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The dynamicity of real-world systems poses a significant challenge to deployed predictive machine
learning (ML) models. Changes in the system on which the ML model has been trained may
lead to performance degradation during the system’s life cycle. Recent advances that study non-
stationary environments have mainly focused on identifying and addressing such changes caused by
a phenomenon called concept drift. Different terms have been used in the literature to refer to the
same type of concept drift and the same term for various types. This lack of unified terminology is
set out to create confusion on distinguishing between different concept drift variants. In this paper,
we start by grouping concept drift types by their mathematical definitions and survey the different
terms used in the literature to build a consolidated taxonomy of the field. We also review and classify
performance-based concept drift detection methods proposed in the last decade. These methods utilize
the predictive model’s performance degradation to signal substantial changes in the systems. The
classification is outlined in a hierarchical diagram to provide an orderly navigation between the
methods. We present a comprehensive analysis of the main attributes and strategies for tracking and
evaluating the model’s performance in the predictive system. The paper concludes by discussing open
research challenges and possible research directions.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In most real-world application scenarios, the machine learning
odel’s performance deteriorates in production and consistently
egrades as the systems evolve. This problem is commonly re-
erred to as model degradation. The accuracy of machine learning
systems is prone to drop for various reasons. One reason could
be that the data points on which the model was trained are not
sufficient to capture the complexity of the problem space. There-
fore, the model will perform unexpectedly for samples in the
input space that was not covered in the instance space of training
examples [1,2]. Another reason is that the system environment is
dynamic and progressively subject to changes, making it difficult
for a single model to provide accurate predictions.

In the literature, researchers have distinguished between two
main types of system changes concerning their nature. The first
type is caused by changes of unknown context that cannot be
measured or represented in the available attributes of the dataset,
which is known as hidden context [3]. Predictive systems typically
truggle to cope with changes in hidden contexts, where an
daptive strategy is necessary to be executed. To illustrate the
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concept of hidden context, suppose a learning system should
predict the Earth’s temperature using only spatial and temporal
historical data. Over time, the predictions will become inaccu-
rate due to overlooking climate change that serves as a change
in the hidden context, which is inaccessible information from
the learner’s view. Characterizing hidden context is generally
domain-dependent, and in most cases, it cannot be expressible
in such forms that benefit the learner if it would be incorporated.
Therefore, researchers have extensively examined the second
type of change, which is diagnosed in the underlying generating
function of the data. This phenomenon is known as concept drift
[4].

Concept drift might be attributed to changes such as degra-
dation in the quality of materials of the system’s equipment,
seasonality, changing personal preferences and behaviors, or ad-
versarial activities [5]. Since these sources of change are inherent
elements of diverse real-world domains, concept drift has been
introduced and addressed in a vast range of disciplines and do-
mains. Recent applications include, but are not limited to, IoT
systems [6,7], smart grids [8,9], 5G networks [10] and stock
market [11,12]. A recent study also has investigated the impact
of concept drift on early alert systems during the SARS-CoV-2
pandemic [13]. These explored systems share the non-stationarity
property since they are characterized by continuous changes as
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Acronyms used in the paper

Acronym

AC Alternative Classifier
ACCD Associative Classification over Concept

Drifting Data Streams
ACDDM Accurate Concept Drift Detection

Method
ADDM ADaptive sliding window based Detec-

tion Method
ADDS Anti-concept Drift Detection Algorithm
ADWIN ADaptive WINdowing
AGE Accuracy and Growth rate updated En-

semble
ALD Approximate Linear Dependence
AUE Accuracy Updated Ensemble
AWE Accuracy Weighted Ensemble
CDTs Change Detection Tests
CSDD Cosine Similarity Drift Detector
CUSUM CUmulative SUM
DDD Diversity for Dealing with Drifts
DDM Drift Detection Method
DDM-OCI Drift Detection Method for Online Class

Imbalance
DELM Dynamic extreme learning machine
DOED Diversified Online Ensembles Detection
DWM Dynamic Weighted Majority
ECDD EWMA for Concept Drift Detection
ECHO Efficient Concept Drift and Concept Evo-

lution Handling over Stream Data
ECPF Enhanced Concept Profiling Framework
EDDM Early Drift Detection Method
EDIST Error DISTance for drift detection and

monitoring
ELM Extreme learning machine
ESOS-ELM Ensemble of online sequential extreme

learning machine
EWAUC Equal Weighted AUC
EWMA Exponentially Weighted Moving Aver-

age
FDR False Discovery
FHDDM Fast Hoeffding Drift Detection Method
FHDDMS Stacking Fast Hoeffding Drift Detection

Method
FHDDMSadd Additive Stacking Fast Hoeffding Drift

Detection Method
fnr False negative rate
FPDD Fisher Proportions Drift Detector
fpr False positive rate
FSDD Fisher Square Drift Detector
FsNB Fast switch Naıve Bayes model

they develop. A broad overview of concept drift applications can
be found in [14].

In the last decades, learning in non-stationary environments
[15] has been intensively studied. Researchers pointed out the
necessity to integrate a model degradation detector in the overall
learning framework. After deployment, the detector evaluates
and tracks the system’s performance to control such degradation
2

FTDD Fisher Test Drift Detector
FTRL Follow the Regularized Leader
FTRL-ADP Follow-the-Regularized-Leader with

Adaptive Decaying Proximal
HDDM Hoeffding Drift Detection Method
HDWM Heterogeneous Dynamic Weighted Ma-

jority
HLFR Hierarchical Linear Four Rates
HT Hoeffding Tree
KME Knowledge-maximized ensemble
KS Kolmogorov–Smirnov test
LFR Linear Four Rates
MD3 Margin Density Drift Detection
MDDM McDiarmid Drift Detection Method
meta-RRKOS-
ELM-DDM

Meta-cognitive Recurrent Recursive
Kernel Online Sequential Extreme
Learning

MOS-ELM Meta-cognitive online sequential ex-
treme learning machine

NB Naive Bayes
NDE Number and Distance of Errors
NSE Non stationary environments
OAUE Online Accuracy Updated Ensemble
ODKK Online drift detector for a K-class prob-

lem
OMR-DDM Online Map-Reduce Drift Detection

Method
OS-ELM Online sequential extreme learning ma-

chine
OWE On-line Weighted Ensemble
PAUC Prequential Multi-Class AUC
PHT Page–Hinkley test
PINE Predictive and Parameter INsensitive

Ensemble
PPV Positive Predictive Value
PSO Particle Swarm Optimization
RDDM Reactive Drift Detection Method
RDWM Recurring Dynamic Weighted Majority
SEA Streaming Ensemble Algorithm
SPC Statistical Process Control
STEPD Statistical test of equal proportions
SVM Support Vector Machines
TDAP Time Decaying Adaptive Prediction
tnr True negative rate
tpr True positive rate
UCEM Uncertainty Error Correlation Matrix
WAC Weighted AUC
WELM Weighted extreme learning machine
WMA Weighted Majority Algorithm
WSTD Wilcoxon Rank Sum Test Drift Detector

in prediction accuracy. The error rate’s degradation level is then
used to signal concept drift alerts in the system.

Numerous terms and multiple mathematical definitions can be
found in the literature to describe the same concept drift type.
This lack of unified terminology in the field makes it challenging
for researchers to find the correct definition of a given con-
cept drift type. This paper investigates the terms and definitions
used to describe the various types of concept drift. We also
present a rigorous summary of concept drift and use a novel
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ierarchical classification. We categorize the existing approaches
hat explicitly rely on monitoring the error rate of the base
earner to detect concept drift in the system. Incorporating such
etection components in the system boosts the robustness of
achine learning systems against changes and helps prevent the
erformance degradation of predictive models in our constantly
hanging world.
This paper is designed to address the following research ques-

ions:

Q1: What are the different terms that are used in the literature
o describe the same type of concept drift, and what are the same
athematical definitions used to describe the same concept drift

ype?

Q2: What are the performance-based drift detection methods
hat were proposed in the last decade, and how can they be
epresented through a hierarchical classification?

Q3: How is the model’s predictive performance validated and
sed to track and detect concept drift, and what are the most
ommon techniques utilized in the reviewed methods?
For RQ1, we delve into the literature to obtain the various

erms that are used to refer to each concept drift type. For RQ2
nd RQ3, we survey the proposed performance-based concept
rift detection methods in the last decade. From 2011 up to 2020,
s illustrated later, researchers have principally extended or got
nspired from the benchmark methods proposed in the preceding
ecade. The extended methods have primarily focused on im-
roving the benchmark methods or enhancing their capability in
ealing with more complex problems that involve fast-moving
olumes of big data streams. We have chosen to review the works
n the last decade since they can be viewed as the representatives
f the most recent methods developed and compile the latest
esearch gaps in the field.

The rest of this paper is organized as follows. Section 2 pro-
ides general background on drift detection and the related work.
ection 3 presents the search strategy that was implemented to
ddress the research questions. Section 4 introduces the terms
nd definitions that are used in concept drift handling frame-
orks. Section 5 categorizes the performance-based concept drift
etectors and reviews the existing approaches in the literature.
n in-depth analysis and discussion on the surveyed methods are
resented in Section 6. In Section 7, we conclude the paper by
resenting the main finding of this study and identifying future
esearch directions.

. Background and related work

Drift detection or change detection refers to the methodology
hat helps determine and identify a time instant or time interval
hen a change arises in the properties of the target object [16].
his definition has been extended to impose time constraints on
he detection delay to enable the learner to adapt to the change
fficiently to ensure high-performance [17].
Concept drift detection is a component of the concept drift

andling framework that activates the concept drift adaptation
omponent, which reacts to the change in the data stream [18].
ubsequently, the system will update the prior knowledge and
djust the learning models to react to the changes properly.
his update usually raises the conflicting problem known as
tability–plasticity dilemma [19]. Here, stability means maintain-
ng the relevant and possibly reoccurring knowledge. At the same
ime, plasticity describes replacing outdated knowledge in re-
ponse to the new experience. Ideally, the concept drift solution
hould achieve a balance between stability and plasticity [20].
uch concept drift adaptation strategy is referred to as informed

daptation, or active approach, which is triggered upon drift

3

Fig. 1. Concept drift detection framework.

occurrence detection to update the model. The other strategy
is blind adaptation, also denoted as passive approach, where the
odel is constantly updated upon receiving new data instances
ithout detecting drifts [21,22].
Concept drift detection methods generally use a test statistic

o keep tabs on the data stream and quantify the similarity
etween the old samples and the new ones to discern the change
n the concept. This similarity value is then compared with a pre-
efined threshold to find out the drift magnitude [23]. Inspired
y [18], Fig. 1 summarizes a generic scheme for concept drift
etection methods. In the figure, the null hypothesis is that the
est statistic will not yield a significant difference between the old
nd new data, i.e., no concept drift detected. If failing to reject the
ull hypothesis, the system will persist with the current learner
nd slide on the data stream.
Existing studies on detecting concept drift can be classified

nto different categories concerning the test statistics they apply
o check and locate the change (see Fig. 2). Data distribution-
ased and performance-based, or error rate-based, approaches
re the most dominant techniques used to detect concept drift
ince they can be applied to most learning tasks with lower com-
lexity. There are also hybrid and contextual-based approaches.
Data distribution-based detectors use distance measures to

stimate the similarity between the data distributions in two
ifferent time-windows [24]. Concept drift is then detected if the
wo distributions are significantly distant. Goldenberg and Webb
25] summarize the distance measures that are used to compare
he data distributions and estimate drifts. The main advantage of
his approach is that it can be applied to both labeled and unla-
eled datasets since this method only considers the distribution
f data points. However, as we will discuss later, changes in the
ata distributions do not always affect the predictor performance,
otentially leading to false alarms in the system [26].
Performance-based approaches (as illustrated by the red ar-

ows in Fig. 2) comprise the largest group of concept drift detec-
ors. Therefore, they are the main focus of this paper for surveying
nd classification. These approaches typically trace deviations in
he online learner’s output error, known as the predictive se-
uential (prequential) error [27], to detect changes [28]. The basic
dea of performance-based approaches aligns with Probability Ap-
proximately Correct (PAC) learning model [29], which articulates
that the prediction error depends on the size of the examples
and the complexity of the hypothesis space. It concludes that
if the examples are drawn from a stationary distribution, the
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Fig. 2. Concept drift detection methods.
Fig. 3. Performance-based approach mechanism.

rror rate decreases as the learner sees more examples [30].
hus, such a consequential decrease in the performance implies
hat the learned relationship between the examples of input
ata and the concept under study is obsolete, resulting in con-
ept drift. Fig. 3 illustrates the main idea of performance-based
pproach mechanisms. Concept drift occurs when the joint dis-
ribution of the dataset PD(X, Y ) changes at time instance t ,
hich is the drift time. The main advantage of performance-
ased approaches is that they only handle the change when the
erformance is affected. Thus, these methods are more efficient
n dealing with potential false alarms than distribution-based
lgorithms. However, the main challenge is that these methods
equire a quick arrival of feedback on the predictions, which is not
lways available [26]. Because of the limitation mentioned above,
new family of methods that deal with concept drift detection in
nsupervised settings has been proposed.
Multiple hypothesis-based drift detectors are hybrid

pproaches that apply several detection methods and aggregate
heir results in parallel or hierarchically [18]. Parallel drift detec-
ors integrate the decisions of multiple drift detectors to make the
inal judgment. Hierarchical drift detectors incorporate two layers
or drift detection. The first layer is the warning layer to alert the
ystem about a potential occurrence of concept drift. The second
ayer is the validation layer that confirms or rejects the warning
ignaled from the first layer.
Contextual-based detectors use context information available

rom the system and data to detect the drift. Lu et al. [31]
ave introduced concept drift detectors in a case-based reasoning
ystem by tracking changes in competence measurement. Demšar
nd Bosnić [32] have used model explanation methodologies to
4

interpret, visualize and detect concept drift. Lobo et al. [33] have
presented the eSNN-DD method that detects concept drift by
exploiting the evolution of spiking neural networks. Huang et al.
[34] have designed a concept drift detector using historical drift
trends to calculate the probability of expecting a drift using online
and predictive approaches. Graph metrics have also been utilized
to detect concept drift in data streams that could be represented
as graph streams as in [35–37].

Several survey papers to formalize and classify concept drift
were presented in the literature. In 2014, the most referenced
survey on concept drift was published by Gama et al. [26]. It
covered and categorized concept drift handling systems from
different perspectives and provided an excellent introduction to
adaptive learning and concept drift. Another review paper [18]
summarized the research advancements on concept drift and pro-
posed a new component in the concept drift handling framework,
called concept drift understanding. Ditzler et al. [15] surveyed
the studies on concept drift approaches from two main aspects,
active and passive. Other related review studies [38–41] have
also surveyed and categorized the existing concept drift handling
approaches. They have also provided an insightful discussion
on the methods. Besides these review papers in the literature,
other papers explored handling concept drift in specific learning
tasks. A recently published review paper by Gemaque et al. [42]
provides a full-scale overview of the methods that handle concept
drift in unsupervised learning. Other papers review and scrutinize
the progress in class-imbalanced data streams [4,43]. Krawczyk
et al. [44] focuses on analyzing the research in ensemble learning
for data streams in dynamic environments. However, with the
availability of detailed review papers in concept drift classifi-
cation and formalization, only a few studies have explored the
different terms used by authors to describe the same type of con-
cept drift, whereas new terms have appeared since the date of the
publication of these studies. Additionally, far too little attention
has been paid to performance-based concept drift detection. To
this end, one of the main contributions of this paper is to narrow
down the focus on performance-based concept drift detection
approaches and provide a comprehensive summary of the recent
progress in this research area, where not many review studies are
available.

3. Search methodology

The main objective of this paper is two-fold. First, the paper
formalizes the problem of concept drift and surveys the termi-
nologies used in the literature to describe its types, which is
cataloged in RQ1. Second, it reviews the recent studies and trends
in performance-based concept drift detection, which is addressed
in RQ2 and RQ3. Since the field has started to materialize in the
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arly 2000s, we decided to retrieve the terms that have appeared
n the studies of the last two decades while we retrieved the
erformance-based detection methods of the last decade. The
ain reason why we have followed different methodologies in
ddressing RQ1 and, RQ2 and RQ3, is that most of the terms have
ppeared in the early aughts of the present century and have
een used afterward by the authors. In contrast, we limited the
etrieval of the detection methods to the last decade to determine
he current trends in the research area. To address RQ1, we
ave explored the terms used in former surveys and through
nowballing of highly-cited references. For RQ2 and RQ3, and
while this paper does not directly follow a systematic literature
review protocol, we have followed a systematic literature search
methodology to retrieve and select relevant papers that answer
RQ2 and RQ3, as shown in Fig. 4. In the first phase, we define the
search settings. We set the date range to the last decade (2011–
2021) and defined the keywords to use for our search queries
since concept drift appeared under different terminologies in the
literature. We have summarized the search terms that we used
in Fig. 5. In phase 2, we set the paper index database resources
we searched to retrieve the papers. We acquired the papers from
the top database indices, including IEEE Xplore, Science Direct,
ACM, Scopus, and Web of Science. This resulted in 987 publica-
tions. In Phase 3, we filtered the results by removing duplicates,
resulting in 806 papers. In phase 4, we refine the search results
and constrain them to the studies published in the computer
science discipline. In addition to the search phases, we performed
screening to segregate the relevant papers. We carry out the
screening in two levels. The first level investigates the title and
abstract to exclude the papers that do not detect concept drift.
Then, we scrutinize the full text in the second level to include
the relevant studies that use the model’s performance to detect
concept drift.

To decide whether to include or exclude the paper, we have
considered a set of inclusion/exclusion criteria to determine rel-
evant publications.

1. We removed papers that are not published in English.
2. The paper must be peer-reviewed according to the for-

mal peer-review process in the scientific community. That
filters out preprints, book chapters, Master or Ph.D. disser-
tations.

3. Survey papers were excluded, since they do not introduce
a new concept drift detection approach.

To determine the approaches relevant to the scope of this pa-
per, we selected the candidate papers according to the following

inclusion criteria:

5

1. The approach must propose a novel drift detection method
or integrate existing drift detectors in new predictive sys-
tems.

2. The approach must be general and not only targeted to
solve a specific problem or installed in a particular domain
or application.

3. The approach must explicitly detect concept drift.
4. The approach must use the learner’s performance to detect

the drift without the underlying data distribution.

Following the above criteria, 66 papers remained to be re-
viewed for addressing RQ2 and RQ3. The following sections
resent the result of our analysis and address the research ques-
ions.

. Terminology and definitions

As mentioned previously, researchers have defined and math-
matically represented concept drift and its derivatives in differ-
nt ways. In 2012, Moreno-Torres et al. [45] first addressed this
ack of standard terminology and suggested that concept drift is a
ype of the generic phenomenon dataset shift that covers covariate
hift, prior probability shift and concept drift. Each concept drift
ype is framed by a certain change in the data distribution. But
ince the date of this publication, new terms have appeared in
he literature, and novel concept drift types have emerged.

To address RQ1, this section will provide a taxonomy to group
he various terms used in the literature, starting from mathe-
atical definitions of each variant. The taxonomy will help the

esearchers and practitioners to gain a unified and consolidated
iew on the notations by providing precise and concise terminol-
gy in the field. In the following subsections, we will formally
efine concept drift and the different types and survey the terms
sed to describe each type.

.1. Notation and formalism for concept drift

In supervised machine learning tasks, each data instance is
efined by a pair of feature vectors or covariates X , and a target
ariable or response y. [26] have introduced a probabilistic defi-
ition to describe a time-varying concept as the joint distribution
f X and y at time t , Pt (X, y). Tracking a change in data samples
equires a time-ordered sequence of instances. Concept drift is
sually aligned in the stream learning context since a data stream
s defined as a continuous, potentially unbounded, sequence of
ata elements with associated time stamps arriving in sequential
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rder [46]. This is in contrast to dataset shift in a batch learn-
ng scenario, where the data is entirely stored in memory and
rocessed all at once [40]. Changes are characterized between
he training and testing probability distributions [47]. Thus, con-
ept drift is viewed as the stream learning correspondent of the
ataset shift in the batch setting [48].
Concept drift is formally defined as a change in the joint

istribution between two time instances t and t + w [49], where
could be a particular time point or time interval, and w denotes
he time window when the distribution change is being checked
t. Consequently, concept drift occurs, if:

t (X, y) ̸= Pt+w(X, y) (1)

In a recent study [50], authors suggested adding an extra
constraint to the definition presented in Eq. (1) to guarantee that
the new concept will retain for some time period (at least for two
time points):

∀i, w = τd(i+1) − τd(i) > 1 (2)

here τ ∈ Z+ is the time point, and d(i) denotes the time
oint order of the ith concept drift appeared in the system. This
dditional constraint will distinguish concept drift from outliers
hat last momentarily and ensures that the concept drift is a
ew pattern rather than an ephemeral disturbance in the data
i.e., noise).

Starting from the product rule, and according to the Bayesian
ecision Theory [51] the joint distribution in Eq. (1) can be
ecomposed and rewritten as:

t (X, y) = Pt (y|X) × Pt (X) = Pt (X |y) × Pt (y) (3)

In the settings of classification problems,

• Pt (y|X) denotes the posterior probability distribution of the
target labels,

• Pt (X) is the input data probability distribution,
• Pt (y) denotes the prior probability distribution of the target

labels,
• Pt (X |y) denotes the class-conditional probability density dis-

tribution.

4.2. Concept drift types

Researchers categorized concept drift into different types in
terms of the form that it takes place in the system. The proba-
bilistic source of change and the arrival pattern (i.e., drift tran-
sition) are the most commonly used principles to distinguish
concept drift. There are also other criteria to categorize concept
drift, such as speed, severity, and recurrence. [39,48] present an
exhaustive categorization of concept drift types. The following
subsections provide a comprehensive taxonomy of concept drift
types, categorized by the probabilistic source of change and drift
transition.

4.2.1. Probabilistic source of change
This type of concept drift is the most closely studied in the

literature. To make the inequality of Eq. (1) hold, it identifies
the changes in the probability distributions. As can be seen from
Eq. (3), any concept drift type, assuming probability distribution
change, is associated with at least another type since a change
in any probability distribution in Eq. (3) will induce at least one
change in another distribution. To illustrate that argument, we
consider the posterior probability distribution as an example. If
Pt (y|X) ̸= Pt+w(y|X) then, by applying the Bayesian rule:

Pt (X |y) × Pt (y)
̸=

Pt+w(X |y) × Pt+w(y) (4)

Pt (X) Pt+w(X)

6

The inequality of Eq. (4) holds if, at least, one of the probabil-
ity distributions that compose it has changed. A similar argu-
ment can be used for the other probability distributions. The
probabilistic sources of drift are then defined as follows:

1. Pt (y|X) ̸= Pt+w(y|X): A change in the posterior probability
distribution indicates a principal change in the underlying
target concept. This drift type directly affects the prediction
performance since it requires an adaptation of the decision
boundary to react to it for preserving the model’s accuracy.
There are mainly two types, where this form of drift takes
place. The first type is mainly referred to as real concept
drift, Fig. 6(a), where changes in P(y|X) might or might not
be associated with changes in P(X) [26]. The second type
manifests itself without a change in the data distribution
P(X). This type is called actual drift [18], as illustrated
in Fig. 6(b). This paper mainly covers real concept drift
detectors since these methods detect drifts that affect the
predictor’s performance.
There are also subcategories derived from this probabilistic
source of change. Fickle concept drift occurs when some
data samples belong to two different classes at two dif-
ferent times [52], which can be written mathematically as
∃x(argmaxPt (y|x) = c1 and argmaxPt+w(y|x) = c2), Fig. 6(c).
Severe concept drift occurs if the target classes of all the data
samples change after the drift occurrence [53]. This type
of drift is also called full-concept drift [48], Fig. 6(d). This
type of concept drift can be represented mathematically
as ∀x(argmaxPt (y|x) = c1 and argmaxPt+w(y|x) = c2).
Intersected concept drift occurs when only a subspace of
the data samples changes their target classes after the drift
occurrence [53], which is also referred to as subconcept
drift [48], Fig. 6(e). This type of concept drift can be rep-
resented mathematically as ∃x(argmaxPt (y|x) = c1 and
argmaxPt+w(y|x) = c2) and ∃z(argmaxPt (y|z) = c2 and
argmaxPt+w(y|z) = c1).

2. Pt (X) ̸= Pt+w(X): A change in the underlying data distri-
bution is mainly referred to as covariate shift [54]. Fig. 6(a)
illustrates the covariate shift. If the input data distribution
changes without affecting the target concept, and hence
the decision boundary, it is called virtual drift [55], in math-
ematical terms, Pt (y | x) = Pt+w(y | x) and Pt (x) ̸= Pt+w(x),
Fig. 6(f). In practice, changes in the data and the posterior
probability distributions often happen simultaneously [56].
Local concept drift and Feature-evolution are other subcate-
gories that can be considered as of this probabilistic source
of change. Local concept drift refers to the situation where
the distribution change targets only a sub-region of the fea-
ture space [57]. This can be expressed as Pt (X1) ̸= Pt+w(X1)
and Pt (X2) = Pt+w(X2), Fig. 6(g) illustrates the Local concept
drift. Feature-evolution occurs when new attributes (e.g. X3)
dynamically arise in the input space [58], i.e when Xt ̸=

Xt+w , and as a result, Pt (X) ̸= Pt+w(X), where X is the set
of input variables, Fig. 6(h).

3. Pt (y) ̸= Pt+w(y) A change of the distribution of classes
over time is referred to as prior-probability shift [47] as
illustrated in Fig. 6(a). This drift type could affect the pre-
diction performance if there is a significant change in the
distribution of classes or the number of classes in the
learning problem has changed.
Another subcategory of this source of change that is found
in the literature is concept-evolution, which refers to the
emergence of novel classes in the problem [58] as illus-
trated in Fig. 7(a). Similarly, concept deletion refers to the
disappearance of classes in the problem [20], Fig. 7(b).
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Fig. 6. Concept drift types by probabilistic source of change.
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Table 1
Concept drift by probabilistic source of change.
Mathematical
definition

Pt (X, y) ̸= Pt+w(X, y) Pt (y|X) ̸= Pt+w(y|X) Pt (y|X) = Pt+w(y|X)
and Pt (X) ̸= Pt+w(X)

Pt (y|X) ̸= Pt+w(y|X)
and Pt (X) = Pt+w(X)

Pt (X) ̸= Pt+w(X) Pt (y) ̸= Pt+w(y)

Terminologies
used

Concept drift
[26,59,60]

Real concept drift
[26,61,62]

Virtual drift
[63,64]

Actual drift
[18,65]

Covariate shift
[54,66]

Prior-probability
shift [45,47]

Concept drift [20,67] Temporary drift [68] Conditional change
[69]Concept shift [26,70] Sampling shift [64,70] Virtual drift

[57]
Global drift [71]

Dataset shift [45,47]
Permanent drift [46,68] Feature change [69] Real concept drift

[41]
Label shift [72,73]

Conditional shift [74,75] Loose concept
drifting [59]

Concept shift
[45,76] Data distribution

drift [77]

Target shift
[74,78]Rigorous concept drifting

[59]

Concept shift
[45,79]

Population drift [80] Pure covariate
drift [48]

Pure class drift [48] Class prior shift
[4,81]Class distribution drift

[77]
Table 1 summarizes the terms that can be found in the lit-
rature to describe concept drift types that are characterized by
he probabilistic source of change. The terms in the table are also
rouped by the corresponding mathematical definitions.

.2.2. Transition of change
This categorization distinguishes concept drift characteristics

ased on the pattern of how the drift evolves in the system. It can
e classified as follows [18]:

1. Sudden Drift: Occurs when the target distribution changes
from one concept to another abruptly at a point in time
(e.g., Fig. 8(a)).

2. Gradual Drift: Occurs when the target distribution changes
progressively from one concept to another (e.g., Fig. 8(b)).

3. Recurring Drift: Occurs when a precedently-seen concept
reappears again after a time interval (e.g., Fig. 8(c)). This
type is similar to the gradual drift since the two concepts
interchange in the system, but the main difference is the
transition phase. In gradual drift, the old concept starts to
8

phase out and is to be replaced with the new one increas-
ingly. While in recurring drift, the old concepts reoccur
after some time [55].

4. Incremental Drift: Occurs when a new concept replaces
the old one slowly in a continuous manner (e.g., Fig. 8(d)).
Some Authors consider this type as a sub-type of gradual
drift [44], as in the two drift types, the new concepts
emerge in the system and completely replace the old one.
While the difference is that in the incremental drift, there
is no obvious boundary that separates the occurrence of the
different concept [82].

Table 2 summarizes the terms that can be found in the litera-
ture to describe the aforementioned concept drift types that are
characterized by the transition of change.

Tables 1 and 2 answer RQ1 by providing an overview of the
different terms used by researchers to refer to concept drift types
in the literature.
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Fig. 8. Concept drift categorized by pattern of arrival.
Table 2
Concept drift by probabilistic source of change.
Primary term Sudden drift

[64,83]
Gradual drift
[83,84]

Recurring drift
[85,86]

Incremental drift
[86,87]

Alternative terms

Abrupt drift [64,88]
Evolutionary drift
[89,90]

Recurring dontexts
[85,91]

Stepwise drift
[87,92]Concept shift [62,79]

Revolutionary drift
[89,90] Replacing drift [93] Development drift

[93]

Immediate drift [93]
s

5. Performance-based concept drift detectors

This section surveys performance-based concept drift detec-
ion methods to answer RQ2. These methods can be categorized
ccording to the strategy used to detect drops in performance:
tatistical process control, windowing techniques, and ensemble
earning, as illustrated in Fig. 2. To guide the reader, we summa-
ize the reviewed approaches in this paper as illustrated in Fig. 9.
he navigation diagram is based on a hierarchical scheme that
onnects the original method with its derivatives and extensions.

.1. Statistical process control

The Statistical Process Control (SPC) criterion is used to moni-
or the quality of the learning process by tracing the online error
ate evolution of base learners. Concept drift is assumed to have
ccurred if the model’s performance degradation exceeds the
ignificance test level. Numerous performance-based methods
an be found in the literature that rely on SPC to detect concept
rift.
The Drift Detection Method (DDM) [30] is a well-known and

idely-used algorithm and has been used as conceptual under-
inning for a number of related performance-based drift detec-
ors. DDM analyzes the error rate of the streaming data
lassifier to detect changes. The method considers the error as a
ernoulli random variable with Binomial distribution. It monitors
t , the probability of misclassification at time t , and the standard
eviation st as:

t =

√
pt (1 − pt )/i (5)

At time t , pmin and smin are replaced with the corresponding
alues of pt and st , if pt + st < pmin + smin. The method defines a

warning state which is triggered when pt + st ≥ pmin + 2 ∗ smin,
nd a drift is detected when p + s ≥ p + 3 ∗ s .
t t min min

9

Other methods have modified DDM to enhance its perfor-
mance for solving diverse tasks. For example, Early Drift Detec-
tion Method (EDDM) [94] extends DDM by tracking the distance
between two consecutive misclassifications rather than the error
rate. This approach was proven to be more efficient than DDM
in detecting gradual drifts [95]. Reactive Drift Detection Method
(RDDM) [96] mitigates the performance loss problem of DDM,
which is due to decreased sensitivity when the concept has a
large number of members. RDDM augments DDM by periodically
removing old data instances of long concepts. The authors argued
that RDDM provides higher or equal global accuracy than DDM
and detects drifts earlier in most situations.

Hoeffding Drift Detection Method (HDDM) [97] modifies DDM
by using the Hoeffding’s inequality [98] to detect substantial
changes in the moving average of the performance estimate. The
authors proposed two variants of the method, HDDMA that is
uitable to detect sudden drifts, and HDDMW for gradual drifts.
Fast Hoeffding Drift Detection Method (FHDDM) [99] addressed
the shortcomings of HDDM caused by high numbers of false
positives and false negatives. FHDDM employs a sliding window
to compare the maximum overall probability of a correct pre-
diction and the most recent one. Stacking Fast Hoeffding Drift
Detection Method (FHDDMS) and Additive FHDDMS (FHDDMSadd)
[100] extends FHDDM by maintaining windows of different sizes
(short and long sliding windows) to detect various types of drift.
FHDDMSadd uses a binary indicator of classification errors with its
summation.

Accurate Concept Drift Detection Method (ACDDM) [101] uses
Hoeffding’s inequality to analyze the inconsistency of the error
rate for detecting concept drift. Lughofer et al. [102] have de-
signed an approach to detect concept drift in semi-supervised and
fully unsupervised problems. The authors modified the standard
Page–Hinkley test (PHT) [103] to a faded version that outweighs
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lder statistics. The PH statistic used to obtain classifier’s confi-
ence is based on the Hoeffding bound. Sakamoto et al. [104] have
pplied DDM to clustering problems by utilizing the assignment
rror and PHT was used to detect the changes.
DDM was also integrated into more complex frameworks that

ope with concept drift. A Meta-cognitive Recurrent Recursive
ernel Online Sequential Extreme Learning Machine with a mod-
fied DDM (meta-RRKOS-ELM-DDM) [105] was presented to solve
he concept drift problem and reduce the learning time. The
uthors modified DDM so it could be employed in time series
orecasting by calculating the error rate ERl,p and the standard
deviation SDl,p, for each sample l in step p of the time series
prediction. The meta-cognitive learning strategy automatically
finds the Approximate Linear Dependence Kernel Filter (ALD)
threshold to scale down the computation complexity.

Follow-the-Regularized-Leader with Adaptive Decaying Proxi-
mal (FTRL-ADP) [106] is based on Time Decaying Adaptive Predic-
tion (TDAP) algorithm and uses the DDM drift detector to speed
up the adaptation to concept drift. This adaptation allows tuning
the decaying rate of the TDAP algorithm, automatically. Online
10
Map-Reduce Drift Detection Method (OMR-DDM) [107] combines
the online error rate of parallel classification algorithms to detect
drifts using a Map-Reduce framework.

DDM was also modified to be utilized in online class im-
balance learning problems. Drift Detection Method for Online
Class Imbalance (DDM-OCI) [108] is one of the first algorithms
in this category. The method uses the same test statistic as DDM,
but tracks the degradation in the minority-class recall to signal
concept drift. The method triggers many false alarms in scenarios
where the majority-class is affected by the drift since it only
considers the true positive rate P(tpr). Linear Four Rates (LFR)
[109] has improved the limitation of DDM-OCI by monitoring
the four rates of the confusion matrix, true positive rate (tpr),
true negative rate (tnr), false positive rate (fpr) and false negative
ate (fnr). Hierarchical Linear Four Rates (HLFR) [110] uses the
ame four rates as LFR hierarchically in two testing layers. PerfSim
111] handles imbalanced datasets with concept drift by calculat-
ng the Cosine Similarity measure of TP and FP of all classes and
omparing them to a given threshold α.
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Some other testing techniques were applied to monitor the
model’s performance degradation. Song et al. [112] have pro-
posed fuzzy error deviation (fed) metric, which is computed to
estimate the drift severity based on the variation of the predictor
error. Adaptive Online Incremental Learning for evolving data
streams (AOIL) [113] monitors the change in the mean and vari-
ance values of the loss error to detect the drift. Spectral Entropy
Drift Detector (SEDD) [114] computes the spectral entropy along
the error stream to verify the fluctuation’s magnitude along the
learning process. The Drifter algorithm [115] calculates the gener-
alization error on the dataset (RMSE) to detect concept drift. The
algorithm determines the detection threshold σ using receiver
operating characteristics (ROC) analysis.

EWMA for Concept Drift Detection (ECDD) [116] adjusts the
conventional exponentially weighted moving average charts
(EWMA) [117] to monitor changes in the error rate of the clas-
sifier. At time t , the error rate p̂0,t , and the dynamic standard
eviation σZt of the EWMA estimator ZT , are calculated. Concept
rift is flagged if:

t > p̂0,t + LtσZt (6)

where the control limit Lt is provided by the authors. Disabato
and Roveri [118] have adapted Convolutional Neural Networks
(CNN) by incorporating Change Detection Tests (CDTs) based on
monitoring the classification error to detect concept drift using
CUmulative SUM (CUSUM) test [119]. Other works control dif-
ferent performance metrics to detect drifts. As in [120], authors
have proposed a family of AUC-based metrics, namely Prequential
Multi-Class AUC (PMAUC), Weighted AUC (WAUC), and Equal
Weighted AUC (EWAUC). The metrics can be utilized as a part
of the concept drift detection method for multi-class imbalanced
data by tracking their values over time.

Extreme learning machine (ELM) [121] was exploited to de-
tect concept drift, in particular, online sequential ELM (OS-ELM)
[122]. Yang et al. [123] have proposed a method that can detect
concept drift based on the dissimilarities between the output
weights of the OS-ELM models for every chunk of new data.
Dynamic Extreme Learning Machine (DELM) [124] modifies ELM
by adding concept drift detection that monitors the performance
degradation of the learner. Based on the result of the detector,
DELM will add additional hidden layer nodes in case of concept
drift occurrence. Another method that utilizes ELM is the Meta-
cognitive online sequential extreme learning machine (MOS-ELM)
[125]. MOS-ELM incorporates two tests depending on the type
of drift, one for gradual drift and another for sudden drifts. It
uses the weighted extreme learning machine (WELM) to track the
classification performance in imbalanced datasets.

5.2. Windowing technique

Window-based detectors divide the data stream into win-
dows based on data size or time interval in a sliding manner.
These methods monitor the performance of the most recent ob-
servations introduced to the learner and compare it with the
performance of a reference window.

ADaptive WINdowing (ADWIN) and its extension (ADWIN2)
[126] are among the most popular methods that use the window-
ing technique to detect drifts. ADWIN uses the Hoeffding bound
to examine the change between the means, µhist and µnew , of the
two sufficiently large sub-windows, Whist and Wnew:

µhist − µnew| > 2ϵcut (7)

where ϵcut is the optimal cut:

ϵcut =

√
1

ln
4|W |

(8)

2m δ

t

11
where m is the harmonic mean of the two windows, and δ is a
re-defined confidence parameter.
SEED [127] adopts the ADWIN method by comparing two sub-

indows within a window W , a left sub-window WL and right
ub-window WR. SEED monitors a binary sequence of the classi-
ication decision, 1 for correct predictions and 0 for errors. The
lgorithm sets the boundaries of cutting the windows by using
he Hoeffding Inequality with Bonferroni correction to calculate
cut , the test statistic to compare the averages of data instances
f each window.
Another well-recognized and straightforward method for con-

ept drift detection is STEPD [95], which relies on two-time
indows, a recent window r and overall window o. It applies
he statistical test of equal proportions to compare the accuracies
etween the two windows as follows:

(ro, rr , no, nr) =
|ro/no − rr/nr | − 0.5 (1/no + 1/nr)√

p̂(1 − p̂) (1/no + 1/nr)
(9)

where r is the number of correct predictions, n is the window
size, and p̂ = (ro + rr) / (no + nr). P-value is then calculated and
ompared with the significance level to signal the drift. Wilcoxon
ank Sum Test Drift Detector (WSTD) [128] was inspired by
TEPD and applies Wilcoxon rank sum statistical test [129] to
etect the drift and limits the size of the older window. Cabral
nd Barros [130] have modified STEPD to propose three methods
o detect drifts, namely Fisher Proportions Drift Detector (FPDD),
isher Square Drift Detector (FSDD), and Fisher Test Drift Detector
FTDD). The only difference between these methods and STEPD is
hat they used Fisher’s Exact test [131] to calculate the p-value.
osine Similarity Drift Detector (CSDD) [132] works similarly to
STD by calculating the confusion matrix based on the Positive
redictive Value (PPV) and False Discovery (FDR) rates instead
f TP and FP for each window, which are calculated as PPVr =

P/(TP+FP) and FDRr = FP/(TP+FP). Then the Cosine Similarity
s computed between the vectors created from the confusion
atrices of the two windows to signal a drift or warning alert. In
recent study [133], authors have proposed the Nacre framework
hat uses the ADWIN strategy to set the window size in a stability
etector that monitors the predictive performance.
Similar practices have been followed to process the window.

cDiarmid Drift Detection Method (MDDM) [134] slides a win-
ow over the prediction results, 1 for correct predictions, and 0
or false predictions. The entries of the prediction results stream
re weighted by recency. The method uses McDiarmid’s inequal-
ty [135] to determine the significance in the difference between
he maximum weighted average seen so far and the weighted
ean of entries in the sliding window. ADaptive sliding window-
ased Detection Method (ADDM) [136] follows a similar approach
s MDDM but monitors the entropy of the prediction results
tream over a sliding window.
Other window-based approaches can be found in the litera-

ure. The Margin Density Drift Detection (MD3) [137] approach
rocesses the data stream as a sliding window. It monitors the
umber of samples that fall within the classifier’s margins for
very chunk of data. The approach triggers a drift alert based on a
omparison with the density threshold θ . Fast switch Naıve Bayes
odel (fsNB) [138] performs two-sample Kolmogorov–Smirnov

est (KS test) [139] to compare the residuals of a fine-tuned
odel and a retrained model to decide which model to use. Error
ISTance for drift detection and monitoring (EDIST) [140] mod-
fies EDDM by maintaining two data windows, a global sliding
indow and another one that contains the current examples.
DIST detects the drift by checking if the error distance distri-
utions between the two windows exceed a threshold ε. The ε

alue tunes itself adaptively based on the statistical hypothesis

est. The experiments showed that the method is robust to noise
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nd false alarms. Khamassi et al. [141] have extended EDIST
y introducing EDIST2, which can handle gradual local drifts
y using all the data in relearning the model instead of only
sing the data window in the drifted region. Anti-concept Drift
etection Algorithm (ADDS) [142] applies Hoeffding’s inequality
o track the difference between the optimal accuracy and the
eal-time accuracy in a sliding window. ADDS concludes that the
rror in the classification accuracy should be within a threshold
=

√
1
2n ln

1
δ
, where n is the sliding window size and δ is the

onfidence level, otherwise concept drift is detected.

.3. Ensemble learning

Concept drift detectors that are ensemble-based operate by
ombining the results of multiple diverse base learners. The over-
ll performance is monitored by either considering the accuracy
f all the ensemble members or the accuracy of each individual
ase learner. Note that this is different from an ensemble of
rift detectors as in [143,144], where the decisions of multiple
rift detectors are combined to signal the drift. Experimental
tudies demonstrate that an ensemble of drift detectors does
ot guarantee higher performance than the individual detection
ethods [145].
Ensemble-based detectors trigger concept drift if the learners

uffer from a significant level of performance degradation. This
ssumption is based on the fact that each learner has capabilities
n solving specific problems [44]. Most of the ensemble-based
etectors are built upon the Weighted Majority Algorithm (WMA)
146] method. WMA elects the best learners in the ensemble by
iving each one a weight based on its performance. Streaming
nsemble Algorithm (SEA) [147] approach is one of the earliest
nsemble-based works to tackle concept drift. SEA handles the
rift implicitly by creating a new learner for each new chunk of
he data till the maximum number of learners is reached. The
earners are refined based on their prediction performance. A
imilar method in refining the ensemble was proposed in the
ccuracy Weighted Ensemble (AWE) [148]. The novelty of AWE
s in selecting the best learners by using a special version of the
ean squared error that deals with probabilities to select the best
learners and discard outdated learners with the highest perfor-
ance degradation rate. Brzezinski and Stefanowski [149] have
roposed Accuracy Updated Ensemble (AUE) algorithm, which
mproves AWE by conditionally updating the component learners
ather than only regulating the weights. The authors also used
simpler weighting function than the one in AWE. AUE2 [88]

mproved AUE by introducing a cost-effective weight and pruning
ase learners. Online Accuracy Updated Ensemble (OAUE) [150]
tilizes a drift detector included in an online learner that triggers
reweighting signal to the learner. Accuracy and Growth Rate
pdated Ensemble (AGE) [151] has extended AUE2 to react to
arious types of drift. AGE uses the geometric mean to design the
rowth Rate of base learners.
Dynamic Weighted Majority (DWM) [61] is one of the most

opular passive ensemble approaches, which employs a weight-
ng mechanism inspired by WMA. Every learner’s weight is re-
uced by a multiplicative factor β , 0 ≤ β ≤ 1, when it gives a

wrong prediction every ρ time step. To overcome the drawback of
DWM, which does not consider the learner’s performance on the
training data, DWM-WIN was proposed in [152]. DWM-WIN is an
ensemble method that includes the learner’s age in the weighting
mechanism and tracks the concept drift in the learning phase.
In recent research, Heterogeneous Dynamic Weighted Majority
(HDWM) [153] was proposed to turn DWM into a heteroge-
neous ensemble by automatically choosing the best learners to
be used over time to prevent performance degradation. Recurring
Dynamic Weighted Majority (RDWM) [154] is built upon DWM
12
by forming two ensembles of learners. The primary ensemble
represents the current concepts, and the secondary ensemble
consists of the most accurate learners.

Another well-known ensemble-based drift detection method
is Learn++.NSE (incremental learning for NSEs) [20]. Learn++.NSE
is the first version of the notable set of ensemble algorithms
Learn++ [155] to address concept drift. In Learn++.NSE, a set
of learners is trained on chunks of data examples. The training
examples are weighted according to the ensemble error on this
example. If the example is correctly classified by the ensemble
i, Learn++.NSE sets its weight to 1, otherwise it is penalized to
wi = 1/e. The sigmoid function is used to weigh the learners
in the ensemble based on their errors on the old and current
chunks. Ditzler and Polikar [156] have proposed a framework
that includes two related ensemble-based approaches, namely
Learn++.CDS and Learn++.NIE. They extended their prior work on
Learn++.NSE to accommodate class-imbalanced data. The meth-
ods monitor the performance of both the majority and minority
classes. On-line Weighted Ensemble (OWE) [157] was proposed
to adapt Learn++ for regression tasks.

Other methods use the diversity between the learners in the
ensemble. Diversity for Dealing with Drifts (DDD) [158] controls
the diversity level of the learners in the ensemble by incorpo-
rating both low diversity and high diversity ensembles. The low
diversity ensemble is used to detect the drift, and the high diver-
sity ensemble is used after detecting the drift. Diversified Online
Ensembles Detection (DOED) [159] develops two ensembles with
different levels of diversity, E0 and E1. DOED uses only one
significance level to detect concept drift with E0 and E1 using the
P-value. If any of the ensembles detect a drift, the ensemble is re-
initialized. If both detect the drift, the ensemble with the lower
accuracy is re-initialized. Recurrent Adaptive Classifier Ensemble
(RACE) [160] preserves an archive of diverse learners and uses
EDDM to detect recurring drifts. The online drift detector for the
K-class problem (ODDK) [161] was proposed to handle multi-
class problems with concept drift. The algorithm constructs a
contingency table that stores the variation of the diversity of a
pair of classifiers and uses the PH test to detect concept drift.

The benchmark methods of the other categories, statistical
process control and windowing technique, were also used in
ensemble frameworks. Pinagé et al. [162] have modified DDM and
EDDM to work as unsupervised detection methods producing a
pseudo prequential error rate that is monitored for every ensemble
member by assuming the predicted value is the true label. The
drift is detected if n members of the ensemble reach a drift level.
Predictive and parameter INsensitive Ensemble (PINE) [163] is an
ensemble approach that processes asynchronous concept drifts in
classification in distributed networks. A modified version of the
ADWIN drift detector is provided for each peer of the framework.
The detector monitors a stream of accuracies represented by ones
and zeros. More recently, Liuet al. [164] have proposed CALMID
method for multiclass imbalanced streaming data with concept
drift that uses ADWIN algorithm in ensemble settings. Associative
Classification over Concept Drifting Data Streams (ACCD) [165]
checks the current accuracy of an ensemble of online classifiers
by comparing it with the estimated statistical lower bound of
maximum accuracy to signal a drift. EnsembleEDIST2 [166] makes
use of EDIST2 as a drift detector in the proposed ensemble-based
drift handling approach to track the learners’ performance.

Predict-Detect streaming framework [167] relies on detecting
adversarial drifts from unlabeled data streams inspired by the
MD3 framework. The framework uses the training data to learn
the expected disagreement PDRef and accepted deviation σRef of
the ensemble. An adversarial drift is detected if a sudden increase
in the disagreement metric PD occurs. Efficient Concept Drift
and Concept Evolution Handling over Stream Data (ECHO) [168]
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s a semi-supervised ensemble-based framework that contains
concept drift detection technique. ECHO maintains a sliding
indow over the data stream to monitor significant changes

n the classifier’s confidence to detect concept drift using the
USUM test. Khezri et al. [169] proposed an ensemble-based
erformance-Based Selection (PBS) metric for semi-supervised
earning problems with concept drift. The model performance is
valuated based on pseudo-accuracy and energy regularization.
ELM has also been employed in the ensemble approach to

eal with concept drift. An ensemble of online sequential ex-
reme learning machines (ESOS-ELM) [170] was proposed to
ackle concept drift in class imbalance data. ESOS-ELM maintains
n ensemble of OS-ELMs and monitors the error rate using a
hreshold-based technique. In [171], authors have developed two
pproaches IDPSO-ELM-B and IDPSO-ELM-S to detect concept
rift in time series forecasting. The approaches were built upon
he swarm behavior of ELM by using the ECDD approach. Xu et al.
172] have proposed an alternating learners framework that uses
drift detector and employs ELM as a base learner for regression
roblems.
Other strategies were proposed in an ensemble learning frame-

ork to deal with concept drift. Number and Distance of Errors
NDE) [173] is an ensemble method that detects concept drift
ased on the number and distance between the errors and com-
ares it with a threshold. Knowledge-maximized ensemble (KME)
174] is a concept-drift-detection system that contains a TESTl
oncept drift detector which checks if the classification error
f the ensemble falls below the confidence interval in a sliding
indow. Enhanced Concept Profiling Framework (ECPF) [175] is
meta-learning framework that tracks the learner behavior to de-
ect changes. Wang et al. have proposed a new pruning criterion,
alled the loss improvement ratio (LIR), for performance evalu-
tion that is utilized in a pruning strategy to remove outdated
earners. The meta-learner decides if the current learner should
e reused or replaced based on the performance. Weighted clas-
ification and Update algorithm of Data stream based on Concept
rift Detection (WUDCDD) [176] approach signals a drift warn-
ng if the performance degrades for the current data chunks.
he system signals a drift detection alert if the degradation is
till present. The method calculates the Mahalanobis distance
etween the classification error rate on the data blocks. [93]
ses the Uncertainty Error Correlation Matrix (UECM) to de-
ect concept drift and give each online learner a corresponding
eight. UECM is constructed from the error value of the online

earning algorithms in the ensemble, and each entry of the matrix
epresents the strength between the loss function of each learner.

. Analysis and discussion

This section analyzes and discusses the relevant works we
ave reviewed to draw conclusions and accentuate the trends in
his research area. The analysis is based on spotlighting the main
acets that characterize the methods presented in this paper.
o facilitate answering RQ3, we have steered our attention to
nvestigate multiple attributes that were handled in designing the
ethods. The attributes are: (1) the machine learning problem
anaged by the method, (2) the performance metric used to

rack model degradation, (3) the base learner employed in the
redictive system, and (4) the type of drift addressed by the
pproach.

.1. Machine learning problem scope

Narrowing down the scope of the machine learning problem
s a fundamental step in designing the concept drift detection
ethod since each learning problem requires calculating different
13
performance metrics. In Fig. 10 we summarized the machine
learning scope of the surveyed methods. We can see that drift
detection for classification tasks is the main scope in the litera-
ture, while few approaches address the regression settings. The
main reason for that is the lack of relevant datasets for regres-
sion problems with concept drift [177], and the wide availability
of classification datasets for concept drift detection purposes
[18]. There is also a reasonable number of studies in the area
of class imbalance problems since the concept drift, and class
imbalance problems are closely related and affect each other
[43]. More recently, performance-based drift detection methods
have been proposed in the context of more complicated, semi-
supervised, and unsupervised problems. These problems pose a
significant challenge for performance-based detectors since the
ground truth labels are not provided. Semi-supervised detectors
usually operate by predicting the labels of the unlabeled ex-
amples and proceed with computing the performance loss to
detect drift [178]. On the contrary, the unsupervised drift detector
approach tries to estimate a pseudo-error and self-evaluate the
performance [179].

Most of the proposed approaches are devoted to solving a spe-
cific problem. This confirms that concept drift detection adheres
to the No Free Lunch Theorem [180], and a universal approach
that copes with all machine learning problems are challenging to
find [38].

6.2. Performance metrics

As shown in Fig. 11, the majority of the methods rely on the
classification error rate to detect the degradation in the predictive
performance. This could be because most approaches have been
evaluated within the classification task context, which received
most of the attention in the literature. In addition, calculation of
classification error rate metric entails low complexity and cost
needed. Since the accuracy is not always indicative of perfor-
mance loss, drift detectors are criticized for a high number of
false alarms. For class imbalance tasks, and since accuracy is
not an expressive metric for performance, authors have adopted
other metrics such as confusion matrix and AUC. Some studies
have designed drift detectors based on metrics calculated from
the model’s intrinsic behavior, such as performance gain and
growth rate. We have grouped these model-wise metrics into a
model-based category.

6.3. Base learners

Drift detection systems require many updates once they are
deployed. Consequently, drift detection methods should support
incremental learning and adapt dynamically. For that reason,
Hoeffding Trees (HT) and Naive Bayes (NB) are adopted as base
learners for the majority of performance-based concept drift de-
tectors. Furthermore, HT and NB also have sufficient capability
to learn from and deal with massive data streams. More recent
works have adopted neural networks within their framework.
Still, these approaches could make deploying within big data
stream systems challenging since it is difficult to update the neu-
ral network architecture dynamically. Another major drawback
for neural networks is the lack of transparency and interpretabil-
ity [181,182]. This drawback causes a burden to concept drift
handling systems since drift understanding plays a significant
part in detecting and adapting to drifts [18,183]. This Fig. 12
summarizes the base learners used in the reviewed approaches.
We use model-agnostic only for those papers which explicitly
stated that the detection method could be integrated with any
predictive model. Otherwise, we use the base learner as reported

in the original study.
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Fig. 10. Machine learning problem scope of the methods.
Fig. 11. Performance metrics monitored in the methods.
Fig. 12. Base learners adopted in the methods.
.4. Drift types

Table 3 provides an overview of the methods that explicitly
entioned the handled drift type. Sudden and gradual drifts are

he main drift types addressed in the reviewed literature. While
ewer works addressed the incremental drift, it is not always
asy to distinguish between the natural evolution of systems
nd continuous changes. Recurring drift must be processed in a
pecific way, where the system must be supplied with a buffer to
14
store the old behavior and reuse the learned knowledge from the
past observations once it reappears in the system.

7. Conclusions and future directions

Concept drift and performance degradation are two inter-
twined phenomena in predictive systems. The existence of one
phenomenon articulates the other. In this paper, we presented
a comprehensive and up-to-date overview of the concept drift
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Table 3
Summary of the methods with the handled drift type. The method names in italics were proposed by authors since
there was no name given in the original paper.
Method Year Drift type

Sudden Gradual Incremental Recurring

SSE-PBS [169] 2021 � �
ODKK [161] 2021 � � �
RACE [160] 2021 �
LIR-eGB [184] 2021 � � �
CALMID [164] 2021 � � � �
Nacre [133] 2021 �
SEDD [114] 2021 � �
OFE-UECM [93] 2020 � � � �
FDA [112] 2020 � �
ACDDM [101] 2020 � � � �
HDWM [153] 2020 � � �
OS-ELMs [123] 2020 � � �
DCS-LA [162] 2020 � �
HLFR [110] 2019 � � � �
RDWM [154] 2019 � � � �
CSDD [132] 2019 � �
ECPF [175] 2019 �
FHDDMS,FHDDMSadd [100] 2018 � �
FPDD, FSDD [130] 2018 � �
FTRL-ADP [106] 2018 � � � �
KME-TESTl [174] 2018 � � � �
WSTD [128] 2018 � �
MDDM [134] 2018 � �
RDDM [96] 2017 � �
ADDS [142] 2017 � �
AL-ELM [172] 2017 � �
FPH-DD [102] 2016 � �
MOS-ELM [125] 2016 � �
NDE [173] 2016 � �
FHDDM [99] 2016 � �
DOED [159] 2015 � � � �
HDDM [97] 2015 � �
ESOS-ELM [170] 2015 � �
LFR [109] 2015 � �
DDM-PHT [104] 2015 � � �
EDIST [140] 2014 � �
OAUE [150] 2014 � � � �
SEED [127] 2014 � �
AGE [151] 2014 � �
ACCD [165] 2014 � �
ADDM [136] 2014 � �
AUE2 [150] 2014 � �
LEARN++.CDS [156] 2013 � � � �
ECDD [116] 2012 � �
research field. We started by describing the main causes of con-
cept drift, followed by common definitions and measures of con-
cept drift. We have compiled the various terms used in the
literature to refer to concept drift types since the area is deluged
with terminologies. We then presented concept drift detection
approaches that track the performance degradation to identify
changes. These performance-based methods work reversely by
signaling concept drift when the performance degrades to a cer-
tain threshold. Real concept drift leads to deterioration in the
predictive accuracy as it requires adaptation to changes. The find-
ings of this study are extracted and summarized in the following
points:

1. Multiple terms can be found in the literature for the same
concept drift type. Also, the same term is used for mul-
tiple concept drift types. Therefore we suggest using the
mathematical definition to refer to specific concept drift
types.

2. The classification problem comprises the major part of the
task scope in drift handling. A limited number of works
have been developed to undertake other scopes.
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3. Most existing performance-based detectors rely on moni-
toring the error rate to identify the performance degrada-
tion and trigger a drift; recent advances have monitored
new performance metrics.

4. Performance-based detection methods have been used in
unsupervised and semi-supervised learning by introducing
new metrics to evaluate the model’s performance, such as
pseudo-error.

5. Most of the designed solutions used Hoeffding Trees or
Naive Bayes algorithm as base learners. While employing
neural networks has recently started to emerge.

6. There is still no clear evidence about the ideal drift detector
to be used in a specific problem or setting.

Based on the mentioned findings, we suggest the following
future research directions:

1. Since few methods deal with regression settings, more
research on detecting drifts in regression scope is highly
desired. It is considered one of the main tasks in ma-
chine learning and is now employed in a wide range of
applications [185].
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2. As previously proven in the comparison studies [5,186],
there is no single drift detector that works better than all
the others in all scenarios. It would be interesting to evalu-
ate the methods against different datasets and investigate
their applicability in specific domains. This would support
users in selecting the suitable method for the problem at
hand.

3. Most of the existing methods in the literature suffer from
a high number of false alarms. This is because most of the
approaches are over-reliant on monitoring the degradation
in the learner’s accuracy. A multiple hypothesis technique
could be a solution by monitoring other metrics to have a
stronger assumption on drift detection.

4. The extensive research conducted on incremental and on-
line learning paradigms could be leveraged in drift detec-
tion methods by employing the recent advances in drift
handling systems [187]. Since these paradigms are char-
acterized by high capabilities in continuously adapting to
accommodate the incoming data points [188].

5. Another opportunity would be utilizing the staggering
progress in the explainable deep learning field that has
been recently achieved [189,190]. These explainable mod-
els would make efficient deep learning more useful in
understanding and handling concept drift.
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