be executed
locally, remotely, or both. The RPCs offered by IPDK are P4Runtime, OpenConfig,
Redfish / REST API, SPDK Storage Protocol, Managed Kubernetes, and Envoy xDS.
The target abstraction interface is driver, library, and capabilities based. IPDK has not
published any releases yet and therefore the current state available in early 2022 will
be investigated.

2.24 DOCA

DOCA [28] is a SDK used for NVIDIA’s DPU BlueField and contains drivers and a
runtime and development environment within the BlueField DPU OS. By using the
device drivers, the developer is provided with an interface for the hardware device. The
DOCA SDK uses frameworks and APIs such as DPDK, SPDK, P4, and Linux Netlink
with NVIDIA acceleration packages to achieve offload, acceleration, and isolation of
workloads. Applications used for networking, security, storage, High Performance
Computing (HPC), Al, telco, and media can leverage from DOCA. DOCA applications
can be executed on the x86 host or on the Arm cores of the DPU. When executed on the
x86 host, DPU acceleration functionalities becomes available through DOCA library
calls. P4 will be a component of DOCA but is currently not available. The framework
is currently in version 1.3 and was first released in April 2021. The SDK is still in early
access with more functionality to come in the future. For this project DOCA version
1.3 is investigated.

2.2.5 Hardware Description Language

HDL is a textual language used to program electronic and digital logic circuits, often
on FPGA cards, with words and symbols which translates into configuration data
and are loaded onto the FPGA. The fundamental difference between HDL and other
programming languages, such as C or Java, is that regular programming languages use
sequential order while HDL uses parallel operations. Multiple parts of the hardware
can operate concurrently [25]. VHDL and Verilog are the most used HDLs, where
VHDL is most common since it allows designs for all types of circuits. The output of
HDL is not an executable file, but a gate map which is used to examine the operations
of the desired circuit [33].

2.3 Programmable Networking Hardware

Many different types of programmable hardware devices are available on the market.
These hardware devices have different sets of functionality and are used for varying

14

CHAPTER 2. BACKGROUND AND RELATED WORK

purposes.

2.3.1 SmartNIC

A SmartNIC is a PCIe network device with Ethernet ports which enables connectivity
to an end host, such as a server or computer. It also provides some measure of
programmability, which allows for data processing used in for example accelerating
data center networking, security and storage. The definition of a SmartNIC varies
depending on the vendor. A SmartNIC can be based on an ASIC, FPGA, or SoC. The
ASIC based SmartNIC has often a great price-performance value, but lacks flexibility
due to predefined capabilities. The FPGA based SmartNIC is often expensive and
extremely difficult to program, but offers flexibility since it is highly programmable.
The SoC based SmartNIC offers high programmability and flexibility due to having its
own onboard processor [3].

23.2 DPU

A DPU [9], also called a SoC based SmartNIC, is a programmable processor which
can be used by itself but is often embedded into a SmartNIC card. It can be
thought of as a third member of the computing devices, among with the CPU and the
Graphics Processing Unit (GPU). The DPU often includes a software-programmable
multi-core CPU, a network interface, and programmable acceleration engines. Some
features included in many DPUs are data packet parsing, matching and manipulation,
GPUDirect accelerators, TCP acceleration, and crypto acceleration.

233 IPU

An IPU offers similar functionalities as the DPU but is developed by Intel and are
ASIC and FPGA based [27]. It is a programmable processor and extends SmartNIC
capabilities and targets cloud and communication service providers. It is used to
accelerate applications using micro services, storage and network virtualization. It is
used to offload the CPU cores and shift functionality to the IPU instead [26].

234 FPGA

FPGA is a hardware device with integrated circuits, and contains combinational
components, such as logic gates, multiplexers, and sequential components, also
called flip-flops [18]. With enough resources, almost any digital circuit can be built.
A FPGA consists of logic blocks (lookup tables), I/O blocks, and programmable
interconnections. With these tools, different functionality can be implemented and
offloaded, such as the encryption of QUIC. A FPGA is programmed by using HDL,
see section 2.2.5, which is increasing the complexity of using these devices compared
to other devices such as ASIC cards. FPGAs are used for different purposes, such as
aerospace, defense, data centers, industrial, medical, video and image processing and

15

CHAPTER 2. BACKGROUND AND RELATED WORK

wireless communication. A FPGA can be configured to perform simple gate logic to
extremely complex functionality [45].

2.4 Related Work

There is a lack of studies done on offloading multipath QUIC packet processing. There
are several studies on offloading, specifically Internet Protocol Security (IPSec). In this
section, some of them are discussed and how they relate to this degree project.

241 QUIC Offloading

In [46] different QUIC protocol implementations (before QUIC was standardized)
was analyzed. The QUIC versions used in this project were Quant, Quicly, Picoquic,
and Mvfst. All of these versions complied with the latest IETF QUIC draft at the
time. The goal of the project was to investigate which parts of the different QUIC
implementations required more CPU usage and would therefore benefit from NIC
offloading. For all QUIC versions crypto, connection setup and teardown, ACK
and packet processing, packet I/O, and header formatting was investigated. The
results showed that crypto and packet I/O utilized the CPU for almost all of the
implementations. Crypto required 10 to 43 percent of the CPU time on the server side,
while packet I/O was responsible for 35 to 65 percent. ACK and packet reordering
caused a high CPU usage in some versions, while connection setup/teardown and
header formatting required less than 5 percent of the CPU time for all implementations.
By analyzing the different QUIC implementations the main findings were that data
copy between user space and kernel space requires high CPU usage, and kernel-bypass
techniques should be used. If kernel-bypass techniques are used, the crypto operations
becomes the next CPU demanding operation. In the proposed architecture for
offloading QUIC, AEAD and packet reordering should be moved into hardware, while
the control operations, such as the TLS handshake should remain on the CPU to keep
expensive stateful processing. This study contribute with a design and measurements.
These measurements are used in this project to determine what functionality should
be offloaded with the prototype.

In 2020, Intel presented a paper where QUIC was accelerated via hardware offloads.
In this study, Intel used a socket interface, in order to offload QUIC similar as other
transport protocols that are implemented in kernel space can benefit from. The
contribution by this paper was a interface, which implements a new upper layer
socket protocol. By using this protocol, QUIC is able to use socket options to enable
hardware offload and manage security association (SA). En/decryption (AES-GCM)
and UDP segmentation was hardware offloaded. By using the interface and new upper
layer socket protocol to achieve crypto offloading on the Chromium stack, the CPU
utilization was decreased by 13 percent and the throughput increased by 13 percent
when using a 100MB files compared to software implementations using dedicated AES
instructions. The CPU utilization was reduced 16 percent and throughput increased 32

16

CHAPTER 2. BACKGROUND AND RELATED WORK

percent when using this setup with 50MB files for crypto and UDP offload. This study
enlightens the benefits of offloading QUIC functionality with hardware. A challenge
is to decide how the crypto and segmentation parameters should be transferred to the
hardware, and in this paper the presented interface will be responsible for these tasks
[23]. In our project, the socket interface will not be used. The prototype will be running
in the user space with kernel-bypassing techniques. This degree project faces the same
issue with transferring crypto parameters to the offloading hardware. In our work,
signaling packets are design and implemented in order to transfer this information to
the prototype.

2.4.2 |IPSec offloading

Multiple earlier studies have been conducted on IPSec offloading and/or acceleration.
IPSec is a security protocol which also requires the heavy crypto operation AEAD,
similar to TLS which QUIC uses. In [16] P4-IPSec was offloaded on both the
software switch BMv2 and a Edgecore Wedge 100BF-32X Tofino-based hardware
switch without a crypto unit using P4. The NetFPGA SUME platform was also
used but due to limitations in the P4-NetFPGA environment, which the NetFPGA
SUME reference switch uses, an implementation could not be provided. P4 on this
architecture does not support parsing variable-length header fields or data exchange
between the P4 pipeline and externs. When using the Edgecore Wedge Tofino-based
switch, two implementations were presented. In one of them, the P4 extern functions
was replaced with IPSec kernel functions of the Linux OS and a IPSec crypto manager
program running in the user space. In the other implementation, the same kernel and
user space functionality was used but with the P4 program forwarding the IPSec flows
based on rules in the match-action tables.

In our work, design of the prototype using P4 is presented, which is similar to the P4-
IPSec design. The key difference between these designs is that QUIC will be processed
and not IPSec. The packet processing also differs, since the packets sent and received
in P4-IPSec are IP packets. In the prototype presented in this thesis, the goal is to
offload functionality from the user application’s QUIC stack running on the host.

17

Chapter 3

Design of offloading application

In this chapter, the framework and hardware decision is first discussed in section 3.1.
In section 3.2, a high level design overview of the offloading application and the packet
designs are presented. In section 3.3, a design using DPDK is presented followed by
a design using P4 in section 3.4. The P4 pipeline presented in this thesis is only a
reference design and will not be implemented due to time constraints.

3.1 Framework and hardware selection

For this project different frameworks and hardware devices can be used to achieve the
goal of implementing an offloading application for multipath QUIC. In this section, the
frameworks, programming languages and hardware devices from section 2.2 and 2.3
are investigated to determine which solution is more feasible to implement. First, the
framework or programming language is selected, and then a decision is made on which
hardware device to use which supports the chosen framework.

3.1.1 Frameworks

First, IPDK was investigated, since it is a new framework this degree project would
provide as an example of a use case to the community and to Ericsson. The
investigation proved quickly that IPDK was not mature enough to be used for this
project. No first stable release has been submitted yet and the Github repository is
frequently updated. In the Slack channel' for IPDK, which consists of the community
and developers, daily requests and discussions are made on changes in the framework.
During the open programmable infrastructure event [21], Intel presented the roadmap
for IPDK which showed security functionality being planned for in the future. Due to
the lack of functionality supported and no stable release has been submitted, IPDK was
not selected.

https://ipdkworkspace.slack.com/archives/Co2D9SPPFH8

18

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

The framework DOCA was then investigated. According to NVIDIA’s blog, DOCA will
have support for P4 and TLS encryption, but in the current state it is not supported.
DOCA is less than a year old, and the only crypto operation supported at the time
is key generation. After a discussion with developers at NVIDIA it was clear that
the framework is not ready for supporting a QUIC encryption hardware offloading
application. There are plans for future NICs to support QUIC implementation on
hardware. DOCA was not selected since the crypto functionality needed is not
supported, yet.

The DPDK framework investigation resulted in DPDK was considered a feasible
framework to use for implementing the QUIC offloading application. It is much
more mature and offers stable release in comparison to the other frameworks. DPDK
supports all AEAD algorithms QUIC uses, through different crypto device drivers. The
limitation of DPDK offloading and acceleration capabilities depends on the hardware
device used. The investigation resulted in a offloading prototype using DPDK was
designed and later implemented.

P4 does not support the crypto operations needed, resulting in the need of external
functions. The DPDK compiler T4P4S can be extended with external functions, to
support crypto functionality. By using the software switch bmv2, software libraries
that support AEAD such as openSSL, could be used. A offloading prototype using P4
was designed but was not implemented since a large part of the implementation would
have to rely on external functions, for example through extending the T4P4S compiler.
The offloading application design using P4 (see section 3.4.2) is similar to the design
using DPDK (see section 3.3). Since the design using P4 might have to rely on multiple
functionality provided by DPDK, the decision to use native DPDK was made.

3.1.2 DPDK crypto offload drivers

In table 3.1.1 the different crypto drivers that supports AEAD in DPDK can be seen.
QUIC uses the cipher suits AES_GCM_128, AES_ GCM_256, AES_CCM_128, and
CHACHA20_POLY1305. In order to determine which driver to use the hardware
had to be chosen. NVIDIA’s BlueField 2 DPU is the hardware device selected for this
project, later motivated in section 3.1.3.

Out of the listed drivers in table 3.1.1, the OpenSSL Crypto PMD was selected. This
decision was made due to issues getting access to hardware devices with crypto engines
that is supported by DPDK’s crypto drivers. By using a software crypto driver, the
number of the hardware devices which can be used for running the QUIC offloading
application isincreased. The crypto device is an input parameter to the program, which
enables high portability. When running on a hardware with a crypto engine supported
by DPDXK, this input parameter is changed without modifying the code.

19

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

Table 3.1.1: Crypto devices in DPDK that support AEAD algorithms used in QUIC

g
o
5]
—
=
o
iy ~
5 2 |18 g 9 5
® I » T 2 x ¢ ¢ E » § 4
c c ¢ = G © x ® © ® o g ¢©
W wv] o 15 — (@) 4] 40} > -b — 3} —
g U 9O ©® o £ £ c S22 o E o o o
M ® 2 O 0O ¢ 6 0 ©v ©®w £ ¢ o o o
AES GCM 128 Y Y Y Y Y Y Y ¥Y XY Y Y Y Y Y
AES_GCM_256 Y Y Y Y Y Y ¥ Y ¥ Y Y Y Y Y
AES CCM 128 Y Y Y Y
.CHACHAZO_POLYI?:OS Y Y Y Y Y

3.1.3 Hardware

The hardware devices which could be used for this project were selected after the
decision on using DPDK was made. The reason why the framework or programming
language was selected before the hardware, was due to the fact that hardware devices
are more common to replace since hardware are upgraded at a higher frequency than
frameworks or programming languages. The requirement for the chosen hardware
device was that it must be able to run the framework or programming language that
was previously chosen.

For this project, NVIDIA’s BlueField 2 DPU was selected as hardware device.
The BlueField 2 DPU has support for hardware accelerating AES_GCM_ 128 and
AES_GCM_256 but the crypto engine is only accessible through the kernel and not
by the DPDK framework. Therefore, the prototype will not leverage from hardware
accelerated crypto support on the BlueField 2 card but instead use the software library
OpenSSL seen in table 3.1.1. Intel’s Mount Evans IPU was considered, and Ericsson
had access to a card which could have been used for the prototype. Due to the card
not being released yet during the time of the project it was considered a major risk of
using a card which might result in errors caused by other factors than the prototype
application.

A FPGA card was not chosen due to DPDK being the most feasible solution. FPGA
cards are much more complex to program than other cards, due to the use of HDL. A
SmartNIC could have been chosen if P4 was used, or if the goal was to only run DPDK
on the x86 host. Since one goal of this project is to offload the encryption from the
CPU, one solution is using DPDK on ARM cores exclusively.

The BlueField 2 card will be used, which offers the three modes separated host
mode, embedded function, and restricted mode, which is an extension of embedded
function. In the separated mode, the SmartNIC is a standalone device and uses its

20

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

Table 3.1.2: Comparison of hardware devices

Hardware devices | Mount Evans [6] BlueField 2 [34] Octeon CN10 [35]
Type IPU DPU DPU

Manufacturer Intel Nvidia Marvell
Framework DPDK, IPDK DPDK, DOCA DPDK

Release year Q2 2022 (est.) 2021 -

Crypto supported supported supported

CPU Arm (Neoverse N1) Arm (Cortex-A72) Arm (Neoverse N2)
Max Frequency 3GHz 2.5GHz 2.5GHz

Cores 16 8 24

ARM processor, without the x86 processors interference. The x86 can use the NIC
at the same time as usual. The Media Access Control (MAC) addresses are used for
separating if the packet is to be received in the SmartNIC by the ARM processor or by
the host using the x86 processor. In the embedded function mode, the packets are sent
via the ARM processor to the x86. The card has an embedded switch which routes the
packets internally. In this project, the BlueField 2 DPU will be used with the embedded
function mode.

3.2 Design overview

In this design, a host and a peer are communicating using multipath QUIC. Multipath
QUIC is the transport protocol for the communication, but the packet format is
identical with QUIC packets, except the additional frames in the payload. Therefore,
the multipath QUIC packets will be referred to as QUIC packets in this thesis, and the
nonce will be created according to multipath QUIC and not QUIC.

An overview of the communication flow between a host and a peer, with two offloading
applications in-between can be seen in figure 3.2.1. The user applications first sends
packets to set up the communication session with each other. In this step, the
TLS handshake is performed, parameters are exchanged, and the peers know what
destination connection ID should be used to address each other. This process is
the same as how QUIC normally sets up a connection. The offloading applications
do not interfere in this stage, but simply forward the packets. When this is done,
they have all the information needed to start communicating with packets containing
user application data, i.e. 1-RTT packets. Before sending 1-RTT packets, the user
applications share information from the communication setup with the offloading
applications. This information consist of for example the crypto keys the user
applications have agreed to use, path IDs, and destination connected IDs for its peers.
The details of the signaling packets are described in section 3.2.1. The purpose of these
signaling packets is for the offloading application to know how to process the 1-RTT
QUIC packets. After sending this signaling information, the user applications shift to
using 1-RTT QUIC packets. When these packets are forwarded from the QUIC stack on
the user application to the offloading application, they consist of an Ethernet header (to

21

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

route the packet), metadata, a QUIC header, and the payload from the user application
for its peer. The offloading application encapsulates this packet into an IP packet by
adding IPv4 and UDP headers, encrypts the QUIC header and payload, and sends it on
the wire towards the peer. The offloading application at the peer decrypts the QUIC
header and payload, decapsulates the packet into the same format sent by the original
host, and sends it to the user application on the peer.

By having this design, the crypto is offloaded from the CPU of the host, which decreases
the CPU utilization and the host can perform more critical operations instead. If
the card which the offloading application is executing on have a crypto engine, the
throughput of the crypto operations might be increased. By sending less overhead per
packet between the user application and offloading application, the CPU utilization on
the host might be decreased further since less data has to be copied between kernel
and user space when a packet is sent or received, unless kernel-bypass techniques are
used. This proposed design is beneficial for data centers since the CPU on the servers
can spend more time performing business critical tasks.

U=er application Offloading Offloading Uszer application
on host application application on peer
i — i
— i = :_———_
_i -— _I_"'J;'-'-"I'”Er"jr'i'-ff’f_-‘l: L _i_ -
| - : E—
: 1
i H S
' ——— ' ———
' D —
! 1 L._U:-q;-'|,_,|'|ll.'f.'_‘.r.'u.."Ff"-:l'_| :
T l —— !
— i H
signaling signaling
information information
unencrypted
QuIC p; - e
Packet L&ﬁ_ﬂr)rﬂted IPpacket | o "'”E""":f}‘med
- Quic packet
_ unencrypted
e chet
d |P packet | QUIC pa
unencrypted €« _l._p’_miw_mf —
QUIC packet

Figure 3.2.1: The communication flow

A more detailed view of the the communication between the user application and
the offloading application can be seen in figure 3.2.2. The offloading application is
connected to the host using PCle. A user application is running in the user space
of a host. The user application communicates using multipath QUIC and therefore
has a QUIC stack. The QUIC stack handles the majority of the QUIC connection
functionality. The functionalities performed by the QUIC stack are for example
multipath packet scheduling, packet reordering, key generation, and creating of QUIC

22

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

packets. It is the QUIC stack’s responsibility to craft QUIC packets, i.e. packets with
a QUIC header and payload from the user application. The user application must also
attach metadata and an Ethernet header addressed to the offloading application in
front of the QUIC packet when sending and remove the Ethernet header when receiving
a packet.

The user application does not create the IP packets, it will only create a QUIC packet
with an Ethernet header to send the data to the offloading application. The QUIC
stack operates normally but can choose to send the packet through the application
for encryption and encapsulation without having to modify any previous steps in its
processing. The QUIC stack on the user application is considered a control plane
in this prototype, which means it will control how the data should be processed and
forwarded. The offloading application is the data plane, which is where the packets
are being processed and forwarded using the rules provided by the control plane.

Host A

LIser application

Application code

QUIC stack

Add/remove Ethernet header and metadata

Y
Signaling packefs from QUIC stack

Linencrypted QUIC packets Unencrypted QUIC packets
o qur application from user apTIic ation

Offloading application

Encrypted IP packets Encrypted IP packets

Figure 3.2.2: An overview of the offloading design

23

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

3.2.1 Packet format design

In this project four types of packets will be received by the offloading application.
One type is packets sent from the peer and the remaining three types are packets
sent from the host. Two of the types sent from the host are used for signaling and
one for sending user application data. The signaling packets are used to provide the
application with information necessary for encryption and decryption. There are two
types of signaling packets since the application needs different parameters depending
on if the packets are sent from the host and will be encrypted or sent from the peer
and will be decrypted. The different types of packets the application can receive can be
seen in figure 3.2.3.

.] R Header Packet Initial full
S'g"eae"r”g szjt['j”rgﬂfn S;;rrgf: '?gl;ragg)e TE’DF;E Index [xlgorithm| protection | protection| 1V | Patn 1D | DCID | packet
P = = : by by number
L)L J
T - L
Ethernet header Signaling peer header
’ ; - Header Packet
Signaling |Destination | Source |Ether type| Type) . : : DCID
hast o address | (0xS8B5)) Index. JAlgorithm| pro‘:(ee?mn pro‘:(ee?mn IV Path ID length
L v J L r J
Ethernet header Signaling host header
Data packet |Destination | Source |Ether type Index p;:;lclet auic
from host address address | (0x328BG) number header
L v J L J
Ethernet header Data packet info header
N Quic
Data packet |Destination Source Ether type| IPv4 UDP header
from peer address address | (0x0800) | header header encrypted

L J
EtherneTheader

Figure 3.2.3: Four different packet types that can be received by the offloading
application

Packet type Signaling peer consists of a Ethernet header where the Ethertype field
is set to 0x88B5 which is a local experimental ethertype. After the Ethernet header,
a signaling header follows. The header consists of the following header fields: type,
index, algorithm, header protection key, packet protection key, IV, path ID, destination
connection ID, and the full packet number. This type of packet is used to provide
the application with information for connections when packets are sent from the peer

to the host. The information is stored in a table in the application and the packet is
discarded.

Packet type Signaling host is used to provide the application with information of the
connections for packets sent from the host to the peer. The information is stored by
the application in a table and the packet is discarded after being read. The packet
consists of an Ethernet header with the Ethertype field set to 0x88B5, and the signaling
host header which consisting of a type, index, algorithm, packet header protection key,

24

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

protection key, IV, path ID, and the destination connection ID length.

Packets of type Data packet from host is data packets from the user application with a
Ethernet header with the Ethertype field set to 0x88B6, and a data packet info header
which consist of an index and the full packet number. A QUIC header and the user
application payload is attached at the end of the packet. These packets are encrypted
and sent towards the peer of the connection. The packets are also transformed into
IP packets as they need to be able to traverse the network. After being processed by
the offloading application, the packets will have an Ethernet, IPv4, UDP, and masked
QUIC header followed by the encrypted payload. The Ethernet field Ethertype will
be set to 0x0800 to represent IPv4. The IPv4 protocol ID header field is set to 17 to
represent UDP.

The forth packet type Data packet from peer is the packets sent from the peer to the
host. These packets contain the Ethernet, IPv4, UDP, and masked QUIC header and
the encrypted user application payload at the end. The QUIC header and payload is
decrypted and the packet is decapsulated by the application. The Ethernet header
field Ethertype is set to 0x88B6. The IPv4 and UDP header is removed, resulting in
a decrypted packet consisting of a Ethernet and QUIC header with payload, similar to
the packet Data packet host type. The packet is sent to the host.

The offloading application can send two types of packets, seen in figure 3.2.4. The
Data packet to host packet type is used to send packets to the host. The original Data
packet from peer packet has been sent from the peer to the offloading application. The
offloading application has decrypted and decapsulated the packet and it is sent in this
format towards the user application on the host from the offloading application. The
other packet type sent from the offloading application is the Data packet to peer. In
this case the original Data packet from host is received by the offloading application,
encapsulated, encrypted and sent towards the user application on the peer.

Data packet | nation | Source |Ether type Ful) quic
to host %Jdllrrilsr ':I:ETE; .D_-'éraég,' Index | packet headar
sRTESE S| A number
L - J L J
Ethernet header Data packet info header
Data packet
to geer Destination Source Ether type| IPv4 LDP h%gtljgr
= pioe = pioe e 02007
address address (0x0800) | header header encrypted

L J
EtherneTheader

Figure 3.2.4: Two different packet types that can be sent from the offloading
application

3.3 Offload application design using DPDK

In this section, the offload application design using DPDK is presented. The data
plane processing pipeline is first explained, followed by a detailed explanation of the

25

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

encryption where the input and output of the crypto algorithms are described. The
tables used by the data plane are explained in the control plane section.

3.3.1 Data plane design

An overview of the offloading application design using DPDK can be seen in figure 3.3.1.
Two ports are bound to the application. When a packet is received, the port ID of these
ports are used to determine if the packet is sent from the host or the peer. The packets
are placed in two separate processing queues depending on which port the packets
are received on. The packets that are sent from the user application on the host and
will be sent to the peer and the packets that are used for signaling are received on port
port_enc and the packets that are sent from the peer and will be decrypted are received
on the port port_dec. Two different threads are used, where each thread is responsible
for either the encryption pipeline or the decryption pipeline.

Packetin

|

dec & IPv4 port enc & exp 2
2 & =
= ethertype @
o | Decode packet A
5 Ll enc & exp 1 E
2 Encapsulate o
acket =4
E _________ Set nonce and P %
= crypto parameters Q
2 P P Store 0 1 Store > g
= vlv information «— type — information =
L] . o
g Header protection in table in table Setnonceand | | 2
= decryption crypto parameters o
=
£ i =
5 3
E i z
Packet protection drop el =
o I * decryption Sl =
2 P i g
w <,
= =
= Header protection z
E Decapsulate encryption é"
g packet 3
& =
(&) 1]
= o]
3 e
w » Send packet 5;3'
m g
= | 2

Facket out

Figure 3.3.1: The data plane processing pipeline

The first step in the data plane is to determine if the packet is received on the port_dec
and if the packet’s Ethernet field Ethertype is set to 0x0800. If these two conditions
are true the packet might be from the peer and the destination connection ID will be
retrieved from the packet. A lookup is made in the hash table QUIC connections peer
using the destination connection ID as a key. If no match occurs, the packet will be

26

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

dropped and the program will continue processing the next packet in the queue. If a
match occurs, the information stored in the hash table at that entry is retrieved. The
information retrieved is further described in section 3.3.3.

The header protection function is called to decrypt the QUIC header. Depending on
the information retrieved from the hash table, different parameters are used for the
decryption. The QUIC header can be decrypted using all the supported algorithms,
i.e. AES_ECB_128, AES_ECB_256, and CHACHA20. These algorithms will not
encrypted or decrypted using the crypto engine in DPDK, since it would not result in
a performance gain. The header protection is instead decrypted using the openSSL
library directly. The 32 bits output mask from the decryption function is used to
unmask the selected QUIC header fields (seen in figure 2.1.3). The first byte unmasks
the first byte of the selected QUIC header fields using exclusive or, and the packet
number is unmasked by using the remaining 4 bytes of the mask.

After the QUIC header has been decrypted, the preparations for the AEAD payload
decryption begins. The parameters set for this operation depends on the information
retrieved from the table. Each packet which will be processed by the crypto device
in DPDK needs to have a crypto operation attached. The crypto operation sets some
parameters for the crypto device, such as the associated data, the length and start of
the payload and physical addresses. The crypto device also needs a symmetric crypto
transform structure as input for configuration, which is where parameters such as
the algorithm, key, nonce length is set. After setting some of these parameters the
process of building the nonce begins. The packet number received in the QUIC header
isencoded in 0 to 32 bits, which is why the full packet number needs to be decoded since
it is used to build the nonce to be used as input to the AEAD algorithm. The sample
packet number decoding algorithm found in RFC9000 in Appendix A.3 [22] (which
also can be seen in listing 4.4) is used for this. The full packet number is decoded into
62 bits but stored in a 64 bit variable, to create the two 0 bits needed for the nonce. This
variable is set in network byte order and the 32 bit path ID, which is also in network
byte order, are combined to create the path-and-packet-number variable. This variable
is combined with the IV which is stored in the hash table by using exclusive or. The
packet along with its crypto operation is queued at the crypto device, and when an
arbitrary number of packet are placed at the queue, the packets are sent to the crypto
device for processing.

If the packet on the other hand is received on the port_enc in the first data plane
processing pipeline and the packet’s Ethernet field Ethertype is set to 0x88B5, the
packet is used for signaling from the host to inform of a new connection path. The first
byte after the Ethernet header is examined. If the byte has the value 1, it is a signaling
packet to indicate information of a new peer have been added and the information
used for this peer needs to be stored. If the byte has value 0, it is an indication that
the host has a new connection with parameters to store. When type is set to 0 the
information received is stored in a hash table QUIC connections peer. All keys sent
in the signaling packets are encoded in 256 bits. If the header protection and packet

27

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

protection keys are only 128 bits the rest of the field is padded with zeros. The padding
of zeros are moved from the left to the right of the value when stored in the tables of
the offloading application. The packet is then dropped from the queue and processing
of the next packet begins. If type is set to 1 the packet is processed in the same steps
but the information is stored in a table which consists of structures instead. The index
retrieved from the packet is used to determine which index should be used to store the
information in the table QUIC connections host.

A packet received in the port_enc in the first step of the pipeline can also have the
Ethernet header field Ethertype set to 0x88B6. In this case the full packet number
and index is retrieved from the packet before manipulating the packet. The Ethernet
header and the data packet info are removed and the packet is prepended with a new
Ethernet, IPv4 and UDP header. The fields of the headers are populated. The 16 bits
index read from the original packet is placed in the two first bytes of the packet, in
order to access information needed for header protection after the packet protection
is applied. The nonce is created using the same process as described above for the
packets from the peer. In this case the full packet number is received from the host in
the original packet it received and does not need to be calculated. The packet is placed
in the queue at the crypto device along with its attached crypto operation and when
the queue reaches an arbitrary number of packets they are sent to the crypto device for
processing.

The user application packets from the host and from the peer are dequeued after being
processed by the crypto device and the payload have been encrypted or decrypted. The
dequeued packets are placed in a new queue for some further processing before being
sent to a tx queue and transmitted either to the host or peer. Each packet is investigated
to examine if the crypto operation returned a successfully value, otherwise the packet
is dropped and the next packet is processed. If for example a decrypted packet returns
authentication failed, the authentication tag at the end of the packet does not match the
one created during the decryption process and the packets might have been tampered
with or modified.

If the packet was originally received on port_enc and have successfully been processed
by the crypto device, the header protection is applied. The index placed in the first two
bytes of the packet is used to look up information for the header encryption in the
QUIC connections host table. After the header has been encrypted, the index bytes are
removed from the packet. The checksums and lengths of the protocols UDP and IPv4
need to be calculated before being sent towards the peer, otherwise the packet risks
being dropped. At the initialization of the offloading application, a check was made to
see if the hardware supports offloading UDP and IPv4 checksum. If these checksum
calculations are supported by hardware offloading, this feature will be used after the
packet has been processed and is ready to be sent out on the wire.

If the packet one the other hand was originally received on port _dec, the IPv4 and UDP
headers are removed and metadata is added. The metadata contains the index and full
decoded packet number, and is sent to the host to keep the host from computing the

28

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

full packet number again. The Ethernet header field Ethertype is set to 0x88B6 and the
packet which now only contains the Ethernet header, metadata, the unmasked QUIC
header and the decrypted payload and is sent on the wire towards the host.

3.3.2 Encryption

Encryption can be performed in two different ways using DPDK. If the encryption
is done inline, packets are encrypted as a bump on the wire. This process results in
packets being encrypted during a transmit or receive operation. Patterns in packets are
used to map to actions that should be performed upon a match. Different patterns and
actions can be chained together. For example, if the packet has a specific IP destination
address and UDP source port, it can be encrypted and then afterwards sent to a certain
port. This patterns-actions method is similar to how match-action tables in P4 are
used. The other way to encrypt in DPDK is called lookaside, which is the traditional
way to achieve acceleration. By using lookaside in DPDK, packets are queued for
processing by a crypto device, and dequeued after the operation is done. In the version
21.11 of DPDK that we are using, there are currently no support for inline encryption,
unless the packets are of one of the protocols IPSec, macsec, pdcp, or docsis. Since
inline encryption is not possible for this project the design will be using the lookaside
method.

The header protection algorithms, i.e. AES_ECB and CHACHA20, will not be
encrypted using a crypto device in DPDK. This decision is made because of the
inefficiency which would occur when the encryption mode does not require much
CPU utilization. To place the packets in a queue for encryption, sent them to the
crypto device, process them, and then dequeue them would require more processing
than to encrypt or decrypt the packets directly using software crypto libraries such as
openSSL.

The AEAD algorithms AES_GCM, AES_CCM and CHACHA20_POLY1305 takes four
inputs and produces two outputs. The inputs are the packet protection key, a
nonce, the payload/cipher, and associated data which in this case is the QUIC
header. The algorithms produces ciphertext or plaintext and an authentication tag
as output. The key and the IV (used for building the nonce) for these algorithms
can be found in the tables used to store the signaling information. The host
also sends which algorithm the connection uses, i.e. AES_GCM128_AES_ECB,
AES_GCM256_AES_ECB, AES_CCM128_AES_ECB, or CHACHA20_POLY1305. In
DPDK, a crypto operation is attached to each packet which will be processed by the
crypto device. The values of the crypto parameters, such as key length, depends on
the value of the algorithm stored in the table. If for example the algorithm choice in
the table equals AES_ GCM128_AES_ECB or AES_CCM128_AES_ECB the key length
will be set to 128 bits. The output of the AEAD algorithms are ciphertext or plaintext,
and an authentication tag of 128 bits.

The input to the header protection algorithms AES__ECB are the header protection key

29

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

and the sample from the ciphertext produced by the packet protection algorithm. The
CHACHAZ20 algorithm requires a counter, nonce, 32 0 bits, and a header protection
key as input. The header protection key is retrieved from the tables. The output is 32
bits ciphertext, which are used to mask certain fields of the QUIC header.

Each packet needs to be padded to match the block size for the chosen AEAD algorithm
during encryption. For this step, the length of the payload or ciphertext of each packet
is investigated. If the length is not a multiple of 128 bits, which is the length of
AES_GCM the packet is padded with zeros.

3.3.3 Control plane design

In this project, the signaling information created by the QUIC stack which is sent
from the host is considered the control plane information. The QUIC stack derives
the information used by the offloading application. The control plane is responsible
for giving the data plane the necessary information for the communication to process
the packets correctly. The control plane can send the two types of signaling packets
described in section 3.2.1 to the application.

The signaling host packets, that are used when processing packets received from the
host, are stored in a table of structures called QUIC connections host and contains an
index, the crypto algorithms used, a header protection key, a packet protection key,
an IV, a path ID, and the destination connection ID length. Since the destination
connection ID length of the peer can be 0 to 160 bits the length is stored in the table.
The table uses the index as key, since it can easily be sent from the host attached to
each packet and is of known length.

The control plane information for processing signaling peer packets received from the
host is stored in a hash table called QUIC connections peer and contains an index,
the crypto algorithms used, a header protection key, a packet protection key, an IV,
a path ID, the destination connection ID, and the full packet number. The destination
connection ID length for the host is always set to 64 bits. The full packet number usually
starts at o for a new connection, but this design allows the peers to start the full packet
number at an arbitrary number. The hash table uses the destination connection ID as a
keys to identify entries, since this information is a part of each user application packet
sent from the peer.

Figure 3.3.2 illustrates the two tables used for each direction.
The tables consists of the following fields:
« Index - Used to identify the connection

« Algorithm - The algorithms used for encrypting or decrypting the payload and
masking the QUIC header. Can be set to AES_ GCM128_AES_ECB, AES__
GCM256_AES_ECB, AES_CCM128_AES_ECB, or CHACHA20_POLY1305.

- Header protection key - The key used to encrypt or decrypt the QUIC header.

30

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

TAELE QUIC connections peer

Key: Destination connection 1D

TABLE QUIC connections host

Index

Algaorithm

Header protection key
Packet protection key
I

Path ID

Key: Index

Index

Algaorithm

Header protection key
Packet protection key
I

Path ID

Destination connection 1D

Destination connection ID length

Full packet number

Figure 3.3.2: Tables used by the application for storing information

« Packet protection key - The key used to encrypt or decrypt the payload with
the AEAD algorithm

» IV - Used for calculating the nonce for the AEAD algorithm by combining the IV
and the reconstructed path-and-packet-number with exclusive or.

« Path ID - An ID used for a path. Needed for calculating the nonce for the AEAD
algorithm.

« Destination connection ID - The connection ID for the host.

» Destination Connection ID length - The length of the connection ID for the
peer.

 Full packet number - The full packed number decoded. Used for creating the
nonce for the AEAD algorithm.

The header protection and packet protection keys are in both cases sent by the hosts as
the maximum key lengths, i.e. 256 bits. If the keys are 128 bits the rest of the field will
be padded with zeros. When the packets are received by the application, the algorithms
used for the connection is checked. If the algorithms use 128 bits keys, the left-padded
zeros are ignored.

The destination connection ID field in the QUIC header is of variable length, and can
be 0 to 160 bits long. In order to process the field at the right byte, the connection
ID length must be known. Each host using QUIC, decides which ID should be used for
itself. The host will decide which value the peer will set in the destination connection ID
field of the packets it sends and the other way around. The ID can then be of assumed
to be of a specific static length, i.e. always 64 bits long when packets are received by the

31

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

offloading application from the peer. When packets will be transmitted from the host,
the peer has chosen the destination connection ID which the host will use. In order to
determine the length the information must be received by the QUIC stack as signaling
information in the signaling host packet.

3.4 Offload application design using P4

A general P4 reference design concept is generated, but not implemented in this
project. Some functionality, such as the encryption and decryption, are performed
by externs which are depending on factors, such as the P4 architecture and compiler,
and are therefore not described. To implement this solution, the T4P4S and MACSAD
compilers or the P4-DPDK-target and bmv2 software switches can be used since
they are open-source and allow developers to add functionality. The P4 code can
then utilize functionality or environments for crypto operations. The major challenge
when implementing the P4 pipeline is extending the mentioned options with external
functions using the DPDK library. To implement this, the options need to be
investigated to identify how these external functions can be added. In this section, a
P4 parser is first presented, as this is the first step in a P4 program. The match-action
data plane pipeline is then described, followed by the design of the control plane.

3.4.1 P4 parser design

The design of the parser can be seen in figure 3.4.1. The parser starts by receiving an
incoming packet. The Ethernet header is first extracted, and the field Ethertype in the
header is used to check if the following protocol is IPv4 (0x0800), local experimental 1
(0x88B5), or local experimental 2 (0x88B6). If Ethertype is set to the IPv4 type, a user
application data packet from the peer is received, or if it is set to local experimental
2, the packet is a user application data packet from the host. If Ethertype is local
experimental 1, a signaling packet is received.

If the packet contains an IPv4 header, the IPv4 header is extracted. A check is made
to examine if the protocol ID field is set to UDP, i.e. 17. In that case, the UDP header
is extracted. The QUIC header (except the packet number) is extracted. The packet
number length field in the QUIC header is examined since it can have the values o, 1,
2, or 3. It is used to determine how many bytes will be extracted as the packet number
field. The parser moves to an accept state and the match-action pipeline starts.

If the packet on the other hand is a user application data packet from the host a data
packet information header is extracted. The QUIC header is extracted followed by the
packet number depending on the packet number length field in the QUIC header. The
parser continues to an accept state.

If the packet is a signaling packet the P4 lookahead function will be used. This function
is used to examine the following bits without extracting them. The type of the packet is
determined. If the byte has the value o the QUIC connection peer header is extracted,

32

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

and if it has the value 1 the QUIC connection host is extracted. The parser moves to an
accept state.

The payload is often not parsed or used in a P4 program, but reattached to the headers
at the end of the process, before being transmitted. In this application the payload is
needed for the encryption. It will not be extracted by the parser but added later by an
external function.

Accept
START
Incoming packet

Parse:
<Ethernet=

Parze:
=quic_pn=

TO. 1,23 i

Experimental Experimental 0

2 1 .
Parse lookahead Parze:
<data_pkt_info= [©€ BIETIE Type <QUIC_connection_peer=

T l P4 l 1

Parze: Parze: Parze:
=quic= =ipy4= =QUIC_connection_host=

; I l

: YES PrOle - ng
EELS;‘ ——— = _— Accept -
UDP

pn_len

A

Figure 3.4.1: The parser design

3.4.2 P4 match-action pipeline design

Since P4 does not support encryption, decryption, or message tag authentication, these
features have to be implemented using P4 externs. A P4 program can be compiled
using a compiler which supports such functionality. The data plane pipeline will be
similar to the offloading design using DPDK seen in figure 3.3.1.

The packet are received in the ingress control block after being parsed. In this control
block, a check is made to determine which direction the packet was sent from, i.e.
which port received the packet. The Ethernet header’s Ethertype field is also examined
to determine how to further process the packet.

When Ethertype is set to local experimental ethertype 1 the extracted header needs
to be determined. P4 has functionality to test validity bits, which is used to check
whether the headers have been extracted or not by the parser. In this step, a check
is made to see if the header QUIC connections peer or QUIC connections host is valid.
The information sent in these packets (described in section 3.2.1) are stored in table
enc_table for the QUIC connection host header and dec_ table for the QUIC connection

33

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

peer header, described in 3.4.3. After storing the information, the packets are dropped
and the processing of the next packet starts.

If Ethertype is set to local experimental ethertype 2 the packets will be reconstructed
to an IP packet, encrypted, and sent to the peer. A IPv4 and UDP header is populated
and set valid. The IPv4 protocol ID is set to UDP. The enc_table is applied to the
packet using the index as a key. If a match occurs the specified encryption action
is triggered, and if not the packet is dropped. Since P4 does not support encryption
or decryption, these functionalities are implemented using externs. After the packet
has been encrypted the 13_fwd_table (later described in 3.4.3) is applied. The key to
this table is the IPv4 destination address and the action called when a hit occurs sets
the MAC destination address and the egress port. If no match is found, the packet is
dropped. The data_pkt_info headeris set invalid. The Ethernet Ethertype header field
is set to IPv4. The Total Length field in the IPV4 header and the Length field in the
UDP header is updated with the correct lengths. The UDP and IPv4 Checksum fields
are calculated and set. The packet is sent towards the peer.

If Ethertype is IPv4, the packet is sent from the peer and the QUIC header and payload
will be decrypted, decapsulated, and sent to the host. The dec_table is applied with
the destination connection ID as key. The extern action used for decryption is called
when a hit occurs and the packet is dropped if not. After decryption, the 13_fwd_table
is applied. The new MAC destination address and the egress port is set. The IPv4
and UDP headers are set invalid. The Ethernet Ethertype is set to local experimental
ethertype 2. The data_pkt_info header is set valid to send metadata back to the host.
The metadata contains the index and full packet number. The packet is sent to the
host.

No processing is done at the egress. The final user defined packet is created in the
deparser. The following header order is applied: Ethernet, IPv4, UDP, data_pkt_info,
QUIC, and QUIC_pn. The headers are only a part of the final packet if they are set
valid.

3.4.3 P4 design control plane

Three tables are used to manage the packet processing: enc_table, dec_table and
13_fwd_table. The enc_table is responsible for providing the necessary parameters
which will be used by the encryption action. The table can be seen in figure 3.4.2 In
this table, the index is used as key values for matching. Each active index is mapped to
a specific action, which can be AES_GCM128_AES_ECB, AES_GCM256_AES_ECB,
AES_CCM128_AES_ECB, CHACHA20_POLY1305, or drop. Each of these actions
except drop receive a number of parameters depending on which encryption
algorithms will be used. The encryption action receive keys, an IV, a path ID and the
destination connection length. If no match occurs the drop action will be called, which
will discard the packet.

If the packets are sent from the peer towards the host, the QUIC header and payload

34

CHAPTER 3. DESIGN OF OFFLOADING APPLICATION

ENC TABLE

DEC TABLE

Maich key: Index

Maich key: Destination connection 1D

Action

Parameters

Action

Parameters

AES_GCM128_AES_ECB

Header protection key

Packet protection key

v

Path ID

Destination Connection 1D length

AES_GCM256_AES_ECB

Header protection key

Packet protection key

[\

Path ID

Destination Connection 1D length

AES_CCM128_AES_ECE

Header protection key

Packet protection key

v

Path ID

Destination Connection 1D length

CHACHAZ0_POLY1305

Header protection key

Packet protection key

v

Path ID

Destination Connection ID length

DROP

Figure 3.4.2: The tables enc_table and dec_table used by the P4 application

AES_GCM128_AES_ECB

Index

Header protection key
Packet protection key
IV

Path ID

Full packet number

AES_GCM256_AES_ECB

Index

Header protection key
Packet protection key
v

Path ID

Full packet number

AES_CCM128_AES_ECE

Index

Header protection key
Packet protection key
v

Path ID

Full packet number

CHACHA20_PQOLY1305

Index

Header protection key
Packet protection key
v

Path ID

Full packet number

DROP

will be decrypted. Table dec_table is used for storing the necessary information
used for decryption and calling the correct decryption action. This table is similar
to enc_table, but uses the destination connection ID as a key for matching. The
parameters that the actions can receive are crypto keys, an IV, the path ID and the
full packet number. The drop action is called when the destination connection ID gets

no match.

The final table used in this design is 13_fwd_ table, which is used to route which port
the packet should be sent to, i.e. the egress port, and which MAC destination address
should be used for the next hop. The matching key for this table is the IPv4 destination
address and the actions that can be called are forward and drop. The table can be seen

in figure 3.4.3.

L3-FWD TABLE

Match key: IPv4 destination address

Action

Farameters

forward

Ethernet destination address
Egress port

DROP

Figure 3.4.3: The forwarding table used by the P4 application

35

1

Chapter 4

Implementation

In this chapter, the implementation of the QUIC offloading design using DPDK from
chapter 3 is described. The program is first initialized by the master logical core, where
ports, queues, and crypto devices are created. The data processing pipeline is then
presented followed by the control plane.

4.1 |Initialization

Two different logical cores are used to run the application. On main logical core
is used to set up necessary processes for the application. These processes are port,
queue, crypto device, and core initialization. In every program utilizing the DPDK
framework, the function rte_eal init() is called. This function initialize the EAL with
the given parameters. In this program the input parameters to this function are ”-1
0-1 -n 4 —vdev “crypto_openssl” which means EAL should be initialized with logical
cores 0 and 1, a quad channel memory architecture should be used, and a virtual
crypto device using openssl should be created. The main logical core then continues
creating a mbuf pool and crypto op pool. The mbuf pool is created by using the
function rte_pktmbuf_pool create(), which creates and initialize a packet message
buffer memory pool used to store the packets that the offloading application will
receive. The rte_crypto_op_pool_create() function creates a crypto operation pool
which is used to store a buffer of crypto operations which the crypto device will receive.
Each crypto operation contains information about the crypto operation the packet will
be processed by.

/* create the mbuf pool */

> pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,

RTE_ALIGN(sizeof (struct rte_crypto_op),
RTE_CACHE_LINE_SIZE) ,RTE_MBUF_DEFAULT BUF_SIZE,
rte_socket_id());
if (pktmbuf_pool == NULL)
rte_exit (EXIT_FAILURE, "Cannot create mbuf pool\n");

/* create crypto op pool */

36

10

11

12

13

14

CHAPTER 4. IMPLEMENTATION

crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128,
MAXIMUM_IV_LENGTH, rte_socket_id());
if (crypto_op_pool == NULL)
rte_exit (EXIT_FAILURE, "Cannot create crypto op pool\n");

Listing 4.1: Creating the mbuf pool and crypto op pool

After these memory pools have been created and initialized, the Ethernet ports and
queues are created and configured. The number of available Ethernet ports are given
by the function rte_eth_dev_count avail(), but since only two ports are used by
the offloading application the rest of the ports on the DPU will be ignored. The
function rte_eth_dev_info_get() are called for each port, which returns the Ethernet
device’s contextual information and fills in parts of the structure rte_eth_dev_info to
access the controlling driver of the Ethernet device. The ports are then configured
with the function rte_eth_dev_configure(). This function receives the number of
receive queues and the number of transmit queues as parameters, and in this program
the number of queues are one of each type for each Ethernet device. The rx
queues are setup with the function rte_eth_rx_queue_setup() and tx queues with
rte_eth_tx_queue_setup() for each port. The Ethernet device is finally started with the
function rte_eth_deuv_start() which is then configured with the specified offloading
features and the transmit and the receive units of the device are started. The
configurations of the ports can be seen in listing 4.2. A check is made to see if fast
release of mbufs and IPv4 and UDP checksum calculations are supported. The last
step of initializing the ports is to assign the logical cores the responsibility of polling
one port each.

if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
local_port_conf.txmode.offloads |=RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;

3 rte_eth_dev_configure(portid, 1, 1, &local_port_conf);

if (! (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) ||
!(dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM))
rte_panic("offload not supported");

Listing 4.2: Configuring offload capabilities for the Ethernet ports

The next step in the main core’s responsibility is to set up and configure the crypto
device. Two crypto devices will be created. Each crypto device is linked with one
of the ports and logical cores pair. The following process is made for both crypto
devices. The function rte_cryptodev_info_get is called and returns the contextual
information of the crypto device in the structure rte_cryptodev_info. Two session
memory pools are created to hold the header and private data for each session. The
functions rte_mempool create() and rte_cryptodev_sym_session_pool_create()
are used for the creation of memory pools. The crypto device initialization if
finalized by calling the function rte_cryptodev_configure() to configure the device,
rte_cryptodev_queue_pair_setup() to map the crypto device to a receive queue pair
and rte_cryptodev_start() to start the device.

37

CHAPTER 4. IMPLEMENTATION

The final step in the main core is to create a rte_hash_table to store signaling
information used when processing packets from the peer of the connection. This
table is created by setting rte_hash_parameters and use as this as input to the
rte_hash_create() functions. The key to the table will be the destination connection
ID and the length is set to 32 bits.

Lastly, the function rte_eal mp_remote_launch() is called, which is used to launch
one continuously running main function on both logical cores.

4.2 Data plane

Each of the two logical cores 0 and 1 is responsible for polling packets from their
assigned ports. The data packets are placed in rx queues and processed. Each cores
enqueues the packets at the crypto device. Each core is also responsible for dequeuing
the packets from the crypto device, do further processing and finally transmit the
packets in the right direction by placing them in a tx queue at the Ethernet device.

Each core is running a main processing function. The function consists of two parts,
one where both crypto devices are configured further, and the other of a continually
running loop pulling packets from the ports. In the first part, some fields of the
structure rte_crypto_sym_xform needs to be filled with the correction values for
each crypto device, since one port will be encrypting and the other decrypting packets.
Certain fields of the structure rte_crypto_op are also filled before entering the loop.
This decision is made because the processing between receiving and transmitting a
packet should be minimized. Fields that are not specific for each packet should be set
outside of the continually running loop.

The final step of the configuration of the crypto devices in the main processing function
is to call the function rte_cryptodev_sym_ session_ create() which creates a symmetric
crypto session header.

The main functionality of the main processing function is to poll packets from the rx
queues, process them, place them in tx queues, and transmit the packets. The rx queues
are read by using the function rte_eth rx_burst() which retrieves a burst of incoming
packets of the Ethernet device and places them in the structure rte_ mbuf which is a
buffer containing the packets. If the function returns a non-empty value the function
rte_crypto_op_bulk_alloc() is called which bulk allocates and fills crypto operations
from the crypto_op_pool memory pool.

Each packet is now individually processed before being enqueued at the crypto
device. If the packet contains user application data and is sent by the peer the
rte_hash_lookup_data() is used to look up the connection information. If the hosts
sends user application data, the index in the packet is used to find an entry in
the structure where the information is stored. For each encrypted packet, a crypto
operation is attached with all necessary information on how the packet should be
processed by the crypto device. For this step, the structure rte_crypto_op is used

38

CHAPTER 4. IMPLEMENTATION

which points to a rte_crypto_sym_op structure since a symmetric cryptographic
processing will be performed. Parts of this structure can be seen in listing 4.3. The
offset is where the AEAD algorithm should start processing, i.e. the number of bytes
with the start of the source buffer to the start of the payload data that will be encrypted.
The length is the number of bytes of the plaintext that will be encrypted. The length
start from the offset position. The digest data is the authentication tag which will be
produced by the AEAD algorithm. When encrypting, the pointer is set to the start bytes
of the allocated space where the tag will be placed after processing. If the packet will
be decrypted the pointer is set to the start byte of the existing tag, which is 128 bits
counting from the end when using AEAD. The physical address is set to the address
the data pointer is set to. The aad of a QUIC encryption is the QUIC header. The data
and physical address is set to point at this byte in the mbuf.

struct {
struct {
uint32_t offset;
uint32_t length;
} data;
struct {
uint8_t x*data;
rte_iova_t phys_addr;
} digest;
struct {
uint8_t x*data;
rte_iova_t phys_addr;
} aad;
} aead;

Listing 4.3: Parts of the rte_crypto_sym_ op structure

Therest of the rte_crypto_sym_ xform structure is now to be filled in before enqueuing
the packet at the crypto device. If the packet is sent from the peer, the offloading
application needs to decode the truncated packet number received in the QUIC header.
This process is done by calling the function decode_ pkt_nr() shown in listing 4.4.

uint64_t decode_pkt_nr(uint64_t largest_pn, uint64_t truncated_pn, uint64_t
pn_nbits){
uint64_t expected_pn, pn_win, pn_hwin, pn_mask, candidate_pn;

expected_pn = largest_pn + 1;

pn_win = 1<< pn_nbits;
pn_hwin = pn_win / 2;
pn_mask = pn_win -1 ;
candidate_pn = (expected_pn & ~pn_mask) | truncated_pn;

if ((candidate_pn <= expected_pn - pn_hwin) && (candidate_pn < (1ull
<< 62) - pn_hwin))
return candidate_pn + pn_win;
if ((candidate_pn > expected_pn + pn_hwin) && (candidate_pn >=
pn_win))
return candidate_pn - pn_win;

39

CHAPTER 4. IMPLEMENTATION

14 return candidate_pn;
15 }
Listing 4.4: Decoding the truncated packet number into the full 62 bit packet number

The nonce is created by using the function set_nonce(), shown in listing 4.5. The key
is set with information from the tables. The packets are sent to the crypto device by
calling the rte_cryptodev_enqueue_burst() function.

1 void set_nonce(uint32_t path_id, uint8_t *iv, uint64_t full_pn, struct
rte_crypto_op *op, uint8_t algo){

int tal_cid = 24, tal_pn = 56;

uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,IV_OFFSET);
4 uint8_t iv_size = 12;
5 uint8_t *nonce = (uint8_t*)malloc(iv_size);
6 uint8_t *byte_pair = (uint8_t*)malloc(6);

8 uint32_t cid_seq = htonl(path_id);

o /* store bytes from mbuf into a variable and creating the nonce */

1 for(int i = 0; i< iv_size; i++){

if (i<4){

13 *(nonce+i) = cid_seq >> tal_cid;
14 tal_cid-= 8;

15 +

16 elseq{

17 *(nonce+i) = full_pn >> tal_pn;
18 tal_pn -= 8;

19 }

20 *(nonce+i) = *(iv+i) ~ *(nonce+i);
21 }

if (algo == AES_CCM128_AES_ECB)

23 rte_memcpy (iv_ptr +1, nonce, iv_size);
24 else

rte_memcpy (iv_ptr, nonce,iv_size) ;

Listing 4.5: Creating the nonce

The packets are dequeued from the crypto device by using the function rte_cryptodev
_dequeue_burst(). If the packets are originally sent from the peer the final step
is to remove the IPv4 and UDP header by using rte_pktmbuf_adj(). The Ethernet
header ethertype is set to 0x88B6 and hardware offloading is used for calculating the
checksum of IPv4 and UDP, seen in listing 4.6. The packet is placed in the tx queue
and sent with rte_eth_tx_burst() towards the host. If the packet was originally sent
from the host, the QUIC header is encrypted by calling header_encrypt() and finally
the index and full packet number is removed by using rte_pktmbuf_adj(). The IPv4
and UDP checksums are hardware offloaded. The packet is sent rte_eth_tx_burst()
towards the peer.

. m->0l_flags |= RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM |
. RTE_MBUF_F_TX_UDP_CKSUM;

40

CHAPTER 4. IMPLEMENTATION

m->12 len = sizeof (struct rte_ether_hdr);

m->13_len sizeof (struct rte_ipvé4_hdr);

ip_hdr->hdr_checksum = 0;

udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ip_hdr, m->o0l_flags) ;

Listing 4.6: Offloading the checksum calculations of IPv4 and UDP

4.3 Control plane

The control plane consists of two types of tables, and depending on which direction the
packet traverse the offloading application a different table is used.

The packets sent from the host is processed by the information stored in a array
consisting of the structure QUIC connections_host, seen in listing 4.7. Since the
QUIC packets sent from the host contains an index, the corresponding entry can easily
be found. The signaling packets used to create an entry in this table contains the
8 bits long header field Type which is set to 1. The mbuf is read with the function
rte_pktmbuf_mtod_offset() and the offset is the Ethernet header size plus 8 bits to
leave out the Type field. The result is casted into the structure QUIC _connections_host
at the array index retrieved from the index field of the packet.
struct QUIC_connections_host{

uintl6_t index;

uint8_t algo;

uint8_t hp_key [MAX_KEY_LEN];

uint8_t quic_key [MAX_KEY_LEN];

uint8_t iv[IV_LEN];

uint32_t path_id;

uint8_t dcid_len;
} __rte_packed;
Listing 4.7: The table used for storing signaling packets for processing packets from
the host

Packets containing signaling information used when processing packet from the peer
are stored in the structure QUIC _connections_peer which can be seen in listing 4.7.
The information read from the mbuf by using rte_pktmbuf _mtod_offset() where the
offset is the Ethernet header plus 8 bits due to the header field Type. The result is
casted into the structure and the structure is for easier handling. Before the packet is
discarded, the structure is casted into a void type and stored in a rte_hash_table. The
destination connection ID is used as a key to the table. To add a new entry the function
rte_hash_add_key_data() is used.

struct QUIC_connections_peerq
uintl6_t index;
uint8_t algo;
uint8_t hp_key [MAX_KEY_LEN];
uint8_t quic_key [MAX_KEY_LEN];

41

6

8

9

10

CHAPTER 4. IMPLEMENTATION

uint8_t iv[IV_LEN];

uint32_t path_id;

uint8_t dcid [DCID_LEN];

uint64_t full_pn;
} __rte_packed;
Listing 4.8: Table stored in the rte hash table. Stores signaling packets for processing
packets from the peer

4.4 Generating test cases

In order to evaluate the implementation, test cases are created. A real QUIC stack and
user application will not be used to evaluate the offloading application, as this is part of
future work to integrate these with the offloading application. The packets will instead
be crafted. These test cases consists of user application data packets, i.e. packets
that will be sent to the application, processed and forwarded, and packets containing
signaling information that will be stored in the tables. The signaling packets are sent
in a burst before starting the performance evaluation with data packets. The signaling
and data packets can be sent mixed, but before a data packet is received a table entry
with its index or destination connection ID needs to be created or the packet will be
dropped.

441 Generating table entries

To generate table entries, signaling packets need to be created. To achieve this, the
packet manipulation library Scapy in Python is used. A Python program is created,
which is used to send signaling information from the x86 host to the application.
This program creates 10 different connections, with information of the connection
for packets sent from both directions. If the peers x and y is communicating, the
application receives one packet with signaling information linked to packets sent
from peer x and one packet linked to packets sent from peer y. The programs will
receive signaling two packets per communication session. For the evaluation of 10
communication the application receives 20 signaling packets containing information
to populate the tables.

The signaling header from the host can be seen in listing 4.9. The header fields is
implemented using Scapys BitField method. The input to this method is the header
field name, a default value, and the number of bits the field will be encoded with. For
example has the header field Type the default value 1 and is encoded using 8 bits. The
header field Index needs to be changed for each connection.
class signaling_host (Packet):
name = "signaling_host"
fields_desc = [
BitField("Type",1,8),
BitField("Index",0,16),

42

9

10

11

1

CHAPTER 4. IMPLEMENTATION

BitField("Algo", 0,8),
BitField ("Hp_key",0x0,256),
BitField ("Quic_key",0x0,256),
BitField ("IV",0x0,96),
BitField("Path_id", 0, 32),
BitField ("DCID len",0,8)

]

Listing 4.9: Signaling packets for processing packets from the host

The signaling header from the peer is similar to the signaling header from the host and

can be seen in listing 4.10. The header fields DCID and Index need to be changed for
each connection.

class signaling_peer (Packet):

name = "signaling_peer"

fields_desc = [
BitField ("Type",0,8),
BitField("Index",0,16),
BitField("Algo", 0,8),
BitField ("Hp_key" ,0x0,256),
BitField ("Quic_key" ,0x0,256),
BitField ("IV",0x0,96),
BitField ("Path_id", 0, 32),
BitField ("DCID",0x0,64),
BitField ("Full_pn", 0x0, 64)

]

Listing 4.10: Signaling packets for processing packets from the peer

The packets are created by attaching an Ethernet header in front of the signaling header.
The Ethernet header field Ethertype is set to 0x88B5 which is a local experimental
ethertype.

4.4.2 Generating packets

A set of user application data packets are generated using Scapy. These packets are
sent to a port and by using the packet capturing program tcpdump which is sniffing on
the port, the packets are stored in a packet capture pcap file. The pcap file is the source
to stream packets from, when using the packet generator Pktgen-DPDK. The packet
generator Pktgen-DPDK is a software based on DPDK and is used to generate traffic.
It is used both as a receiver and a transmitter on the x86 processor.

A user application data packet received by the offloading application from the host
consists of an Ethernet header, the data pkt header, the QUIC header and the
unencrypted payload. The Ethertype is set to the local experimental ethertype 0x88B6.
The data pkt header can be seen in listing 4.11, and consists of an index and the full
packet number. The index must match to an existing index in control plane table in
the application, or the packet will be dropped. The payload is different depending on

43

1

CHAPTER 4. IMPLEMENTATION

which packet size will be evaluated. Packets are created to contain 128, 256, 512, 1024,

and 1400 Bytes of payload.

class data_pkt (Packet):
name = "data_pkt_host"
fields_desc = [
BitField ("Index",0,16),
BitField ("Full_pn",0x0 ,64)
]
class quic(Packet):
name = "quic"
fields _desc = [
BitField ("Header_form",0,1),
BitField("Fixed _bit",1,1),
BitField ("Spin_bit",0,1),
BitField("Reserved_bits",0,2),
BitField ("Key_phase",0,1),
BitField("Pn_len",0,2),
BitField ("DCID",0x0,64),
BitField ("Pn", 0x0,16)

Listing 4.11: Data packets received by the offloading application

44

Chapter 5

Evaluation and Result

In this chapter, the following questions will be answered:

1. Which throughput can be achieved when different key sizes are used in the
offloading application?

2. What latency can be expected when using the offloading application?

3. What throughput can be achieved when encrypting AES_GCM_128 in DPDK
using a hardware accelerated crypto device compared to a software crypto device?

4. What throughput can be achieved of the crypo algorithms in AEAD used by QUIC
when hardware not supported by DPDKs crypto devices are used?

To answer question 1, the testbed presented in section 5.1 is used. The offloading
application is placed on the DPU and packets are sent by a packet generator running at
the x86 host. The rx throughput at the receiver will be measured in gigabits per second
and packets per second.

To answer question 2, the same testbed described in section 5.1 will be used.
Modifications of the offloading application have to be made due to the latency
measurement packet format from the traffic generator. Only an estimated latency
can be measured since these packets will not be processed in the same way as QUIC
packets.

Question 3 will be answered by using the QAT hardware accelerated crypto device and
the AESNI-GCM software crypto device supported in DPDK. Measurements from Intel
[19] using the dpdk-test-crypto-perf tool will be used to provide an answer to this
question.

Question 4 will be answered by evaluating all supported crypto algorithms using
different hardware devices with the OpenSSL speed engine.

45

CHAPTER 5. EVALUATION AND RESULT

5.1 Testbed

To test the QUIC crypto offload a testbed is used which consists of two servers. The
setup can be seen in figure 5.1.1. Each server consists of a x86 processor and a BlueField
2 DPU. The x86 processor is a Intel(R) Xeon(R) CPU E5-2660 v4 running at the
frequency 2.00GHz. Ubuntu 20.04.4 LTS is installed on both the CPU and DPU. A
25 Gbps link is attached between the DPU on Device Under Test (DUT) 1 port Po and
DUT 2 port Po. The DPUs are connected to the board on the servers via PCIe. The CPU
is running the packet generator software application PktgenDPDK version 22.2.0. The
DPU which is running the offloading application is using DPDK version 21.11.0. The
BlueField 2 DPU supports hardware crypto acceleration, but the acceleration engine
cannot be reached via DPDK due to driver limitations. As seen in figure 5.1.1, the public
key crypto accelerator is not used and the crypto is performed in software using the Arm
CPU instead.

Server DUT 1 Server DUT 2

X86 CPU (Linux) X86 CPU (Linux)
User application User application
(QUIC stack) (QUIC stack)
i i
—] PCle | —] PCle |
| DFU (BlueField 2) | DFU (BlueField 2)
i Public Key l Public Key
Crypto Crypfo
PFO - PFO -
S1 ARM CPU (Linux 51 ARM CPU (Linux
OVS Bridge-3 5] —%) OVS Bridge-3 571 %)
51) _— 511) -
OVS Bridge-1 —|: Omoadtlg%g?ghcanon OVS Bridge-1 —E Omoadgg?jgpé;hcanon
S0 || S0 ||
— & — &
[Fo] Embedded switch] [Fo] Embedded switch|
[[
E‘E‘ [F1] 00B LP‘E[[F1] 00B

Figure 5.1.1: The testbed used for evaluating the offloading application

5.2 Offloading application evaluation

In this section the performance of the QUIC offloading application is evaluated using
the BlueField 2 DPU without a crypto engine. All crypto processing will be done in
software on the Arm cores of the DPU. The testbed described in section 5.11is used. The
offloading applications running on each DPU uses the OpenSSL PMD crypto device for
the AEAD crypto operations.

In a first evaluation of the offloading application, the throughput is measured in
gigabits per second and packets per second. The results can be seen in figures 5.2.1
and 5.2.2. The packets are sent from the pktgen-DPDK application on the x86 on DUT
1, processed and encrypted on the offloading application on the DPU. It is then sent

46

CHAPTER 5. EVALUATION AND RESULT

to the offloading application on the DPU on DUT 2 and processed and decrypted and
sent to the pktgen-DPDK application on the x86. The path can be seen in figure 5.1.1 as
the red line. The rx throughput is measured on the pktgen-DPDK application on DUT
2,

The results showed that the key size of the Advanced Encryption Standard - Galois
Counter Mode (AES-GCM) algorithm had little impact on the performance. The
maximum difference in throughput observed when using different key sizes was 62
Mbps using 1400 Bytes packets. The minimum difference was 9 Mbps using 256 Bytes
packets. When only forwarding the packets on the DPUs without any packet processing
or crypto operations, the throughput was significantly improved. These packets are
expected to gain higher throughput than the QUIC packets, since the QUIC packets are
encrypted in software on the Arm cores and en/decapsulated. The unprocessed packets
are forwarded by DPDK using the PMD, which is used to achieve kernel-bypassing.
The speed of the link is 25 Gbps, which becomes the limiting factor for the packets.
The increase in throughput scaling with the packet size was expected since smaller
packet sizes implies more packet processing, such as packet header processing and
setting up buffers, will be performed. A future evaluation would consist of measuring
the throughput of the packet processing and en/decryption on the host in the user
application. Since this is how QUIC packets normally are processed.

1024 '

1400

AES GCM_128

AES GCM_256
mm Only forwarding
lDl p
lD-:l -
T T T
128 256

512
Packet Size (Bytes)

Throughput (Gigabit/s)

Figure 5.2.1: Throughput of different packet sizes using AES_GCM_128,
AES_GCM_ 256 and only forwarding

In the second evaluation of the offloading application, the throughput is measured

47

CHAPTER 5. EVALUATION AND RESULT

using Kpps. The results are presented in figure 5.2.2. These results were excepted as
well, since larger flows implies that the offloading applications and packet forwarding
functionality during the path will require more time processing each packet. This
increases the number of small packets that are able to be sent through the path
compared to larger packets. This measurement also indicates a small negative impact
of the performance when using 128 bits keys compared to 256 bits. The minimum
packet throughput difference observed between the key sizes is 4 Kpps using 1024
Bytes packets. The maximum difference is 12 Kpps at 128 Bytes packets.

200 AES GCM 128
AES GCM_256

175

150

125

100

Throughput (KPkts/(s)

50

25

128 256 512 1024 1400
Packet Size (Bytes)

Figure 5.2.2: Packet rate of different packet sizes using AES_GCM_128 and
AES_GCM_256

The estimated latency of using the offloading applications were measured. Two
challenges were faced during the latency evaluation. One was that the pktgen-DPDK
measures latency by sending packets containing an Ethernet, IPv4, UDP header with
timestamp data attached at the end. Therefore, the packet would not be exposed
to the same processing as the packets presented in section 3.2.1 that the offloading
application expects to receive. In order to evaluate the latency, the offloading
application was adapted to process these packets. Since the same functionality
would not work using these latency packets, the processing pipeline consists of only
encryption or decryption using the crypto device. The crypto parameters are set to
static values, similar to the ones QUIC uses. The path in section 5.1 is used. Instead of
only sending the packets from DUT 1 to DUT 2 the packets are looped back on the x86
of DUT 2 using the same path back to the x86 on DUT 1. The estimated latency of 1-RTT

48

CHAPTER 5. EVALUATION AND RESULT

can then be measured on the x86 on DUT 1. The other challenge that was faced during
the latency evaluation was that the results were very inconsistent. The latency was
significantly different using the same parameters during different evaluation periods.
The results will not be presented, since a stable result could not be achieved.

In the next evaluation of latency, the jitter was measured. The results are seen in
figure 5.2.3. By examining the jitter, the inconsistency of the latency measurements
are presented. The results are shown in figure 5.2.3. As seen in the figure, the jitter
percent increases to a high level already when sending at 2 percent of line rate. The
packet loss starts at this rate. The bottleneck of the path is at the DPU on DUT 1. The
packet loss past this device is low. This is most likely due to queues, i.e the rx, crypto
or tx queue being full, resulting in packets being dropped.

100

Jitter percent (%%}

20

01 1 2 5 10 15 5
Percent of line rate (%)

Figure 5.2.3: The jitter percent when sending at different rates.

5.3 DPDK supported crypto device benchmarks

DPDK offers the tool dpdk-test-crypto-perf, which is used to measure the performance
of the PMD available on the hardware. In this section, measurements Intel QAT crypto
PMD, and AES-NI GCM crypto PMD are presented. The parameters to the tool is set to
represent the AEAD crypto parameters used in QUIC. The key size is set to 128 bits, the
IV is 96 bits, the authentication tag is 128 bits. The associated data is set to 128 bits in
figure 5.3.1. The input parameters to dpdk-test-crypto-perf can be seen in Appendix

49

CHAPTER 5. EVALUATION AND RESULT

A. Since AES-NI GCM does not support Advanced Encryption Standard - CBC counter
mode (AES-CCM) and CHACHA20_POLY1305, only AES_ GCM_ 128 will be evaluated
on these benchmarks.

In figure 5.3.1, measurements by Intel are presented. The data comes from the DPDK
Intel Cryptodev Performance Report and can be found in [19]. The hardware and
software used for these measurements are described in the report. Intel presents
measurements using the dpdk-test-crypto-perf tool with QAT and AESNI-GCM crypto
devices. It should be noted that the aim of the QAT measurements was to reach the
maximum throughput and therefore the measurements use parameters such as multi
core configurations that are not used in the other tests.

QAT

[AESNI-GCM
80 4
&0 4
an
20- l
&4 128 256 512 1024 2048

Buffer Size (Bytes)

Throughput (Gigabit/s)

Figure 5.3.1: Measurements from the Intel Cryptodev Performance Report using the
QAT and AESNI-GCM crypto devices [19]

The evaluation of crypto devices using dpdk-test-crypto-perf enlighten the impact of
using a hardware accelerated crypto device compared to a crypto device running in
software. The maximum difference using QAT and AESNI-GCM reached 65 Gbps.
The evaluation also enlightens the impact of using a hardware crypto engine at larger
buffer sizes. At small buffer sizes, such as 64 Bytes, the gain is minimal. If a hardware
crypto device is used by user applications, such as video streaming that send elephant
flows, the gain will have a greater impact.

50

CHAPTER 5. EVALUATION AND RESULT

5.4 OpenSSL benchmark

As a final evaluation, the openSSL library is used to evaluate the performance of
processing all the supported AEAD crypto algorithms in QUIC using different devices.
In this performance test, the openssl-speed utility is used to measure the throughput
in gigabits per second of AES_GCM_128 and AES_GCM_256, AES_CCM_128 and
CHACHA20_POLY1305 on different machines. The following hardware devices are
used:

 BlueField 2 - Arm (Cortex-A72), 8 cores, 2.5GHz

« Intel Core i5 8250U - 4 cores, 1.6GHz

« Intel Xeon E5-2660 v4 - 14 cores, 2GHz

« Raspberry Pi 4 - ARM (Cortex-A72), 4 cores, 1.5 GHz

The Raspberry pie has no crypto support. The BlueField 2 DPU uses the Armv8
Cryptographic Extension in order to accelerate the crypto processing, which is
suboptimal since the card has a hardware crypto accelerator but it cannot be reached
using the openssl-speed utility. The two x86 CPUs have crypto acceleration supported
through the AES-NI instruction set for Intel processors. The hardware devices
have multiple other parameters than the crypto operations affecting the throughput.
Therefore, the throughput should only be compared using different crypto algorithms
for each device, and not the results of the devices compared with each other.

The results are presented in figure 5.4.1, 5.4.2, 5.4.3, and 5.4.4. The throughput on
each hardware device is similar regardless if AES_GCM_128 or AES_GCM_ 265 is
used. A decreased throughput can be observed when AES_CCM_ 128 is measured.
In these evaluations, the Raspberry Pi card had a significant lower throughput than
the other devices except when CHACHA20_POLY1305 was measured. The maximum
difference in throughput using the Intel Core i5 8250U CPU is when AES_GCM_ 128
is compared to AES_CCM_128. By using AES_GCM_128 41 Gbps throughput
is achieved compared to 10 Gbps using AES_CCM_128. A significant increased
throughput can be seen on all devices except the Raspberry Pi 4 card when using
AES-GCM compared to AES-CCM or CHACHA20_POLY1305.

51

CHAPTER 5. EVALUATION AND RESULT

BlueField 2

40 1 mmm Intel Core i5-8250U
o Intel Xeon ES-2660 w4
B Raspberry Pi 4

=

Throughput [Gigabit/s)

i

B 56 1024 8192
Buffer Size (Bytes)

Figure 5.4.1: Throughput for different hardware using AES_ GCM_ 128

BlueField 2
m Intel Core i5-8250U
o Intel Xeon ES-2660 w4
B Raspberry Pi 4

b=

i

Throughput (Gigabit/s)

B4 56 1024 8192
Buffer Size (Bytes)

Figure 5.4.2: Throughput for different hardware using AES_GCM_ 256

52

CHAPTER 5. EVALUATION AND RESULT

BlueField 2

101 mmm Intel Core i5-8250U
o Intel Xeon ES-2660 w4
B Raspberry Pi 4

Throughput [Gigabit/s)

B 56 1024 8192
Buffer Size (Bytes)

Figure 5.4.3: Throughput for different hardware using AES_CCM_ 128

BlueField 2
| mmm Intel Core i5-8250U
o Intel Xeon ES-2660 w4

mmm Raspberry Pi 4
14 | pherry

Throughput (Gigabit/s)

B4 56 1024 8192
Buffer Size (Bytes)

Figure 5.4.4: Throughput for different hardware using CHACHA20_POLY1305

53

Chapter 6

Conclusions and Future Work

The objective of this degree project was to investigate how different functions of
multipath QUIC packet processing can be offloaded from the CPU or accelerated with
hardware. To answer this research question, multiple frameworks, programming
languages, and hardware devices have been examined. When investigating the
DOCA and IPDK framework and Mount Evans IPU, little information was published.
Therefore, the scouting has involved contacting Intel, NVIDIA and employees at
Ericsson when seeking information. The results of this investigation was that these
frameworks and the Mount Evans IPU was not mature for being used in this degree
project. The results also proved that offloading, acceleration, DPUs/IPUs and QUIC
have a growing interest in the industry.

To answer the question "how can multipath QUIC be offloaded and/or accelerated® an
offloading application was designed and implemented. Two designs for the offloading
application was first created. One design using the DPDK framework and another
using the P4 programming language. Since these designs were very similar and the
P4 design would have to rely on another tool for functionality which is not supported
in the language, for example by DPDK when compiling with T4P4S, the decision was
made to use a native DPDK design. After investigating, the most feasible solution to
implement a offloading application for multipath QUIC was considered to be using
DPDK running on a NVIDIA’s BlueField 2 DPU. The BlueField 2 card has support
for hardware accelerated AES-GCM, but proved to be supported only in kernel and
unreachable via DPDK. If the offloading application is running on a hardware device
with a crypto engine supported in DPDK, a specific crypto device can be created and
leveraged through DPDK as an input parameter to the application. This solution makes
the offloading application more generalized and independent of the hardware. The list
of supported crypto cards in DPDK that can be used to accelerate the AEAD algorithms
used in multipath QUIC were presented.

The evaluation of the offloading application consisted of measuring the throughput,
latency and jitter. During the throughput evaluation, varying the key size of AES-GCM
was explored to investigate the impact of the throughput. These results showed that

54

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the key size had a low effect on the throughput regardless of which packet size was used.
The latency measurements were not presented in this thesis, because of the unstable
results. When measuring the jitter percent, the results indicated a high packet loss
when increasing the sending rate. The plan was originally to evaluate the offloading
application using different hardware devices, with crypto engines, in order to compare
how these measurements would be affected by using hardware acceleration on the
offloading application. Since other cards were not accessible, the decision was made to
only evaluate the application on the BlueField 2 card without crypto acceleration.

Benchmarks of DPDK crypto devices were presented. The results from Intel using
QAT and AES-NI and OpenSSL showed the increased throughput that can be achieved
when using a crypto hardware accelerator compared to executing crypto operations
in software. In these test, only AES_GCM_128 was measured. Therefore, another
benchmark was measured. This evaluation consisted of different hardware devices
using the openssl speed utility in order to investigate the performance of these devices
when using all AEAD algorithms supported in QUIC. These results also showed the
increased throughput when acceleration was possible.

The key insight of our evaluation is the need for accelerating hardware and/or a
high-performance CPU when offloading functionality. The gain of throughput in the
measurements are significant in the cases where a crypto engine is used, compared
to when not. By using an offloading application in for example a data center, the
offloading application cannot become the bottleneck of the path, introducing high
latency and packet loss. Without a powerful CPU or crypto engine, the performance
might decrease. This enlightens the need of hardware acceleration in hardware devices,
such as SmartNICs, DPUs and IPUs.

If future work were to be performed on the offloading application, additional
functionally could be added. Currently all IP and MAC addresses and port numbers are
set statically. To better represent reality, information to populate the Ethernet, IPv4
and UDP header would also be sent in the signaling information packets from user
application on the host to the offloading application. Access to an Address Resolution
Protocol (ARP) table could also be added to the offloading application. This would
offload the packet encapsulation process further from the user application, since the
user application would not have to be aware of MAC addresses for the next hop on the
path towards its peer.

55

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Admanabhan, Arvind. QUIC. 2021. URL: https : / / devopedia . org / quic
(visited on 06/06/2022).

Amend, Markus, Brunstrom, Anna, Kassler, Andreas, Rakocevic, Veselin,
and Johnson, Stephen. DCCP Extensions for Multipath Operation with
Multiple Addresses. Internet-Draft draft-ietf-tsvwg-multipath-dccp-04. Work
in Progress. Internet Engineering Task Force, Mar. 2022. 36 pp. URL: https:
//datatracker.ietf.org/doc/html/draft-ietf-tsvwg-multipath-dccp-04.

Bhalgat, Ash. Choosing the Best SmartNIC. 2021. URL: https: //developer .

nvidia . com/blog/ choosing-the-best-dpu-based- smartnic/ (visited on
06/06/2022).

Bonaventure, Olivier. Apple Music on i0S13 uses Multipath TCP through load-
balancers. 2019. URL: http://blog.multipath-tcp.org/blog/html/2019/10/
27/apple music_on_ios13 uses_multipath_tcp_through load_ balancers.
html (visited on 06/06/2022).

Bosshart, Pat, Daly, Dan, Gibb, Glen, Izzard, Martin, McKeown, Nick, Rexford,
Jennifer, Schlesinger, Cole, Talayco, Dan, Vahdat, Amin, Varghese, George, and
Walker, David. “P4: Programming Protocol-Independent Packet Processors”.
In: SIGCOMM Comput. Commun. Rev. 44.3 (2014), pp. 87—95. ISSN: 0146-
4833. DOI: 10.1145/2656877 . 2656890. URL: https://doi.org/10.1145/
2656877 .2656890.

Burres, Brad. Intel’s Hyperscale-Ready Infrastructure Processing Unit (IPU).
Intel. 2021. URL: https : / / www . hc33 . hotchips . org / assets / program /
conference/dayl/Intel’5C%20TLM}%5C%20Hotchips’%5C%202021%5C%20-%5C%
20Mt%5C%20Evans’5C%20R2a%5C%20-%5C%20Final,5C%20version%5C%202 . pdf
(visited on 06/20/2022).

Bursi, Alberto. Cryptographic Hardware Accelerators. 2020. URL: https :
/ / openwrt . org / docs / techref / hardware / cryptographic . hardware .
accelerators# : ~ : text =AY 5C % 20Cryptographic 7 5C % 20Hardware % 5C %
20Accelerator%5C%20can’%5C%20be % 5C%20integrated’5C%20into, to%5C%
20the’%5C%20mainboard?5C%20via’5C%20some’%5C%20BUS % 5C%2C%5C%20e . g .
%5C%20PCI (visited on 06/06/2022).

56

https://devopedia.org/quic
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-multipath-dccp-04
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-multipath-dccp-04
https://developer.nvidia.com/blog/choosing-the-best-dpu-based-smartnic/
https://developer.nvidia.com/blog/choosing-the-best-dpu-based-smartnic/
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_music_on_ios13_uses_multipath_tcp_through_load_balancers.html
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_music_on_ios13_uses_multipath_tcp_through_load_balancers.html
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_music_on_ios13_uses_multipath_tcp_through_load_balancers.html
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://www.hc33.hotchips.org/assets/program/conference/day1/Intel%5C%20TLM%5C%20Hotchips%5C%202021%5C%20-%5C%20Mt%5C%20Evans%5C%20R2a%5C%20-%5C%20Final%5C%20version%5C%202.pdf
https://www.hc33.hotchips.org/assets/program/conference/day1/Intel%5C%20TLM%5C%20Hotchips%5C%202021%5C%20-%5C%20Mt%5C%20Evans%5C%20R2a%5C%20-%5C%20Final%5C%20version%5C%202.pdf
https://www.hc33.hotchips.org/assets/program/conference/day1/Intel%5C%20TLM%5C%20Hotchips%5C%202021%5C%20-%5C%20Mt%5C%20Evans%5C%20R2a%5C%20-%5C%20Final%5C%20version%5C%202.pdf
https://openwrt.org/docs/techref/hardware/cryptographic.hardware.accelerators#:~:text=A%5C%20Cryptographic%5C%20Hardware%5C%20Accelerator%5C%20can%5C%20be%5C%20integrated%5C%20into,to%5C%20the%5C%20mainboard%5C%20via%5C%20some%5C%20BUS%5C%2C%5C%20e.g.%5C%20PCI
https://openwrt.org/docs/techref/hardware/cryptographic.hardware.accelerators#:~:text=A%5C%20Cryptographic%5C%20Hardware%5C%20Accelerator%5C%20can%5C%20be%5C%20integrated%5C%20into,to%5C%20the%5C%20mainboard%5C%20via%5C%20some%5C%20BUS%5C%2C%5C%20e.g.%5C%20PCI
https://openwrt.org/docs/techref/hardware/cryptographic.hardware.accelerators#:~:text=A%5C%20Cryptographic%5C%20Hardware%5C%20Accelerator%5C%20can%5C%20be%5C%20integrated%5C%20into,to%5C%20the%5C%20mainboard%5C%20via%5C%20some%5C%20BUS%5C%2C%5C%20e.g.%5C%20PCI
https://openwrt.org/docs/techref/hardware/cryptographic.hardware.accelerators#:~:text=A%5C%20Cryptographic%5C%20Hardware%5C%20Accelerator%5C%20can%5C%20be%5C%20integrated%5C%20into,to%5C%20the%5C%20mainboard%5C%20via%5C%20some%5C%20BUS%5C%2C%5C%20e.g.%5C%20PCI
https://openwrt.org/docs/techref/hardware/cryptographic.hardware.accelerators#:~:text=A%5C%20Cryptographic%5C%20Hardware%5C%20Accelerator%5C%20can%5C%20be%5C%20integrated%5C%20into,to%5C%20the%5C%20mainboard%5C%20via%5C%20some%5C%20BUS%5C%2C%5C%20e.g.%5C%20PCI
https://openwrt.org/docs/techref/hardware/cryptographic.hardware.accelerators#:~:text=A%5C%20Cryptographic%5C%20Hardware%5C%20Accelerator%5C%20can%5C%20be%5C%20integrated%5C%20into,to%5C%20the%5C%20mainboard%5C%20via%5C%20some%5C%20BUS%5C%2C%5C%20e.g.%5C%20PCI

BIBLIOGRAPHY

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Coninck, Quentin De. “The Packet Number Space Debate in Multipath QUIC”.
In: CoRR abs/2112.01068 (2021). arXiv: 2112.01068. URL: https : //arxiv .
org/abs/2112.01068.

Deierling, Kevin. What Is a DPU? 2020. URL: https://blogs .nvidia.com/
blog /2020 / 05/ 20 / whats - a - dpu - data - processing - unit/ (visited on
06/06/2022).

DPDK. URL: https://www.dpdk.org/ (visited on 06/06/2022).

DPDK. 10. Mbuf Library. version 22.03.0. URL: https : //doc . dpdk . org /
guides/prog_guide/mbuf_1lib.html (visited on 06/06/2022).

DPDK. 3. Environment Abstraction Layer. version 22.03.0. URL: https : //

doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html (visited on
06/06/2022).

DPDK. Crypto Device Drivers. version 22.03.0. URL: https://doc.dpdk.org/
guides/cryptodevs/index.html (visited on 06/06/2022).

Ericsson. About us. URL: https://www.ericsson.com/en/about-us (visited on
06/06/2022).

Ford, Alan, Raiciu, Costin, Handley, Mark J., and Bonaventure, Olivier. TCP
Extensions for Multipath Operation with Multiple Addresses. RFC 6824. Jan.
2013. DOI: 10 . 17487 /RFC6824. URL: https://www.rfc-editor . org/info/
rfc6824.

Hauser, Frederik, Haberle, Marco, Schmidt, Mark, and Menth, Michael. “P4-
IPsec: Site-to-Site and Host-to-Site VPN With IPsec in P4-Based SDN”. In:
IEEE Access 8 (2020), pp. 139567—139586. DOI: 10 . 1109 / ACCESS . 2020 .
3012738.

Helme, Scott. Top 1 Million Analysis - March 2020. 2020. URL: https : / /
scotthelme . co . uk/top-1-million- analysis - march- 2020/ (visited on
06/06/2022).

Hillmancurtis. FPGA programming and its cost comparison. URL: https: //
hillmancurtis.com/fpga-programming-and-its-cost-comparison/ (visited
on 06/06/2022).

Intel-DPDK-Validation-team. DPDK Intel Cryptodev Performance Report.

Mar. 2022. URL: http://fast.dpdk.org/doc/perf /DPDK_21_11_ Intel _
crypto_performance_report.pdf.

IPDK. URL: https://ipdk.io/ (visited on 06/06/2022).

IPDK. OPI Event - IPDK and its role in enabling Open Programmable
Infrastructure - Dan Daly March 15 2022. YouTube. 2022. URL: https: //
youtu.be/0quYERUJcMA (visited on 06/06/2022).

Iyengar, Jana and Thomson, Martin. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. May 2021. DOI: 10.17487/RFC9000. URL: https:
//www.rfc-editor.org/info/rfc9000.

57

https://arxiv.org/abs/2112.01068
https://arxiv.org/abs/2112.01068
https://arxiv.org/abs/2112.01068
https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/
https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/
https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html
https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html
https://doc.dpdk.org/guides/cryptodevs/index.html
https://doc.dpdk.org/guides/cryptodevs/index.html
https://www.ericsson.com/en/about-us
https://doi.org/10.17487/RFC6824
https://www.rfc-editor.org/info/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://doi.org/10.1109/ACCESS.2020.3012738
https://doi.org/10.1109/ACCESS.2020.3012738
https://scotthelme.co.uk/top-1-million-analysis-march-2020/
https://scotthelme.co.uk/top-1-million-analysis-march-2020/
https://hillmancurtis.com/fpga-programming-and-its-cost-comparison/
https://hillmancurtis.com/fpga-programming-and-its-cost-comparison/
http://fast.dpdk.org/doc/perf/DPDK_21_11_Intel_crypto_performance_report.pdf
http://fast.dpdk.org/doc/perf/DPDK_21_11_Intel_crypto_performance_report.pdf
https://ipdk.io/
https://youtu.be/OquYERUJcMA
https://youtu.be/OquYERUJcMA
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000

BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Joshua, Hay, Machnikowski, Maciej, Bowers, Gregory, Wochtman, Natalia,
Muniak, Joanna, and Deval, Manasi. Accelerating QUIC via Hardware
Offloads through a Socket Interface. 2019. URL: https://legacy.netdevconf.
info/0x13/session.html?talk-quic-offload.

Kehr, James. What’s Quic? 2021. URL: https://techcommunity . microsoft .
com / t5 / networking - blog / what - s - quic / ba - p / 2683367 (visited on
06/06/2022).

Keim, Robert. What Is a Hardware Description Language (HDL)? 2022. URL:
https ://www . allaboutcircuits . com/technical -articles/what-is-a-
hardware-description-language-hdl/ (visited on 06/06/2022).

Kennedy, Patrick. Intel Unveils Infrastructure Processing Unit. 2021. URL:
https : / / www . intel . com / content / www / us / en / newsroom / news /
infrastructure-processing-unit-data-center . html#gs . 2htoth (visited
on 06/06/2022).

Kennedy, Patrick. This Changes Networking Intel IPU Hands-on with Big
Spring Canyon. 2022. URL: https://www.servethehome.com/this-changes-
networking-intel-ipu-hands-on-with-big-spring-canyon/#:~:text=IPU}
5C%201s%5C%20the%5C%20Intel-specific5C%20term’5C%20for%5C%20itsY%
5C%20%5C%E2%5C%80%5C%9CInfrastructure, Intel%5C%20IPUs%5C%20for%5C%
20networking%5C%2C%5C%20in%5C%20the%5C%20same%,5C%20system. (visited
on 06/06/2022).

Kit, Ariel. Programming the Entire Data Center Infrastructure with the
NVIDIA DOCA SDK. 2020. URL: https : //developer . nvidia . com/blog/
programming-the—-entire-data-center-infrastructure-with-the-nvidia-
doca-sdk/#: ~:text=P4%5C%20support’5C%20is%5C%20a%5C%20component’,5C%
200£%5C%20D0CAY5C%20enabling , already%5C%20have’,5C%20a%5C%20rich%5C%
20ecosystem’5C%200f%5C%20VNF%5C%200f ferings. (visited on 05/15/2022).

Kordek, Alyssa. What is Hardware Offload? 2021. URL: https : / / www .
inmotionhosting.com/blog/hardware-offload/ (visited on 06/06/2022).

Langlet, Jonatan. Offloading Virtual Network Functions—Hierarchical
Approach. 2020. URL: http://urn.kb.se/resolve?urn=urn:nbn:se:kau:
diva-79090.

Liu, Yanmei, Ma, Yunfei, Coninck, Quentin De, Bonaventure, Olivier, Huitema,
Christian, and Kiihlewind, Mirja. Multipath Extension for QUIC. Internet-
Draft draft-ietf-quic-multipath-01. Work in Progress. Internet Engineering Task
Force, Mar. 2022. 28 pp. URL: https://datatracker . ietf .org/doc/html/
draft-ietf-quic-multipath-01.

M. Satran, S. White. How RPC Works. 2019. URL: https://docs.microsoft.
com/en-us/windows/win32/rpc/how-rpc-works (visited on 05/15/2022).

58

https://legacy.netdevconf.info/0x13/session.html?talk-quic-offload
https://legacy.netdevconf.info/0x13/session.html?talk-quic-offload
https://techcommunity.microsoft.com/t5/networking-blog/what-s-quic/ba-p/2683367
https://techcommunity.microsoft.com/t5/networking-blog/what-s-quic/ba-p/2683367
https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-language-hdl/
https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-language-hdl/
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html#gs.2htoth
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html#gs.2htoth
https://www.servethehome.com/this-changes-networking-intel-ipu-hands-on-with-big-spring-canyon/#:~:text=IPU%5C%20is%5C%20the%5C%20Intel-specific%5C%20term%5C%20for%5C%20its%5C%20%5C%E2%5C%80%5C%9CInfrastructure,Intel%5C%20IPUs%5C%20for%5C%20networking%5C%2C%5C%20in%5C%20the%5C%20same%5C%20system.
https://www.servethehome.com/this-changes-networking-intel-ipu-hands-on-with-big-spring-canyon/#:~:text=IPU%5C%20is%5C%20the%5C%20Intel-specific%5C%20term%5C%20for%5C%20its%5C%20%5C%E2%5C%80%5C%9CInfrastructure,Intel%5C%20IPUs%5C%20for%5C%20networking%5C%2C%5C%20in%5C%20the%5C%20same%5C%20system.
https://www.servethehome.com/this-changes-networking-intel-ipu-hands-on-with-big-spring-canyon/#:~:text=IPU%5C%20is%5C%20the%5C%20Intel-specific%5C%20term%5C%20for%5C%20its%5C%20%5C%E2%5C%80%5C%9CInfrastructure,Intel%5C%20IPUs%5C%20for%5C%20networking%5C%2C%5C%20in%5C%20the%5C%20same%5C%20system.
https://www.servethehome.com/this-changes-networking-intel-ipu-hands-on-with-big-spring-canyon/#:~:text=IPU%5C%20is%5C%20the%5C%20Intel-specific%5C%20term%5C%20for%5C%20its%5C%20%5C%E2%5C%80%5C%9CInfrastructure,Intel%5C%20IPUs%5C%20for%5C%20networking%5C%2C%5C%20in%5C%20the%5C%20same%5C%20system.
https://www.servethehome.com/this-changes-networking-intel-ipu-hands-on-with-big-spring-canyon/#:~:text=IPU%5C%20is%5C%20the%5C%20Intel-specific%5C%20term%5C%20for%5C%20its%5C%20%5C%E2%5C%80%5C%9CInfrastructure,Intel%5C%20IPUs%5C%20for%5C%20networking%5C%2C%5C%20in%5C%20the%5C%20same%5C%20system.
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/#:~:text=P4%5C%20support%5C%20is%5C%20a%5C%20component%5C%20of%5C%20DOCA%5C%20enabling,already%5C%20have%5C%20a%5C%20rich%5C%20ecosystem%5C%20of%5C%20VNF%5C%20offerings.
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/#:~:text=P4%5C%20support%5C%20is%5C%20a%5C%20component%5C%20of%5C%20DOCA%5C%20enabling,already%5C%20have%5C%20a%5C%20rich%5C%20ecosystem%5C%20of%5C%20VNF%5C%20offerings.
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/#:~:text=P4%5C%20support%5C%20is%5C%20a%5C%20component%5C%20of%5C%20DOCA%5C%20enabling,already%5C%20have%5C%20a%5C%20rich%5C%20ecosystem%5C%20of%5C%20VNF%5C%20offerings.
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/#:~:text=P4%5C%20support%5C%20is%5C%20a%5C%20component%5C%20of%5C%20DOCA%5C%20enabling,already%5C%20have%5C%20a%5C%20rich%5C%20ecosystem%5C%20of%5C%20VNF%5C%20offerings.
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/#:~:text=P4%5C%20support%5C%20is%5C%20a%5C%20component%5C%20of%5C%20DOCA%5C%20enabling,already%5C%20have%5C%20a%5C%20rich%5C%20ecosystem%5C%20of%5C%20VNF%5C%20offerings.
https://www.inmotionhosting.com/blog/hardware-offload/
https://www.inmotionhosting.com/blog/hardware-offload/
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-79090
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-79090
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01
https://docs.microsoft.com/en-us/windows/win32/rpc/how-rpc-works
https://docs.microsoft.com/en-us/windows/win32/rpc/how-rpc-works

BIBLIOGRAPHY

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

Mepits. Hardware Description Language. 2014. URL: https: //www . mepits.
com / tutorial / 143 / vlsi / hardware - description - language (visited on

06/06/2022).
NVIDIA BLUEFIELD-2 DPU. NVIDIA. 2021. URL: https://www.nvidia.com/

content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-
bluefield-2-dpu.pdf (visited on 06/20/2022).

OCTEON 10 DPU Family. Marvell. 2021. URL: https : //www . marvell . com/

content/dam/marvell/en/company/media-kit/octeon-10/marvell-octeon-
10-media-deck.pdf (visited on 06/20/2022).

P4. URL: https://p4.org/ (visited on 06/06/2022).

Papastergiou, Giorgos, Fairhurst, Gorry, Ros, David, Brunstrom, Anna,
Grinnemo, Karl-Johan, Hurtig, Per, Khademi, Naeem, Tiixen, Michael, Welzl,
Michael, Damjanovic, Dragana, and Mangiante, Simone. “De-Ossifying the
Internet Transport Layer: A Survey and Future Perspectives”. In: IEEE
Communications Surveys Tutorials 19.1 (2017), pp. 619—639. DOI: 10 . 1109/
COMST.2016.2626780.

Pauly, Tommy, Kinnear, Eric, and Schinazi, David. An Unreliable Datagram
Extension to QUIC. RFC 9221. Mar. 2022. DOI: 10. 17487/RFC9221. URL: https:
//www.rfc-editor.org/info/rfc9221.

Rescorla, Eric. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. Aug. 2018. DOI: 10. 17487 /RFC8446. URL: https://www.rfc-editor.
org/info/rfc8446.

Rott, Jeffrey Keith. Intel® Advanced Encryption Standard Instructions (AES-
NI). 2012. URL: https://www.intel . com/content/www/us/en/developer/
articles/technical/advanced-encryption-standard-instructions-aes-
ni.html#: ~:text=AES-NIY,5C%20can%5C%20be?%5C%20used?5C%20to%5C%
20accelerate’5C%20the’5C%20performance, rounds’%5C%20to0%5C%20produce’,
5C%20the’,5C%20final%5C%20encrypted’,5C%20cipher’5C%20text . (visited on
06/06/2022).

Thomson, Martin and Turner, Sean. Using TLS to Secure QUIC. RFC 9001. May
2021. DOI: 10. 17487 /RFC9001. URL: https://www.rfc-editor.org/info/
rfc9001.

Valdellon, Lionel. What is an SDK? Everything You Need to Know. 2020. URL:
https://clevertap.com/blog/what-is-an-sdk/ (visited on 06/06/2022).

Viernickel, Tobias, Froemmgen, Alexander, Rizk, Amr, Koldehofe, Boris,
and Steinmetz, Ralf. “Multipath QUIC: A Deployable Multipath Transport
Protocol”. In: May 2018, pp. 1—7. DOI: 10.1109/ICC.2018.8422951.

59

https://www.mepits.com/tutorial/143/vlsi/hardware-description-language
https://www.mepits.com/tutorial/143/vlsi/hardware-description-language
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.marvell.com/content/dam/marvell/en/company/media-kit/octeon-10/marvell-octeon-10-media-deck.pdf
https://www.marvell.com/content/dam/marvell/en/company/media-kit/octeon-10/marvell-octeon-10-media-deck.pdf
https://www.marvell.com/content/dam/marvell/en/company/media-kit/octeon-10/marvell-octeon-10-media-deck.pdf
https://p4.org/
https://doi.org/10.1109/COMST.2016.2626780
https://doi.org/10.1109/COMST.2016.2626780
https://doi.org/10.17487/RFC9221
https://www.rfc-editor.org/info/rfc9221
https://www.rfc-editor.org/info/rfc9221
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html#:~:text=AES-NI%5C%20can%5C%20be%5C%20used%5C%20to%5C%20accelerate%5C%20the%5C%20performance,rounds%5C%20to%5C%20produce%5C%20the%5C%20final%5C%20encrypted%5C%20cipher%5C%20text.
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html#:~:text=AES-NI%5C%20can%5C%20be%5C%20used%5C%20to%5C%20accelerate%5C%20the%5C%20performance,rounds%5C%20to%5C%20produce%5C%20the%5C%20final%5C%20encrypted%5C%20cipher%5C%20text.
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html#:~:text=AES-NI%5C%20can%5C%20be%5C%20used%5C%20to%5C%20accelerate%5C%20the%5C%20performance,rounds%5C%20to%5C%20produce%5C%20the%5C%20final%5C%20encrypted%5C%20cipher%5C%20text.
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html#:~:text=AES-NI%5C%20can%5C%20be%5C%20used%5C%20to%5C%20accelerate%5C%20the%5C%20performance,rounds%5C%20to%5C%20produce%5C%20the%5C%20final%5C%20encrypted%5C%20cipher%5C%20text.
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html#:~:text=AES-NI%5C%20can%5C%20be%5C%20used%5C%20to%5C%20accelerate%5C%20the%5C%20performance,rounds%5C%20to%5C%20produce%5C%20the%5C%20final%5C%20encrypted%5C%20cipher%5C%20text.
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9001
https://clevertap.com/blog/what-is-an-sdk/
https://doi.org/10.1109/ICC.2018.8422951

BIBLIOGRAPHY

[44] Voros, Péter, Horpacsi, Daniel, Kitlei, Robert, Leskd, Daniel, Tejfel, Maté,

[45]

[46]

and Laki, Sandor. “T4P4S: A Target-independent Compiler for Protocol-
independent Packet Processors”. In: 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPSR). 2018, pp. 1—8. DOI: 10.
1109/HPSR.2018.8850752.

Xilinx. What is an FPGA? URL: https://www.xilinx.com/products/silicon-
devices/fpga/what-is-an-fpga.html (visited on 06/06/2022).

Yang, Xiangrui, Eggert, Lars, Ott, Jorg, Uhlig, Steve, Sun, Zhigang, and Antichi,
Gianni. “Making QUIC Quicker With NIC Offload”. In: Proceedings of the
Workshop on the Evolution, Performance, and Interoperability of QUIC. EPIQ
’20. Virtual Event, USA: Association for Computing Machinery, 2020, pp. 21—
27. ISBN: 9781450380478. DOI: 10 . 1145/3405796 . 3405827. URL: https: //
doi.org/10.1145/3405796.3405827.

60

https://doi.org/10.1109/HPSR.2018.8850752
https://doi.org/10.1109/HPSR.2018.8850752
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827

Appendix A

Command lines for
dpdk-test-crypto-perf

1 ./x86_64-native-linuxapp-gcc/app/dpdk-test-crypto-perf --socket-mem 2048,0
--legacy-mem -a 0000:1a2:01.0 -a 0000:1¢c:01.0 -a 0000:1e:01.0 -a 0000:1a
:01.1 -a 0000:1c:01.1 -a 0000:1e:01.1 -a 0000:1a:01.2 -a 0000:1c:01.2 -
a 0000:1e:01.2 -a 0000:1a:01.3 -a 0000:1c:01.3 -a 0000:1e:01.3 -a
0000:1a:01.4 -a 0000:1c:01.4 -a 0000:1e:01.4 -a 0000:1a:01.5 -a 0000:1c
:01.5 -a 0000:1e:01.5 --vdev crypto_scheduler_pmd_1,worker=0000:1a:01.0
_qat_sym,worker=0000:1c:01.0_qgat_sym,worker=0000:1e:01.0_qgat_sym,mode=
round-robin --vdev=crypto_scheduler_pmd_2,worker=0000:1a:01.1_qgat_sym,
worker=0000:1c:01.1_qgat_sym,worker=0000:1e:01.1_qgat_sym,mode=round-
robin --vdev=crypto_scheduler_pmd_3,worker=0000:1a:01.2_qgat_sym,worker
=0000:1c:01.2_qat_sym,worker=0000:1e:01.2_qgat_sym,mode=round-robin --
vdev=crypto_scheduler_pmd_4 ,worker=0000:1a:01.3_qgat_sym,worker=0000:1c
:01.3_qgat_sym,worker=0000:1e:01.3_qgat_sym,mode=round-robin --vdev=
crypto_scheduler_pmd_5,worker=0000:1a:01.4_qgat_sym,worker=0000:1c:01.4
_qat_sym,worker=0000:1e:01.4_qgat_sym,mode=round-robin --vdev=
crypto_scheduler_pmd_6 ,worker=0000:1a:01.5_qat_sym,worker=0000:1c:01.5
_qat_sym,worker=0000:1e:01.5_qgat_sym,mode=round-robin -1
9,10,66,11,67,12,68 -n 6 -- --aead-key-sz 16 --buffer-sz
64,128,256,512,1024,2048 --optype aead --ptest throughput --aead-aad-sz

16 --devtype crypto_scheduler --aead-op encrypt --burst-sz 32 --total-
ops 30000000 --silent --digest-sz 16 --aead-algo aes-gcm --aead-iv-sz
12

Listing A.1: Command line argument for evaluating the QAT crypto device

1 ./x86_64-native-linuxapp-gcc/app/dpdk-test-crypto-perf --socket-mem 2048,0
--legacy-mem --vdev crypto_aesni_gcm_pmd_1 -1 9,10 -n 6 -- --aead-key-
sz 16 --buffer-sz 64,128,256,512,1024,2048 --optype aead --ptest
throughput --aead-aad-sz 16 --devtype crypto_aesni_gcm --aead-op
encrypt --burst-sz 32 --total-ops 10000000 --silent --digest-sz 16 --
aead-algo aes-gcm --aead iv-sz 12

Listing A.2: Command line argument for evaluating the AESNI-GCM cryto device

61

	Introduction
	Overview
	Problem Description
	Thesis Goals
	Ethics and Sustainability
	Methodology
	Stakeholders
	Delimitations
	Outline

	Background and Related Work
	QUIC
	QUIC Overview
	QUIC Encryption
	Multipath QUIC

	Frameworks and Programming Languages
	Data Plane Development Kit (DPDK)
	P4
	Infrastructure Programmer Development Kit (IPDK)
	DOCA
	Hardware Description Language

	Programmable Networking Hardware
	SmartNIC
	DPU
	IPU
	FPGA

	Related Work
	QUIC Offloading
	IPSec offloading

	Design of offloading application
	Framework and hardware selection
	Frameworks
	DPDK crypto offload drivers
	Hardware

	Design overview
	Packet format design

	Offload application design using DPDK
	Data plane design
	Encryption
	Control plane design

	Offload application design using P4
	P4 parser design
	P4 match-action pipeline design
	P4 design control plane

	Implementation
	Initialization
	Data plane
	Control plane
	Generating test cases
	Generating table entries
	Generating packets

	Evaluation and Result
	Testbed
	Offloading application evaluation
	DPDK supported crypto device benchmarks
	OpenSSL benchmark

	Conclusions and Future Work
	References
	Command lines for dpdk-test-crypto-perf

