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A B S T R A C T   

A global increase in the wood fuel pellet market requires knowledge of new biomasses pelleting abilities. As 
large-scale industrial tests of new materials are costly, tests in e.g., a single pellet press (SPP) are desirable. SPPs 
have many different configurations and it typically produces one pellet at a time and can give results of its 
pelletability. This review has surveyed the research that has been carried out of SPPs to ascertain the feasibility of 
comparing their obtained data and the results. The results show that it is almost impossible to compare the data 
and results of the various different SPP studies, e.g., some information from the data used was missing, resulting 
in that only 27 out of 70 papers were comparable. One solution could be the introduction of a common SPP 
testing method using a determined set of data that enables a reference pellet to be produced in every study.   

1. Introduction 

Biomasses are comprised of several types of materials, e.g., wood, 
starch, agricultural residues, energy crops, industrial and solid wastes. 
The successful transition to a fossil-free society requires all of these types 
of biomasses to be optimized for the specific product application for 
which it is to be used. 

The transport and manageability of biomasses also require consid-
eration in order to increase their utilization rate. However, by their very 
nature, biomass residues have a low weight per unit volume, i.e., bulk 
density, as well as irregular particle and chip sizes. Therefore, challenges 
are faced in its handling, which lead to high transportation costs: e.g. the 
bulk density of grasses is about 40–150 kg/m3, and 150–200 kg/m3 for 
commercial woodchips (Stelte et al., 2012b). Compression through 
pelleting increases the bulk density of woody materials to over 600 kg/ 
m3 if ENplus® certification is to be fulfilled (Stelte et al., 2012b). Along 
with the increase in density, pellets offer other benefits, such as: dry 
conditions and a uniform size that led to easier handling; a better mass 
volume dosage; and a decrease in the risk of mould and microorganism 
growth. 

1.1. Increased use of pellets calls for further research 

The biomass pellets used most today, especially in the fuel market, 
are made from softwoods such as spruce or pine; hardwood species are 
also used, depending on the regional availability of the raw material. 
The growth of the global fuel pellet market has been expeditious in 
recent years and is anticipated to increase even more rapidly in the near 
future (Junginger et al., 2009). Moreover, the demand for pelletized 
products in other applications will increase as the transition to a fossil- 
free society progresses. It implies that a wider range of biomasses must 
be used in pellet production so, for optimal utilization, a pellet producer 
should be able to accommodate different incoming feedstocks during 
production. This requires the pellet process to be designed for a variety 
of biomass species that will, for example, vary in chemical composition, 
which is something that is not currently possible. A traditional pelleti-
zation process takes place in a pellet press in which rollers force the 
biomass through a die channel, a process that is comprised of three steps: 
I) compression, II) flow, and III) friction (Nielsen, 2009). In the first step, 
the biomass is compressed into a thin layer that is then pressed further 
down in an inlet cone before being subjected to friction in the die 
channel. The friction step generates the temperature in the die as well as 
a back pressure, which enables the rollers to create their pressure 
(Frodeson et al., 2018; Nielsen, 2009). Although the rollers apply the 
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pressure, it is the interaction between the need for energy in the 
compression phase, the flow step, back pressure, and temperature that 
creates the pellets as an outcome result. From the perspective of a pellet 
producer, the bulk density outcome result must not only be within 
standard, but it must also have minimal variations. Different materials 
create different friction, so the active part of the die channel must be 
adapted to the raw material in question. Different species have varia-
tions in the active die channel length (Nielsen, 2009): this specific length 
is known as the die press length. The inlet cone and the die channel 
together are the total press way. Thus, to ensure that the bulk density 
requirement can be met, the press length is chosen and determined by a 
specific feedstock species or mixture thereof (Frodeson et al., 2018; 
Nielsen et al., 2009a). This restricts pellet producers who strive for a 
feedstock with a chemical composition, bulk density, etc. that is as 
uniform as possible (Mani et al., 2006; Ramírez-Gómez, 2016; Stelte 
et al., 2012b), and it limits the utilization of a varied biomass stream. 

Research studies aimed at increasing the use of new biomasses as 
feedstock in pellet production should include how these materials 
behave within the die. Furthermore, adding data such as the press 
length, energy for compression, backpressure, and/or friction to such 
studies will allow the degree of pelletability to be evaluated, and the 
utilization of new materials could thereby increase. Fortunately, much 
of the ongoing worldwide research into pellets is being applied based on 
studies of different kinds of pellet presses and their associated 
equipment. 

1.2. Applied pellet research conducted at different levels 

The aim of the applied pellet researcher is often to increase the use of 
biomass, but it can also be to enhance pellet production, enhance pellet 
quality, or understand the bonding mechanisms in the pellets. 
Depending on the subject being investigated, different types of test 
equipment are employed such as, full-scale pellet plant testing, followed 
by a pilot-scale press, or laboratory bench-scale press. Typical laboratory 
presses are still conventional pellet presses, but are reduced in size. The 
smallest scale is the single pellet press (SPP): this is a totally different 
system, as its name indicates, and produces one pellet at a time. 

Research conducted in a full-scale pellet plant provides results that 
allow the pellet process to be optimized or improved with respect to, e.g. 
energy efficiency, the use of pre-treatment methods or testing different 
additives (Ståhl et al., 2019). However, few scientific publications have 
been published on an industrial scale. The major advantage of full-scale 
production is that the tests are performed on large amounts of material 
under stable operating conditions: the sheer quantity of material present 
in large plants has the added advantage that, for example, detailed tests 
can be made in larger silos or combustion tests can be carried out. Also, 
there are good opportunities for testing pelletizing with a specific die 
and a press length of choice. The main drawback is that the production 
might have to be stopped during the research tests because a lot of 
material must be processed and tested, as several tons per hour are 
produced in a plant, and this can result in a loss in production income. 
Also, it is difficult to switch the die to test new materials with a different 
press length. In many cases it not possible to conduct trials on an in-
dustrial basis due to technological limits, lack of sufficient time for the 
trials, or security reasons. Furthermore, it is sometimes not feasible to 
extract detailed and reliable data from industrial plants in a satisfactory 
manner depending on difficulties to do with measurements and 
obtaining the required pellet plant data. Furthermore, the production 
window is narrow, which makes it difficult to gain variability during 
tests. The implication here is that it would be beneficial if the testing can 
be done on a smaller scale, and the findings from such tests are trans-
latable to the full industrial scale production of pellets. From a research 
perspective, it should also be added that it is difficult to study parame-
ters within the pellet press: the mill is like a “black box”. Therefore, 
undertaking research aimed at testing a new material and evaluating its 
operating parameters is difficult in a full-scale operation. 

Research conducted in a laboratory bench press or a pilot press 
(10–500 kg/h) often has the same objectives as in full industrial pro-
duction tests (García et al., 2019; Masche et al., 2019; Rudolfsson et al., 
2020; Ståhl et al., 2012). In many cases, the process resembles that of 
full-scale production, especially in small industrial pilot production 
units, even though the production rate is lower. Studies at this level of 
production rate are advantageous since less material has to be tested and 
trials on new materials can be carried out beforehand rather easily to 
give operating properties such as the optimal moisture content, press 
length, additives requirements, etc. It is also easier to have control over 
the data and all of the operating parameters, including changing the die 
without compromising production costs. Compared to industrial pro-
duction, pellet production in a pilot press or laboratory press offers the 
opportunity of running processes under partially or totally controlled 
conditions, and, therefore, the operational windows can be set wider. 
Moreover, should it result in a full stop in production, there is no conflict 
of interests between researchers and the mill staff. The drawback, 
however, is that pilot and laboratory bench presses are expensive in 
terms of investment and operational costs; only a few universities and 
research institute worldwide have access to such equipment at present. 
It is also difficult to study the parameters within a pellet press, so re-
searchers studying what occurs within the die need to test equipment 
that is even smaller in size. 

The smallest units of pellet production are single pellet presses 
(SPPs), producing one pellet at a time of 1 g, the design of which varies. 
SPPs have many different configurations and research has been carried 
out on them since the 1980s. They are used in research laboratories 
worldwide, as well as in the papers studied in this work, for studying 
both the pelleting process and material-oriented issues. The objectives of 
SPP studies can be the same as those mentioned for full, pilot, and 
smaller laboratory presses, but they can also include another research 
approach, namely one that aims at understanding the mechanical 
mechanisms of pelletizing. SPPs have the advantage of being able to 
easily control the mechanical properties and process parameters (such as 
compression energy and backpressure), plus only a really small amount 
of test material is needed. Furthermore, test series are run rather quickly 
and the experimental trials give high resolution with respect to discov-
ering optimal process temperatures, feedstock mixtures, moisture, par-
ticle properties, etc. One drawback is that many SPP studies are based on 
pelletizing raw material in batches: full industrial production is a 
continuous process, making it difficult to transfer SPP results to full- 
scale production. Although there are a few papers that deal with the 
scaling issue (Larsson and Samuelsson, 2017; Mǐsljenović et al., 2016; 
Puig-Arnavat et al., 2016; Shang et al., 2014), a newly presented con-
ference paper by Pichler et al. (2020) concluded that mechanical 
durability shows good correlation when the results were obtained in SPP 
and pilot plant pellets are evaluated. In the same study, they also pre-
sented a regression model based on a statistical design of an experiment 
for calculating specific energy consumption in which they find some 
correlation related to energy consumption between the different pellet 
production units (Pichler et al., 2020). Industrial pellet production is 
entirely different to producing pellets in an SPP, but nevertheless there is 
nevertheless much that can be learned in SPP production, from both a 
material and process point of view. The final aim is often to apply 
knowledge acquired in single-pelleting to large-scale pellet production. 

There are pros and cons attached to conducting research at different 
levels of production rate. Plus, for the optimal utilization of biomasses 
when striving towards a fossil-free society, there should be a way of 
translating the results from a study undertaken at a specific level so that 
they can be applied to another level, between different levels and also 
within the same level. In order to evaluate data and results from 
different studies, it is often crucial that researchers have followed the 
same procedure: standards are one way of ensuring that the same 
method is used by all. 

There are international ISO standards drawn up for the industrial 
production of fuel pellets, which include moisture content, size 
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distribution, sampling, pellet density, durability, and ash content. The 
ISO standards facilitate the industrial production of pellets, their trade, 
and the consumer market. However, there is a lack of standardized 
methods, equipment, and quality tests for evaluating pellets produced in 
an SPP unit. According to Gilvari et al. (2019), the absence of compa-
rable methods for quality assessment related to SPP studies makes un-
derstanding the effect different factors may have on the quality of the 
pellet challenging. There are several ways of evaluating durability, for 
example, when producing only one pellet at a time (rotating drum (ISO 
17831-1), Ligno Tester, vibrating bed, tumbling can, etc.), which makes 
comparison between research results impossible (Gilvari et al., 2019). 
So, there is a lack of comparable methods for the SPP pellets produced, 
and methods for evaluating the pelletizing processes itself are not 
particularly comparable. 

Normally, each SPP unit is designed and built at different institutes 
or universities, so it is not always clear whether it is unique or equivalent 
to another SPP. However, in general, it can be said that an SPP unit is 
comprised of a steel die with a drilled hole or channel with a conical 
entrance, as shown in Fig. 1, and there is a removable bottom plate at the 
bottom of the hole. In most cases, the die has an electrical element 
mounted so that a controlled temperature can be achieved. When the 
material being pelletized has been placed in the hole, it is compressed by 
a piston. The piston and die are mounted on a testing machine so that the 
piston velocity can be constant and controlled. SPP studies have shown 
that the piston velocity can be generated in two different ways: either 
the piston is the moving part that compresses the biomaterial in a fixed 
die, or the piston is fixed, and the die moves against it. Regardless of 
type, the current study has only examined the actual velocity at which 
the compression took place. When a predetermined pressure is reached, 
this pressure is normally held for a certain time (holding time) before it 
is released; then, the bottom plate is removed and the pellet is pressed 
out. 

Thus, the important factors in SPP studies are the design and data of 
the equipment (e.g., the diameter of the piston or press channel), and the 
parameters of the process data (e.g., die temperature, piston velocity, 
maximum pressure, and holding time). The type of material (weight of 
the test sample, particle size, particle size distribution, and moisture 
content) followed by results that involve pellet quality and the effects of 
pre-treatment, etc. are also of importance. 

Applied pellet research SPP studies are used worldwide; together, 
these are vital resources for learning not only how to evaluate pellet 

production, but also how to incorporate new bioresources. The state of 
the art in SPP research is concentrated to four main areas; evaluation of 
the raw material used (the vast majority of studies), studying pure 
biomass substances, modeling of the pelletizing process, and process 
parameter studies. The latter could be done in an attempt to be able to 
describe what takes place inside a die in large scale pellet production, 
but very few papers, if any, approach that task. All such SPP equipment 
can, and does, provide an important understanding of the ways in which 
materials behave during compression. Regardless of whether research 
findings are fully applicable to full-scale pellet production, it is never-
theless important that SPP research is conducted using adequate 
methods based on a relevant data set-up. One important question behind 
the present study is: can SPP studies be evaluated against each other? A 
future area of research could be to take results from SPP studies 
regarding existing and new materials for the pellet industry and use 
them as a database to increase the use of biomaterials. For this to be 
possible, however, data harvested from different SPP equipment must be 
transparent and comparable. 

1.3. Aim 

Worldwide SPP studies that are comparable would increase knowl-
edge of how pelletability is correlated to the characteristics of the bio-
masses and possibly increase the utilization of biomasses. A first step in 
reaching this end is to gather and evaluate information related to the 
various SPP units that have been used in past decades with a focus 
placed on the mechanical part of producing pellets in SPP units. 
Therefore, the aim of this study is do a review of SPP papers to inves-
tigate whether it is possible to compare SPP studies to gain more 
knowledge on pelleting by selecting some typical key data and results 
from them. Should it not be possible to make such comparisons, rec-
ommendations to rectify this will be presented. 

2. Method 

2.1. Compilation of SSP papers 

Initially, single pellet press papers in which different sorts of bio-
masses were used as raw materials were compiled. The method 
employed for finding these papers was to sift through various search 
engines, e.g., Google Scholar, Web of Science, and Taylor and Francis. 
The keywords used were pellets, single pellet, pellet press, biomass, sawdust, 
production, compaction, and densification. Papers matching these criteria 
were listed for further investigation. This compilation did not strive to 
be all-embracing by covering all of the SPP papers ever written, but it 
was an attempt to source enough papers to be able to evaluate the 
purpose of this study. Efforts were also made to source literature in other 
languages such as Swedish and German, but are kept out of the 
comparison. 

2.2. Delimitation criteria 

In order to make comparisons between SPP research papers related 
to the pelleting process, some similarities regarding data, results, and 
overall aim must be included and clearly presented in the papers. 
Therefore, delimitations in two steps were used to identify and eliminate 
papers that lacked information of, for example, the design of the die and 
the process parameters used during the tests. 

The first delimitation step was related to the diameter of the pellet. 
According to ISO standards (ISO 17225-1:2014), a pellet is defined as 
having a diameter of 6–25 mm. Furthermore, this study is classed as fuel 
pellet research and most fuel pellets have a diameter below 12 mm (6 or 
8 mm is most common), so the larger pellets are too far from industrial 
applications to be considered. Therefore, the first delimitation was to 
exclude the pellet studies with a die diameter below 12 mm. 

The second delimitation step concerned the objective of comparing 

a b c

Fig. 1. Diagram illustrating a traditional single pellet press (SPP) with a piston, 
two white nylon plugs (not so common), a “brown” biomass, a red heating coil 
and a black bottom plate. The process is shown in sequence: (a) the material is 
compressed with a specific piston velocity, (b) the piston is held for a specific 
time and (c) the bottom plate is removed before the pellet is pressed out with a 
specific piston velocity. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
This figure is published with permission from BioResources (Frodeson et al., 
2018; Nielsen et al., 2009a). 
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the data and results presented most frequently and their correlation to 
pelletability: papers that lacked such information were eliminated, as 
this made comparison between process parameters impossible. The data 
that was required were: moisture content of the inlet material, diameter 
of the press channel, piston velocity, maximal pressure, pellet size, 
weight of the pellets, pellet density, and, finally, compression energy or 
the possibility of calculating it. 

2.3. Comparison of data and results 

The papers that remained after the delimitations were then 
compared against each other based on the biomass material used, inlet 
moisture content (% wb), die pressure (MPa), die temperature (◦C), 
compression energy (J/g), and pellet density (kg/m3). In some papers, 
however, the pellet density was presented as a result: if not, it was 
determined and calculated using data in the paper on the length and 
diameter of the pellet together with its weight. The remaining papers 
had all of the process parameters listed except for the compression en-
ergy: this was presented as results in some studies but, if not, calcula-
tions were made instead. These were based on piston velocity and force 
compression energy and determined by integrating the force and time 
from the data given in the papers. The compression energy was given as 
Wcomp (J/g). 

It is important to highlight the fact that SPP researchers occasionally 
report energy usage in the die divided into flow energy, compression 
energy, and friction energy. Flow energy is rarely reported, as in 
(Nielsen et al., 2009a), and, therefore, not applicable here. 

3. Results and discussion 

3.1. Compilation of SSP papers 

The total number of papers found on SPP matching the keywords 
used was 70 (Antti et al., 2011; Anukam et al., 2019; Biswas et al., 2014; 
Carone et al., 2011; Chen et al., 2019; Cui et al., 2019; Dhamodaran and 
Afzal, 2012; Donghui et al., 2014; Finell et al., 2009; Finney et al., 2009; 
Frodeson et al., 2019a; Frodeson et al., 2018; Frodeson et al., 2019b; 
Gao et al., 2017; Ghasemi et al., 2018; Harun and Afzal, 2016; Hen-
riksson et al., 2019; Holm et al., 2007; Huang et al., 2017; Jiang et al., 
2014; Jiang et al., 2016; Kaliyan and Morey, 2010; Kaliyan and Morey, 
2009; Kashaninejad and Tabil, 2011; Kong et al., 2016; Kong et al., 
2013; Kong et al., 2014; Lam et al., 2011; Lam et al., 2014; Li et al., 
2015; Li et al., 2012; Li et al., 2018; Liu et al., 2014; Lu et al., 2014; Mani 
et al., 2006; Mǐsljenović et al., 2016; Mock et al., 2020; Nanou et al., 
2018; Nguyen et al., 2015; Nielsen, 2008; Nielsen et al., 2010; Nielsen 
et al., 2009a; Nielsen et al., 2009b; Nielsen et al., 2019b; O'Dogherty and 
Wheeler, 1984; Peng et al., 2012; Poddar et al., 2014; Puig-Arnavat 
et al., 2016; Razuan et al., 2011; Rhen et al., 2007; Rudolfsson et al., 
2015; Ruksathamcharoen et al., 2019; Ryu et al., 2008; Salas-Bringas 
et al., 2010; Shang et al., 2014; Si et al., 2016; Soleimani et al., 2017; 
Song et al., 2014; Stasiak et al., 2017; Stelte et al., 2018; Stelte et al., 
2012a; Stelte et al., 2011a; Stelte et al., 2011b; Stelte et al., 2013; Tabil 
and Sokhansanj, 1996; Wang et al., 2013; Wang et al., 2018; Wang et al., 
2017; Zhang et al., 2018; Zvicevičius et al., 2018) (all of the papers are 
presented in the list of references). Although research conducted on SPP 
dates back to the 1980s, most papers have been written in the last 12 
years, see Table 1. Once again, the aim was not to find a complete list of 
all of the papers ever written on SPP, but a sufficient amount so that a 
fair comparison could be made and accentuate the difficulties of doing 
so; more papers are not necessarily required to support this approach. 

3.2. Die diameter 

The first problem arose when categorizing the SPP papers according 
to the die diameter used. Three of the 70 papers found lacked this in-
formation (Gao et al., 2017; Harun and Afzal, 2016; Soleimani et al., 

2017), while the remaining 67 had a die diameter that ranged between 6 
and 30 mm, see Table 2. However, the majority of the SPP papers used a 
die diameter of 6–25 mm, which is in accordance with the ISO standard 
(ISO 17225-1:2014) that states values for the pellet diameter. It can also 
be seen in Table 2 that the most common size was 8 mm, followed by 6 
mm and then 12 mm: this is logical, since most of the industrial users of 
fuel pellets use 6 and 8 mm. Only a few (11 out of 66) use diameters 
between 13 and 25 mm, so that group is poorly represented; it is likely 
that very large diameters have unknown effects on the results and val-
idity of SSP tests, and the process is more like a briquetting system rather 
than pelleting. Once papers with a die diameter larger than 12 mm were 
eliminated, 54 papers remained for further investigation (Antti et al., 
2011; Anukam et al., 2019; Biswas et al., 2014; Carone et al., 2011; Cui 
et al., 2019; Dhamodaran and Afzal, 2012; Donghui et al., 2014; Finell 
et al., 2009; Frodeson et al., 2019a; Frodeson et al., 2018; Frodeson 
et al., 2019b; Ghasemi et al., 2018; Henriksson et al., 2019; Huang et al., 
2017; Jiang et al., 2014; Jiang et al., 2016; Kashaninejad and Tabil, 
2011; Kong et al., 2016; Kong et al., 2013; Kong et al., 2014; Lam et al., 
2011; Lam et al., 2014; Li et al., 2015; Li et al., 2012; Li et al., 2018; Liu 
et al., 2014; Lu et al., 2014; Mani et al., 2006; Mǐsljenović et al., 2016; 
Mock et al., 2020; Nguyen et al., 2015; Nielsen, 2008; Nielsen et al., 
2010; Nielsen et al., 2009a; Nielsen et al., 2009b; Nielsen et al., 2019b; 
Peng et al., 2012; Poddar et al., 2014; Puig-Arnavat et al., 2016; Rhen 
et al., 2007; Rudolfsson et al., 2015; Ruksathamcharoen et al., 2019; 
Salas-Bringas et al., 2010; Shang et al., 2014; Stasiak et al., 2017; Stelte 
et al., 2018; Stelte et al., 2012a; Stelte et al., 2011a; Stelte et al., 2011b; 
Stelte et al., 2013; Tabil and Sokhansanj, 1996; Wang et al., 2013; Wang 

Table 1 
Number of papers published on single pellet presses and their 
year of release.  

Year of publication Number of papers 

1984  1 
1996  1 
2005  1 
2006  1 
2007  1 
2008  2 
2009  5 
2010  3 
2011  7 
2012  4 
2013  3 
2014  10 
2015  3 
2016  10 
2017  2 
2018  7 
2019  7 
2020  2  

Table 2 
Number of papers published on single pellet presses and the die 
diameter used.  

Cylinder diameter (mm) Number of papers  

6  15  
7  4  
8  20  
9  1  
10  5  
12  7  
13  1  
16  2  
17  2  
19  2  
20  3  
25  1  
27  3  
30  1  
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et al., 2017; Zhang et al., 2018). 

3.3. Piston velocity 

One key parameter chosen in this study was the piston velocity. 
Related to SPP studies, this can be generated in two different ways: 
either the piston is the moving part that compresses the biomaterial in a 
fixed die, or the piston is fixed and the die moves against the piston. 
Regardless of the method employed, the current study has only exam-
ined the actual velocity at which the compression took place and is 
generally known as the piston velocity. 

As can be seen in Table 3, the velocity of the piston during 
compression varies significantly: from 2 up to 360 mm/min. A more 
serious concern was that 29 out of 70 SPP papers lack this information, 
which meant that the aim of this paper, i.e., to compare piston velocity, 
was limited to only 41% of the papers. Some of the data presented most 
frequently could, of course, be fulfilled without this parameter. Nielsen 
et al. (Nielsen et al., 2019a) showed that the compression speed did not 
affect the energy required during compression, which could make piston 
velocity less interesting for further comparison; they also tested and 
evaluated compression speed using three different piston velocities of up 
to 10 mm/min. Table 3 shows that the majority of SPP research studies 
evaluate compression at much higher speeds, making it difficult to 
compare the conclusion they reached, i.e., that compression speed does 
not affect the energy required during compression. So, even though 
compression speeds below 10 mm/min were not proven to affect the 
result, a study that compares a larger range of speeds should be under-
taken to confirm whether the results of using a different range of piston 
velocities can be compared. 

3.4. Missing data 

The second delimitation step discarded papers that lack information 
on the moisture content of the inlet material, diameter of the press 
channel, piston velocity, maximal pressure, pellet size, weight of the 
pellets, pellet density, and compression energy. Table 4 is a compilation 
of the data missing in the studied 70 papers; more than 1/3 of the papers 
lack information on piston velocity and holding time. It shows that many 

papers do not contain the information necessary to make a comparison 
correlated to pelleting processes. 

A distinction was made between studies focused on the process pa-
rameters and those focused on the pelleted material when searching for 
SPP papers with data of interest to this study. The former papers had 
more data, while the latter sometimes had some of the data presented. 
Many of these material-oriented papers, however, focused on the com-
parison of different materials and the quality of the pellets rather than 
the actual SPP process. Therefore, they lack most of the desirable data, 
so they were eliminated in the second delimitation. Even though these 
latter papers had other aims than studying the SPP process, the possi-
bility of benefiting from their results would increase significantly if more 
information about the SPP process had been included. The second de-
limitation resulted in 27 papers remaining for further comparison (Cui 
et al., 2019; Frodeson et al., 2019a; Frodeson et al., 2018; Frodeson 
et al., 2019b; Henriksson et al., 2019; Jiang et al., 2016; Kashaninejad 
and Tabil, 2011; Lam et al., 2011; Lam et al., 2014; Li et al., 2015; Li 
et al., 2012; Li et al., 2018; Mani et al., 2006; Mock et al., 2020; Nielsen, 
2008; Nielsen et al., 2010; Nielsen et al., 2009a; Nielsen et al., 2009b; 
Nielsen et al., 2019b; Poddar et al., 2014; Rudolfsson et al., 2015; 
Ruksathamcharoen et al., 2019; Shang et al., 2014; Stelte et al., 2018; 
Tabil and Sokhansanj, 1996; Wang et al., 2013; Wang et al., 2017). 

3.5. Papers that presented the most process parameters 

The main focus of the remaining 27 papers is on the pelleting process 
using different approaches: these papers contained data in their studies 
that fulfilled the objectives presented for this study. Traditionally, these 
papers have studies on the densification pressure, die temperature, ve-
locity of the piston through the die, shape of the die, holding time, 
friction in the die, and/or compression energy. The different SPP units 
connected to process parameters are located at universities and research 
institutes around the world, see Table 5. Almost all of the 27 papers were 
written in the last 10 years and more than half of them during the last 3 
years, illustrating that research on SPP processes is of increasing inter-
est. Table 5 shows that some universities/institutes use a specific die 
hole diameter, while others have tested a couple of diameters. The 
pressure used for compaction also varies significantly between univer-
sities/institutes: from as low as 40 MPa up to 1000 MPa. Although 
several different biomasses are used, the predominated test material is 
lignocellulose. 

3.6. Comparing data and results 

Plots of the reported and calculated compression energy versus 
moisture content of the raw material and the pressure used during pel-
leting are presented in Fig. 2A and B, respectively. These are based on 
data from all of the 27 papers, which means that the material used varies 
greatly, see Table 5. The two figures show that the wide ranges of 
moisture content and pressure used present difficulties for relevant 
comparisons to be made because the results are scattered. In Fig. 2B, a 
distinction between low- and high-pressure studies emerges. Even if 280 
MPa is chosen for comparison purposes, the compression energy ranges 
from about 30 up to nearly 150 J/g, indicating that different studies run 
their SPP units uniquely and with different materials. 

Table 3 
Number of papers published on single pellet presses and the piston 
velocity used (Anukam et al., 2019; Biswas et al., 2014; Carone et al., 
2011; Cui et al., 2019; Dhamodaran and Afzal, 2012; Donghui et al., 
2014; Frodeson et al., 2019a; Frodeson et al., 2018; Frodeson et al., 
2019b; Gao et al., 2017; Ghasemi et al., 2018; Henriksson et al., 2019; 
Huang et al., 2017; Kaliyan and Morey, 2010; Kaliyan and Morey, 
2009; Kashaninejad and Tabil, 2011; Lam et al., 2011; Lam et al., 2014; 
Li et al., 2018; Lu et al., 2014; Mani et al., 2006; Nguyen et al., 2015; 
Nielsen et al., 2010; Nielsen et al., 2009a; Nielsen et al., 2009b; Nielsen 
et al., 2019b; Poddar et al., 2014; Rhen et al., 2007; Rudolfsson et al., 
2015; Salas-Bringas et al., 2010; Shang et al., 2014; Si et al., 2016; 
Soleimani et al., 2017; Stelte et al., 2018; Stelte et al., 2011a; Stelte 
et al., 2011b; Stelte et al., 2013; Tabil and Sokhansanj, 1996; Wang 
et al., 2018; Wang et al., 2017; Zhang et al., 2018).  

Piston velocity (mm/min) Number of papers  

2  4  
5  3  
7  1  
10  4  
12  1  
20  1  
25  5  
30  9  
50  7  
100  3  
127  1  
180  1  
360  1  

Table 4 
Number of papers published that lack information on vital data 
needed for comparison.  

Missing data Numbers of papers 

Piston velocity  29 
Holding time  24 
Pellet mass  14 
Die temperature  12 
Pressure/force  11 
Die diameter  3  
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Studies using pine and beech were chosen to provide a more uniform 
comparison between the 27 papers, and to see if sufficient data is present 
in those particular 7 papers. Fig. 3A and B shows the compression energy 
vs moisture content and die temperature, respectively. Although similar 
raw materials are compared, the compression energy to pelletize them 
differs greatly between the papers. 

Instead, focusing on the reported pellet density versus moisture 
content of the raw material and pressure used during pelleting gives the 
results presented in Fig. 4A and B, respectively. They show that the wide 
ranges of moisture content and pressure used make it difficult for 

relevant comparisons to be made because, once again, the results are 
scattered. Moisture content and pressure have high impacts on the pellet 
density, and, therefore, comparison is impossible: some studies have 
used dry substances during pelleting while others used up to MC 25% 
(wb), and some have chosen low pressures while others used high 
pressures. Reported die pressures used vary from 20 MPa up to 400 MPa, 
which affect the pellet density to a great degree. 

The four most common raw materials used in these SPP studies, i.e., 
pine, beech, Douglas fir, and straw, were selected and resulted in nine 
papers; these also gave scattered results for pellet density, as shown in 

Table 5 
Location of the SPP unit in the remaining 27 papers and some key information.  

Location of SPP unita Country Reference Year of 
first paper 

Die diameter 
(mm) 

Maximum 
pressure (MPa) 

Material Tested 

Aalborg University UBC Denmark (Nielsen et al., 2019b) 2019 6.35  160 Wood 
Forest/ 
agricultural 
matter 

Cranfield University UK (Mock et al., 2020) 2020 8.0  1000 Wood 
Guangzhou Institute of 

Energy Conversion 
China (Li et al., 2018) 2018 10.0  76 Wood 

Hunan University China (Li et al., 2012) 2012 6.9  83 Wood, straw 
sludge 

Karlstad University Sweden (Frodeson et al., 2019a; Frodeson et al., 2018; Frodeson et al., 
2019b; Henriksson et al., 2019) 

2018 8.0  300 Wood 

Nanjing University China (Wang et al., 2017) 2017 10.0  40 Wood 
Tianjin University China (Cui et al., 2019) 2019 6.9  200 Straw 
Tokyo Institute of 

Technology 
Japan (Ruksathamcharoen et al., 2019) 2019 6.5  60 Wood 

University of British 
Columbia 

Canada (Lam et al., 2011; Lam et al., 2014; Li et al., 2015; Li et al., 
2012; Mani et al., 2006; Wang et al., 2013) 

2006 6.35  200 Wood, straw 
sludge 

University of 
Copenhagen 

Denmark (Nielsen, 2008; Nielsen et al., 2010; Nielsen et al., 2009a;  
Nielsen et al., 2009b; Rudolfsson et al., 2015; Stelte et al., 
2018) 

2008 8–10  400 Wood, fiber 

University of Denmark Denmark (Shang et al., 2014) 2014 8.0  300 Wood 
University of Dhaka Bangladesh (Poddar et al., 2014) 2014 10.0  255 Wood 
University of 

Saskatchewan 
Canada (Kashaninejad and Tabil, 2011; Tabil and Sokhansanj, 1996) 1996 6.35  156 Straw/grass  

a Where the location is not stated in the paper, it is assumed to be at the workplace of the corresponding author. 
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Fig. 2. Compression energy [J/g] vs (A) moisture content [% wb] and (B) die 
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Fig. 5A and B. However, new results also emerged: it can be concluded 
that straw, for example, is mostly produced with a rather high moisture 
content, and that even if only pine is studied, its moisture content can 
vary between 0% and 15%, which again affects the pellet density. 
Fig. 5B shows that straw is produced at low pressure whereas lignocel-
lulosic material tends to require higher pressures, suggesting that 
different approaches might have to be taken depending on the material 
studied. 

Finally, new patterns arise if the pellet density is plotted against the 
compression energy used: for pine and beech, for example, it appears 
that the higher the amount of compression energy used, the higher the 
pellet density, see Fig. 6. In the case of straw, the data presented in 
Figs. 5 and 6 is derived from different studies and different SPP units, as 
reported in Table 5. Furthermore, the table also shows that straw tends 
to require a smaller die diameter than lignocellulosic material. 

3.7. Further findings 

It emerged from the compilation of data and results sourced from 70 
SPP papers that there are different ways of reporting data. Some papers 
present energy used per gram of material used; sometimes, the material 
is not even specified when the compression energy [J/g] is given. Others 
only report energy [J], and maybe also the amount of pellet material 
used, which complicates making comparisons. The different approaches 
used in the calculations of the compression energy could also give rise to 
variations in the results. It was also found that there is a wide range of 
ways of operating SPP units even when they are similar. The ingoing raw 
material, process parameters used, and production procedure of the SPP 
unit are all of importance. Another issue is the type of material used: 
lignocellulosic material is more difficult to pelletize than agricultural 
material, and, therefore, uses more energy. 

A further parameter that is also important is the quality of the pellet 
that is produced; this has been discussed and tested in earlier studies, but 
the present study has shown that it requires mentioning again. While 
delimitating the 70 papers, a clear difference became apparent that 
related pellet quality to strength, regardless of whether the paper had an 
SPP process or material focus. Irrespective of purpose, almost every one 
of these studies measured the strength of the pellet in some way in the 
form of durability, strength, or hardness; there are a number of different 
methods for making each of these measurements. There is a standard for 
the durability of pellets (ISO 17831-1), but it requires testing 500 g of 
pellets twice. SPP tests often produce only about 10–20 pellets or grams 
per test series, so when pellets are produced in an SPP study, there 
should be a common way of testing their durability. Two parameters are 
important for this particular test: one to evaluate according to ISO 
17831-1 and the other to evaluate results of different SPP studies. 
Larsson and Samuelsson (Larsson and Samuelsson, 2017) determined 
the accuracy and precision of the ISO standard when using a Ligno 
Tester and tumbling: they found that the Ligno Tester showed a high 
correlation (R2 0.94, tumbling R2 0.83) with the ISO standard. However, 
a significant disadvantage, however, is that the Ligno Tester is rather 
expensive. Stryks et al. used a tumbler and, instead of using only 20 
pellets, they added plastic pellets to the SPP pellets to make up a total 
weight of 500 g and tumbled for half the time (Styks et al., 2020): no 
validation related to standard was made. Thus, this area of knowledge 
needs to be expanded, and a common method found that can be 
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validated against both the ISO standard and other SPP studies. A new 
standard durability/strength test should be developed, and could be 
based on the findings of Larsson and Samuelsson (Larsson and 
Samuelsson, 2017). 

Some of the papers are just evaluating the raw materials or use 
pelleting equipment with large diameters, but nevertheless, it would be 
most valuable if a comparison of some sort is possible. After analyzing all 
of the differences in the SPP methods, it still seems that there is some 
overall accordance between the published results, and that some major 
conclusions can be retrieved from the different results. For example, it 
seems clear that a benchmark for the energy consumption for SPP pro-
duction could be set at a minimum of 50 to 100 J/g to produce pellets 
with a particle density of ~1.2 kg/m3. 

Overall, SPP shows a certain potential; within isolated trials, results 
can often demonstrate strong associations between raw materials and 
processes resulting in pellets with distinct properties. These associations 
can be modeled statistically. Nevertheless, the lack of information in 
combination with the huge variability between the papers assessed 
makes any further statistical analysis obsolete. 

The authors behind this study suggest that all SPP-studies should 
include, die hole diameter, piston diameter, piston velocity, maximal 
pressure or force, holding time, and die temperature. Also, related to the 
material, data such as particle distribution, mass, inlet moisture content, 
and chemical composition should be included. These types of data could 
be used to define standard settings for SPP-tests. Beyond this, it would 
also be advantageous if different facilities could be compared with the 
same type of material. This could be possible with a reference material 
that is present around the world, suggested are cellulose powder, 
pelletized at a specific moisture content of 8% (wb). This reference 
material could also be used for calibration of the SPP units. In order to go 
one step ahead towards a standardizable SPP method, an international 
round robin test among currently active laboratories might help, espe-
cially to understand which variability comes from different technical 
devices, operational staff, process settings, sample treatment, data 
management, post-SPP-testing method, etc. Based upon the above sug-
gestions, the SPP-concept might be found in future in a set of different 
standards. Furthermore, typical values could be generated for a wide 
range of materials that could also be introduced into standards as soon as 
the testing conditions are harmonized. 

4. Conclusions 

A future goal highlighted by this review is that results from SPP 
research regarding existing and new materials for the pellet industry 
should be able to serve as a database to increase the use of biomaterials. 
For this to be possible, data between different facilities must be trans-
parent and comparable, which was not possible here due to lack of data. 
The difficulties of comparison could be solved if a standard method for 
SPPs of biomasses were introduced with the same set of parameters, i.e., 
press force, press velocity, etc. Then the interpretation of results and 
future comparison would improve greatly. 
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