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Abstract -
Having smart and autonomous earthmoving in mind, we

explore high-performance wheel loading in a simulated en-
vironment. This paper introduces a wheel loader simulator
that combines contacting 3D multibody dynamics with a hy-
brid continuum-particle terrain model, supporting realistic
digging forces and soil displacements at real-time perfor-
mance. A total of 270,000 simulations are run with different
loading actions, pile slopes, and soil to analyze how they af-
fect the loading performance. The results suggest that the
preferred digging actions should preserve and exploit a steep
pile slope. High digging speed favors high productivity, while
energy-efficient loading requires a lower dig speed.
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1 Introduction
Smart and autonomous earthmoving equipment may

significantly improve energy efficiency, productivity, and
safety at construction sites and mines. If the planning
and control system can be made well-informed about the
physics of earthmoving operations and the current state of
the environment, then it can predict the outcome of an ac-
tion and select near-optimal action sequences that are well-
coordinated with other systems at the site. This motivates
us to explore which wheel loading actions that maximize
the performance over a task. The loading task is typically
operated as a repeating cycle of sequential actions: head-
ing into a pile, scooping, breaking out of the pile, carrying
the soil, and dumping it to fill bodies of dump trucks [1].
Despite the repetitive task, adjusting the loading actions to
the environment for consistent high-performance loading
is challenging. The difficulty lies in the complex dynamics
and variability in the wheel loader-soil interaction. It is
impractical to address the challenge through physical ex-
periments. Systematic and repeatable experiments appear
possible only in simulated environments, but computa-
tionally efficient models for wheel loading with realistic
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Figure 1. The typical loading cycle of filling a bucket
and dumping thematerial in a receiver can be viewed
as selecting a control action that transforms the sys-
tem from one state to another with some perfor-
mance that depends on the intermediate states.

soil dynamics have become available only recently.
In this paper, we introduce a method for exploring the

sequential loading actions for maximum performance in
a simulated environment. We view it as an optimization
problem and analyze how the loading actions are expected
to perform according to the situations. A simulator is
developed, which combines contacting 3D multibody dy-
namics with a hybrid continuum-particle terrain model
that supports realistic digging forces and soil displace-
ments at real-time performance [2]. To show the ability
of the simulator, we demonstrate how the loading perfor-
mance depends on the pile and the loading action. In total
270,000 simulations are conducted with different action
parameters for loading, pile slopes, and type of material.
The performance is analyzed statistically, and some char-
acteristic actions are compared in detail.

1.1 Related work

Some researchers have previously investigated strate-
gies for maximizing the performance of wheel loading
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in simulated environments. They especially focus on the
bucket filling action, which is the most predominant ac-
tion for fuel efficiency and productivity in the loading
cycle [3]. Singh and Cannon [4] presented a planning al-
gorithm to search for the best dig region and executed the
planner by using a machine and pile model in 2D. Sarata
et al. [5] proposed a method for dig planning, taking
the 3D pile shape into account and avoiding undesirable
stress by unbalanced bucket filling. Filla et al. [6, 7]
investigated optimal bucket filling trajectories by using
simulation based on the discrete element method (DEM),
concluding that the “slicing cheese” motion, advocated by
machine instructors, is indeed a good strategy. They also
noted the need for fully dynamic simulation models, with
the possibility to adapt the control to the changing envi-
ronment as high-performing operators do, for developing
optimal bucket filling strategies. The previous studies
have been limited to either kinematic bucket trajectories
or quasi-static soil models, often based on fundamental
earthmoving equation (FEE) in combination with a cellu-
lar automata. This has several drawbacks. A kinematic
bucket trajectory may not be realizable when the full dy-
namics and actuator force limits are taken into account.
The FEE force resistance does not support situations when
the vehicle or bucket is accelerating. The correct loading
time and power consumption require a dynamic model.
Furthermore, quasi-static soil models do not capture the
actual soil displacement, around and into the bucket. This
affects both the bucket fill ratio and soil spillage on the
ground, which may significantly penalize the performance
over time. For simulation results to be transferable to the
control and planning on real sites, the dynamics of both
the machine and the soil must be represented in the model.
That is computationally very challenging, and few studies
have been performed. Lindmark and Servin [8] explored
a control strategy to maximize the loading performance
using simulation based on 3D nonsmooth multibody dy-
namics. However, it was conducted for a load-haul-dump
machine loading fragmented rock. Wheel loaders require
a different strategy because of a lower breakout force than
LHD:s [9] and the high-performing loading depends on
the pile property [10].

1.2 Problem statement

During a loading cycle, the wheel loader typically per-
forms a sequence of loading actions as illustrated in Fig-
ure 1. We assume that the wheel loader has a task plan-
ner and a controller for recurring actions (𝒂𝑖)𝑁𝑖=1 dur-
ing 𝑁 sequential loading cycles. A loading action 𝒂𝑖
starts with a machine state 𝒙(𝑡𝑖) ∈ R𝑁l and a pile state
𝒑(𝑡𝑖) ∈ R𝑁p , which can be represented as a system state
𝒔𝑖 = [𝒙𝑖 , 𝒑𝑖] ∈ R𝑁s . Then, 𝒂𝑖 leads to some trajectory 𝒙(𝑡)
and applied force 𝒇 (𝑡), changing the pile state 𝒑(𝑡) over a

time interval 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖 + 𝑡load]. The system ends up with
a new state 𝒔𝑖+1 = [𝒙𝑖+1, 𝒑𝑖+1], where 𝒑𝑖+1 may include
material spilled in the working area. The loading cycle
can be attributed to a performance P𝑖 ∈ R𝑁P . The per-
formance depends on a state-action pair, that is,P(𝒔𝑖 , 𝒂𝑖).
Examples of performance measures are the energy effi-
cieny Pe = 𝑚load/𝑊 , productivity Pp = 𝑚load/𝑡load, and
bucket fill ratio Pb = 𝑉/𝑉bucket, where 𝑚load is the re-
sulting mass of the load in the bucket, 𝑊 (𝒙, 𝒇 , 𝑡load) is
the accumulated work excerted by the actuators over the
loading cycle of time duration 𝑡load, 𝑉 is the volume of
the load in the bucket that has volume capacity 𝑉bucket.
The simulation process is illustrated in Figure 1. What
is an optimal action sequence (𝒂𝑖)𝑁𝑖=1 may depend on the
initial pile state, 𝒑1, and the number of loading cycles, 𝑁 .
For example, an optimal action sequence for 𝑁 & 1 may
transform the pile into a poor state. That would prohibit
continued loading with good performance unless the pile
is restored by additional actions optimized for improving
the quality. On the other hand, an optimal action sequence
for over 𝑁 → ∞ (terminatedwhen the pile is empty)might
start with a loading performance significantly worse than
what is optimal for single loadings but canmaintain a good
average performance. From the perspective above, opti-
mization of 𝑁 sequential loadings correspond to finding
(𝒂𝑖)𝑁𝑖=1 that satisfy

max
(𝒂𝑖)𝑁𝑖=1

𝑁∑︁
𝑖=1

𝒘T
P𝑖 (1)

where 𝒘 ∈ R𝑁P are weight factors for the different perfor-
mancemeasuresP. Note that optimization over sequential
loadings is not carried out in the present paper but will be
pursued in future work.

2 Simulator
A simulator is created using the physics engine AGX

Dynamics [11], which supports real-time simulation of
multibody systems with nonsmooth contact dynamics,
driveline, and deformable terrain.

2.1 Terrain model

The terrain is simulated using amultiscale hybridmodel
presented by Servin et al. [2]. Resting soil is modeled as a
solid, discretized in a regular 3D grid and a corresponding
2D height map for the free surface that mediates contacts
with earthmoving equipment. The bulk mechanical prop-
erties of the soil are parametrized by the mass density,
internal friction, cohesion, and dilatancy at the bank state.
When earthmoving equipment comes in contact with the
terrain, a zone of active soil is predicted and resolved
with particles of variable size and mass. DEM is used
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Figure 2. Overview of the wheel loader model with
passive joints in blue and actuated joints in red.

for particle dynamics with frictional-cohesive contact pa-
rameters and a specific mass density that matches the bulk
parameters of the soil. The earthmoving equipment ex-
periences the active soil as a low-dimensional body with
the aggregated shape and inertia of the particles and with
frictional-cohesive contacts at its interfaces. This can be
seen as an extension of the FEE to dynamic conditions,
including also bucket penetration resistance and contacts
between the bucket’s exterior and the surrounding soil.
The multiscale model allows for combined use of a direct
solver for the vehicle dynamics at high precision, an iter-
ative solver for scalable particle dynamics at lower error
tolerance, and strong coupling between the vehicle and
terrain dynamics that resist soil failure when the stresses
do not meet the Mohr-Coulomb criteria.

2.2 Wheel loader model

The wheel loader is modeled as a rigid multibody sys-
tem consisting of a front and rear frame, connected by
a revolute joint for articulated steering, four wheels, and
a parallel Z-bar linkage system [12] for controlling the
bucket relative to the front frame. Bucket filling is the
combined effect of thrusting the vehicle into a pile, by
applying torque on the wheels, while raising and tilting
the bucket. The driveline model consists of a revolute
motor transmitting rotational power to the front and rear
wheel pairs via a main, front, and rear shaft, coupled with
differentials. Each wheel is connected to the frame with
a revolute joint and consists of a tire-hub pair, with finite
elasticity with respect to radial, lateral, bending, and tor-
sional displacements. The parallel Z-bar linkage system is
modeled using 11 revolute and three prismatic joints, with
linearmotors that represent the hydraulic cylinders for rais-
ing and tilting the bucket. In total, the assembled model
consists of 27 rigid bodies and 23 kinematic constraints,
whereof 18 are passive joints and five are actuated. The
total operating weight is 15.59 tons, wheelbase 3.030 m,
and the bucket has a volume capacity of 3.0 m3. Overall,
the model roughly corresponds to a Komatsu WA320-7

Table 1. Actuators
name type speed range force limit
drive revolute [0, 11] km/h 85 kNm
steer revolute [−0.1, 0.1] rad/s 100 kNm
lift linear [−0.2, 0.11] m/s 395 kN
tilt linear [−0.2, 0.1] m/s 530 kN

[13]. The actuators are controlled by specifying a mo-
mentaneous joint target speed and force limits, which are
listed in Table. 1. The force limits are chosen to reflect
that limited power can be drawn from the engine, which in
reality supplies both the hydraulic cylinders and the driv-
eline. In addition to the internal constraints, tire-terrain
intersections give rise to frictional contact constraints, and
bucket-terrain intersections cause soil failure and digging
resistance. The wheel-terrain friction coefficient is set to
0.8. For clarity of the terrain dynamics, only the wheel
and bucket are given visual attributes.

2.3 Comparison with field measurements

To verify that the simulator represents the real-world
counterpart, we compare the trajectories and forces of the
real and simulated a wheel loader conducting a loading
cycle. Data was recorded from a manually operated wheel
loader and control parameters in the simulation were se-
lected to reproduce a similar, but not identical, loading
cycle. The vehicle speed, traction force, and lift and tilt
cylinder forces are shown in Figure 4, and the bucket tip
trajectory is in Figure 5. The forces are normalized with
a characteristic force for the wheel loader. The boom and
bucket angles relative to the chassis pitch. The data in
Figure 4 confirms that the model is representative. The
forces and trajectories do differ, e.g., the swept area of the
real bucket trajectory is about 60% larger than the sim-
ulated one. This agrees with the observed difference in
loaded mass and the lift force after breakout. Presumably,
the discrepancy is due to differences in pile shape and soil
properties, which have not been calibrated.

3 Simulations
The purpose of the simulator is to support the devel-

opment of high-performance wheel loading from different
pile states. Therefore, we run a large set of simulations
with different action parameters and analyze their perfor-
mances in relation to the pile state. Piles with four different
slopes are studied: 10◦, 20◦, 30◦ and 40◦. The considered
soils include gravel, sand, and dirt. Following the terrain
library in AGX Dynamics, they have an angle of internal
friction 44◦, 39◦, and 40◦, and dilatancy 11◦, 9◦, and 13◦,
respectively. Gravel and sand are cohesionless, while dirt
has cohesion 2.1 kPa. The soils are assigned the same
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Figure 3. Image sequence from field experiment and simulation.
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Figure 4. Comparison of the wheel loader speed and
forces during a real and simulated loading cycle.
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Figure 5. Comparison of the bucket tip trajectory
during a real and simulated loading cycle. The pile
surface is also indicated.

bulk density, 1400 kg /m3. For simplicity, the loading
scenario is restricted to entering the pile head-on, with the
bucket lowered to the ground and reversing straight out af-
ter completing the loading. The loading task is controlled
using eight action parameters, 𝛼𝑖 , listed in Table 3, and
discretized to 45, 000 parameter combinations per pile. In
total, 270, 000 simulations were run. Loadings on sand
and dirt were carried out only for piles with 30◦ slope.
The loading is controlled with a simplified version of

admittance control [14]. The approach drive speed is
𝑣d = 𝛼1𝑣

max
d , and the target speed during the penetration

phase is 𝑣d = 𝛼2𝑣
max
d . When the digging force exceeds

the set threshold values, 𝐹diglift = 𝛼3𝐹
dig
0 and 𝐹

dig
tilt = 𝛼4𝐹

dig
0 ,

the lift and tilt actuators start running with their respective
target speeds 𝑣lift = 𝛼5𝑣

𝑚𝑎𝑥
lift and 𝑣tilt = 𝛼6𝑣

𝑚𝑎𝑥
tilt . This

continues until the boom and bucket angles reach their
target, 𝜃boom = 𝛼7 and 𝜃bucket = 𝛼8, but is aborted in
case of breakout or stalling. The brake is then applied for
one second, letting the activated soil come to rest. After
that, the vehicle is driven in reverse at the target speed 𝑣d =
−0.6𝑣maxd and with tilt target speed 𝑣tilt = 0.6𝑣𝑚𝑎𝑥

tilt until the
end position 𝜃bucket = 50◦ is reached. After the breakout,
the lift target speed is 𝑣lift = 0.6𝑣𝑚𝑎𝑥

lift until the end position
𝜃boom = −10◦ is reached. The simulation is ended when
the vehicle has reversed 5 m from the entry point. The
following control constants are used: 𝑣maxd = 11.0 km/h,
𝑣𝑚𝑎𝑥
lift = 0.11 m/s, 𝑣𝑚𝑎𝑥

tilt = 0.10 m/s, and 𝐹dig0 = 100 kN.
The simulations are run with 10 ms time-step, with

the terrain discretized spatially to 0.2 m resolution, on
a high-performance computer with Intel Xeon E5-2690v4
processors, each node enabling up to 28 simulations in par-
allel and roughly 104 loading cycles per CPU hour. During
each simulation, the position, velocity, and force are reg-
istered over time for selected bodies, joints, and actuators.
From this, the loaded mass 𝑚load, dig time 𝑡load, and en-
ergy consumption𝑊 are computed for each loading cycle,
as well as the relative load spillage 𝑠load = 𝑉spill/𝑉bucket of
material on the ground, and the resulting pile shape. The
energy efficiency and productivity performance measures,
Pe and Pp, are computed for each loading also.
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Table 2. Action parameters
control values

𝛼1 approach speed [0.4, 0.6, 0.8]
𝛼2 penetration speed [0.2, 0.4, 0.6]
𝛼3 lift-trigging dig force [0.0, 0.3, 0.6, 0.9, 1.2]
𝛼4 tilt-trigging dig force [0.0, 0.3, 0.6, 0.9, 1.2]
𝛼5 lift speed [0.2, 0.4, 0.6, 0.8, 1.0]
𝛼6 tilt speed [0.2, 0.4, 0.6, 0.8, 1.0]
𝛼7 lift angle [−40◦,−30◦,−20◦,−10◦]
𝛼8 tilt angle [30◦, 45◦]

4 Result

Figures 6 and 7 show the variations in performance over
the 270,000 simulated loading operations. The distribu-
tions over dig time, load mass, and spillage, per pile angle
and material, are shown in Figure 6. In general, the trend
is that the load mass increase with the slope, and the dig
time is positively correlated with the load mass. The nom-
inal dig time is around 10-12 s, which can be compared
to the 15 s for completing the experimental loading cy-
cle in Figure 4. Higher load mass requires a larger pile
slope, but it is harder to achieve a high load with gravel
than for sand and dirt. Spillage is mostly below 2% of
the bucket volume. It increases with the pile slope and is
largest for sand and smallest for dirt, presumably thanks to
its cohesive property. Figure 7 reveals that, to first order,
loading efficiency, productivity, and load mass are linearly
related, and they are positively correlated with the pile
slope. However, many of the higher load mass cases are
associated with poor productivity. The efficiency and pro-
ductivity for dirt and sand have similar distributions, but
higher load mass can be achieved with dirt. The efficiency
and productivity are generally lower for gravel than for
sand and dirt.
To study the sensitivity of action parameters, we select

two performance points, (Pp,Pe), in the gravel 30◦ data
and extract the action parameter values that produce a sim-
ilar performance. The performance of the identical set of
action parameters on the five other sets of piles is then
highlighted. The two performance points in gravel 30◦ are
(150, 8.0) and (190, 9.0), and they are highlighted with
(×) and (+), respectively. The corresponding performance
points are not gathered narrowly in the distributions for
other pile angles but more so for dirt and sand piles with
30◦ slope. This suggests that loading actions should be
adapted to the slope of the pile, while high-performing ac-
tions may transfer to piles of different material but similar
slope.
A selection of points of special interest (POI) is made

for each pile slope and material. These points correspond
to maximum efficiency (◦), productivity (4), load mass
(�), and a Pareto optimal point (�). The Pareto optimal

point (�) is chosen in between maximum efficiency (◦)
and productivity (4) randomly. The action parameters
and performance values for the POI:s for 30◦ slopes are
presented in Table 3. We observe that a high entry speed
(𝛼1) and medium-high dig speed (𝛼2) are beneficial for
high productivity while high efficiency relates to low dig
speed (𝛼2). For large load mass, it appears important to
trigger tilting at a large digging forces (𝛼4) and to tilt at
low speed (𝛼6). No obvious relations are found for many
of the action parameters and performance values.
Although it is in general not possible to control the

bucket to follow a prescribed path, it is interesting to ana-
lyze the trajectories of the POI loadings. This is presented
in Figure 8 and 9 for different slope and material, respec-
tively. Also shown are the initial and resulting pile surfaces
as well as the initial position of the mass that is loaded or
just displaced by the loading action. At lower slope, in
Figure 8, we note a larger tendency for soil being pushed
forward and not ending up in the bucket, negatively affect-
ing efficiency, productivity, and load mass. In Figure 9
the loadings of maximal mass (�) dig into the pile deep.
However, it is not obvious that the feature of other loading
types between each other.

5 Discussion

Overall, the admittance-like control method seems to
work well if adjusted for the pile slope. The results suggest
that the preferred digging actions should preserve and ex-
ploit a steep pile slope. It appears more important to adapt
the loading actions to the pile shape than to the soil type,
at least among the materials tested in this study. High dig-
ging speed favors high productivity, while energy-efficient
loading requires a lower dig speed.
Several delimitations have been made in the present

study, and many questions are left for future work. The
effect of more complex pile shapes and other materials
needs to be studied. The reason for the moderate load
mass for gravel is not understood. Possibly the virtual
gravel represents a more densely packed and stronger ma-
terial than what was used in the field experiments. Also,
from field tests, one expects a larger difference in the
high-performance trajectories between the materials, e.g.,
longer, and more shallow digging for dirt than gravel and
lower and more deep thrusting motions for sand. These
tendencies are present for the high-productivity trajecto-
ries in Figure 9, but the difference is expected to be larger.
Digging actions can be represented and discretized differ-
ently than in the present study, and it is certainly possible
that higher performance loading can be discovered within
the present action space. The spillage and resulting pile
surface can be observed in the results, but we have not
investigated how this penalizes sequential loadings.
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Figure 6. Distribution of loadings relative to mass, time, and spillage for different piles.

Table 3. Action parameters and performance for selected loadings on piles with 30◦ slope.
soil loading 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝑚load 𝑡load 𝑠load Pprod Peff
gravel ◦ 0.6 0.2 0.0 1.2 0.4 0.2 −30◦ 45◦ 3.40 24.5 1.5 139 11.27
gravel 4 0.8 0.4 0.0 0.9 0.6 1.0 −30◦ 30◦ 2.15 10.3 2.0 207 9.82
gravel � 0.6 0.4 0.0 1.2 0.4 0.6 −30◦ 30◦ 2.51 12.3 0.3 203 10.68
gravel � 0.6 0.4 0.3 1.2 0.8 0.2 −30◦ 45◦ 3.41 25.1 2.4 136 10.53
dirt ◦ 0.6 0.2 0.0 0.9 0.8 1.0 −30◦ 30◦ 2.81 11.7 0.8 240 11.80
dirt 4 0.8 0.6 0.9 1.2 0.2 1.0 −40◦ 30◦ 2.92 11.3 0.0 257 11.13
dirt � 0.8 0.4 0.3 0.9 0.2 0.8 −30◦ 30◦ 2.76 11.2 1.3 245 11.14
dirt � 0.6 0.4 0.3 1.2 0.6 0.2 −30◦ 45◦ 4.12 32.7 1.5 126 9.09
sand ◦ 0.8 0.2 0.0 0.9 1.0 1.0 −40◦ 30◦ 2.43 10.5 1.8 232 12.16
sand 4 0.8 0.6 0.6 0.3 0.2 0.8 −40◦ 45◦ 2.98 11.6 3.6 257 11.48
sand � 0.8 0.4 0.0 0.6 1.0 1.0 −30◦ 45◦ 2.80 11.2 4.9 248 11.83
sand � 0.8 0.4 0.0 1.2 0.6 0.2 −30◦ 45◦ 3.65 25.5 5.5 143 10.12

[ton] [sec] [%] [kg/s] [kg/kJ]

6 Conclusion
We have develope a simulator to explore the sequen-

tial loading actions which maximize the performance of
automated wheel loader systems. The simulator is based
on 3D multibody dynamics and deformable terrain with
real-time capability. A vast number of loading simula-
tions demonstrates that the combined action and pile state
significantly affects the performance. As the next step, we
will study the sequential loading scenario and address the
optimization problem.
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Figure 7. Distribution of the loading performance for each pile, marking some points of interest; the most efficient
(◦); productive (4); Pareto optimal (�); and the highest load mass (�). Points highlighted with (+) and (×) are
loadings performed with two nearly identical sets of action parameters selected from gravel 30◦.
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Figure 8. Bucket tip trajectories for Pareto optimal loadings from gravel piles with different slopes. The initial
and resulting pile surface is shown as well as what mass is loaded successfully or just displaced, with the top
view projection included in the upper left corners.
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Figure 9. Bucket tip trajectories for 30◦ piles of different material (row) and the four different loading performance
POI (column). The initial and resulting pile surface is shown as well as what mass is loaded successfully or just
displaced, with the top view projection included in the upper left corners.
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