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Abstract

In many industrial applications, rubber-based materials are routinely used in con-
junction with various penetrants or diluents in gaseous or liquid form. It is of interest to
estimate theoretically the penetration depth as well as the amount of diffusants stored
inside the material. In this framework, we prove the global solvability and explore the
large time-behavior of solutions to a one-phase free boundary problem with nonlinear
kinetic condition that is able to describe the migration of diffusants into rubber. The
key idea in the proof of the large time behavior is to benefit of a contradiction argument,
since it is difficult to obtain uniform estimates for the growth rate of the free boundary
due to the use of a Robin boundary condition posed at the fixed boundary.

1 Introduction
In many industrial applications, the behavior of rubber-based materials is difficult to predict
theoretically. This intriguing fact is especially due to their internal structure which allows
for unexpected local changes (deformations, concentration localization, network entaglement,
etc.) typically facilitated by the absorption and migration of diffusants into the material;
this is from where our motivation stems. There is a variety of possible modeling approaches
for such scenarios. Motivated by our recent work [17], where solutions to our free boundary
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model did recover experimental data, we choose to follow a macroscopic modeling approach
with kinetically-driven interfaces capturing the penetration of diffusants into the material. We
refer the reader, for instance, to [8, 9, 11, 7] for closely related work especially what concerns
the mathematics of case II diffusion as it arises for some classes of polymers, but not directly
applicable to the rubber case.

In this paper we consider the mathematical analysis of the following free boundary problem
which was discussed in [17] in connection with the absorption, penetration and diffusion-
induced swelling in dense and foamed rubbers. Let [0, s(t)] be a region occupied by a solvent
(e.g. water, tea) occupying the one-dimensional pore [0,∞), where t is the time variable,
s = s(t) is the position of the moving interface, while u = u(t, z) is the content of the
diffusant situated at the position z ∈ [0, s(t)]. The function u(t, z) acts in the non-cylindrical
region Qs(T ) given by

Qs(T ) := {(t, z)|0 < t < T, 0 < z < s(t)}.

Our free boundary problem (P)(u0, s0, b) reads: Find the pair (u, s) satisfying

ut − uzz = 0 for (t, z) ∈ Qs(T ), (1.1)
− uz(t, 0) = β(b(t)− γu(t, 0)) for t ∈ (0, T ), (1.2)
− uz(t, s(t)) = u(t, s(t))st(t) for t ∈ (0, T ), (1.3)
st(t) = a0σ(u(t, s(t))) for t ∈ (0, T ), (1.4)
s(0) = s0, u(0, z) = u0(z) for z ∈ [0, s0], (1.5)

where β, γ and a0 are given positive constants, b is a given threshold function defined on
[0, T ], while s0 and u0 are the corresponding initial data. In (1.4), σ is a function on R given
by

σ(r) =

{
r if r ≥ 0,

0 if r < 0.

In [18], A. Visintin refers to this type of problems as free or moving boundary problems
with kinetic boundary condition. The reason for calling this way is linked to the fact that
relation (1.4) is an explicit description of the speed of the free boundary. Note also that, in
Refs. [15, 16], the authors have considered the mathematical analysis of a similar problem to
(P)(u0, s0, b) related to water-induced swelling in porous materials, viz.

ut − uzz = 0 for (t, z) ∈ (0, T )× (a, s(t)), (1.6)
− uz(t, a) = β̂(h(t)− γu(t, a)) for t ∈ (0, T ), (1.7)
− uz(t, s(t)) = u(t, s(t))st(t) for t ∈ (0, T ), (1.8)
st(t) = a0(u(t, s(t))− φ(s(t))) for t ∈ (0, T ), (1.9)
s(0) = ŝ0, u(0, z) = û0(z) for z ∈ [a, ŝ0]. (1.10)
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In this context, a is a positive constant, h is a given non-negative function on [0, T ], while ŝ0
and û0 are the initial data such that ŝ0 > a. Also, β̂ and φ are continuous functions on R
such that β̂(r) > 0 and φ(r) > 0 for r > 0, and β̂(r) = φ(r) = 0 for r ≤ 0. Denote the above
problem {(1.6)− (1.10)} by (P̂)(û0, ŝ0, h). In [15] in was assumed that φ is conveniently small
and û0 ∈ H1(a, ŝ0) such that φ(a) ≤ û0 ≤ h∗/γ on [a, ŝ0]. Such conditions ensure the existence
of a locally-in-time solution (u, s) to (P̂)(û0, ŝ0, h) on [0, T0] such that φ(a) ≤ u ≤ h∗/γ on
Qa

s(T0) for some 0 < T0 ≤ T , where h∗ is a upper bound of h. In [16], relying on the same
assumptions as in [15], the authors have constructed a globally-in-time solution (u, s) to
(P̂)(û0, ŝ0, h) on [0, T ] such that φ(a) ≤ u ≤ h∗/γ on Qa

s(T ). What concerns the large time
behavior of solutions to (P̂)(û0, ŝ0, h), one reports in [16] that the following situation holds:

if lim
t→∞

∫ t

0

β̂(h(τ)− γu(τ, a))dτ = ∞, then lim
t→∞

s(t) = ∞.

One of our concrete aims here is to construct a global-in-time solution of (P)(u0, s0, b). As
anticipated, the key to the proof is to establish the strictly positivity for the free boundary.
To this end, we consider the free boundary condition (1.4), which should be seen as φ ≡ 0 in
(1.9) in the models proposed in [15, 16]. This is a simplification of the modeling setting which
is convenient for mathematical analysis purposes. Furthermore, we adopt the positive part in
(1.4), and hence, we can easily show that the free boundary s(t) is indeed strictly positive
and the expected global existence is now reachable. We will investigate elsewhere to which
extent such structural restrictions can be relaxed.

Moreover, as shown in Theorem 6.2, we establish that our free boundary grows up, namely,
it is unbounded. In order to obtain a control on the growth of the free boundary, the mass
conservation law (respectively, the momentum balance law) are effective ingredients in case
the boundary condition at the fixed boundary of Neumann (respectively, Dirichlet) type, see
for instance [5]. In the present setting, we impose a Robin boundary condition at the fixed
boundary and the usual approach does not work well. Hence, the rationale beyond showing
that s(t) → ∞ as t → ∞ is as follows: If the free boundary is bounded, then we can obtain
some uniform-in-time estimates for the target solution, and consequently, this solution u(t)

converges towards the stationary solution of our problem. It is worthwhile to note here that
the stationary problem still contains a free boundary condition. However, as a consequence
of our uniform estimates, the solution never satisfies the stationary free boundary condition.
Thus we can prove the large time behavior by detecting a contradiction. The idea of applying
a contradiction argument concerned with a stationary solution was already applied in [1].
The quest for growth (convergence) rates of this kind of kinetically-driven free boundaries
was completed in the series of papers [2, 3, 4]. For the problem at hand, proving quantitative
estimates on the growth rate of the free boundary is currently an open problem.
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2 Notation, assumptions and results

In this paper, we use the following notations. We denote by | · |X the norm for a Banach
space X. The norm and the inner product of a Hilbert space H are denoted by | · |H and
(·, ·)H , respectively. Particularly, for Ω ⊂ R, we use the notation of the usual Hilbert spaces
L2(Ω), H1(Ω) and H2(Ω). Throughout this paper, we assume the following parameters and
functions:

(A1) a0, γ, β and T are positive constants.
(A2) b ∈ W 1,2(0, T ) with b∗ ≤ b ≤ b∗ on (0, T ), where b∗ and b∗ are positive constants.
(A3) s0 > 0 and u0 ∈ H1(0, s0) such that 0 ≤ u0 ≤ b∗/γ on [0, s0].
Next, we define our concept of solution to (P)(u0, s0, b) on [0, T ] in the following way:

Definition 2.1. For T > 0, let s be a function on [0, T ] and u be a function on Qs(T ). We call
the pair (s, u) a solution to (P)(u0, s0, b) on [0, T ] if the following conditions (S1)-(S6) hold:

(S1) s ∈ W 1,∞(0, T ), 0 < s on [0, T ], u ∈ L∞(Qs(T )), ut, uzz ∈ L2(Qs(T )) and t ∈ [0, T ] →
|uz(t, ·)|L2(0,s(t)) is bounded;

(S2) ut − uzz = 0 on Qs(T );
(S3) −uz(t, 0) = β(b(t)− γu(t, 0)) for a.e. t ∈ [0, T ];
(S4) −uz(t, s(t)) = u(t, s(t))st(t) for a.e. t ∈ [0, T ];
(S5) st(t) = a0σ(u(t, s(t))) for a.e. t ∈ [0, T ];
(S6) s(0) = s0 and u(0, z) = u0(z) for z ∈ [0, s0].

The first result of this paper is concerned with the existence and uniqueness of a locally-
in-time solution in the sense of Definition 2.1 to the problem (P)(u0, s0, b).

Theorem 2.2. Let T > 0. If (A1)-(A3) hold, then there exists T ∗ ∈ (0, T ] such that (P)(u0, s0, b)
has a unique solution (s, u) on [0, T ∗] satisfying 0 ≤ u ≤ b∗/γ on Qs(T

∗).

To prove Theorem 2.2, we transform (P)(u0, s0, b), initially posed in a non-cylindrical
domain, to a cylindrical domain. Let T > 0. For given s ∈ W 1,2(0, T ) with s(t) > 0 on
[0, T ], we introduce the following new function obtained by the change of variables and fix
the moving domain:

ũ(t, y) = u(t, ys(t)) for (t, y) ∈ Q(T ) := (0, T )× (0, 1) (2.1)

By using the function ũ, (P)(u0, s0, b) becomes the following problem (PC)(ũ0, s0, b) on the
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cylindrical domain Q(T ):

ũt(t, y)−
1

s2(t)
ũyy(t, y) =

yst(t)

s(t)
ũy(t, y) for (t, y) ∈ Q(T ), (2.2)

− 1

s(t)
ũy(t, 0) = β(b(t)− γũ(t, 0)) for t ∈ (0, T ), (2.3)

− 1

s(t)
ũy(t, 1) = ũ(t, 1)st(t) for t ∈ (0, T ), (2.4)

st(t) = a0σ(ũ(t, 1)) for t ∈ (0, T ), (2.5)
s(0) = s0, (2.6)
ũ(0, y) = u0(ys(0))(:= ũ0(y)) for y ∈ [0, 1]. (2.7)

Definition 2.3. For T > 0, let s be a function on [0, T ] and ũ be a function on Q(T ), re-
spectively. We call that a pair (s, ũ) is a solution of (P)(ũ0, s0, b) on [0, T ] if the conditions
(S’1)-(S’2) hold:

(S’1) s ∈ W 1,∞(0, T ), s > 0 on [0, T ], ũ ∈ W 1,2(Q(T ))∩L∞(0, T ;H1(0, 1))∩L2(0, T ;H2(0, 1)).
(S’2) (2.2)–(2.7) hold.

Here, we introduce the following function space: For T > 0, we put V (T ) = L∞(0, T ;L2(0, 1))∩
L2(0, T ;H1(0, 1)) and |z|V (T ) = |z|L∞(0,T ;L2(0,1))+|zy|L2(0,T ;L2(0,1)) for z ∈ V (T ). Note that V (T )

is a Banach space with the norm | · |V (T ).
Now, we state the existence and uniqueness of a locally-in-time solution of (PC)(ũ0, s0, b).

Theorem 2.4. Let T > 0. If (A1)-(A3) hold, then there exists T ∗ ∈ (0, T ] such that (PC)(ũ0, s0, b)
has a unique solution (s, ũ) on [0, T ∗].

By Theorem 2.4, we see that for a solution (s, ũ) of (PC)(ũ0, s0, b) on [0, T ∗], a pair of the
function (s, u) with the variable

u(t, z) := ũ

(
t,

z

s(t)

)
for z ∈ [0, s(t)] (2.8)

is a solution of (P)(u0, s0, b) on [0, T ∗]. Moreover, by proving that (s, u) satisfies 0 ≤ u ≤ b∗/γ

onQs(T
∗), the pair (s, u) is a desired solution of (P)(u0, s0, b) on [0, T ∗] which leads to Theorem

2.2.
The second result of this paper is the existence and uniqueness of a globally-in-time solution

in the sense of Definition 2.1 to the problem (P)(u0, s0, b).

Theorem 2.5. Let T > 0. If (A1)-(A3) hold, then (P)(u0, s0, b) has a unique solution (s, u) on
[0, T ] satisfying 0 ≤ u ≤ b∗/γ on Qs(T ).

Throughout Sections 3 and 4, we show Theorem 2.2 by proving Theorem 2.4 and the
boundedness of a solution of (P)(u0, s0, b). In Section 5, we give a proof of Theorem 2.5. In
the last section, we discuss the large time behavior of a solution of (P)(u0, s0, b) as t→ ∞. In
fact, we obtain the result that s→ ∞ as t→ ∞. The precise statement is stated as Theorem
6.2.
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3 Auxiliary Problem
In this section, we prove Theorem 2.4 on the existence and uniqueness of a locally-in-time
solution of (PC)(ũ0, s, b). To do so, we introduce the following auxiliary problem (AP)(ũ0, s, b):
For T > 0, s0 > 0 and given s ∈ W 1,2(0, T ) with s(0) = s0 and s ≥ s0 on [0, T ],

ũt(t, y)−
1

s2(t)
ũyy(t, y) =

yst(t)

s(t)
ũy(t, y) for (t, y) ∈ Q(T ), (3.1)

− 1

s(t)
ũy(t, 0) = β(b(t)− γũ(t, 0)) for t ∈ (0, T ), (3.2)

− 1

s(t)
ũy(t, 1) = a0ũ(t, 1)σ(ũ(t, 1)) for t ∈ (0, T ), (3.3)

ũ(0, y) = ũ0(y) for y ∈ [0, 1], (3.4)

where σ is the same function as in (1.4).
First of all, to solve (AP)(ũ0, s, b), for given s ∈ W 1,∞(0, T ) with s(0) = s0 and s ≥ s0 on

[0, T ] and f ∈ L2(0, T ;H1(0, 1)), we consider the problem (AP1)(ũ0, s, f, b):

ũt(t, y)−
1

s2(t)
ũyy(t, y) =

yst(t)

s(t)
fy(t, y) for (t, y) ∈ Q(T ),

− 1

s(t)
ũy(t, 0) = β(b(t)− γũ(t, 0)) for t ∈ (0, T ),

− 1

s(t)
ũy(t, 1) = a0ũ(t, 1)σ(ũ(t, 1)) for t ∈ (0, T ),

ũ(0, y) = ũ0(y) for y ∈ [0, 1].

Now, we define a family {ψt}t∈[0,T ] of time-dependent functionals ψt : L2(0, 1) → R∪{+∞}
for t ∈ [0, T ] as follows:

ψt(u) :=



1

2s2(t)

∫ 1

0

|uy(y)|2dy +
1

s(t)

∫ u(1)

0

a0ξσ(ξ)dξ

− 1

s(t)

∫ u(0)

0

β(b(t)− γξ)dξ if u ∈ D(ψt),

+∞ otherwise,

where D(ψt) = {z ∈ H1(0, 1)|z ≥ 0 on [0, 1]} for t ∈ [0, T ]. Here, we show the property of ψt.

Lemma 3.1. Let s ∈ W 1,2(0, T ) with s(0) = s0 and s ≥ s0 on [0, T ] and assume (A1)-(A3).
Then the following statements hold:

(1) There exists positive constants C0 and C1 such that the following inequalities hold:

(i) |u(y)|2 ≤ C0ψ
t(u) + C1 for u ∈ D(ψt), y = 0, 1 and t ∈ [0, T ],

(ii)
1

2s2(t)
|uy|2L2(0,1) ≤ C0ψ

t(u) + C1 for u ∈ D(ψt) and t ∈ [0, T ].
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(2) For t ∈ [0, T ], the functional ψt is proper, lower semi-continuous, and convex on L2(0, 1).

Proof. First, we note that for t ∈ [0, T ] if u ∈ D(ψt), then u(0) is non-negative. Let t ∈ [0, T ]

and u ∈ D(ψt). Then, it holds

− 1

s(t)

∫ u(0)

0

β(b(t)− γξ)dξ =
β

s(t)

[γ
2
u2(0)− b(t)u(0)

]
≥ βγ

2l
u2(0)− βb∗

s0
u(0) ≥ βγ

4l
u2(0)− βl

γ

(
b∗

s0

)2

. (3.5)

Since the second term of the right-hand side of ψt is positive, by (3.5), we have that

ψt(u) ≥ 1

2s2(t)

∫ 1

0

|uy(y)|2dy +
βγ

4l
u2(0)− βl

γ

(
b∗

s0

)2

. (3.6)

Also, it holds that

|u(1)|2 =
∣∣∣∣∫ 1

0

uy(y)dy + u(0)

∣∣∣∣2 ≤ 2

(∫ 1

0

|uy(y)|2dy + |u(0)|2
)

≤ 2

(
2l2

2s2(t)

∫ 1

0

|uy(y)|2dy + |u(0)|2
)
. (3.7)

Therefore, by (3.6) and (3.7) we see that the statement (1) of Lemma 3.1 holds.
Next, we prove statement (2). For t ∈ [0, T ] and r ∈ R, put

g1(s(t), r) =
1

s(t)

∫ r

0

a0ξσ(ξ)dξ,

g2(s(t), b(t), r) = − 1

s(t)

∫ r

0

β(b(t)− γξ)dξ.

Then, by 0 < s(t) we see that

∂2

∂r2
g1(s(t), r) =

2a0
s(t)

r > 0 for r > 0,

∂2

∂r2
g2(s(t), b(t), r) =

βγ

s(t)
> 0 for r ∈ R.

This means that ψt is convex on L2(0, 1). Also, by using Lemma 3.1 and Sobolev’s embedding
H1(0, 1) ↪→ C([0, 1]) in one dimensional case, it is easy to prove that the level set of ψt is
closed in L2(0, 1) which leads to the lower semi-continuity of ψt. Thus, we see that statement
(2) holds.

By Lemma 3.1 we obtain the existence of a solution to (AP1)(ũ0, s, f, b).

Lemma 3.2. Let T > 0 and s0 > 0. If (A1)-(A3) hold, then, for given s ∈ W 1,2(0, T ) with
s(0) = s0 and s ≥ s0 on [0, T ] and f ∈ L2(0, T ;H1(0, 1)), the problem (AP1)(ũ0, s, f, b) admits
a unique solution ũ on [0, T ] such that ũ ∈ W 1,2(Q(T )) ∩ L∞(0, T ;H1(0, 1)) with ũ ≥ 0 on
Q(T ). Moreover, the function t→ ψt(ũ(t)) is absolutely continuous on [0, T ].
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Proof. By Lemma 3.1, for t ∈ [0, T ] ψt is a proper lower semi-continuous convex function
on L2(0, 1). From the definition of the subdifferential of ψt, for t ∈ [0, T ], z∗ ∈ ∂ψt(u) is
characterized by u, z∗ ∈ L2(0, 1),

z∗ = − 1

s2(t)
uyy on (0, 1), − 1

s(t)
uy(0) = β(b(t)− γu(0)), − 1

s(t)
uy(1) = a0u(1)σ(u(1)).

Namely, ∂ψt is single-valued. Also, we see that there exists a positive constant C3 such that
for each t1, t2 ∈ [0, T ] with t1 ≤ t2, and for any u ∈ D(ψt1), there exists ū ∈ D(ψt2) such that

|ψt2(ū)− ψt1(u)| ≤ C3(|s(t1)− s(t2)|+ |b(t1)− b(t2)|)(1 + |ψt1(u)|). (3.8)

Indeed, by taking ū := u and using (i) and (ii) of Lemma 3.1, we can find C3 > 0 such that
(3.8) holds. Now, we consider the following Cauchy problem (CP):{

ũt + ∂ψt(ũ(t)) = yst(t)
s(t)

fy(t) in L2(0, 1),

ũ(0, y) = ũ0(y) for y ∈ [0, 1].

Since yst
s
fy ∈ L2(0, T ;L2(0, 1)), the general theory of evolution equations governed by time de-

pendent subdifferentials (cf. [14]) guarantees that (CP) has a non-negative solution ũ on [0, T ]

such that ũ ∈ W 1,2(Q(T )), ψt(ũ(t)) ∈ L∞(0, T ) and t→ ψt(ũ(t)) is absolutely continuous on
[0, T ]. This implies that ũ is a unique solution of (AP1)(ũ0, s, f, b) on [0, T ].

Lemma 3.3. Let T > 0, s0 > 0 and s ∈ W 1,∞(0, T ) with s(0) = s0 and s ≥ s0 on [0, T ]. If (A1)-
(A3) hold, then, (AP)(ũ0, s, b) has a unique solution ũ on [0, T ] such that ũ ∈ W 1,2(Q(T )) ∩
L∞(0, T ;H1(0, 1)).

Proof. First, we define a solution operator ΓT (f) = ũ, where ũ is the unique solution of
(AP1)(ũ0, s, f, b) for given f ∈ V (T ). Now, for i = 1, 2 we put ΓT (fi) = ũi and f = f1 − f2

and ũ = ũ1 − ũ2. Then, we have that

1

2

d

dt
|ũ(t)|2L2(0,1) −

∫ 1

0

1

s2(t)
ũyy(t)ũ(t)dy =

∫ 1

0

yst(t)

s(t)
fy(t)ũ(t)dy. (3.9)

Using the boundary condition, it holds that

−
∫ 1

0

1

s2(t)
ũyy(t)ũ(t)dy

=
1

s2(t)

(
−ũy(t, 1)ũ(t, 1) + ũy(t, 0)ũ(t, 0) +

∫ 1

0

|ũy(t)|2dy
)

=
a0
s(t)

(
ũ1(t, 1)σ(ũ1(t, 1))− ũ2(t, 1)σ(ũ2(t, 1))

)
ũ(t, 1)

− 1

s(t)

(
β(b(t)− γũ1(t, 0))− β(b(t)− γũ2(t, 0))

)
ũ(t, 0) +

1

s2(t)

∫ 1

0

|ũy(t)|2dy. (3.10)
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Since the function rσ(r) is monotone for r ∈ R, the first term of the right-hand side of (3.10)
is non-negative. The second term of the right-hand side of (3.10) is also non-negative, hence
we see that

−
∫ 1

0

1

s2(t)
ũyy(t)ũ(t)dy ≥ 1

s2(t)

∫ 1

0

|ũy(t)|2dy. (3.11)

Accordingly, by (3.9)-(3.11), we have that

1

2

d

dt
|ũ(t)|2L2(0,1) +

1

s2(t)

∫ 1

0

|ũy(t)|2dy ≤
∫ 1

0

yst(t)

s(t)
fy(t)ũ(t)dy. (3.12)

Here, using Hölder’s inequality, it holds that∫ 1

0

yst(t)

s(t)
fy(t)ũ(t)dy ≤

|st|L∞(0,T )

s0
|ũ(t)|L2(0,1)|fy(t)|L2(0,1). (3.13)

Let T1 ∈ (0, T ]. Then, by putting l = max0≤t≤T |s(t)| and integrating (3.12) with (3.13) over
[0, t] for any t ∈ [0, T1] we obtain that

1

2
|ũ(t)|2L2(0,1) +

1

2l2

∫ t

0

∫ 1

0

|ũy(τ)|2dydτ

≤
|st|L∞(0,T )

s0
|ũ|L∞(0,T1;L2(0,1))T

1/2
1

(∫ T1

0

|fy(τ)|2L2(0,1)dτ

)1/2

≤
|st|L∞(0,T )

s0
|ũ|V (T1)T

1/2
1 |f |V (T1) (3.14)

Therefore, by putting δ = min{1/2, 1/2l2} in (3.14) we have that

δ|ũ|V (T1) ≤
|st|L∞(0,T )

s0
T

1/2
1 |f |V (T1) for T1 ∈ (0, T ].

From this result, we infer that for some T1 ≤ T such that ΓT1 is a contraction mapping in
V (T1). Therefore, by Banach’s fixed point theorem there exists ũ ∈ V (T1) such that ΓT1(ũ) = ũ

which implies ũ is a solution of (AP)(ũ0, s, b) on [0, T1]. Since T1 is independent of the choice
of initial data of ũ, by repeating the argument of the local existence result, we can extend the
solution ũ beyond T1. Thus, we prove that Lemma 3.3 holds.

Next, for given s ∈ W 1,2(0, T ) with s(0) = s0 and s ≥ s0 on [0, T ], we construct a solution
to (AP)(ũ0, s, b).

Lemma 3.4. Let T > 0 and s0 > 0. If (A1)-(A3) hold, then, for given s ∈ W 1,2(0, T ) with
s(0) = s0 and s ≥ s0 on [0, T ], (AP)(ũ0, s, b) has a unique solution ũ on [0, T ].

Proof. For given s ∈ W 1,2(0, T ) with s(0) = s0 and s ≥ s0 on [0, T ], we choose a sequence
{sn} ⊂ W 1,∞(0, T ) and l > 0 satisfying s0 ≤ sn ≤ l on [0, T ] for each n ∈ N, sn →
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s in W 1,2(0, T ) as n → ∞. By Lemma 3.3 we can take a sequence {ũn} of solutions to
(AP)(ũ0, sn, b) on [0, T ]. Then, we see that t→ ψt(ũn(t)) is absolutely continuous on [0, T ] so
that t→ 1

s2n(t)
|ũny(t)|2L2(0,1) is continuous on [0, T ]. First, it holds that

1

2

d

dt
|ũn(t)|2L2(0,1) −

∫ 1

0

1

s2n(t)
ũnyy(t)ũn(t)dy =

∫ 1

0

ysnt(t)

sn(t)
ũny(t)ũn(t)dy.

For the second term in the left-hand side, we have that

−
∫ 1

0

1

s2n(t)
ũnyy(t)ũn(t)dy

=
a0
sn(t)

ũn(t, 1)σ(ũn(t, 1))ũn(t, 1)−
1

sn(t)
β(b(t)− γũn(t, 0))ũn(t, 0) +

1

s2n(t)

∫ 1

0

|ũny(t)|2dy

≥− 1

sn(t)
β(b(t)− γũn(t, 0))ũn(t, 0) +

1

s2n(t)

∫ 1

0

|ũny(t)|2dy.

Hence, we obtain that

1

2

d

dt
|ũn(t)|2L2(0,1) +

1

s2n(t)

∫ 1

0

|ũny(t)|2dy

≤
∫ 1

0

ysnt(t)

sn(t)
ũny(t)ũn(t)dy +

1

sn(t)
β(b(t)− γũn(t, 0))ũn(t, 0) for t ∈ [0, T ]. (3.15)

Using Young’s inequality, we have that∫ 1

0

ysnt(t)

sn(t)
ũny(t)ũn(t)dy ≤ 1

2s2n(t)

∫ 1

0

|ũny(t)|2dy +
|snt(t)|2

2

∫ 1

0

|ũn(t)|2dy. (3.16)

Here, by Sobolev’s embedding theorem in one dimension, we note that it holds that

|v(t, y)|2 ≤ Ce|v(t)|H1(0,1)|v(t)|L2(0,1) for v ∈ H1(0, 1) and y ∈ [0, 1], (3.17)

where Ce is a positive constant defined from Sobolev’s embedding theorem. By (3.17) and
s0 ≤ sn on [0, T ] we get

1

sn(t)
β(b(t)− γũn(t, 0))ũn(t, 0) ≤

βb∗

sn(t)
|ũn(t, 0)|

≤βb
∗Ce

2sn(t)

(
|ũny(t)|L2(0,1)|ũn(t)|L2(0,1) + |ũn(t)|2L2(0,1)

)
+

βb∗

2sn(t)

≤ 1

4s2n(t)
|ũny(t)|2L2(0,1) +

(
(βb∗Ce)

2 +
βb∗Ce

2s0

)
|ũn(t)|2L2(0,1) +

βb∗

2s0
. (3.18)

As a result, we see from (3.15)-(3.18) that

1

2

d

dt
|ũn(t)|2L2(0,1) +

1

4s2n(t)

∫ 1

0

|ũny(τ)|2dy

≤
(
|snt(t)|2

2
+ (βb∗Ce)

2 +
βb∗Ce

2s0

)
|ũn(t)|2L2(0,1) +

βb∗

2s0
for t ∈ [0, T ].
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Now, we denote Fn(t) the coefficient of |ũn|2L2(0,1) in the right-hand side. Then, by sn ≤ l on
[0, T ], the boundedness of {Fn} in L1(0, T ) and Gronwall’s inequality we obtain that

1

2
|ũn(t)|2L2(0,1) +

1

4l2

∫ t

0

|ũny(t)|2L2(0,1)dτ

≤
(
1

2
|ũ0|2L2(0,1) +

(
βb∗

2s0

)
T

)
eC for t ∈ [0, T ]. (3.19)

Next, we put ũn(t) = u0 for t < 0. For each n ∈ N and h > 0, it holds∫ 1

0

ũnt(t)
ũn(t)− ũn(t− h)

h
dy −

∫ 1

0

1

s2n(t)
ũnyy(t)

ũn(t)− ũn(t− h)

h
dy

=

∫ 1

0

ysnt(t)

sn(t)
ũny(t)

ũn(t)− ũn(t− h)

h
dy. (3.20)

The second term of (3.20) can be dealt as follows:

−
∫ 1

0

1

s2(t)
ũnyy(t)

ũn(t)− ũn(t− h)

h
dy

=− ũny(t, 1)

s2n(t)

ũn(t, 1)− ũn(t− h, 1)

h
+
ũny(t, 0)

s2n(t)

ũn(t, 0)− ũn(t− h, 0)

h

+

∫ 1

0

ũny(t)

s2n(t)

ũny(t)− ũny(t− h)

h
dy.

We denote I1, I2 and I3 the three terms in the last identity and estimate three terms separately.
For I1, using the same notation g1 and g2 in the proof of Lemma 3.1, it follows that

I1 ≥
1

h

1

sn(t)

(∫ ũn(t,1)

0

a0ξσ(ξ)dξ −
∫ ũn(t−h,1)

0

a0ξσ(ξ)dξ

)

=
g1(sn(t), ũn(t, 1))− g1(sn(t− h), ũn(t− h, 1))

h
+

1

h

(
1

sn(t− h)
− 1

sn(t)

)∫ ũn(t−h,1)

0

a0ξσ(ξ)dξ.

Next, for I2 and I3 we have that

I2 ≥
1

h

1

sn(t)

(
−
∫ ũn(t,0)

0

β(b(t)− γξ)dξ +

∫ ũn(t−h,0)

0

β(b(t)− γξ)dξ

)

=
g2(sn(t), b(t), ũn(t, 0))− g2(sn(t− h), b(t− h), ũn(t− h, 0))

h

+
1

h

(
− 1

sn(t− h)
+

1

sn(t)

)∫ ũn(t−h,0)

0

β(b(t− h)− γξ)dξ

− 1

h

1

sn(t)

∫ ũn(t−h,0)

0

(
β(b(t− h)− γξ)− β(b(t)− γξ)

)
dξ,
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and

I3 ≥
1

h

1

2s2n(t)

(∫ 1

0

|ũny(t)|2dy −
∫ 1

0

|ũny(t− h)|2dy
)

=
1

h

(
1

2s2n(t)

∫ 1

0

|ũny(t)|2dy −
1

2s2n(t− h)

∫ 1

0

|ũny(t− h)|2dy
)

+
1

h

(
1

2s2n(t− h)
− 1

2s2n(t)

)∫ 1

0

|ũny(t− h)|2dy.

Combining the above three estimates and using the fact that t→ 1/s2n(t)|ũny(t)|2 is continuous
on [0, T ], we obtain

lim inf
h→0

(I1 + I2 + I3)

≥ d

dt
ψt(ũn(t)) +

snt(t)

s2n(t)

∫ ũn(t,1)

0

a0ξσ(ξ)dξ +
snt(t)

s2n(t)

∫ ũn(t,0)

0

β(b(t)− γξ)dξ

+
1

sn(t)

∫ ũn(t,0)

0

βbt(t)dξ +
snt(t)

s3n(t)

∫ 1

0

|ũny(t)|2dy.

Applying this result to (3.20) and letting h→ 0, we observe that

|ũnt(t)|2L2(0,1) +
d

dt
ψt(ũn(t))

≤
∫ 1

0

ysnt(t)

sn(t)
ũny(t)ũnt(t)dy +

|snt(t)|
s2n(t)

∫ ũn(t,1)

0

a0ξσ(ξ)dξ +
|snt(t)|
s2n(t)

∣∣∣∣∫ ũn(t,0)

0

β(b(t)− γξ)dξ

∣∣∣∣
+

1

sn(t)

∣∣∣∣∣
∫ ũn(t,0)

0

βbt(t)dξ

∣∣∣∣∣+ |snt(t)|
s3n(t)

∫ 1

0

|ũny(t)|2dy. (3.21)

Denote Ji(1 ≤ i ≤ 5) each terms in the right-hand side of (3.21). Using Lemma 3.1 and
sn ≥ s0 on [0, T ], we estimate each terms Ji except for i = 2 as follows:

J1 ≤
1

2
|ũnt(t)|2L2(0,1) +

1

2

|snt(t)|2

s2n(t)
|ũny(t)|2L2(0,1)

≤ 1

2
|ũnt(t)|2L2(0,1) + |snt(t)|2

(
C0ψ

t(ũn(t)) + C1

)
,

J3 ≤
|snt(t)|β

s20

(
b∗|ũn(t, 0)|+ γ

|ũn(t, 0)|2

2

)
≤ βb∗

s20

(
|snt(t)|2

2
+

|ũn(t, 0)|2

2

)
+
βγ|snt(t)|

2s20
|ũn(t, 0)|2,

J4 ≤
β

s0
|bt(t)|ũn(t, 0) ≤

β

s0

(
|bt(t)|2

2
+

|ũn(t, 0)|2

2

)
,

J5 ≤
|snt(t)|
s3n(t)

∫ 1

0

|ũny(t)|2dy ≤ 2|snt(t)|
s0

(
C0ψ

t(ũn(t)) + C1

)
.
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For J2, by the definition of ψt, we have that

J2

=
|snt(t)|
sn(t)

(
ψt(ũn(t))−

1

2s2n(t)

∫ 1

0

|ũny(t, y)|2dy +
1

sn(t)

∫ ũn(t,0)

0

β(b(t)− γξ)dξ

)

≤|snt(t)|
sn(t)

(
ψt(ũn(t)) +

1

sn(t)
βb∗ũn(t, 0)

)
≤|snt(t)|

s0

(
ψt(ũn(t)) +

βb∗

2sn(t)
(1 + ũ2n(t, 0))

)
Hence, by the estimates for each Ji and (3.21), we obtain that

1

2
|ũnt(t)|2L2(0,1) +

d

dt
ψt(ũn(t))

≤|snt(t)|
s0

ψt(ũn(t)) +

(
|snt(t)|2 +

2|snt(t)|
s0

)
(C0ψ

t(ũn(t) + C1)

+
βb∗

s20

|snt(t)|2

2
+

(
βb∗

2s20
+
βγ|snt(t)|

2s20
+

β

2s0
+

|snt(t)|
s0

βb∗

2s0

)
ũ2n(t, 0)

+
β

2s0
|bt(t)|2 +

βb∗

2s0

|snt(t)|
s0

for a.e. t ∈ [0, T ]. (3.22)

Here, by using (i) of Lemma 3.1 we put the coefficients of ψt(ũn(t)) by l1(t) and otherwise by
l2(t). Then, by the fact that {sn} is bounded in W 1,2(0, T ) and (A2), l1, l2 ∈ L1(0, T ). Now,
we see from (3.22) that

1

2
|ũnt(t)|2L2(0,1) +

d

dt
ψt(ũn(t)) ≤ l1(t)ψ

t(ũn(t)) + l2(t) for a.e. t ∈ [0, T ].

Therefore, by using Gronwall’s lemma, we have that

1

2

∫ t

0

|ũnt(τ)|2L2(0,1)dτ + ψt(ũn(t)) ≤
[
ψ0(ũ0) +

∫ t

0

l2(τ)dτ

]
e
∫ t
0 l1(τ)dτ for t ∈ [0, T ].

From this result, we infer that the sequence {ũn} is bounded in W 1,2(0, T ;L2(0, 1)) and the
sequence {ψ(·)(ũn(·))} is bounded in L∞(0, T ). By these boundedness results and Lemma
3.1, we can take a sequence {nk} ⊂ {n} such that for some ũ ∈ W 1,2(0, T ;L2(0, 1)) ∩
L∞(0, T ;H1(0, 1)), ũnk

→ ũ weakly in W 1,2(0, T ;L2(0, 1)), weakly -* in L∞(0, T ;H1(0, 1))

and in C(Q(T )) as k → ∞. Finally, by letting k → ∞, we see that ũ is a solution of
(AP)(ũ0, s, b) on [0, T ].

To complete the proof, we show the uniqueness of a solution (AP)(ũ0, s, b). Let s ∈
W 1,2(0, T ) with s(0) = s0 and s ≥ s0 on [0, T ] and ũ1 and ũ2 be solutions of (AP)(ũ0, s, b) on
[0, T ]. Put ũ = ũ1 − ũ2. Then, by (3.1) and the same argument of the derivation of (3.12), we
have that

1

2

d

dt
|ũ(t)|2L2(0,1) +

1

s2(t)
|ũy(t)|2L2(0,1) ≤

∫ 1

0

yst(t)

s(t)
ũy(t)ũ(t)dy. (3.23)
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For the right-hand side of (3.23), we deal as follows:∫ 1

0

yst(t)

s(t)
ũy(t)ũ(t)dy ≤ 1

2s2(t)
|ũy(t)|2L2(0,1) +

|st(t)|2

2
|ũ(t)|2L2(0,1).

From the above result and (3.23) we obtain that

1

2

d

dt
|ũ(t)|2L2(0,1) +

1

2l2
|ũy(t)|2L2(0,1) ≤

|st(t)|2

2
|ũ(t)|2L2(0,1),

where l = max0≤t≤T |s(t)|. Therefore, by Gronwall’s lemma we have that |ũ(t)|L2(0,1) = 0 for
t ∈ [0, T ]. This implies that ũ1 = ũ2 on [0, T ]. Thus, Lemma 3.4 is proved.

4 Proof of Theorem 2.2
In this section, using the results obtained in Section 3, we establish the existence of a locally-
in-time solution (PC)(ũ0, s0, b). In the rest of this section, we assume (A1)-(A3). For T > 0

and l > 0 such that s0 < l we set

M(T, s0, l) := {s ∈ W 1,2(0, T )|s0 ≤ s ≤ l on [0, T ], s(0) = s0}.

Also, for given s ∈M(T, s0, l), we define two solution mappings as follows: Ψ :M(T, s0, l) →
W 1,2(0, T ;L2(0, 1))∩L∞(0, T ;H1(0, 1)) byΨ(s) = ũ, where ũ is a unique solution of (AP)(ũ0, s, b),
and ΓT : M(T, s0, l) → W 1,2(0, T ) by ΓT (s) = s0 +

∫ t

0
a0σ(Ψ(s)(τ, 1))dτ for t ∈ [0, T ]. More-

over, for any K > 0 we put

MK(T ) := {s ∈M(T, s0, l)| |s|W 1,2(0,T ) ≤ K}.

Now, we show that for some T > 0, ΓT is a contraction mapping on the closed set of
MK(T ) for any K > 0.

Lemma 4.1. Let K > 0. Then, there exists a positive constant T ∗ ≤ T such that the mapping
ΓT ∗ is a contraction on the closed set MK(T

∗) in W 1,2(0, T ∗).

Proof. For T > 0 and l > 0 such that s0 < l, let s ∈M(T, s0, l) and ũ = Ψ(s). First, we note
that it holds

|Ψ(s)|W 1,2(0,T ;L2(0,1)) + |Ψ(s)|L∞(0,T ;H1(0,1)) ≤ C for s ∈MK(T ), (4.1)

where C = C(T, ũ0, K, l, b
∗, β, s0) is a positive constant depending on T , ũ0, K, l, b∗, β and

s0.
Next, we show that there exists T0 ≤ T such that ΓT0 :MK(T0) →MK(T0) is well-defined.

Let K > 0 and s ∈MK(T ). First, by the definition of σ, we see that

ΓT (s)(t) = s0 +

∫ t

0

a0σ(Ψ(s)(τ, 1))dτ ≥ s0 for t ∈ [0, T ]. (4.2)
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Also, by (3.17) and (4.1), we have that |ũ(t, 1)| ≤
√
Ce|ũ(t)|H1(0,1) ≤

√
CeC for a.e. t ∈ (0, T ).

Hence, by σ(r) ≤ r for r ∈ R we obtain that

ΓT (s)(t) ≤ s0 + a0
√
CeCT,

∫ t

0

|ΓT (s)(τ)|2dτ ≤ 2s20T + 2a20T
3(CeC

2), (4.3)

and ∫ t

0

|Γ′
T (s)(τ)|2dτ ≤ a20

∫ t

0

|Ψ(s)(τ, 1)|2dτ ≤ a20TCeC
2. (4.4)

Therefore, by (4.3) and (4.4) we see that there exists T0 ≤ T such that ΓT0(s) ∈MK(T0).
Next, for s1 and s2 ∈ MK(T0), let ũ1 = Ψ(s1) and ũ2 = Ψ(s2) and set ũ = ũ1 − ũ2,

s = s1 − s2. Then, it holds that
1

2

d

dt
|ũ(t)|2H −

∫ 1

0

(
1

s21(t)
ũ1yy(t)−

1

s22(t)
ũ2yy(t)

)
ũ(t)dy

=

∫ 1

0

(
ys1t(t)

s1(t)
ũ1y(t)−

ys2t(t)

s2(t)
ũ2y(t)

)
ũ(t)dy. (4.5)

For the second term of the left-hand side of (4.5), we observe that

−
∫ 1

0

(
1

s21(t)
ũ1yy(t)−

1

s22(t)
ũ2yy(t)

)
ũ(t)dy

=

∫ 1

0

(
1

s21(t)
ũ1y(t)−

1

s22(t)
ũ2y(t)

)
ũy(t)dy

−
(

1

s21(t)
ũ1y(t, 1)−

1

s22(t)
ũ2y(t, 1)

)
ũ(t, 1) +

(
1

s21(t)
ũ1y(t, 0)−

1

s22(t)
ũ2y(t, 0)

)
ũ(t, 0)

=:I1 + I2 + I3.

For the term I1, the following estimate below holds:

I1 =
1

s21(t)
|ũy(t)|2L2(0,1) +

∫ 1

0

(
1

s21(t)
− 1

s22(t)

)
ũ2y(t)ũy(t)dy

≥ 1

s21(t)
|ũy(t)|2L2(0,1) −

2l|s(t)|
s30s1(t)

|ũ2y(t)|L2(0,1)|ũy(t)|L2(0,1)

≥
(
1− η

2

) 1

s21(t)
|ũy(t)|2L2(0,1) −

1

2η

(
2l

s30

)2

|s(t)|2|ũ2y(t)|2L2(0,1),

where η is arbitrary positive number. For I2, we separate in the following way:

−
(

1

s21(t)
ũ1y(t, 1)−

1

s22(t)
ũ2y(t, 1)

)
ũ(t, 1)

=a0

(
ũ1(t, 1)σ(ũ1(t, 1))

s1(t)
− ũ2(t, 1)σ(ũ2(t, 1))

s2(t)

)
ũ(t, 1)

=a0

(
1

s1(t)

(
ũ1(t, 1)σ(ũ1(t, 1))− ũ2(t, 1)σ(ũ2(t, 1))

)
+

(
1

s1(t)
− 1

s2(t)

)
ũ2(t, 1)σ(ũ2(t, 1))

)
ũ(t, 1)

= : I21 + I22.
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Similarly to (3.10), the term I21 is non-positive because the function rσ(r) is monotone for
r ∈ R. For I22, using the fact that σ(r) ≤ |r| for r ∈ R and (3.17), the following inequalities
hold:

|I22| =
(

s(t)

s1(t)s2(t)

)
a0ũ2(t, 1)σ(ũ2(t, 1))ũ(t, 1)

≤ Ce(a0ũ
2
2(t, 1))

2

2s20s
2
1(t)

|ũ(t)|H1(0,1)|ũ(t)|L2(0,1) +
1

2
|s(t)|2. (4.6)

Put L(1)
s2 (t) = Cea

2
0|ũ2(t, 1)|4/2s20. As for I2, we consider the term I3 as follows:(

1

s21(t)
ũ1y(t, 0)−

1

s22(t)
ũ2y(t, 0)

)
ũ(t, 0)

=−
(

1

s1(t)
β(b(t)− γũ1(t, 0))−

1

s2(t)
β(b(t)− γũ2(t, 0))

)
ũ(t, 0)

=− 1

s1(t)

(
β(b(t)− γũ1(t, 0))− β(b(t)− γũ2(t, 0))

)
ũ(t, 0)

−
(

1

s1(t)
− 1

s2(t)

)
β(b(t)− γũ2(t, 0))ũ(t, 0).

Then, by using (3.17) and (A3), we have that

|I3| ≤
βCeγ

s1(t)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

+
(β(b∗ + γ|ũ2(t, 0)|)2Ce

2s20s
2
1(t)

|ũ(t)|H1(0,1)|ũ(t)|L2(0,1) +
1

2
|s(t)|2 for t ∈ [0, T0]. (4.7)

For the right-hand side of (4.5), we can write as follows:∫ 1

0

(
ys1t(t)

s1(t)
ũ1y(t)−

ys2t(t)

s2(t)
ũ2y(t)

)
ũ(t)dy

=

∫ 1

0

ys1t(t)

s1(t)
ũy(t)ũ(t)dy +

∫ 1

0

yst(t)

s1(t)
ũ2y(t)ũ(t)dy +

∫ 1

0

(
1

s1(t)
− 1

s2(t)

)
ys2t(t)ũ2y(t)ũ(t)dy

:= I41 + I42 + I43.

The three terms are estimated in the following way:

I41 ≤
η

2s21(t)
|ũy(t)|2L2(0,1) +

1

2η
|s1t(t)|2|ũ(t)|2L2(0,1),

I42 ≤
1

2s0

(
|st(t)|2 + |ũ2y(t)|2L2(0,1)|ũ(t)|2L2(0,1)

)
,

I43 ≤
1

2s20

(
|s(t)|2|ũ2y(t)|2L2(0,1) + |s2t(t)|2|ũ(t)|2L2(0,1)

)
.
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Then, by (4.5)-(4.7) we obtain that

1

2

d

dt
|ũ(t)|2L2(0,1) + (1− η)

1

s21(t)
|ũy(t)|2L2(0,1)

≤βCeγ

s1(t)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

+
1

s21(t)

(
L(1)
s2
(t) +

(β(b∗ + γ|ũ2(t, 0)|)2Ce

2s20

)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

+

(
1

2η
|s1t(t)|2 +

1

2s0
|ũ2y(t)|2L2(0,1) +

1

2s20
|s2t(t)|2

)
|ũ(t)|2L2(0,1)

+

(
1

2s20
|ũ2y(t)|2L2(0,1) +

1

2η

(
2l

s30

)2

|ũ2y|2L2(0,1) + 1

)
|s(t)|2 + 1

2s0
|st(t)|2. (4.8)

Here, by (3.17) and (4.1), we see that

|ũi(t, 0)|2 ≤ Ce(|ũiy(t)|L2(0,1)|ũi(t)|L2(0,1) + |ũi(t)|2L2(0,1))

≤ 2CeC
2 for t ∈ [0, T0], (4.9)

where C is the same constant as in (4.1). Then, by (4.9) we note that {L(1)
s2 |s2 ∈ Mk(T )} is

bounded in L∞(0, T0). Also, by putting C5 = (β(b∗ + 2γCeC
2))2Ce and Young’s inequality it

follows that

βCeγ

s1(t)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

≤βCeγ

s1(t)

(
|ũy(t)|L2(0,1)|ũ(t)|L2(0,1) + |ũ(t)|2L2(0,1)

)
≤βCeγ

(
η

2s21(t)
|ũy(t)|2L2(0,1) + (

1

2η
+

1

s0
)|ũ(t)|2L2(0,1)

)
,

and

(
L(1)
s2
(t) +

C5

2s20

)
1

s21(t)
|ũ(t)|H1(0,1)|ũ(t)|L2(0,1)

≤
(
L(1)
s2
(t) +

C5

2s20

)
1

s21(t)
(|ũy(t)|L2(0,1)|ũ(t)|L2(0,1) + |ũ(t)|2L2(0,1))

≤
(
L(1)
s2
(t) +

C5

2s20

)[
1

s21(t)

η

2
|ũy(t)|2L2(0,1) +

1

s20
(
1

2η
+ 1)|ũ(t)|2L2(0,1)

]
.
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Accordingly, by applying these results to (4.8) and taking a suitable η = η0, we have

1

2

d

dt
|ũ(t)|2L2(0,1) +

1

2

1

s21(t)
|ũy(t)|2L2(0,1)

≤βCeγ

(
1

2η0
+

1

s0

)
|ũ(t)|2L2(0,1)

+

(
L(1)
s2
(t) +

C5

2s20

)
1

s20

(
1

2η0
+ 1

)
|ũ(t)|2L2(0,1)

+

(
1

2η0
|s1t(t)|2 +

1

2s0
|ũ2y(t)|2L2(0,1) +

1

2s20
|s2t(t)|2

)
|ũ(t)|2L2(0,1)

+

(
1

2s20
|ũ2y(t)|2L2(0,1) +

1

2η0

(
2l

s30

)2

|ũ2y(t)|2L2(0,1) + 1

)
|s(t)|2 + 1

2s0
|st(t)|2. (4.10)

Now, we put the summation of all coefficients of |ũ(t)|2L2(0,1) by L
(2)
s (t) for t ∈ [0, T0] and

L
(3)
s2 (t) = |ũ2y(t)|2L2(0,1)/2s

2
0 + (4l2|ũ2y(t)|2L2(0,1))/2η0s

6
0 + 1 + 1/2s0. Then, we have

1

2

d

dt
|ũ(t)|2L2(0,1) +

1

2

1

s21(t)
|ũy(τ)|2L2(0,1)

≤L(2)
s (t)|ũ(t)|2L2(0,1) + L(3)

s2
(t)(|s(t)|2 + |st(t)|2) for t ∈ [0, T0]. (4.11)

Here, using (4.1) and the fact that si ∈MK(T0) for i = 1, 2, we see that L(2)
s ∈ L1(0, T0) and

L
(3)
s2 ∈ L∞(0, T0). Therefore, Gronwall’s inequality guarantees that

1

2
|ũ(t)|2L2(0,1) +

1

2

1

s21(t)

∫ t

0

|ũy(τ)|2L2(0,1)dτ

≤
(
|L(3)

s2
|L∞(0,T0)|s|2W 1,2(0,T )

)
e2

∫ t
0 L

(2)
s (τ)dτ for t ∈ [0, T0]. (4.12)

By using (4.12) we show that there exists T ∗ ≤ T0 such that ΓT ∗ is a contraction mapping on
the closed subset of MK(T

∗). To do so, from the subtraction of the time derivatives of ΓT0(s1)

and ΓT0(s2) and relying on (3.17) and (4.12), we have for T1 ≤ T0 the following estimate:

|(ΓT1(s1))t − (ΓT1(s2))t|L2(0,T1)

≤a0
(
|σ(ũ1(·, 1))− σ(ũ2(·, 1))|L2(0,T1)

)
≤a0

√
Ce

(∫ T1

0

(|ũy(t)|L2(0,1)|ũ(t)|L2(0,1) + |ũ(t)|2L2(0,1))dt

)1/2

≤a0
√
Ce

(
|ũ|

1
2

L∞(0,T ;L2(0,1))

(∫ T1

0

|ũy(t)|L2(0,1)dt

) 1
2

+
√
T1|ũ|L∞(0,T ;L2(0,1))

)
. (4.13)

Using (4.12), we obtain

|ΓT1(s1)− ΓT1(s2)|W 1,2(0,T1) ≤ T1C6

(
T

1
4
1 |s|W 1,2(0,T1) +

√
T1|s|W 1,2(0,T1)

)
, (4.14)
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where C6 is a positive constant obtained by (4.12). Therefore, by (4.13) and (4.14) we see that
there exists T ∗ ≤ T0 such that ΓT ∗ is a contraction mapping on a closed subset ofMK(T

∗).

From Lemma 4.1, by applying Banach’s fixed point theorem, there exists s ∈ MK(T
∗),

where T ∗ is the same as in Lemma 4.1 such that ΓT ∗(s) = s. This implies that (PC)(ũ0, s0, b)
has a unique solution (s, ũ) on [0, T ∗]. Thus, we can prove Theorem 2.4. Moreover, this shows
that by the change of variables (2.8) a pair of the function (s, u) is a solution of (P)(u0, s0, b)
on [0, T ∗].

At the end of this section, we show the boundedness of the solution to (P)(u0, s0, b).

Lemma 4.2. Let T > 0 and (s, u) be a solution of (P)(u0, s0, b) on [0, T ]. Then, 0 ≤ u(t) ≤ b∗/γ

on [0, s(t)] for t ∈ [0, T ].

Proof. First, we show that u(t) ≥ 0 on [0, s(t)] for t ∈ [0, T ]. From (1.1), we have that

1

2

d

dt

∫ s(t)

0

|[−u(t)]+|2dz − st(t)

2
|[−u(t, s(t))]+|2

+

∫ s(t)

0

uzz(t)[−u(t)]+dz = 0 for a.e. t ∈ [0, T ]. (4.15)

By the boundary conditions (1.2) and (1.3) it follows that

uz(t, s(t))[−u(t, s(t))]+ = −u(t, s(t))st(t)[−u(t, s(t))]+ = st(t)|[−u(t, s(t))]+|2

and

− uz(t, 0)[−u(t, 0)]+ = β(b(t)− γu(t, 0))[−u(t, 0)]+ ≥ 0.

Therefore, we derive that

d

dt

∫ s(t)

0

|[−u(t)]+|2dz + st(t)

2
|[−u(t, s(t))]+|2 +

∫ s(t)

0

|[−u(t)]+z |2dz ≤ 0 for a.e. t ∈ [0, T ].

(4.16)

Note that by st(t) = a0σ(u(t, s(t)), the second term in the left-hand side of (4.16) is equal to
0. Therefore, by integrating (4.16) over [0, T ] we conclude that u ≥ 0 on [0, s(t)] for t ∈ [0, T ].

Next, we show that u(t) ≤ b∗/γ on [0, s(t)] for t ∈ [0, T ]. Put U(t, z) = [u(t, z) − b∗/γ]+

for z ∈ [0, s(t)] and t ∈ [0, T ]. Then, we have that

1

2

d

dt

∫ s(t)

0

|U(t, z)|2dz − st(t)

2
|U(t, s(t))|2 −

∫ s(t)

0

uzz(t)U(t, z)dz = 0 for a.e. t ∈ [0, T ].

(4.17)
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Using the boundary condition (1.2), it holds that

− uz(t, s(t))U(t, s(t)) = u(t, s(t))st(t)U(t, s(t))

=st(t)

(
u(t, s(t))− b∗

γ

)
U(t, s(t)) + st(t)

b∗

γ
U(t, s(t))

=st(t)|U(t, s(t))|2 + st(t)
b∗

γ
U(t, s(t)).

Also, by (1.3) and b ≤ b∗, we observe that

uz(t, 0)U(t, 0) = −β(b(t)− γu(t, 0))U(t, 0)

=β(γu(t, 0)− b∗ + b∗ − b(t))U(t, 0)

=βγ|U(t, 0)|2 + β(b∗ − b(t))U(t, 0) ≥ 0.

By applying the above two results to (4.17) we obtain that

1

2

d

dt

∫ s(t)

0

|U(t, z)|2dz +
∫ s(t)

0

|Uz(t, z)|2dz

+
st(t)

2
|U(t, s(t))|2 + st(t)

b∗

γ
U(t, s(t)) ≤ 0 for a.e. t ∈ [0, T ]. (4.18)

Here, by st(t) = a0σ(u(t, s(t))) we notice that st(t) ≥ 0 on [0, T ], and the third and forth
terms in the left-hand side of (4.18) are non-negative. Therefore, we have that

1

2

d

dt

∫ s(t)

0

|U(t, z)|2dz +
∫ s(t)

0

|Uz(t, z)|2dz ≤ 0 for a.e. t ∈ [0, T ]. (4.19)

Finally, by integrating (4.19) over [0, t] for t ∈ [0, T ] and using (A3), we see that u(t) ≤ b∗/γ

on [0, s(t)] for t ∈ [0, T ]. Thus, Lemma 4.2 is proven.

By Lemma 4.2, we can conclude that Theorem 2.2 holds.

5 Proof of Theorem 2.5
In this section, we prove Theorem 2.5 which ensure the existence and uniqueness of a globally-
in-time solution of (P)(u0, s0, b). First, we provide uniform estimates of a solution of (P)(u0, s0, b).

Lemma 5.1. Let (s, u) be a solution of (P)(u0, s0, b) on [0, T ] satisfying 0 ≤ u ≤ b∗/γ on
[0, s(t)] for t ∈ [0, T ]. Then, there exists a positive constant C̃ which is independent of T such
that ∫ t

0

|ut(τ)|2L2(0,s(τ))dτ + |uz(t)|2L2(0,s(t)) ≤ C̃ for all t ∈ (0, T ). (5.1)
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Proof. Let (s, u) be a solution of (P)(u0, s0, b) on [0, T ] such that 0 ≤ u ≤ b∗/γ on Qs(T ).
Then, by the change of variables (2.1) we see that (s, ũ) is a solution of (PC)(ũ0, s0, b) on
[0, T ] in the sense of Definition 2.3 and satisfies that 0 ≤ ũ ≤ b∗/γ on Q(T ). Now, we put
vh(t) =

ũ(t)−ũ(t−h)
h

for h > 0 and u(t) = u(0) = u0 and b(t) = b(0) for t < 0. By (1.1), it holds
that∫ 1

0

ũt(t)s(t)vh(t)dy −
∫ 1

0

1

s(t)
ũyy(t)vh(t)dy =

∫ 1

0

yst(t)ũy(t)

s(t)
s(t)vh(t)dy for t ∈ [0, T ].

(5.2)

Then, using (1.2)-(1.4) and st(t) = a0σ(ũ(t, 1)) = a0ũ(t, 1) for t ∈ [0, T ], we observe that

−
∫ 1

0

1

s(t)
ũyy(t)

ũ(t)− ũ(t− h)

h
dy

=a0ũ
2(t, 1)vh(t, 1)− β(b(t)− γũ(t, 0))vh(t, 0) +

∫ 1

0

1

s(t)
ũy(t)vhy(t)dy, (5.3)

and ∫ 1

0

1

s(t)
ũy(t)vhy(t)dy

≥ 1

2h

∫ 1

0

1

s(t)
(|ũy(t)|2 − |ũy(t− h)|2)dy

=
1

2h

[∫ s(t)

0

|uz(t)|2dz −
∫ s(t−h)

0

s(t− h)

s(t)
|uz(t− h)|2dz

]
=

1

2h

[∫ s(t)

0

|uz(t)|2dz −
∫ s(t−h)

0

|uz(t− h)|2dz +
∫ s(t−h)

0

s(t)− s(t− h)

s(t)
|uz(t− h)|2dz

]
.

(5.4)

Here, for t ∈ [0, T ] the following inequality holds:

a0ũ
2(t, 1)vh(t, 1) = a0

ũ3(t, 1)− ũ2(t, 1)ũ(t− h, 1)

h

≥ a0
ũ3(t, 1)− ũ3(t− h, 1)

3h
. (5.5)

Also, by introducing Φ(b(t), r) = −β(b(t)r− γ
2
r2) for r ∈ R, it is easy to see that ∂2

∂r2
Φ(b(t), r) =

βγ ≥ 0 for r ∈ R. Hence, for t ∈ [0, T ], Φ(b(t), ũ(t, 0)) is convex with respect to the second
component so that we can see that the following inequality holds.

−β(b(t)− γũ(t, 0))vh(t, 0) ≥
Φ(b(t), ũ(t, 0))− Φ(b(t), ũ(t− h, 0))

h
for t ∈ [0, T ]. (5.6)
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Combining (5.2)-(5.6) with (5.1) , we have∫ 1

0

ũt(t)s(t)vh(t)dy

+
1

2h

[∫ s(t)

0

|uz(t)|2dz −
∫ s(t−h)

0

|uz(t− h)|2dz +
∫ s(t−h)

0

s(t)− s(t− h)

s(t)
|uz(t− h)|2dz

]
+ a0

ũ3(t, 1)− ũ3(t− h, 1)

3h
+

Φ(b(t), ũ(t, 0))− Φ(b(t), ũ(t− h, 0))

h

≤
∫ 1

0

yst(t)ũy(t)vh(t)dy for t ∈ [0, T ]. (5.7)

Now, we integrate (5.7) over [0, t1] for t1 ∈ (0, T ] and take the limit as h → 0. Then, by the
change of variables (2.8) the first term of the left-hand side of (5.7) is as follows:

lim
h→0

∫ t1

0

∫ 1

0

ũt(t)s(t)vh(t)dydt =

∫ t1

0

∫ 1

0

|ũt(t)|2s(t)dydt

=

∫ t1

0

∫ s(t)

0

(
|ut(t)|2 + 2ut(t)uz(t)

z

s(t)
st(t) +

(
uz(t)

z

s(t)
st(t)

)2)
dzdt. (5.8)

As arguing the local existence, the function t →
∫ s(t)

0
|uz(t)|2dz is absolutely continuous on

[0, T ]. Then, the second and third terms of the left-hand side of (5.7) can be dealt with as

lim
h→0

1

2h

∫ t1

0

(∫ s(t)

0

|uz(t)|2dz −
∫ s(t−h)

0

|uz(t− h)|2dz
)
dτ

=
1

2

(∫ s(t1)

0

|uz(t1)|2dz −
∫ s0

0

|uz(0)|2dz
)
, (5.9)

and

lim
h→0

1

2

∫ t1

0

∫ s(t−h)

0

1

s(t)

s(t)− s(t− h)

h
|uz(t− h)|2dzdt = 1

2

∫ t1

0

∫ s(t)

0

st(t)

s(t)
|uz(t)|2dzdt. (5.10)

Moreover, since ũ is continuous on Q(T ) we have that

lim
h→0

a0
3h

∫ t1

0

(
ũ3(t, 1)− ũ3(t− h, 1)

)
dt = lim

h→0

(
a0
3h

∫ t1

t1−h

ũ3(t, 1)dt

)
− a0

3
ũ30(1)

=
a0
3
ũ3(t1, 1)−

a0
3
ũ30(1). (5.11)

Similarly to the derivation of (5.11),

lim
h→0

1

h

∫ t1

0

(
Φ(b(t), ũ(t, 0))− Φ(b(t), ũ(t− h, 0))

)
dt

=Φ(b(t1), ũ(t1, 0))− Φ(b(0), ũ0(0))

+ lim
h→0

(
−1

h

∫ t1

0

[
Φ(b(t), ũ(t− h, 0))− Φ(b(t− h), ũ(t− h, 0))

]
dt

)
. (5.12)
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For the last term of the right-hand side of (5.12) we observe that

lim
h→0

(
−1

h

∫ t1

0

[
Φ(b(t), ũ(t− h, 0))− Φ(b(t− h), ũ(t− h, 0))

]
dt

)
≥ lim

h→0

(
−1

h

∫ t1

0

β|b(t)− b(t− h)||ũ(t− h, 0)|dt
)

≥ lim
h→0

(
−β
h

∫ t1

0

(∫ t

t−h

|bt(τ)|dτ
)
|ũ(t− h, 0)|dt

)
≥− βb∗

γ

∫ t1

0

|bt(t)|dt. (5.13)

From (5.7) and the estimates (5.8)-(5.13), we obtain that

∫ t1

0

∫ s(t)

0

(
|ut(t)|2 + 2ut(t)uz(t)

z

s(t)
st(t) +

(
uz(t)

z

s(t)
st(t)

)2)
dzdt

+
1

2

∫ s(t1)

0

|uz(t1)|2dz −
1

2

∫ s0

0

|uz(0)|2dz +
1

2

∫ t1

0

∫ s(t)

0

st(t)

s(t)
|uz(t)|2dzdt

+
a0
3
ũ3(t1, 1)−

a0
3
ũ30(1) + Φ(b(t1), ũ(t1, 0))− Φ(b(0), ũ0(0))−

βb∗

γ

∫ t1

0

|bt(t)|dt

≤
∫ t1

0

∫ s(t)

0

(
ut(t)uz(t)

z

s(t)
st(t) +

(
uz(t)

z

s(t)
st(t)

)2)
dzdt for t1 ∈ [0, T ]. (5.14)

Then, we see that the third term of the left-hand side of (5.14) is same to the second term
of the right-hand side of (5.14) . Then, by moving the second term of the left-hand side of
(5.14) to the right-hand side we have that

∫ t1

0

∫ s(t)

0

|ut(t)|2dzdt

+
1

2

∫ s(t1)

0

|uz(t1)|2dz −
1

2

∫ s0

0

|uz(0)|2dz +
1

2

∫ t1

0

∫ s(t)

0

st(t)

s(t)
|uz(t)|2dzdt

+
a0
3
ũ3(t1, 1)−

a0
3
ũ30(1) + Φ(b(t1), ũ(t1, 0))− Φ(b(0), ũ0(0))−

βb∗

γ

∫ t1

0

|bt(t)|dt

≤
∫ t1

0

∫ s(t)

0

−ut(t)uz(t)
z

s(t)
st(t)dzdt for t1 ∈ [0, T ]. (5.15)
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Using (1.1) and the fact that st(t) ≥ 0 for t ∈ [0, T ] we obtain the following inequality:

−
∫ t1

0

∫ s(t)

0

ut(t)uz(t)
z

s(t)
st(t)dzdt

=−
∫ t1

0

∫ s(t)

0

uzz(t)uz(t)
z

s(t)
st(t)dzdt

=−
∫ t1

0

∫ s(t)

0

1

2

(
∂

∂z
|uz(t)|2

)
z

s(t)
st(t)dzdt

=−
∫ t1

0

1

2
|uz(t, s(t))|2st(t)dt+

1

2

∫ t1

0

∫ s(t)

0

st(t)

s(t)
|uz(t)|2dzdt.

≤1

2

∫ t1

0

∫ s(t)

0

st(t)

s(t)
|uz(t)|2dzdt. (5.16)

Hence, by (5.15) and (5.16) we have that∫ t1

0

∫ s(t)

0

|ut(t)|2dzdt

+
1

2

∫ s(t1)

0

|uz(t1)|2dz −
1

2

∫ s0

0

|uz(0)|2dz +
1

2

∫ t1

0

∫ s(t)

0

st(t)

s(t)
|uz(t)|2dzdt

+
a0
3
ũ3(t1, 1)−

a0
3
ũ30(1) + Φ(b(t1), ũ(t1, 0))− Φ(b(0), ũ0(0))−

βb∗

γ

∫ t1

0

|bt(t)|dt

≤1

2

∫ t1

0

∫ s(t)

0

st(t)

s(t)
|uz(t)|2dzdt for t1 ∈ [0, T ]. (5.17)

The forth term in the left-hand side and the right-hand side are canceled out and the fifth
and eighth terms in the left-hand side are positive. Therefore, we finally obtain that∫ t1

0

∫ s(t)

0

|ut(t)|2 +
1

2

∫ s(t1)

0

|uz(t1)|2dz

≤1

2

∫ s0

0

|uz(0)|2dz +
a0
3
ũ30(1)− Φ(b(t1), ũ(t1, 0)) +

βb∗

γ

∫ t1

0

|bt(t)|dt for t1 ∈ [0, T ]. (5.18)

In the right-hand side of (5.18), by (A2) and 0 ≤ ũ(t) ≤ b∗/γ on [0, 1] for t ∈ [0, T ] and the
definition of Φ, we can estimate as follows:

−Φ(b(t1), ũ(t1, 0)) = −βb(t1)ũ(t1, 0) +
βγ

2
ũ2(t1, 0) ≤

βγ

2

(
b∗

γ

)2

. (5.19)

Finally, by (5.19), b ∈ W 1,2(0, T ) as in (A2) and (A3) we see that there exists C̃ which depends
on b∗, a0, γ, β such that (5.1) holds. Thus, Lemma 5.1 is proved.

At the end of this section, we prove Theorem 2.5. Let T > 0. By the local existence
result there exists T1 < T such that (P)(u0, s0, b) has a unique solution (s, u) on [0, T1]
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satisfying 0 ≤ u ≤ b∗/γ on Qs(T1). Then, the pair (s, ũ) with the variable (2.1) is a solution
of (PC)(ũ0, s0, b) satisfying 0 ≤ ũ ≤ b∗/γ on Q(T1). Let put

T̃ := sup{T1 > 0|(PC)(ũ0, s0, b) has a solution (s, ũ) on [0, T1]}.

From the local existence result, we deduce that T̃ > 0. Now, we assume T̃ < T . First, by (2.5)
and the result that ũ(t) ≥ 0 on [0, 1] for t ∈ [0, T̃ ) we see that st(t) ≥ 0 for t ∈ [0, T̃ ), and
therefore s(t) ≥ s0 for t ∈ [0, T̃ ). Also, by putting L(t) = a0

b∗

γ
t+ s0 for t ∈ [0, T ] we have that

s(t) = s0 +

∫ t

0

a0σ(ũ(τ, 1))dτ

= s0 +

∫ t

0

a0ũ(τ, 1)dτ

≤ s0 + a0
b∗

γ
T̃ = L(T̃ ) < L(T ) for t ∈ [0, T̃ ). (5.20)

Next, by using the change of the variable (2.1), it holds that∫ 1

0

|ũy(t)|2dy =

∫ s(t)

0

1

s(t)
|uz(t)s(t)|2dzdt.

Therefore, from (5.20) and Lemma 5.1, we obtain that

|ũy(t)|2L2(0,1) ≤ L(T )C̃ for all t < T̃ , (5.21)

where C̃ is the same constant as in Lemma 5.1. By (5.21) we see that for some ũT̃ ∈ H1(0, 1),
ũ(t) → ũT̃ strongly in L2(0, 1) and weakly in H1(0, 1) as t → T̃ and 0 ≤ ũT̃ ≤ b∗/γ on
(0, 1). Also, by |st(t)| ≤ a0b

∗/γ for t ∈ [0, T̃ ), {s(t)}t∈[0,T̃ ) is a Cauchy sequence in R so
that for some sT̃ ∈ R, s(t) → sT̃ in R as t → T̃ . Moreover, by (5.20), sT̃ satisfies that
0 < s0 ≤ sT̃ ≤ L(T̃ ). Now, we put uT̃ (z) = ũT̃ (

z
sT̃
) for z ∈ [0, sT̃ ]. Then, we see that

uT̃ ∈ H1(0, sT̃ ) and 0 ≤ uT̃ ≤ b∗/γ on (0, sT̃ ) and we can consider (sT̃ , uT̃ ) as a initial data.
Therefore, by repeating the argument of the local existence we can extend a solution beyond
T̃ . This is a contradiction for the definition of T̃ and we have a solution on the whole interval
[0, T ]. Thus Theorem 2.5 is proved.

6 Large time behavior of the free boundary
In this section, we discuss the large time behavior of a solution to (P)(u0, s0, b) as t → ∞.
First, we assume (A2) replaced by (A2)’:
(A2)’: b ∈ W 1,2

loc ([0,∞)), bt ∈ L1(0,∞), limt→∞b(t) = b∞, b − b∞ ∈ L1(0,∞) and b∗ ≤ b ≤ b∗

on (0,∞), where b∗ and b∗ are positive constants as in (A2).
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Clearly, we see that b∗ ≤ b∞ ≤ b∗. Next, we consider the following stationary problem (P)∞:
find a pair (u∞, s∞) ∈ L2(0, s∞)× R satisfying

−u∞zz = 0 on (0, s∞),

−u∞z(0) = β(b∞ − γu∞(0)), −u∞z(s∞) = 0,

u∞(s∞) = 0.

By using the change of variables ũ∞(y) = u∞(ys∞) for y ∈ (0, 1), (P)∞ can be written in the
following problem (P̃)∞:

− 1

s2∞
ũ∞yy = 0 on (0, 1),

− 1

s∞
ũ∞y(0) = β(b∞ − γũ∞(0)), − 1

s∞
ũ∞y(1) = 0,

ũ∞(1) = 0.

The next lemma is concerned with non-existence of a solution (s∞, ũ∞) of the problem (P̃)∞.

Lemma 6.1. A solution (s∞, ũ∞) of (P̃)∞ satisfying 0 < s∞ < +∞ and ũ∞ ∈ H2(0, 1) does
not exist.

Proof. Let (s∞, ũ∞) be a solution of (P̃)∞ such that 0 < s∞ < +∞ and ũ∞ ∈ H2(0, 1). Then,
it holds that

− 1

s∞
ũ∞y(1) +

1

s∞
ũ∞y(0) = 0.

Then, we see that ũ∞(0) = b∞/γ. Hence, ũ∞ ∈ H2(0, 1) satisfies −ũ∞yy = 0 on (0, 1) with
ũ∞y(1) = ũ∞y(0) = 0 and ũ∞(1) = 0 so that ũ∞ ≡ 0 on [0, 1]. This is a contradiction to
ũ∞(0) ̸= 0. Thus, we conclude that Lemma 6.1 holds.

Now, we state the result on the large time behavior of a solution as t→ ∞.

Theorem 6.2. Assume (A1), (A2)’ and (A3) and let (P)(u0, s0, b) be a solution (s, u) on [0,∞).
Then, s→ ∞ as t→ ∞.

We prove this result in the rest of the section.

6.1 Global estimates

To prove Theorem 6.2, we provide some uniform estimates for the solution with respect to
time t. We assume (A1), (A2)’ and (A3). Then, by Theorem 2.5, (P)(u0, s0, b) has a solution
(s, u) on [0, T ] for T > 0 satisfying 0 ≤ u ≤ b∗/γ on [0, s(t)] for t ∈ [0, T ].
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Lemma 6.3. Let (s, u) be a solution of (P)(u0, s0, b) on [0,∞). If there exists a constant C > 0

such that s(t) ≤ C for t > 0, then it holds

(i)

∫ t

0

|st(τ)|2dτ +
∫ t

0

|uz(τ)|2L2(0,s(τ))dτ +

∫ t

0

∣∣∣∣u(τ, 0)− b∞
γ

∣∣∣∣2 dτ ≤ C1 for t > 0, (6.1)

(ii)

∫ t

0

|ut(τ)|2L2(0,s(τ))dτ + |uz(t)|2L2(0,s(t)) ≤ C2 for t > 0, (6.2)

where C1 and C2 are positive constants which is independent of time t.

Proof. First, we prove that (6.1) holds. By (1.1) we have that

1

2

d

dt

∫ s(t)

0

∣∣∣∣u(t)− b∞
γ

∣∣∣∣2 dz − st(t)

2

∣∣∣∣u(t, s(t))− b∞
γ

∣∣∣∣2 − ∫ s(t)

0

uzz(t)

(
u(t)− b∞

γ

)
dz = 0.

(6.3)

For the third term of the left-hand side of (6.3), it holds that

−
∫ s(t)

0

uzz(t)

(
u(t)− b∞

γ

)
=− uz(t, s(t))

(
u(t, s(t))− b∞

γ

)
+ uz(t, 0)

(
u(t, 0)− b∞

γ

)
+

∫ s(t)

0

|uz(t)|2dz

=st(t)

∣∣∣∣u(t, s(t))− b∞
γ

∣∣∣∣2 + b∞
γ
st(t)

(
u(t, s(t))− b∞

γ

)
− β(b(t)− γu(t, 0))

(
u(0)− b∞

γ

)
+

∫ s(t)

0

|uz(t)|2dz. (6.4)

By (6.3) with (6.4) it follows that

1

2

d

dt

∫ s(t)

0

∣∣∣∣u(t)− b∞
γ

∣∣∣∣2 dz + st(t)

2

∣∣∣∣u(t, s(t))− b∞
γ

∣∣∣∣2 + ∫ s(t)

0

|uz(t)|2dz

+
b∞
γ
st(t)

(
u(t, s(t))− b∞

γ

)
− β(b(t)− γu(t, 0))

(
u(0)− b∞

γ

)
= 0. (6.5)

Since st(t) = a0σ(u(t, s(t)) = a0u(t, s(t)), we have that

b∞
γ
st(t)

(
u(t, s(t))− b∞

γ

)
=
b∞
γ

|st(t)|2

a0
−
(
b∞
γ

)2

st(t). (6.6)

Also, it holds that

− β(b(t)− γu(t, 0))

(
u(0)− b∞

γ

)
=β(γu(t, 0)− b∞ + b∞ − b(t))

(
u(t, 0)− b∞

γ

)
=βγ

∣∣∣∣u(t, 0)− b∞
γ

∣∣∣∣2 + β(b∞ − b(t))

(
u(t, 0)− b∞

γ

)
. (6.7)



28 Toyohiko Aiki, Kota Kumazaki and Adrian Muntean

Combining with (6.5)-(6.7), we obtain that

1

2

d

dt

∫ s(t)

0

∣∣∣∣u(t)− b∞
γ

∣∣∣∣2 dz + st(t)

2

∣∣∣∣u(t, s(t))− b∞
γ

∣∣∣∣2 + ∫ s(t)

0

|uz(t)|2dz

+
b∞
γ

|st(t)|2

a0
+ βγ

∣∣∣∣u(t, 0)− b∞
γ

∣∣∣∣2
=

(
b∞
γ

)2

st(t) + β(b(t)− b∞)

(
u(t, 0)− b∞

γ

)
. (6.8)

Here, by the fact that u(t) ≥ 0 on [0, s(t)] for t ∈ [0, T ] we note that st(t) ≥ 0 for t ∈ [0, T ]

and the second term of the left-hand side of (6.8) is non-negative. Hence, we derive that

1

2

d

dt

∫ s(t)

0

∣∣∣∣u(t)− b∞
γ

∣∣∣∣2 dz + ∫ s(t)

0

|uz(t)|2dz +
b∞
γ

|st(t)|2

a0
+ βγ

∣∣∣∣u(t, 0)− b∞
γ

∣∣∣∣2
≤
(
b∞
γ

)2

st(t) + β(b(t)− b∞)

(
u(t, 0)− b∞

γ

)
. (6.9)

By using u(t) ≤ b∗/γ on [0, s(t)] for t ∈ [0, T ] and integrating over [0, t1] for t1 ∈ [0, T ] we
obtain that

1

2

∫ s(t1)

0

∣∣∣∣u(t1)− b∞
γ

∣∣∣∣2 dz + ∫ t1

0

∫ s(t)

0

|uz(t)|2dzdt

+
b∞
a0γ

∫ t1

0

|st(t)|2dt+ βγ

∫ t1

0

∣∣∣∣u(t, 0)− b∞
γ

∣∣∣∣2 dt
≤1

2

∫ s0

0

∣∣∣∣u0 − b∞
γ

∣∣∣∣2 dz + (b∞γ
)2

(s(t1)− s(0)) +
β(b∗ + b∞)

γ

∫ t1

0

|b∞ − b(t)|dt. (6.10)

Hence, from b − b∞ ∈ L1(0,∞) in (A2)’ and the assumption that s(t) ≤ C for t ∈ [0, T ], we
conclude that (6.1) holds.

Also, for the estimate (6.2), by repeating the proof of Lemma 5.1 we infer that it holds
that ∫ t1

0

∫ s(t)

0

|ut(t)|2 +
1

2

∫ s(t1)

0

|uz(t1)|2dz

≤1

2

∫ s0

0

|uz(0)|2dz + |ũ30(1)|+ |Φ(b(t1), ũ(t1, 0))|+
βb∗

γ

∫ t1

0

|bt(t)|dt for t1 ∈ [0, T ]. (6.11)

Therefore, by (5.19) and bt ∈ L1(0,∞) we can find a positive constant C2 which is independent
of t such that (6.2) holds. This completes the proof of this lemma.

6.2 Proof of Theorem 6.2
At the end of the paper, by using the uniform estimate obtained in previous subsection,
we complete the proof of Theorem 6.2 concerning the large-time behavior of solutions to
(P)(u0, s0, b).
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Let us assume (A1), (A2)’ and (A3). Then, by Theorem 2.5, we have a solution (s, u) of
(P)(u0, s0, b) on [0, T ] for any T > 0 such that 0 ≤ u ≤ b∗/γ on [0, s(t)] for t > 0.

Now, we show Theorem 6.2 by contradiction. Let us assume that there exists a constant
C > 0 such that s(t) ≤ C for t ∈ [0, T ]. Then, by Lemma 6.3, we have that∫ t

0

|st(τ)|2dτ +
∫ t

0

|uz(τ)|2L2(0,s(τ))dτ +

∫ t

0

∣∣∣∣u(τ, 0)− b∞
γ

∣∣∣∣2 dτ ≤ C1 for t > 0, (6.12)∫ t

0

|ut(τ)|2L2(0,s(τ))dτ + |uz(t)|2L2(0,s(t)) ≤ C2 for t > 0. (6.13)

Here, by (1.4), we see that st(t) ≥ 0, and hence s(t) ≥ s0 for t > 0. Also, u ≤ b∗/γ on [0, s(t)]

for t > 0 so that it holds that |st(t)| ≤ a0b
∗/γ for t > 0. From these results and the change of

variables (2.1) we obtain that∫ t

0

|ũt(τ)|2L2(0,1)dτ

=

∫ t

0

∫ s(τ)

0

1

s(τ)
|ut(τ, z) + uz(τ, z)

z

s(τ)
st(τ)|2dzdτ

≤
∫ t

0

∫ s(τ)

0

1

s(τ)
|ut(t, z)|2dzdτ +

∫ t

0

∫ s(τ)

0

2

s(τ)
|ut(τ, z)||uz(τ, z)||st(τ)|dzdτ

+

∫ t

0

∫ s(τ)

0

1

s(τ)
|uz(τ, z)|2|st(τ)|2dzdτ

≤ 1

s0

(
C2 +

2a0b
∗

γ
C

1/2
1 C

1/2
2 +

(
a0b

∗

γ

)2

C1

)
for t > 0, (6.14)

and

|ũy(t)|2L2(0,1) =

∫ s(t)

0

1

s(t)
|uz(t)s(t)|2dzdt ≤ CC2 for t > 0, (6.15)

where C1 and C2 are positive constants as in (6.12) and (6.13).
Here, for {tn} such that tn → ∞ as n → ∞, we put ũn(t, y) := ũ(t + tn, y) for (t, y) ∈

[0, 1] × [0, 1], sn(t) := s(t + tn), bn(t) := b(t + tn) for t ∈ [0, 1]. By (A2)’, it is clear that
bn → b∞ in L1(0, 1) as n→ ∞. Also, by (6.12), (6.14) and (6.15) we see that {snt} is bounded
in L2(0, 1) and {ũn} is bounded in W 1,2(0, 1;L2(0, 1)) ∩ L∞(0, 1;H1(0, 1)). Therefore, we
can take a subsequence {nj} ⊂ {n} such that the following convergences holds for some
ũ∞ ∈ H1(0, 1) and s∞ ∈ R satisfying s0 ≤ s∞ < +∞:

ũnj(0) = ũ(tnj) → ũ∞ in C([0, 1]), weakly in H1(0, 1),

snj(0) = s(tnj) → s∞ in R,
ũnjt → 0 in L2(0, 1;L2(0, 1)) and snjt → 0 in L2(0, 1),

ũnj → ũ∞ in C([0, 1];L2(0, 1)),

weakly in W 1,2(0, 1;L2(0, 1)),

weakly -* in L∞(0, 1;H1(0, 1)),

snj → s∞ in C([0, 1]), weakly in W 1,2(0, 1)
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as j → ∞. Also, by Sobolev’s embedding theorem in one dimension (3.17), it holds that for
y ∈ [0, 1],∫ 1

0

|ũnj(t, y)− ũ∞(y)|2dt ≤ Ce

∫ 1

0

|ũnj(t)− ũ∞|H1(0,1)|ũnj(t)− ũ∞|L2(0,1)dt. (6.16)

Hence, by the strong convergence of ũnj and (6.16) we see that

ũnj(y) → ũ∞(y) in L2(0, 1) at y = 0, 1 as j → ∞. (6.17)

Now, for each j, (snj, ũnj) satisfies
ũnjt(t, y)− 1

s2nj(t)
ũnjyy(t, y) =

ysnjt(t)

snj(t)
ũnjy(t, y) for (t, y) ∈ Q(1),

− 1
snj(t)

ũnjy(t, 0) = β(bnj(t)− γũnj(t, 0)) for t ∈ (0, 1),

− 1
snj(t)

ũnjy(t, 1) = ũnj(t, 1)snjt(t) for t ∈ (0, 1),

snjt(t) = a0ũnj(t, 1) for t ∈ (0, 1).

By letting j → ∞ in the above system and using the strong convergences of ũnj and snj, we
see that ũ∞ ∈ H2(0, 1) and

− 1

s2∞
ũ∞yy = 0 on (0, 1). (6.18)

Hence, by using the above convergences of ũnj and snj, (6.17) and (6.18) we infer that (s∞, ũ∞)

satisfies

− 1

s∞
ũ∞y(0) = β(b∞ − γũ∞(0)), − 1

s∞
ũ∞y(1) = 0, ũ∞(1) = 0.

Therefore, we see that (s∞, ũ∞) is a solution of (P̃)∞ such that ũ∞ ∈ H2(0, 1) and s0 ≤ s∞ <

+∞. This contradicts that (P̃)∞ does not have a solution (see Lemma 6.1). Thus, we conclude
that s goes to ∞ as t→ ∞ and Theorem 6.2 holds.

7 Numerical illustration
In this section, we use our free boundary model to approximate numerically the diffusion of
a population of solvent molecules (cyclohexane) into a piece of material made of ethylene
propylene diene monomer rubber (EPDM). The actual migration experiment and the set of
basic parameters are reported in [17].

In this framework, we take the effective diffusivity with an order of magnitude higher and
explore briefly of the depth of the penetration front depending on variations in the kinetic
parameter a0 arising in (1.4). In fact, we look only at a particular instance of the large-time
behavior of our problem and point out that, depending on the choice of model parameters, the
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Figure 1: Approximation of the large-time behavior of solutions to (P )(u0, s0, b) on [0, T ] with
T = 5000 minutes.

free boundary position s(t) behaves like a power law of type tp, where p is typically different
than 1

2
or 1 as expected for the classical diffusion and for the Case II diffusion, respectively;

see [12] for a detailed discussion based on first principles on the large time behavior of sharp
diffusion fronts in the transition from glassy to rubbery polymers.

As shown in Figure 1 (a), the behavior of our free boundary seems to be different from the
real experimental result. From a phenomenological point of view, a more realistic behavior of
the free boundary is obtained in [17]. On the other hand, Theorem 6.2 guarantees that the
growth observed in numerical results is correct, theoretically. Moreover, in order to measure
the growth rate for the free boundary, we show numerical results for varying positive con-
stants a0 in Figure 1 (b). From these results we conjecture that the free boundary position
corresponding to Figure 1 (a) behaves like t0.41. This is a sub-diffusive regime. However, other
parameters can bring the front in a super-diffusive regime. Based on our current simulation
and mathematical analysis results, we can only state that we expect the free boundary posi-
tion to follow a power law for large times, but we are, for the moment, unable to establish
rigorously quantitative upper and lower bounds on s(t). Nevertheless, relying also on results
from [10], we hope to be able to adapt some parts of our working technique developed in [3]
to handle this case. The main difficulty lies on the fact that it seems that, for a large region
in the parameter spaces, our sharp diffusion fronts tend to deviate from t

1
2 . This makes us

wonder what is the most relevant exponent p and also for which parameter case and type(s)
of rubber-like materials this corresponds.

8 Discussion

We were able to prove the global solvability for a one-phase free boundary problem with
nonlinear kinetic condition that is meant to describe the migration of diffusants into rubber.
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Despite of its apparently simple one-dimensional structure, our free boundary model brings
in a number of open questions. The most important ones include the identification of an
asymptotic dependence of type s(t) ∼ O(tp) as t → +∞ and its rigorous mathematical
justification. Also, capturing numerically the large time behavior so that a certain power
law is preserved requires a special care; compare e.g. the ideas from [6, 19] to be adapted
for the finite element method used here; see [17] for a detailed description of the numerical
scheme used in this context. Of course, to bring the one-dimensional model equations to
describe better the physical scenario of diffusants migrating into rubbers, more modeling
components must be added, viz. macroscopic swelling, capillarity transport. The case of more
space dimensions is out of reach as it is not at all clear how the kinetic condition on the moving
sharp diffusion front should be formulated especially close to corners or other singularities of
the geometry.
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