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Abstract
We prove that there exists a martingale f ∈ Hp such that the subsequence {L2n f } of
Nörlund logarithmic means with respect to the Walsh system are not bounded from
the martingale Hardy spaces Hp to the space weak – Lp for 0 < p < 1. We also prove
that for any f ∈ Lp, p≥ 1, L2n f converge to f at any Lebesgue point x. Moreover, some
new related inequalities are derived.
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1 Introduction
The terminology and notations used in this introduction can be found in Sect. 2.

It is well known that Vilenkin systems do not form bases in the space L1. Moreover, there
is a function in the Hardy space H1, such that the partial sums of f are not bounded in the
L1-norm. Moreover, (see Tephnadze [22]) there exists a martingale f ∈ Hp (0 < p < 1), such
that

sup
n∈N

‖S2n+1f ‖weak–Lp = ∞.

On the other hand, (for details see, e.g., the books [20] and [25]) the subsequence {S2n}
of partial sums is bounded from the martingale Hardy space Hp to the space Hp, for all
p > 0, that is, the following inequality holds:

‖S2n f ‖Hp ≤ cp‖f ‖Hp , n ∈ N, p > 0. (1)

It is also well known that (see [20] and [16])

S2n f (x) → f (x), for all Lebesgue points of f ∈ Lp, where p ≥ 1. (2)
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Weisz [26] considered the norm convergence of Fejér means of Vilenkin–Fourier series
and proved that the inequality

‖σkf ‖p ≤ cp‖f ‖Hp , p > 1/2 and f ∈ Hp, (3)

holds. Moreover, Goginava [8] (see also [12–15, 18]) proved that the assumption p > 1/2
in (3) is essential. In particular, he showed that there exists a martingale f ∈ H1/2 such that
supn∈N ‖σnf ‖1/2 = +∞. However, Weisz [26] (see also [17]) proved that for every f ∈ Hp,
there exists an absolute constant cp, such that the following inequality holds:

‖σ2n f ‖Hp ≤ cp‖f ‖Hp , n ∈N, p > 0. (4)

Móricz and Siddiqi [11] investigated the approximation properties of some special Nör-
lund means of Walsh–Fourier series of Lp functions in norm. Approximation properties
for general summability methods can be found in [2, 3]. Fridli, Manchanda and Siddiqi
[5] improved and extended the results of Móricz and Siddiqi [11] to martingale Hardy
spaces. The case when {qk = 1/k : k ∈ N} was excluded, since the methods are not appli-
cable to Nörlund logarithmic means. In [6] Gát and Goginava proved some convergence
and divergence properties of the Nörlund logarithmic means of functions in the Lebesgue
space L1. In particular, they proved that there exists a function in the space L1, such that
supn∈N ‖Lnf ‖1 = ∞.

In [4] (see also [10]) it was proved that there exists a martingale f ∈ Hp, (0 < p < 1) such
that supn∈N ‖Lnf ‖p = ∞.

In [19] (see also [24]) it was proved that there exists a martingale f ∈ H1 such that

sup
n∈N

‖Lnf ‖1 = ∞. (5)

However, Goginava [7] proved that

‖L2n f ‖1 ≤ c‖f ‖1, f ∈ L1, n ∈N.

From this result it immediately follows that for every f ∈ H1, there exists an absolute
constant c, such that the inequality

‖L2n f ‖1 ≤ c‖f ‖H1 (6)

holds for all n ∈N. Goginava [7] also proved that for any f ∈ L1(G),

L2n f (x) → f (x), a.e., as n → ∞.

According to (1), (4) and (6), the following question is quite natural.

Question 1 Is the subsequence {L2n} also bounded on the martingale Hardy spaces Hp(G)
when 0 < p < 1?
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In Theorem 2 of this paper we give a negative answer to this question. In particular,
we further develop some methods considered in [1, 9] and prove that for any 0 < p < 1,
there exists a martingale f ∈ Hp such that supn∈N ‖L2n f ‖weak–Lp = ∞. Moreover, in our
Theorem 1 we generalize the result of Goginava [7] and prove that for any f ∈ L1(G) and
for any Lebesgue point x,

L2n f (x) → f (x), as n → ∞.

The main results in this paper are presented and proved in Sect. 4. Section 3 is used to
present some auxiliary lemmas, where, in particular, Lemma 2 is new and of independent
interest. In order not to disturb our discussions later some definitions and notations are
given in Sect. 4. Finally, Sect. 5 is reserved for some open questions we hope can be a
source of inspiration for further research in this interesting area.

2 Definitions and notations
Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Denote by Z2 the discrete
cyclic group of order 2, that is Z2 := {0, 1}, where the group operation is the modulo 2
addition and every subset is open. The Haar measure on Z2 is given so that the measure
of a singleton is 1/2.

Define the group G as the complete direct product of the group Z2, with the product
of the discrete topologies of Z2s. The elements of G are represented by sequences x :=
(x0, x1, . . . , xj, . . .), where xk = 0 ∨ 1.

It is easy to give a base for the neighborhood of x ∈ G, namely:

I0(x) := G, In(x) := {y ∈ G : y0 = x0, . . . , yn–1 = xn–1} (n ∈ N).

Denote In := In(0), In := G\In and en := (0, . . . , 0, xn = 1, 0, . . .) ∈ G, for n ∈ N. It is easy to
show that IM =

⋃M–1
s=0 Is\Is+1.

If n ∈ N, then every n can be uniquely expressed as n =
∑∞

k=0 nj2j, where nj ∈ Z2 (j ∈ N)
and only a finite number of nj differ from zero. Let |n| := max{k ∈N : nk 
= 0}.

The norms (or quasinorms) of the spaces Lp(G) and weak – Lp(G), (0 < p < ∞) are, re-
spectively, defined by

‖f ‖p
p :=

∫

G
|f |p dμ, ‖f ‖p

weak–Lp
:= sup

λ>0
λpμ (f > λ).

The kth Rademacher function is defined by

rk(x) := (–1)xk (x ∈ G, k ∈N).

Now, define the Walsh system w := (wn : n ∈N) on G as:

wn(x) :=
∞∏

k=0

rnk
k (x) = r|n|(x)(–1)

∑|n|–1
k=0 nk xk (n ∈ N).

It is well known that (see, e.g., [20])

wn(x + y) = wn(x)wn(y). (7)
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The Walsh system is orthonormal and complete in L2(G) (see, e.g., [20]).
If f ∈ L1(G) let us define Fourier coefficients, partial sums and the Dirichlet kernel by

f̂ (k) :=
∫

G
fwk dμ (k ∈ N),

Snf :=
n–1∑

k=0

f̂ (k)wk , Dn :=
n–1∑

k=0

wk (n ∈N+).

Recall that (for details see, e.g., [20]):

D2n (x) =

⎧
⎨

⎩

2n, if x ∈ In,

0, if x /∈ In,
(8)

and

Dn = wn

∞∑

k=0

nkrkD2k = wn

∞∑

k=0

nk(D2k+1 – D2k ), for n =
∞∑

i=0

ni2i. (9)

Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The Nörlund means for the
Fourier series of f are defined by

tnf :=
1
ln

n∑

k=0

qn–kSkf .

In the special case when {qk = 1 : k ∈N}, we obtain the Fejér means

σnf :=
1
n

n∑

k=1

Skf .

If qk = 1/(k + 1), then we obtain the Nörlund logarithmic means:

Lnf :=
1
ln

n–1∑

k=0

Skf
n – k

, ln :=
n∑

k=1

1
k

. (10)

The Riesz logarithmic means are defined by

Rnf :=
1
ln

n∑

k=1

Skf
k

, ln :=
n∑

k=1

1
k

.

We note that this is an inverse of the Nörlund logarithmic means.
The convolution of two functions f , g ∈ L1(G) is defined by

(f ∗ g)(x) :=
∫

G
f (x + t)g(t) dμ(t) (x ∈ G).

It is well known that if f ∈ Lp(G), g ∈ L1(G) and 1 ≤ p < ∞. Then, f ∗ g ∈ Lp(G) and the
corresponding inequality holds:

‖f ∗ g‖p ≤ ‖f ‖p‖g‖1. (11)
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The representations

Lnf (x) =
∫

G
f (t)Pn(x + t) dμ(t) and Rnf (x) =

∫

G
f (t)Yn(x + t) dμ(t)

for n ∈N play a central role in the following, where

Pn :=
1

Qn

n∑

k=1

qn–kDk and Yn :=
1

Qn

n∑

k=1

qkDk

are called the kernels of the Nörlund logaritmic and the Reisz means, respectively. It is
well known that (see, e.g., Goginava [7] and Tephnadze [23]):

P2n (x) = D2n (x) – ψ2n–1(x)Y2n (x). (12)

Moreover, for all n ∈N,

‖P2n‖1 < c < ∞ and ‖Yn‖1 < c < ∞. (13)

In the case f ∈ L1(G) the maximal functions are given by

M(f )(x) = sup
n∈N

1
|In(x)|

∣
∣
∣
∣

∫

In(x)
f (u) dμ(u)

∣
∣
∣
∣ = sup

n∈N
2n

∣
∣
∣
∣

∫

In(x)
f (u) dμ(u)

∣
∣
∣
∣.

It is well known (for details see, e.g., [20]) that if f ∈ L1(G), then

∥
∥M(f )

∥
∥

weak–L1
≤ ‖f ‖1.

According to a density argument of Calderon–Zygmund (see [20]) we obtain that if f ∈
L1(G), then

2n
∣
∣
∣
∣

∫

In(x)
f (u) dμ(u)

∣
∣
∣
∣ → 0, as n → ∞.

A point x on the Walsh group is called a Lebesgue point of f ∈ L1(G), if

lim
n→∞ 2n

∫

In(x)
f (t) dμ(t) = f (x) a.e. x ∈ G.

According to (2) we find that if f ∈ L1(G), then a.e. point is a Lebesgue point.
Let f := (f (n), n ∈ N) be a martingale with respect to �n(n ∈ N), which are generated by

the intervals {In(x) : x ∈ G} (for details see, e.g., [25]).
We say that a martingale belongs to Hardy martingale spaces Hp(G), where 0 < p < ∞ if

‖f ‖Hp := ‖f ∗‖p < ∞, where f ∗ := supn∈N |f (n)|.
If f = (f (n), n ∈ N) is a martingale, then the Walsh–Fourier coefficients must be defined

in a slightly different manner:

f̂ (i) := lim
k→∞

∫

G
f (k)(x)wi(x) dμ(x).
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3 Auxiliary results
The Hardy martingale space Hp(G) has an atomic characterization (see Weisz [25, 26]).

Lemma 1 A martingale f = (f (n), n ∈ N) is in Hp (0 < p ≤ 1) if and only if there exist a
sequence (ak , k ∈N) of p-atoms, which means that they satisfy the conditions

∫

I
ak dμ = 0, ‖ak‖∞ ≤ μ(I)–1/p, supp(ak) ⊂ I,

and a sequence (μk , k ∈N) of real numbers such that for every n ∈N:

∞∑

k=0

μkS2n ak = f (n), where
∞∑

k=0

|μk|p < ∞. (14)

Moreover, ‖f ‖Hp � inf(
∑∞

k=0 |μk|p)1/p, where the infimum is taken over all decompositions
of f of the form (14).

We also state and prove a new lemma of independent interest:

Lemma 2 Let n ∈N and x ∈ I2(e0 + e1) ∈ I0\I1. Then,

∣
∣
∣
∣
∣

22αk +1
∑

j=22αk

Dj

22αk +1 – j

∣
∣
∣
∣
∣
≥ 1

3
.

Proof Let x ∈ I2(e0 + e1) ∈ I0\I1. According to (8) and (9) we obtain that

Dj(x) =

⎧
⎨

⎩

wj, if j is an odd number,

0, if j is an even number,

and

22αk +1–1∑

j=22αk

Dj

22αk +1 – j
=

22αk –1∑

j=22αk –1

w2j+1

22αk +1 – 2j – 1
= w1

22αk –1∑

j=22αk –1

w2j

22αk +1 – 2j – 1
.

Since

22αk –1–1∑

j=22αk –2+1

∣
∣
∣
∣

1
22αk +1 – 4j + 3

–
1

22αk +1 – 4j + 1

∣
∣
∣
∣

=
22αk –1–1∑

j=22αk –2+1

2
(22αk+1 – 4j + 3)(22αk +1 – 4j + 1)

≤
22αk –1–1∑

j=22αk –2+1

2
(22αk+1 – 4j)(22αk +1 – 4j)

≤ 1
8

22αk –1–1∑

j=22αk –2+1

1
(22αk –1 – j)(22αk –1 – j)
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≤ 1
8

∞∑

k=1

1
k2 ≤ 1

8
+

1
8

∞∑

k=2

1
k2

≤ 1
8

+
1
8

∞∑

k=2

(
1

k – 1
–

1
k

)

≤ 1
8

+
1
8

=
1
4

,

if we apply w4k+2 = w2w4k = –w4k , for x ∈ I2(e0 + e1), we find that

∣
∣
∣
∣
∣

22αk +1–1∑

j=22αk

Dj

22αk +1 – j

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
w22αk +1–2 +

w22αk +1–4
3

+
22αk –1∑

j=22αk –1+1

w2j

22αk +1 – 2j – 1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

w22αk +1–4
3

– w22αk +1–4 +
22αk –1∑

j=22αk –1+1

w2j

22αk +1 – 2j – 1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

2w22αk +1–4
3

+
22αk –1
∑

j=22αk –2+1

(
w4j–4

22αk +1 – 4j + 3
+

w4j–2

22αk +1 – 4j + 1

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

2w22αk +1–4
3

+
22αk –1
∑

j=22αk –2+1

(
w4j–4

22αk +1 – 4j + 3
–

w4j–4

22αk +1 – 4j + 1

)∣
∣
∣
∣
∣

≥ 2
3

–
22αk –1
∑

j=22αk –2+1

∣
∣
∣
∣

1
22αk +1 – 4j + 3

–
1

22αk +1 – 4j + 1

∣
∣
∣
∣

≥ 2
3

–
1
4

≥ 1
3

.

The proof is complete. �

4 Main results
Our first main result reads:

Theorem 1 Let p ≥ 1 and f ∈ Lp(G). Then,

‖L2n f – f ‖p → 0 as n → ∞. (15)

Moreover, for all Lebesgue points of f ,

lim
n→∞ L2n f (x) = f (x).

Proof Let n ∈N. By combining (11) and (13) we immediately obtain

‖L2n f ‖p ≤ cp‖f ‖p for all n ∈N,

which immediately implies (15).
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To prove a.e. convergence we use identity (12) to obtain that

L2n f (x) =
∫

G
f (t)P2n (x + t) =

∫

G
f (t)D2n (x + t) dμ(t) dμ(t)

–
∫

G
f (t)w2n–1(x + t)Y2n (x + t) dμ(t) := I – II.

By applying (2) we can conclude that I = S2n f (x) → f (x) for all Lebesgue points of f ∈ Lp.
Moreover, by using (7) we find that

II = ψ2n–1(x)
∫

G
f (t)Y2n (x + t)ψ2n–1(t) d(t).

In view of (13) we see that

f (t)Y2n (x + t) ∈ Lp where p ≥ 1 for any x ∈ G,

and also note that II describes the Fourier coefficients of an integrable function. Hence,
according to the Riemann–Lebesgue Lemma it vanishes as n → ∞, i.e., II → 0 for any
x ∈ G, n → ∞.

The proof is complete. �

Our next main result is the following answer of Question 1.

Theorem 2 Let 0 < p < 1. Then, there exists a martingale f ∈ Hp such that

sup
n∈N

‖L2n f ‖weak–Lp = ∞.

Proof Let {αk : k ∈N} be an increasing sequence of the positive integers such that

∞∑

k=0

α
–p/2
k < ∞, (16)

k–1∑

η=0

(22αη )1/p

√
αη

<
(22αk )1/p

√
αk

, (17)

and

(22αk–1 )1/p
√

αk–1
<

22αk –8

α1/2
k l22αk +1

. (18)

Let

f (n)(x) :=
∑

{k;2αk<n}
λkak ,

where

λk =
1√
αk

and ak = 22αk (1/p–1)(D22αk +1 – D22αk ).
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From (16) and Lemma 1 we find that f ∈ Hp. It is easy to show that

f̂ (j) =

⎧
⎨

⎩

22αk (1/p–1)√
αk

, if j ∈ {22αk , . . . , 22αk +1 – 1}, k ∈N,

0, if j /∈ ⋃∞
k=1{22αk , . . . , 22αk +1 – 1}.

(19)

Moreover,

L22αk +1 f =
1

l22αk +1

22αk –1∑

j=1

Sjf
22αk +1 – j

+
1

l22αk +1

22αk +1–1∑

j=22αk

Sjf
22αk +1 – j

(20)

:= I + II.

Let j < 22αk . By combining (17), (18) and (19) we can conclude that

∣
∣Sjf (x)

∣
∣ ≤

k–1∑

η=0

22αη+1–1∑

v=22αη

∣
∣̂f (v)

∣
∣

≤
k–1∑

η=0

22αη+1–1∑

v=22αη

22αη(1/p–1)

√
αη

≤
k–1∑

η=0

22αη/p

√
αη

≤ 22αk–1/p+1
√

αk–1
<

22αk –4

α1/2
k l22αk +1

.

Hence,

|I| ≤ 1
l22αk +1

22αk –1∑

j=1

|Sjf (x)|
22αk +1 – j

(21)

≤ 1
l22αk +1

22αk–1/p
√

αk–1

M2αk +1–1
∑

j=1

1
j

≤ 22αk–1/p
√

αk–1
.

Let 22αk ≤ j ≤ 22αk +1 – 1. We can write that

Sjf =
k–1∑

η=0

22αη+1–1∑

v=22αη

f̂ (v)wv +
j–1∑

v=22αk

f̂ (v)wv

=
k–1∑

η=0

22αη(1/p–1)

√
αη

(D22αη+1 – D22αη ) +
22αk (1/p–1)

√
αk

(Dj – D22αk ).
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It follows that

II =
1

l22αk +1

22αk +1
∑

j=22αk

1
22αk +1 – j

( k–1∑

η=0

22αη(1/p–1)

√
αη

(D22αη+1 – D22αη )

)

(22)

+
1

l22αk +1

22αk (1/p–1)
√

αk

22αk +1–1∑

j=22αk

(Dj – D22αk )
22αk +1 – j

:= II1 + II2.

Let x ∈ I2(e0 + e1) ∈ I0\I1. According to α0 ≥ 1 we obtain that 2αk ≥ 2, for all k ∈ N and
if we use (8) we obtain that D22αk = 0,

II1 = 0 (23)

and

II2 =
1

l22αk +1

22αk (1/p–1)
√

αk

22αk –1∑

j=22αk –1+1

w2j+1

22αk +1 – 2j – 1

=
1

l22αk +1

22αk (1/p–1)w1√
αk

22αk –1∑

j=22αk –1+1

w2j

22αk +1 – 2j – 1
.

By using Lemma 2 we can conclude that

|II2| ≥ 1
3

1
l22αk +1

22αk (1/p–1)
√

αk
≥ 1

l22αk +1

22αk (1/p–1)–1
√

αk
. (24)

If we apply (18), (20)–(24) for x ∈ I2(e0 + e1) and 0 < p < 1, we have that

∣
∣L22αk +1 f (x)

∣
∣ ≥ II2 – II1 – I

≥ 1
l22αk +1

22αk (1/p–1)–2
√

αk
–

1
l22αk +1

22αk (1/p–1)–3
√

αk

≥ 1
l22αk +1

22αk (1/p–1)–3
√

αk

≥ 22αk (1/p–1)–3

(ln 22αk +1 + 1)√αk

≥ 22αk (1/p–1)–3

(4αk + 1)√αk
≥ 22αk (1/p–1)–6

α3/2
k

.

Hence, we can conclude that

‖Lqs
αk

f ‖weak–Lp

≥ 22αk (1/p–1)–6

α3/2
k

μ

{

x ∈ G : |L22αk +1 f | ≥ 22αk (1/p–1)–6

α3/2
k

}1/p
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≥ 22αk (1/p–1)–6

α3/2
k

μ

{

x ∈ I2(e0 + e1) : |L22αk +1 f | ≥ 22αk (1/p–1)–6

α3/2
k

}1/p

≥ 22αk (1/p–1)–6

α3/2
k

(
μ

(
I2(e0 + e1)

))1/p

>
c22αk (1/p–1)

α3/2
k

→ ∞, as k → ∞.

The proof is complete. �

5 Open questions
It is known (for details see, e.g., the books [20] and [25]) that the subsequence {S2n} of
the partial sums is bounded from the martingale Hardy space Hp to the Lebesgue space
Lp, for all p > 0. On the other hand, (see Tephnadze [22]) there exists a martingale f ∈ Hp

(0 < p < 1), such that supn∈N ‖S2n+1f ‖weak–Lp = ∞. However, Simon [21] proved that for all
f ∈ Hp, there exists an absolute constant cp, depending only on p, such that

∞∑

k=1

‖Skf ‖p
p

k2–p ≤ cp‖f ‖p
Hp , (0 < p < 1).

In [24] it was proved that for all f ∈ Hp, there exists an absolute constant cp, depending
only on p, such that

∞∑

k=1

‖Lkf ‖p
p

k2–p ≤ cp‖f ‖p
Hp , (0 < p < 1).

Open Problem 1 (a) Let f ∈ Hp, where 0 < p < 1. Does there exist an absolute constant
cp, such that the following inequality holds:

∞∑

k=1

logp k‖Lkf ‖p
p

k2–p ≤ cp‖f ‖p
Hp , (0 < p < 1)?

(b) For 0 < p < 1/2 and any nondecreasing function � : N → [1,∞) satisfying the condi-
tions limn→∞ �(n) = +∞, is it possible to find a martingale f ∈ Hp such that

∞∑

n=1

logp n‖Lnf ‖p
p�(n)

n2–p = ∞?

Open Problem 2 (a) Let f ∈ Hp, where 0 < p ≤ 1 and

ωHp

(
1
2n , f

)

= o
(

log n
2n(1/p–1) log2[p] n

)

, as n → ∞.

Does the following convergence result hold:

‖Lkf – f ‖Hp → 0, as k → ∞?
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(b) Let 0 < p ≤ 1. Does there exist a martingale f ∈ Hp, for which

ωHp

(
1
2n , f

)

= O
(

log n
2n(1/p–1) log2[p] n

)

, as n → ∞

and ‖Lkf – f ‖weak–Lp � 0, as k → ∞?
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