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In this paper group properties of the so-called Generalized Burnett equations are studied. In contrast to the clas-
sical Burnett equations these equations are well-posed and therefore can be used in applications. We consider
the one-dimensional version of the generalized Burnett equations for Maxwell molecules in both Eulerian and
Lagrangian coordinates and perform the complete group analysis of these equations. In particular, this includes
finding and analyzing admitted Lie groups. Our classifications of the Lie symmetries of the Navier-Stokes equa-
tions of compressible gas and generalized Burnett equations provide a basis for finding invariant solutions of
these equations. We also consider representations of all invariant solutions. Some particular classes of invariant
solutions are studied in more detail by both analytical and numerical methods.

Keywords: Generalized Burnett equations; Lie group; group classification; conservation law; invariant solu-
tions.

1. Introduction

Symmetries have always attracted the attention of scientists. One of the tools for studying symme-
tries is the group analysis method [14, 17, 21, 26, 27], which is a general method for constructing
exact solutions of partial differential equations. It is worth to mention here that applications of the
group analysis method to a wide variety of models in science (up to year 1996) were collected
in [16].

The group classification of the viscous gas dynamics equations under some restrictions on the
viscosity coefficients was done in [11]. The group classification of two-dimensional steady viscous
gas dynamics equations for an ideal gas was done in [22]. For some models of viscous gas dynamics
equations, group analysis was applied in [10]. Unsteady two-dimensional steady viscous gas dynam-
ics equations with arbitrary state equations were studied in [23]. Many of the invariant solutions of
the viscous gas dynamics equations have also been obtained by other methods [1,2,9,12,13,30,33].

In this paper we study symmetry properties of equations of hydrodynamics (derived from the
Boltzmann equation) at the Burnett level [15, 20]. This level of description of rarefied gases is
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important because it includes, for example, physical phenomena such as dispersion of sound waves
that are absent at the Navier-Stokes level. However, the well-known instability [4] of the classical
Burnett equations makes these equations ill-posed and therefore practically useless for applications.
There are several methods to regularize these equations (see, for example, [5,19,32] and references
therein). In this paper we use an approach developed by one of the authors, which is based on
the idea of ’infinitesimal’ changes of variables. In other words, we consider the equations not for
true hydrodynamic variables (density ρ tr, bulk velocity vtr, and temperature T tr), but for slightly
different quantities,

ρ = ρ
tr +O(ε2), v = vtr +O(ε2), T = T tr +O(ε2), (1.1)

for which the standard notations (ρ,v,T ) are used. The small parameter ε denotes the Knudsen
number, i.e. mean free path divided by the typical macroscopic length. It was shown in [6] that this
approach leads to what are called generalized Burnett equations (GBEs). Moreover, it was proven
rigorously in [7] that solutions of ‘diagonal version’ of these equations are more accurate (the sec-
ond order approximation in Knudsen number), than the solutions of the Navier-Stokes equations
(the first order of approximation) in comparison with corresponding solutions of the Boltzmann
equation in the vicinity of absolute Maxwellian. Note that nothing of this kind can be proven for
classical (ill-posed) Burnett equations. Therefore it definitely makes sense to study the GBEs in
more detail. In particular, the investigation of the shock wave profile for the GBEs was performed
in [8]. The aim of this paper is to study the group symmetry properties of the GBEs for one-
dimensional flows. We shall consider below the case of Maxwell molecules since this is the only
model for which the classical Burnett equations are known in fully explicit form.

This paper is organized as follows. The generalized Burnett equations are introduced and briefly
discussed in Section 2. Their group properties are described in Section 3. Section 4 is devoted to
invariant solutions. Some non-trivial examples of invariant solutions of the GBEs and their compar-
isons with invariant solutions of the NSEs are given. The group analysis of the GBEs and NSEs in
Lagrangian coordinates is performed in Section 5. Comparisons of invariant solutions in Lagrangian
and Eulerian coordinates are presented. Conservation laws are discussed in Section 6.

2. Generalized Burnett Equations

We consider the following set of three equations for density ρ(x, t), bulk velocity v(x, t) =

(v(x, t),0,0), and absolute temperature T (x, t) [8]

ρt +(ρv)x = 0,
ρ(vt + vvx)+(ρT )x +Πx = 0,

3
2 ρ(Tt + vTx)+ρT vx +Πvx +Qx = 0,

(2.1)

where (x, t) are Eulerian coordinates, x ∈ R, t ∈ R+, and fluxes Π and Q are given by

Π =−4
3 ηT vx +

2η2

3ρ

(
−37

12
T 2

ρ
ρxx +

25
6

T 2

ρ2 ρ2
x +

4
3 T v2

x +2T 2
x − 19

6
T
ρ

ρxTx

)
,

Q =−15
4 ηT Tx +

η2T
3ρ2

(317
8 ρTx− 5

3 T ρx
)

vx.
(2.2)

If the terms with η2 are omitted in (2.2), then equations (2.1) correspond to the Navier-Stokes
equations of compressible gas (NSEs).
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As always, we set ε = 1 in the resulting equations. The constant positive factor η is given by

η
−1 =

3
2

π

∫ 1

−1
g(µ)(1−µ

2)dµ, g(cosθ) = |u|σ(|u|,θ), (2.3)

where σ(|u|,θ) is the differential scattering cross-section for Maxwell molecules, |u| is the absolute
value of the relative velocity of colliding particles, and θ ∈ [0,π] is the scattering angle.

Equations (1.1) for the GBEs (2.1) read as

ρ = ρ
tr, u = utr, T tr = T − η2

2

(
13
18

T 2ρx

ρ2 +
2
3

T Tx

ρ

)
, (2.4)

We want to make use of this relation. Our aim is to investigate group properties of the GBEs (2.1).
This will be done in next two sections.

3. Admitted Lie algebra and its analysis

In this section, group properties of equations (2.1) are studied. We use the standard terminology
of group analysis [26, 27], assuming that the reader is familiar with it. Readers who are mainly
interested in applications of group analysis such as self-similar solutions, etc., may proceed to the
next Section.

3.1. Equivalence group

The first step of the group classification of the class (2.1) is to describe the equivalence among
equations from this class, up to which the group classification is carried out.

The class of equations (2.1) is parameterized by the arbitrary element η . Equivalence transfor-
mations of the class preserve the structure of its equations, but are allowed to change the arbitrary
elements.

Generators of one-parameter groups of equivalence transformations [24, 27] are assumed to be
in the form

Xe = ξ
t
∂t +ξ

x
∂x +ζ

ρ
∂ρ +ζ

v
∂v +ζ

T
∂T +ζ

η
∂η ,

where all the coefficients of the generator depend on (t,x,ρ,v,T,η).

The class of differential equations (2.1) is defined by auxiliary equations for the arbitrary ele-
ments η which are given by

ηt = 0, ηx = 0, ηρ = 0, ηv = 0, ηT = 0.

For finding equivalence transformations we have used the infinitesimal criterion [27]. For this pur-
pose the determining equations for the components of generators of one-parameter groups of equiv-
alence transformations were derived. The solution of these determining equations gives the general
form of elements of the equivalence algebra of the class (2.1). The basis elements of the equivalence
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algebra of the class (2.1) are

Xe
1 = ∂x, Xe

2 = ∂t , Xe
3 = t∂x +∂v,

Xe
4 = x∂x + v∂v +2T ∂T , Xe

5 = t∂t + x∂x−ρ∂ρ , Xe
6 = t∂t + x∂x +η∂η .

These generators define the equivalence group of equations (2.1). Because of the transformations
corresponding to the generator Xe

6 :

x′ = xea, t ′ = tea, η
′ = ηea,

one can assume that η = 1 in (2.1). However, we keep η in the equations, as we also consider limits
when η → 0.

For classifying subalgebras of the admitted Lie algebra, one can use the equivalence transfor-
mation corresponding to the involution which also an equivalence transformationa

x→−x, v→−v. (3.1)

3.2. Admitted Lie algebra

A generator admitted by equations (2.1) is considered in the form

Xe = ξ
t
∂t +ξ

x
∂x +ζ

ρ
∂ρ +ζ

v
∂v +ζ

T
∂T ,

where the coefficients depend on (t,x,ρ,v,T ).
Usual calculations (see e.g. [26, 27]), which are omitted for brevity, show that the admitted Lie

algebra L5 is defined by the generators

X1 = ∂x, X2 = ∂t , X3 = t∂x +∂v,

X4 = x∂x + v∂v +2T ∂T , X5 = t∂t + x∂x−ρ∂ρ .

One notices that Xe
i = Xi, (i = 1,2, ...,5). This is because equations (2.1) only contain the single

arbitrary element η , which is constant.
It should be mentioned that the Lie algebra L5 coincides with the Lie algebra admitted by the

Navier-Stokes equations of a compressible gas.
Using the commutator table

X1 X2 X3 X4 X5

X1 0 0 0 X1 X1

X2 0 0 X1 0 X2

X3 0 −X1 0 X3 0
X4 −X1 0 −X3 0 0
X5 −X1 −X2 0 0 0

aThe transformation t→−t, v→−v, η →−η does not change the structure of equations (2.1) either.
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one finds the automorphisms

A1 : x̄1 = x1 +a(x4 + x5),

A2 : x̄1 = x1 +ax3, x̄2 = x2 +ax5,

A3 : x̄1 = x1−ax2, x̄3 = x3 +ax4,

A4 : x̄1 = eax1, x̄3 = eax3,

A5 : x̄1 = eax1, x̄2 = eax2,

where only the changeable coordinates are presented. Involution (3.1) gives the automorphism

x̄1 =−x1, x̄3 =−x3.

For high-dimensional Lie algebras one can use a two-step algorithm [28]. This algorithm
reduces the problem of constructing an optimal system of subalgebras with high dimensions to
a problem with low dimensions.

According to the theory of the group analysis method [27], all invariant solutions split into
classes of equivalent solutions. The equivalence is considered with respect to the admitted Lie group
corresponding to the Lie algebra L5. For finding representatives of these classes one can use an
optimal system of the subalgebras of the admitted Lie algebra L5 [27].

The Lie algebra L5 can be presented as the direct sum L5 = L2⊕ I3 of the subalgebra L2 =

{X4,X5} and the ideal I3 = {X1,X2,X3}. First one construct the optimal system of subalgebras of
the subalgebra L2. As the Lie algebra L2 is Abelian, its classification is trivial: an optimal system of
one-dimensional subalgebras of the Lie algebra L2 consists of the subalgebras

{X5 +αX4},{X4},{0}. (3.2)

Here {0} is included in the list for subalgebras which do not include the generators from the Lie
algebra L2. The second step consists of joining the ideal I3: each of the elements from the list (3.2)
is extended by generators from the ideal I3 using their stabilizer. Finally the optimal system of
one-dimensional subalgebras consists of the subalgebras:

{X5 +αX4}, {X4 + εX2}, {X5−X4−X1}, {X5 +X3},

{X2 +X3}, {X2}, {X4}, {X3}, {X1},

where ε =±1, and α is an arbitrary constant.

4. Representations of invariant solutions

For finding invariant solutions one needs to choose a subalgebra from the optimal system of subal-
gebras of the admitted Lie algebra (see e.g. [27] for details). Then one finds all functionally inde-
pendent invariants of the subalgebra. Setting the invariants for which the rank of the Jacobi matrix
is equal to the number of the dependent variables by functions of the other invariants, one con-
structs a representation of a solution invariant with respect to the chosen subalgebra. Substituting
the representation of the invariant solution into the original system, one derives a reduced system of
equations. Notice that the reduced system of equations has fewer independent variables. Represen-
tations of all invariant solutions are presented in Table 1.
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Consider, for example, the subalgebra with the basis generator

X5 +αX4 = (α +1)x∂x + t∂t −ρ∂ρ +αv∂v +2αT ∂T .

For finding invariants J(x, t,ρ,v,T ) one should solve the equation

(X5 +αX4)J = 0.

A set of functionally independent solutions of the latter equation can be chosen as follows,

z = xt−(α+1), ρt, vt−α , Tt−2α .

A representation of the invariant solution is

ρ = t−1R(z), v = tαV (z), T = t2αQ(z).

Substituting this representation into equations (2.1), one obtains a system of ordinary differential
equations. Because for the GBEs equations these ordinary differential equations are cumbersome,
we only present them for the Navier-Stokes equations of compressible gas

R′(V − (α +1)z)+R(V ′−1) = 0,

3R′Q+Q′(3R−4ηV ′)−4ηV ′′Q+3V ′R(V − (α +1)z)+3αRV = 0,

45η(Q′′Q+Q′2)−18Q′R(V − (α +1)z)+4Q(4ηV ′2−3V ′R−9αR) = 0.

(4.1)

Solutions of equations (4.1) and the reduced equations of the GBEs were constructed numeri-
cally by a six-th order Runge-Kutta scheme. For testing the code, we used solutions of these systems
with V = z and α 6= 0.

The equation of conservation of mass gives that R′ = 0, for example, R = q1, where q1 is con-
stant. Hence, we have only one unknown function Q(z) and two free parameters q1 and α . Note that
equations (2.1) in the limiting case η = 0 become the usual Euler equations for monoatomic ideal
gas. Equations (4.1) for η = 0 and the above assumptions lead to

Q′q1 = 0,Q(1+3α)q1 = 0.

Thus we have two options:
(a) non-trivial limit with

Q = q2 > 0, q1 > 0, α =−1/3, (4.2)

where q2 is constant;
(b) trivial limit with Q = 0 or/and q1 = 0. Note that the non-trivial limit corresponds to adiabatic
solution of the Euler gas dynamic equations

ρ = q1/t, v = x/t, T = q2t−2/3, (4.3)

which has clear physical meaning of one-dimensional spatially homogeneous expansion of gas in
the whole space. This information is important because we will consider below two different classes
of solutions to the NSEs and GBEs.
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Case of the NSEs. The remaining equations of the reduced system become

Q′(3q1−4η) = 0, (4.4)

45Q′′ηQ+45Q′2η +18Q′αq1z+4Q(4η−3(3α +1)q1) = 0 (4.5)

If Q′ = 0, for example, Q = q2, then equation (4.5) gives that

3(3α +1)q1 = 4η .

Then we have two options. If we want to have the non-trivial limit (4.2) at η = 0, we just define a
new value of the exponent α

α =−1
3
+

4η

9q1
,

considering Q = q2 and q1 as free parameters. We denote this solution by QNSE = q2. Alternatively
we can choose to have a trivial limit at η = 0, then we obtain

q1 =
4η

3(3α +1)
,

considering α as a free parameter. Similarly, the case of non-zero Q′(z) in (9), (10) also leads to
trivial limit at η = 0.

If Q′ 6= 0, then

q1 =
4η

3
,

and equation (4.5) becomes

15(QQ′)′+8α(Q′z−2Q) = 0.

Note that solutions which have trivial limit at η = 0 can be also used as tests for computer codes
and numerical methods.

Case of the GBEs. The remaining equations of the reduced system become

Q′
(
24Q′′η2 +8η

2−12ηq1 +9q2
1
)
= 0 (4.6)

3Q′′ηQ(317η−90q1)+3Q′2η(349η−90q1)−108Q′αq2
1z

+8Q(27αq2
1 +8η

2−12ηq1 +9q2
1) = 0 (4.7)

If Q = q2, then equation (4.7) gives that

α =−8η2−12ηq1 +9q2
1

27q2
1

. (4.8)

We denote this solution by QGBE = q2 This value of α with free parameters q1 and Q = q2 corre-
sponds to solution of the GBEs, having the non-trivial limit (4.2) at η = 0. Other solutions of (4.6),
(4.7) have trivial limit at η = 0. We present here an explicit example of such solution.
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Fig. 1. The numerical solu-
tion of Q of the NSEs with
α = −1.852 coincides with
exact constant solution QNSE .

Fig. 2. The numerical solu-
tion of Q of the GBEs with
α = −1.852 coincides with
exact constant solution QGBE .

Fig. 3. The numerical solu-
tion of Q of equations (4.1)
with α = −1.852, Q(.5) =

1, R(.5) = 1, Q′(.5) = 10,
R′(.5) =−5, v(.5) = .5.

If Q′ 6= 0, then finding Q′′ from equation (4.6), integrating it, and substituting into (4.7), one
finds that

q1 =
317
90

η , α =− 69649
301467

,

and Q = q2− 69649
43200 z2, where q2 = Q(0) is a free parameter. Notice that α in this case also satisfies

relation (4.8).
Numerical solutions of Q of system (4.1) for the NSEs and GBEs are presented in Figures 1–3.

For testing the code we used exact solutions obtained above with V (z) = z. Figures 1-2 demonstrate
a good agreement of numerical solutions with exact solutions. In Fig. 1 the exact solution is for the
NSEs (QNSE), and in Fig. 2 the exact solution is for the GBEs (QGBE). Fig. 3 presents the numerical
solution Q of equations (4.1) for the NSEs and GBEs with the following initial data: Q(.5) = 1,
R(.5) = 1, Q′(.5) = 10, R′(.5) =−5, v(.5) = .5. In all these cases the parameter α =−1.852.

Generator ρ v T z
1. X5 +αX4, t−1R(z), tαV (z), t2αQ(z), xt−(α+1)

2. X4 + εX2, R(z), eεtV (z), e2εtQ(z), xe−εt

3. X5−X4−X1, t−1R(z), t−1V (z), t−2Q(z), x+ ln t
4. X5 +X3, t−1R(z), ln t +V (z), Q(z), x

t − ln t
5. X2 +X3, R(z), t +V (z), Q(z), x− 1

2 t2

6. X2, R(x), V (x), Q(x), x
7. X4, R(t), xV (t), x2Q(t), t
8. X3, R(t), x

t +V (t), Q(t), t
9. X1, R(t), V (t), Q(t), t

Table 1. Representations of all invariant solutions.
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Remark. Solutions of the travelling wave type were applied in [8] for studying the structure of a
shock wave. This type of solution is equivalent to the solution invariant with respect to the generator
X2, which corresponds to the set of stationary solutions. The conservative form of equations (2.1)
provides three integrals of equations (2.1).

5. Analysis of equations (2.1) in Lagrangian coordinates

The Eulerian (x, t) and mass Lagrangian (ξ , t) coordinates are related by the relation x = ϕ(ξ , t),
where the function ϕ satisfies the equations

ϕt(ξ , t) = v(ϕ(ξ , t), t), ϕξ (ξ , t) = ρ
−1(ϕ(ξ , t), t).

In the mass Lagrangian coordinates (ξ , t) equations (2.1) take the form

ρ−2ρt + vξ = 0,
vt +(ρT +Π)ξ = 0,

3
2 Tt +ρT vξ +Πvξ +Qξ = 0,

(5.1)

where

Π =−4
3

vξ ρT +
2
3

η
2S1,Q =−15

4
ηρT Tξ +

1
3

η
2T S2,

S1 = 2T 2
ξ

ρ− 19
6

ρξ Tξ T −2ρ
−1

ρ
2
ξ
T 2− 37

12
ρξ ξ T 2 +

4
3

v2
ξ
ρT,

S2 = vξ (
317
8

Tξ ρ− 5
3

ρξ T ).

5.1. Admitted Lie group

As the transition to the Lagrangian coordinates is not a point transformation, group analysis of
these equations has to be performed independently of their representations in Eulerian coordinates.
In particular, group classification of the admitted Lie algebra and invariant solutions of equations
(2.1) in mass Lagrangian coordinates are obtained in this section.

Calculations show that the admitted Lie algebra L2
5 is defined by the generators

Y1 = ∂ξ , Y2 = ∂t , Y3 = ∂v,

Y4 = ξ ∂ξ + v∂v +2T ∂T , Y5 = t∂t −ρ∂ρ .

The commutator table is

Y1 Y2 Y3 Y4 Y5

Y1 0 0 0 Y1 0
Y2 0 0 0 0 Y2

Y3 0 0 0 Y3 0
Y4 −Y1 0 −Y3 0 0
Y5 0 −Y2 0 0 0
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while the automorphisms are

A1 : ȳ1 = y1 +ay4,

A2 : ȳ2 = y2 +ay5,

A3 : ȳ3 = y3 +ay4,

A4 : ȳ1 = eay1, ȳ3 = eay3,

A5 : ȳ2 = eay2

There is also the involutionb

ξ →−ξ , v→−v,

which provides the automorphism y1→−y1.
On the first step one classifies the subalgebra L2 = {Y4,Y5} which is Abelian

{Y4 +αY5},{Y5},{0}. (5.2)

Hence, the optimal system of one-dimensional subalgebras of Lie algebra L2
5 consists of the

subalgebras

{Y4 +αY5}α 6=0, {Y4 + εY2}, {Y4}, {Y5 +Y1 +αY3}, {Y1 +Y2 +αY3},

{Y5 + εY3}, {Y5}, {Y2 + εY3}, {Y2}, {Y1 +αY3}, {Y3}.

Representations of all invariant solutions are presented in Table 2. Notice that there are no
solutions invariant with respect to Y3.

5.2. Relations between invariant solutions in Lagrangian and Eulerian coordinates

Consider the generator

Y4 +αY5 = αξ ∂ξ + t∂t +αv∂v +2αT ∂T −ρ∂ρ .

It has the invariants

y = ξ t−α , tρ, vt−α , Tt−2α .

A representation of the invariant solution has the form

ρ = t−1R(y), v = tαV (y), T = t2αQ(y).

Hence, the Lagrangian and Eulerian coordinates are related by the formula

ϕξ (ξ , t) = tR−1(ξ t−α), ϕt(ξ , t) = tαV (ξ t−α). (5.3)

Integrating the first equation of (5.3), one has that

ϕ = tα+1R̂+h,

bThere is also the involution t→−t, v→−v η →−η .
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where R̂′(y) = R−1(y), and h(t) is an arbitrary function of the integration. Substitution into the
second equation of (5.3) gives that

tαV = (α +1)tα R̂−αξ R−1 +h′,

which can be rewritten in the form

tα(V − (α +1)R̂+αyR−1) = h′.

Thus, one obtains that

V − (α +1)R̂+αyR−1 = k,

and

h′ = ktα ,

where k is constant. Because of the equivalence transformation related with the shift of x, the func-
tion h can be found up to an arbitrary constant.

If α + 1 = 0, then h = k ln(t)+ k0, where the constant k0 can be assumed k0 = 0. Hence, one
obtains that

x− k ln(t) = R̂.

Using the inverse function theorem, one obtains that

ξ t−1 = F(z),

for some function F , where z = x− k ln(t). This gives that

ρ = t−1R̃(z), v = t−1Ṽ (z), T = t−2Q̃(z).

This is a representation of a solution invariant with respect to the subalgebra X5−X4 + kX1, which
is similar to the subalgebra number 3 in Table 1.

If α +1 6= 0, then h = k 1
α+1 tα+1 + k0. Hence,

x− 1
α +1

ktα+1 = tα+1R̂

or

xt−(α+1) = R̂+
1

α +1
k.

Using the inverse function theorem, one obtains that

ξ t−α = F(z)

for some function F , where z = xt−(α+1). This gives that

ρ = t−1R̃(z), v = t−1Ṽ (z), T = t−2Q̃(z).

This is a representation of a solution invariant with respect to the subalgebra X5 +αX4, which is
number 1 in Table 1.

Representations of all invariant solutions are given in Table 2. Their equivalence with invariant
solutions in Eulerian coordinates is presented in the last column of Table 2.
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Generator ρ v T z Tab.1

1. Y4 +αY5, t−1R(z), tαV (z), t2αQ(z), ξ t−α α =−1: X5−X4 +X1

α 6=−1: X5 +αX4

2. Y4 + εY2 R ξV ξ 2Q ξ e−εt X4 + εX2

3. Y5 +Y1 +αY3, t−1R(z), V (z)+α ln t, Q(z), ξ − ln t X5 +αX3

4. Y1 +Y2 +αY3, R(z), V (z)+αt, Q(z), ξ − t X2 +αX3

5. Y5 + εY3, t−1R(z), V (z)+ ε ln t Q(z), ξ X5 +X3

6. Y5, t−1R(z), V (z), Q(z), ξ X5

7. Y2 + εY3, R(ξ ), V (ξ )+ εt, Q(ξ ), ξ X2 + εX3

8. Y2, R(ξ ), V (ξ ), Q(ξ ), ξ X2

9. Y1 +αY3, R(t), V (t)+αξ , Q(t), t X1|α=0; X3|α 6=0

10. Y4 R ξV ξ 2Q t X4

Table 2. Representations of all invariant solutions.

6. Conservation laws

6.1. Eulerian coordinates

In conservative form equations (2.1) are rewritten as

ρt +(ρv)x = 0,

(ρv)t +(ρ(T + v2)+Π)x = 0,(
ρ(3T + v2)

)
t +
(
ρv(5T + v2)+2(Πv+Q)

)
x = 0.

The general form of a conservation law is

DtBt +DxBx = 0, (6.1)

where the functions Bt and Bx depend on the independent and dependent variables, and the deriva-
tives of the dependent variables with respect to the independent variables up to some order.

Conservation laws provide information on the basic properties of solutions of differential equa-
tions, and they are also needed in the analyses of stability and global behavior of solutions. Noether’s
theorem [25] is the tool which relates symmetries and conservation laws. However, an application of
Noether’s theorem depends on the following condition: that the differential equations under consid-
eration can be rewritten as Euler-Lagrange equations using some Lagrangian. Among approaches
trying to overcome this limitation one can mention here the approaches developed in [3,18,29,31]c.

In the present paper we use the method applied in [31]. The method consists of substituting the
functions Bt and Bx in general form into equation (6.1). Excluding the main derivatives of system
(2.1), and splitting it with respect to the parametric derivatives, one derives an overdetermined sys-
tem of linear partial differential equations for the functions Bt and Bx. The general solution of this
system of equations provides the complete set of conservation laws.

cTherein one can find more details and references.
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The calculations show that the Navier-Stokes equations of a compressible gas only have one
additional conservation law

Bt
i = ρ(x− tv), Bx

i = ρ(xv− t(T + v2))+
4
3

ηtT vx.

This conservation law can be written in the form

Bt
i = ρ(x− tv), Bx

i = xρv− t
(
ρ(T + v2)+Π

)
. (6.2)

This conservation law in inviscid gas dynamics is called the conservation law of the center of mass.
One can check directly that the (Bt

i,B
x
i ) also provide densities of a conservation law for the GBEs.

6.2. Lagrangian coordinates

The conservation laws in Eulerian and mass Lagrangian coordinates are related by the formula

DtBt
L +Dξ Bξ

L = ϕξ

(
Dx(ρvBt +Bx)+DL

t (ρBt)
)
,

where Dt and Dξ are the operators of the total derivative in Lagrangian coordinates, DE
t and Dx are

the operators of the total derivative in Eulerian coordinates. Thus, the relations between coordinates
of the conserved vectors in Eulerian and mass Lagrangian coordinates are

Bt
L = ρ

−1Bt , Bξ

L = Bx− vBt . (6.3)

The conservation of mass becomes the identity in mass Lagrangian coordinates. The conserva-
tion laws of the momentum and energy become, respectively,

vt +(ρT +Π)ξ = 0,

1
2
(
3T + v2)

t +

(
1
2

ρv(7T + v2)+Πv+Q
)

ξ

= 0.

The conservation law of the center of mass is reduced to the conservation law of momentum.

7. Conclusions

In this paper we have studied group properties of the so-called Generalized Burnett equations. These
equations are well-posed in contrast with the classical Burnett equations, and therefore, are used in
various applied problems of rarefied gas dynamics. We considered the one-dimensional version of
the GBEs in both Eulerian and Lagrangian coordinates and performed a complete group analysis of
these equations. In particular, this includes finding admitted Lie groups and their analysis. The pre-
sented classifications of the Lie symmetries of the NSEs and the GBEs provides a basis for finding
invariant solutions of these equations. Such solutions can be used for testing numerical schemes for
these models. We also considered representations of all invariant solutions. As expected, the com-
plete Lie group and the set of conservation laws are similar for the GBEs and for NSEs. However,
there are important differences if we consider some concrete invariant solutions. On one hand, the
GBEs are the more accurate equations with respect to the Knudsen number. On the other hand, they
contain higher order derivatives and can therefore admit some non-physical solutions. Some classes
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of invariant solutions were considered in more detail by both analytical and numerical methods.
It was shown, in particular, that the GBEs admit two different classes of solutions that can have
(a) non-trivial or (b) trivial limits when the mean free path of gas molecule tends to zero. In case (a)
the solution tends to the corresponding solution of Euler gas dynamics equations. In case (b) the
density of gas tends to zero. This is a natural phenomenon, which shows that higher order PDEs can
introduce some ‘spurious’ solutions, which can be removed by boundary conditions, etc. This and
other questions related to the GBEs need further investigation and we plan to continue this work.
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