
Pseudorandom Numbers

Tomas Almlöf

Department of Mathematics and Computer Science

Mathematics

CDissertation 15 HP

Supervisor: Martin Lind

Examiner: Sorina Barza

Date: June 16, 2022

Abstract

In this thesis our goal is to study pseudorandom numbers. We will investigate
how to produce pseudorandom samples from the uniform distribution with a method
called the linear congruential method. Another method we will look at is the inverse
sampling method which gives us the possibility to generate samples from other
distributions that are not the uniform distribution. When generating pseudorandom
samples quality is an important aspect, therefore we are going to take a look at a
discrepancy which is a tool to determine quality of uniformly distributed samples.
We implement the methods in Python and perform numerical experiments to test
some quality aspects of the output.

Sammanfattning

Målet med den här avhandlingen är att undersöka pseudoslumptal. Vi kommer
att undersöka hur man kan producera pseudoslumptal som är likformigt fördelad
med hjälp av den linjära kongruensmetoden. En annan metod vi ska undersöka
är den så kallade inverse sampling method som används för att producera pseu-
doslumptal från andra fördelningar än den likformiga. När det kommer till att
producera pseudoslumptal så är det viktigt att undersöka kvalitén. För att under-
söka detta kommer vi att titta på diskrepans som är ett sätt att undersöka kvalitén
för likformigt fördelade pseudoslumptal. Vi implementerar metoderna i Python och
utför numeriska experiment för att testa några kvalitetsaspekter hos resultaten av
implementeringen.

3

Innehåll
1 Introduction 5

2 Theoretical tools 6
2.1 Probabilistic background . 6

2.1.1 Basic definitions . 6
2.1.2 Some usual continuous distributions 6
2.1.3 The quantile function . 6

2.2 Discrepancy . 7

3 Pseudorandom number generation 10
3.1 Pseudorandom samples, Inverse transform sampling 10
3.2 Pseudorandom numbers, general framework 10
3.3 The Linear Congruential Generator . 10
3.4 Discrepancy estimates for the LCG . 11

3.4.1 Discrepancy as quality measure . 11
3.4.2 Non-asymptotic behaviour of discrepancy 12

4 Numerical experiments 12
4.1 Implementation of LCG . 12
4.2 Computation of discrepancy of sets generated by LCM 13
4.3 Inversive transform sampling . 15

5 Appendix: Python Code 16

4

1 Introduction
Historically, randomness and random numbers have been used for a variety of purposes,
from games to encryption and is today widely used in many fields. One particularly notable
example is Monte Carlo simulations. Monte Carlo methods are a class of computational
methods used in a wide range of STEM fields. Some examples of this would be to simulate
fluids with a certain coupled degrees of freedom, calculating the probability of failure of
a certain part on some machine, or numerical integration. The implementation of any
Monte Carlo method requires random numbers.

However, the generation of truly random numbers is problematic in practice. In fact,
generating the numbers requires a rule to implement it. Therefore, the obtained sequence
is not truly random. Instead, one has to settle for the next best thing:pseudorandom
numbers. These are sequences of numbers that ’appear’ to be random. Typically, such
sequences are constructed by number theoretic means.

In Chapter 2, we discuss some useful theoretical tools from probabilty. We also introduce
the concept of discrepancy, which will be used to analyse methods of generating pseudo-
random numbers. Roughly speaking, the discrepancy of a set (or sequence) of real numbers
measure the deviation of the points of the set from being uniformly distributed.

In Chapter 3, we discuss pseudorandom numbers. For convenience, we will use the termi-
nology that a set of pseudorandom numbers is drawn from a probability distribution if
the set mimicks the properties of a random sample from the distribution.

We first discuss the linear congruential generator (LCG) which is an arithmetic method
of generating pseudorandom numbers drawn from the uniform distribution U([0, 1]) on
[0, 1]. It turns out that pseudorandom numbers from another distribution (say normal
distribution) can be obtained by using a method called the inverse transform sampling
to transform the uniform sample. The inverse sampling method supplies the user with a
great deal of options in choosing a target probability distribution (see below).

We conclude the chapter with a discussion of how discrepancy can be used to capture
certain quality aspects of pseudorandom samples.

In Chapter 4, we perform numerical experiments. We implement LCG and inverse trans-
form method together with a discrepancy calculator in Python. Using these implemen-
tations, we can investigate the quality of the scheme of generating pseudorandom num-
bers.

In summary, the contribution of this thesis are

• an implementation of a scheme to generate pseudorandom numbers from any pro-
bability distribution,

• an analysis of the quality of the obtained pseudorandom numbers.

5

2 Theoretical tools
2.1 Probabilistic background
2.1.1 Basic definitions

Let Ω be a sample space with a probability function P . A subset of A ⊆ Ω is called
an event. A random variable on Ω is a function X : Ω → R. It is common practice in
probability theory to use the following shorthand for events:

{X ≤ x} = {u ∈ Ω : X(u) ≤ x}.

Let X be any random variable. The distribution function of X is given by

FX(x) = P (X ≤ x).

Note that limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1, for any random variable X.

The variable X is called a continuous random variable if there exists a function fX(x)
such that

FX(x) =

ˆ x

−∞
fX(t)dt.

The function fX is called the density function of X. Two random variables X,Y are called
identically distributed if FX = FY .

2.1.2 Some usual continuous distributions

The most useful continuous distribution is the normal distribution, when the density
function is a scaled translate of the standard gaussian ϕ(x) =

1√
2π

e−x2/2. However, we
shall be interested in some other continuous distributions.

Let I = [a, b] be an interval. The random variable X is called uniformly distributed on I
(written X ∼ U(I)) if fX(x) = 1/(b− a) for x ∈ I and fX(x) = 0 for x /∈ I. In particular,
one can take I = [0, 1]. In this case, it is useful to note that if X ∼ U([0, 1]) then

FX(x) =

0 x ≤ 0

x 0 ≤ x ≤ 1

1 x ≥ 1.

(1)

Another example is the exponential distribution. The continuous random variable X has
exponential distribution with intensity λ > 0 (written X ∼ Exp(λ)) if its density function
is fX(x) = λe−λx for x ≥ 0 and fX(x) = 0 for x < 0. It is a simple calculation to see
that

FX(x) =

{
1− e−λx x ≥ 0

0 x ≤ 0.
(2)

2.1.3 The quantile function

For any random variable X, the distribution function FX is increasing but not always
strictly increasing. Thus, F−1

X is not always well-defined. Instead, one defines the genera-
lised inverse or quantile function QX : (0, 1) → R by

QX(x) = inf{t ∈ R : x ≤ FX(t)}.

6

Remark 1. Some authors define QX also for {0, 1}, but then QX takes values in the
extended real numbers R = R ∪ {±∞}. For instance, it is immediately clear that for any
X,

QX(0) = inf{t ∈ R : 0 ≤ FX(t)} = infR = −∞.

If FX(x0) = 1 for some finite x0, then QX(1) < ∞. If not,
QX(1) = inf{t ∈ R : 1 ≤ FX(t)} = inf ∅ = ∞.

The quantile function QX satisfies a so-called Galois connection:
QX(x) ≤ t ⇔ x ≤ FX(t). (3)

From (3) it follows that if Y is another random variable and we set Z = QX(Y), then the
following two events coincide

{Z ≤ t} = {Y ≤ FX(t)}. (4)
Indeed, by using (3) we have

{Z ≤ t} = {u ∈ Ω : Z(u) ≤ t} = {u ∈ Ω : QX(Y (u)) ≤ t}
= {u ∈ Ω : Y (u) ≤ FX(t)} = {Y ≤ FX(t)}.

Example 2. If X ∼ Exp(λ), then QX(x) =
− ln(1− x)

λ
.

Bevis. Since X ∼ Exp(λ) we have that FX(x;λ) = 1−Exp−λx for x ≥ 0 and 0 otherwise.
Let 1 − Exp−λQ = x for some Q ∈ R ⇔ −λQ = ln(1− x) divide by −λ and we get

Q(x) =
− ln(1− x)

λ
.

Remark 3. It is not possible to find closed expressions for the quantile function of every
random variable. Indeed, if X has normal distribution then it is impossible to express
QX in terms of elementary functions. This is the main reason why statistics is filled with
tables!

Proposition 4. Assume that X is any random variable with quantile function QX and
that Y ∼ U([0, 1]). Set Z = QX(Y), then X and Z are identically distributed: FX = FZ.

Bevis. By (4), FZ(t) = P (Z ≤ t) = P (Y ≤ FX(t)). Furthermore, since Y ∼ U([0, 1]) and
FX(t) ∈ [0, 1], we have by (1) that P (Y ≤ FX(t)) = FX(t). I.e., FZ(t) = FX(t).

2.2 Discrepancy
For any set E ⊆ R, denote by χE(x) the characteristic function of E, i.e.

χE(x) =

{
1 x ∈ E

0 x /∈ E.

Let P = {x1, x2, . . . , xn, . . .} ⊂ [0, 1] be countable (i.e. either finite or countable infinite).
For any interval J ⊆ [0, 1], denote

Ak(J, P) =
k∑

j=1

χJ(xj).

Note that Ak(J, P) counts how many of the first k numbers from P belong to the interval
J .

7

Definition 5. Fix k ∈ N. The discrepancy Dk(P) is defined by

Dk(P) = sup
0<u≤1

∣∣∣∣Ak([0, u];P)

k
− u

∣∣∣∣. (5)

In a sense, Dk(P) measures how much the elements of P deviate from being uniformly
distributed.

Proposition 6. Let Pj (1 ≤ j ≤ k) be finite sequences of [0, 1] with |Pj| = Nj. Set

P =
k⋃

j=1

Pj, where the first N1 elements are the elements from P1, the next N2 elements

are the elements of P2 etc. Let N = |P | = N1 +N2 + · · ·+Nk. Then

DN(P) ≤
k∑

j=1

Nj

N
DNj

(Pj).

Bevis. Let J ⊆ [0, 1) be any interval as in the definition of discrepancy. This implies that
A(J ;P) =

∑k
j=1 A(J ;Pj) because of the definition of P . Hence we have that

|A(J ;Pj)−Nu| =

∣∣∣∣∣
k∑

j=1

A(J ;Pj)−Nju(j)

∣∣∣∣∣ ≤
k∑

j=1

|A(J ;Pj)−Nju(j)| ≤
k∑

j=1

NjDNj
(Pj)

Now divide the last inequality on the right hand side with N and taking the supremum
as in the definition of discrepancy we obtain∣∣∣∣A(J ;Pj)

N
− u

∣∣∣∣ ≤ k∑
j=1

NjDNj
(Pj)

N
.

Theorem 7. Let
S =

{
1,

1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
, . . .

}
.

Then we have

Dk(S) = O
(

1√
k

)
. (6)

Bevis. Let

S =
m⋃
j=1

Sj +R(S)

where R(S) denotes the remainder. Now with m being the number of åhole blocks”. S1 = 1,
S2 =

1
2
, S3 = {1

3
, 2

3
}, . . . , Sm = m−1

m
.

Now from our results from lemma 1 we have that

DN(S) ≤
j=m∑
j=1

|Sj|
N

D|Sj |(Sj).

8

If we now apply theorem 1 we have that

|Sj|D|Sj |(Sj) ≤ 1 =⇒ DN(S) ≤
j=m∑
j=1

|Sj|
N

D|Sj |(Sj) ≤
j=m∑
j=1

1

N
=

m

N
. (7)

Note that the order of the blocks are |S1| = 1, S2|1|, S3 = |2|, S4|3|, …, Sm = |m− 1|+R(S)
which means that

1 + 2 + 3+, · · ·+m− 1 ≤ N

using the arithmetic sum of powers we have that

1 + 2 + 3+, · · ·+m− 1 =

j=m−1∑
j=1

j =
m(m− 1)

2
=

m2 −m

2

Using the definition of ordo we can get a relation between N and m as

cm2 ≤ N =⇒
√

N

c
≥ m. (8)

Where c is constant. Combining (1) and (2)

DN(S) =
c
√
N

N
=

c√
N
,

which is our desired result.

In Section 4 below, we shall perform a number of numerical experiments. Among other
things, we shall compute discrepancy of finite sequences. Actually, we shall only compute
discrepancy of the type

DN(P),

where N = |P |. It turns out that when the discrepancy index”k of Dk(P) is the same as
the size of P , i.e. k = N , then the ordering of the elements of P does not matter. Indeed,
this is obvious since

AN(J, P) = AN(J, P
′)

if P ′ is any reordering of P . This allows us to formulate the following lemma to compute
DN(P).

Lemma 8. Let P = {x1, x2, . . . , xN} ⊂ [0, 1] and suppose that x1 ≤ x2 ≤ · · · ≤ xN . Then

DN(P) =
1

2N
+ max

1≤n≤N

∣∣∣∣xn −
2n− 1

2N

∣∣∣∣. (9)

For a proof, see [1]. To create a program for calculating discrepancy, Python was used as
language. The written program only needs a sequence of numbers as entry to calculate
the discrepancy. The code for this program can be found in Appendix 1.

9

3 Pseudorandom number generation
3.1 Pseudorandom samples, Inverse transform sampling
As mentioned in the Introduction, generating pseudorandom numbers from a given dis-
tribution is an important task in several areas of applied mathematics and computer
science.

We shall use the following terminology. Let X be a random variable, we say that a
set of numbers x1, x2, . . . , xn is a pseudorandom sample from the distribution of X if
x1, x2, . . . , xn behaves like a random sample from the distribution of X. We shall return
briefly to what behaves likemeans later.

Of course, there are many distributions from which one might want pseudorandom samples.
However, it turns out to be more or less sufficient to generate pseudorandom samples from
U([0, 1]). A pseudorandom sample from another distribution can then, in principle, be ob-
tained by using inverse transform sampling.

The method works as follows. Assume that X is an arbitrary random variable with quantile
function QX and Y ∼ U([0, 1]). By Proposition 4 above, QX(Y) and X are identically
distributed. Hence, if y1, y2, . . . , yn is a pseudorandom sample from U([0, 1]), then we
expect that

xj = QX(yj) (1 ≤ j ≤ n)

is pseudorandom sample from the distribution of X. We will implement this scheme
below.

3.2 Pseudorandom numbers, general framework
An algorithm that produces a pseudorandom sample from U([0, 1]) is called a pseudoran-
dom number generator (PRNG).

Below we shall give an abstract description of a pseudorandom number generator. Let
S = {z0, z1, . . . zK} be a finite set of states and a state function f : S → S that progresses
one state to the next, i.e. zn = f(zn−1). The pseudorandom sample is generated by an
output function g : S → [0, 1] in the following way

pseudorandom sample = {g(zn)}.

The idea is that the function f is somehow ”unpredictableänd thus {g(zn)} appears to be
a random sample from U([0, 1]).

The initial state z0, which is called the seed of the PRNG, is often provided by the user.
Observe also that since S is a finite set, there is a smallest natural number T ≤ K such
that zT = z0. The number T is called the period of the PRNG. Since g(zn+T) = g(zn),
one typically only considers the pseudorandom sample {g(zn) : 1 ≤ n ≤ T}.

In the next subsection, we shall investigate a specific example of a PRNG.

3.3 The Linear Congruential Generator
A simple and yet rather powerful class of pseudorandom number generators is the linear
congruential generators (LCG).

The method is based on modular arithmetic, i.e. congruences, hence its name.

We need two parameters for the method:

10

1. a large natural number m (called the modulus),

2. a natural number a (called the multiplier) such that gcd(m, a) = 1.

The set of states is S = Zm = {0, 1, . . . ,m− 1}, that is, the residues (mod m).

The state function f : Zm → Zm is defined as

zn+1 = f(zn) = azn (mod m)

and the output function g is given by

yn = g(zn) =
zn
m
.

The seed can be any z0 ∈ Zm with gcd(z0,m) = 1. The pseudorandom sample {yn} is
determined by m, a, z0. Hence, we denote by

LCG(m, a, z0) := {yn}

Sometimes one takes m to be prime, then any non-zero residue {1, 2, . . . ,m − 1} can be
used for multiplier and seed.

The size of the pseudorandom sample {yn} is simply the period of the LCG. Hence, it is
interesting to calculate this quantity.

Proposition 9. The period of LCG(m, a, z0) is the least natural number h such that
ah ≡ 1 (mod m). (The number h is called the multiplicative order of a (mod m).)

Bevis. Iterating LGC(m, a, z0) would yield

az0 = β mod m
aβ = γ mod m

...
aη = z0 mod m.

Since we are dealing with modulo we are dealing with periodicity, hence after h iterations
aη = z0 mod m. Since gcd(m, a) = 1 we have that ah = 1 mod m.

Remark 10. In particular, if m = p, where p is a prime, then the period of LCG(p, a, z0)
is ≤ p− 1 for any a ∈ Zp \ {0}. If a is such that the order h of a is p− 1, then a is called
a primitive root modulo p.

3.4 Discrepancy estimates for the LCG
3.4.1 Discrepancy as quality measure

A fundamental question at this point is: what is the quality of the pseudorandom numbers
generated by the LCG? Expressed differently, in which manner does LCG(m, a, z0) = {yn}
behave like a random sample from U([0, 1])? (This question was alluded to at the beginning
of Section 3.)

It turns out that certain aspects of quality is captured by the discrepancy. The discrepancy
can be thought of as a measure of how much a set of points deviate from the uniform

11

distribution. Hence, a small discrepancy would indicate that the point set in question is
in some sense close to having uniform distribution.

In Section 4, we shall provide discrepancy charts for some particular implementations of
LCG.

We mention here that discrepancy as a quality measure of pseudorandom numbers were
previously also studied numerically in [2] before.

3.4.2 Non-asymptotic behaviour of discrepancy

It is important to stress the following point. For a sequence S, the asymptotic behaviour
of DK(S) as k → ∞ contains information of how uniformly distributed S is. However, the
set LCG(m, a, z0) is always finite, with ♯(LCG(m, a, z0)) = T , the period of the PRNG.
For k > T , Dk(LCG(m, a, z0)) provides nothing of interest and we cannot discuss the
asymptotic behavior of the discrepancy of LCG(m, a, z0)

Nevertheless, discrepancy estimates contain some useful information. The next theorem
is proved (in a more precise form) in [1].

Theorem 11. Let S = LCG(p, a, z0) with p ≥ 3 a prime number and arbitray a, z0 ∈
Zp \ {0}. For 1 ≤ k < T ,

Dk(S) ≤ C

√
p ln(p)2

k
. (10)

We shall not give the proof of the above theorem, it is rather complicated. But we shall
discuss the estimate (10). Say that we choose a to be a primitive root modulo p, then T
is maximal, i.e. T = p − 1. In applications, one typically does not use the full set S but
rather some S ′ ⊂ S whose size is a small fraction of S, say ♯(S ′) = (p − 1)/100. Taking
k = ♯(S ′), we have

Dk(S
′) = Dk(S) ≤

C ln(k)2

k1/2

for an absolute constant C. This agrees more or less with typical results for actual random
sequences (see e.g. [1, Section 5.1.2]).

We shall illustrate these results numerically in Section 4 below.

4 Numerical experiments
4.1 Implementation of LCG
Example 12. We shall start with a small example of pseudorandom numbers generated
with LCM. We take the modulus m = 31 and multiplier a = 3. It turns out that the
multiplicative order of 3 (mod 31) so ♯(LCM(31, 3, z0)) = 30 for any seed z0. Taking
z0 = 2 gives the result of Figure 1.

12

Figur 1: Plot of pseudorandom numbers generated with LCG.

Note that the location of yn ∈ [0, 1] is on the y-axis, on the x-axis are the integers
n = 1, 2, . . . 30.

The source code is located in Appendix.

4.2 Computation of discrepancy of sets generated by LCM
We shall investigate numerically the discrepancy of LCG(m, a, z0). Observe that Lemma
8 allows us to calculate the discrepancy Dk(S): let Sk be the first k terms of S and note
that Dk(S) = Dk(Sk). The discrepancy Dk(Sk) can be obtained by ordering the elements
of Sk and calculate the expression (9).

Example 13. Consider first S = LCG(2203, 3, 1). The modulus m = 2203 is a prime and
the multiplier a = 3 has is a primitive root modulo 2203. Using the implementation of
Lemma 8, we calculate Dk(S) for 1 ≤ k ≤ 2202 and plot the result in Figure 2 below.

13

Figur 2: Plot of numbers generated by LGC with m=2203, a=3, seed=1.

Note that the shape of the graph is more or less in accordance with Theorem 10.

We consider another example with S = LCG(4253, 5, 2) (again prime modulus and a
multiplier that is a primitive root modulo 4253). The result is shown in Figure 3.

Figur 3: Plot of numbers generated by LGC with m=4253, a=5, seed=2.

14

4.3 Inversive transform sampling
Example 14. We calculate the 100 pseudorandom numbers of LCG(103, 2, 1).

Figur 4: 100 samples yn generated from the uniform distribution.

Note that it seems quite likely that the mean value of the numbers are roughly 0.5, which
agrees with the fact that E(Y) = 0.5 if Y ∼ U([0, 1]).

We shall show how to generate pseudorandom numbers from Exp(1) by using the fact
that if X ∼ Exp(1), then QX(x) = − ln(1− x). Hence, setting xn = − ln(1− yn) and
plotting the result, we get the following figure.

Figur 5: Empirical distribution and cumulative distribution function of exp(1)

It’s easy to recognize the exponential distribution from Figure 5 and you can clearly
see that the empirical distribution function follows the same pattern as the cumulative
distribution function. Note however that it is not unlikely that the mean value of the
sample=1, in accordance with the fact that E(X) = 1 if X ∼ Exp(1).

15

5 Appendix: Python Code
import math
from random import sample
from t k i n t e r import Y
import numpy as np
from s c i p y . s t a t s import expon
from s c i p y . i n t e g r a t e import ode in t
import mat p l o t l i b . pyp lot as p l t
from s t a t smode l s . d i s t r i b u t i o n s . e m p i r i c a l _ d i s t r i b u t i o n import ECDF
print (”−” ∗50)
print (” Generates ␣a␣ sequence ␣ o f ␣ L inear ␣ Congruent ia l ␣Numbers␣and␣ a l s o ␣ c a l c u l u l a t e s ␣ d i s c r epancy ␣and␣ pe r i od . ”)
print (”−” ∗50)
print (”\n”)
#ecd f = ECDF([3 , 3 , 1 , 4])
#p r i n t (”ECDF ” , e cd f ([3 , 55 , 0 . 5 , 1 . 5]))
#−−−
LGC − Linear Congruen t i a l pseudo number gene ra t o r |
#−−−
Desc r i p t i on :
LCG w i l l g ene ra t e a pseudo random numbers based on l i n e a r congruence method .
#Choose a l a r g e m and an a such t h a t gcd (m, a)=1.
#−−
def l g c (m, a , seed) :

x_n=[]
k=m−1
z0 = (a∗ seed) % m
z_n =[]
z_n . append (z0)
j=1
while j < m:

i f (pow(a , j) % m) == 1 :
print (”The␣ pe r i od ␣ o f ␣x_n␣ i s : ␣{}” . format (j))
break

else :
j+=1

for i in range (1 , j) :
z_n . append (a∗z_n [i −1] % m)
x_n . append (z_n [i −1]/m)

return x_n
#Pr in t s t he genera t ed l i s t o f chosen m, a and i n i t i a l seed .
#p r i n t (” The genera t ed sequence x_n = ” , l g c (101 ,2 ,2))

#C a l l s t h e f u n c t i o n LCG wi th parameters modulus (m) , m u l t i p l i e r (a) and seed ()
#b = l g c (1279 ,3 ,1)
b=l g c (103 , 2 , 2)
#p l t . p l o t (b , ’ ro ’)
p l t . g r i d ()
p l t . x l a b e l (’ n ’)
p l t . y l a b e l (’ Generated ␣number␣ va lue ’)

16

#p l t . show ()

#Inve r s e Sampling Exp .
def inv (LISTA , gamma) :

x =[]
for i in range (len (LISTA)) :

x . append ((−1/gamma)∗ np . l o g (1−LISTA [i]))
return x

sample1 = inv (b , 1)
#p r i n t (”New l i s t =”, inv (b , 1))
e cd f = ECDF(sample1)
print (”x” , e cd f . x)
p l t . p l o t (e cd f . x , e cd f . y , l a b e l= ’ECDF␣ o f ␣exp (1) ’)
x = np . arange (0 , 3 . 5 , 0 . 1)
y = expon . cd f (x , 0 , 1)
p l t . p l o t (x , y , l a b e l= ’CDF␣ o f ␣exp (1) ’)
#p l t . p l o t (inv (b , 1) , ” bo ”)
p l t . g r i d ()
p l t . x l a b e l (’ x ’)
p l t . y l a b e l (’ Cumulative ␣ P r o b a b i l i t y ’)
p l t . l egend ()
p l t . g r i d ()
p l t . show ()

#−−−−− Discrepancy c a l c u l a t o r −−−−−#
#C a l c u l a t e s d i s c r epancy wi th the h e l p o f p r o p o s i t i o n be low .
#Propo s i t i on 4 . 1 . 1 6
#
Let P be a po in t s e t x1 , x2 , . . . xn from [0 , 1) and suppose x1 <= x2 <= x3 <=....<= xn . Then
#D_N(P) = 1/2N + max(x_n − (2n−1)/2N) . Here |P | = N.
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
def Discrepancy (l i s t) :

N = len (l i s t)
l i s t . s o r t ()
d i s c = []
for i in range (len (l i s t)) :

d i s c . append (l i s t [i] − (2∗ (i +1) −1)/(2∗N))
MAX =(1/(2∗N)+ max(d i s c))
#p r i n t (MAX)
return MAX

Pr in t s t he d i s c r epancy o f choosen l i s t
#p r i n t (” The d i s cp r enacy o f x_n = ” , Discrepancy (b))

print (”−” ∗50)
#p r i n t (” Discrepancy = ” , d i s c)

17

#C a l l s LGC and Discrepancy to c a l c u l a t e j d i s c r e p a n c i e s o f t h e genera t ed l i s t by LGC.
#L=l g c (8191 ,3 ,2)
D=[]
X=[]
#f o r j in range (2 , 8191 ,20) :

L2=L [0 : j]
X. append (j)

D. append (Discrepancy (L2))

#p l t . p l o t (X,D)
#p l t . t e x t (5 , 0 . 001 , ’ prime used = 1279 ’)
#p l t . p l o t (n_value , d i sc , ’ bo ’)
p l t . x l a b e l (’ Index ␣ o f ␣ d i s c r epancy ’)
p l t . y l a b e l (’ Discrepancy ␣ va lue ’)
p l t . g r i d ()
#p l t . show ()

18

Referenser
[1] Niederreiter, H. and Winterhof, A. Applied Number Theory. 185-363. Springer (2015).

[2] V. C. Bhavsar, U. G. Uday, J. D. Horton, L. Lambreau. Evaluation of the discrepancy
of the linear congruental pseudo-random number sequence.
BIT 30 (1990), no. 2, 258-267.

[3] Kuipers, L. and Niederreiter, H. Uniform Distribution of Sequences.
88-170. John Wiley & Sons, Inc. (1974).

19

