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the Model Representing Motions of Curves Made
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Abstract. We consider the initial boundary value problem for the beam equation with
the nonlinear strain. In our previous work this problem was proposed as a mathematical
model for stretching and shrinking motions of the curve made of the elastic material
on the plane. The aim of this paper is to establish uniqueness and existence of weak
solutions. In particular, the uniqueness is proved by applying the approximate dual
equation method.
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1. Introduction

In this paper, we consider the following initial and boundary value prob-
lem for the partial differential equation: The problem is to find a function
𝑢 : 𝑄(𝑇 ) → R2, where 𝑄(𝑇 ) := (0, 𝑇 )× (0, 1), 𝑇 > 0, satisfying
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(0, 𝑥) = 𝑣0(𝑥) for all 𝑥 ∈ [0, 1], (1.3)
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where 𝜌 is a positive constant denoting the density, 𝛾 is also a positive
constant, 𝜀 is the strain of the elastic material, 𝑓 is a continuous function
on R, 𝑢0 is the initial position and 𝑣0 is the initial velocity. We call the
system (1.1) – (1.3) the problem P.

The problem P is a mathematical model for stretching and shrinking
motions of the one-dimensional elastic material on the plane R2 as in Fig-
ure 1. In [2] we proposed, an ordinary differential equation system as a
model describing the motion of a polygon having 𝑁 vertices, and proved
existence and uniqueness of solutions to the ODE system. Also, we showed
some theorems concerned with the numerical scheme developed by applying
the structure preserving numerical method (see [4; 12]). Here, by letting
𝑁 → ∞ in the ODE system and adding the fourth derivative term 𝛾𝑢𝑥𝑥𝑥𝑥,
we can obtain the problem P. This limiting process and numerical results
for the ODE system and P will be discussed in our forthcoming paper. We
note that the boundary condition (1.2) means that the material is connected
smoothly. Now, we emphasize that our problem P has the following four
features.

Figure 1.

i) (Unknown function) Usually, the kinetic equation for elastic materials
is described with the displacement as an unknown function (see Figure
1). In our argument the unknown function of the system is the position
𝑢, since we would like to represent the motions, directly.

ii) (Nonlinear strain) In this paper we define the strain 𝜀 by 𝜀 = |𝑢𝑥| − 1.
This strain expresses the ratio between the length of stretching and its
original length. Since we describe the motion of the one dimensional
material on R2, such nonlinear strain appears. Here, we note that |𝑢𝑥|
may vanish in general and in this case it is impossible to calculate the
derivative of 𝜀 with respect to 𝑥. Hence, in this paper we consider only
weak solutions such that the differentiability of 𝜀 is not necessary.

iii) (Stress function) In [2] the magnitude of the stress is given by the
function 𝑓(𝜀) having a singularity such that 𝑓(𝜀) → −∞ as 𝜀 ↓ −1.
This type of the singularity for the stress function was already studied
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in material science for the compressible elastic body (see [5], [9], [10]).
However, it is not easy to handle this singularity, mathematically.
Therefore, we suppose that the stress function 𝑓 = 𝑓(𝜀) is continuous
on R in this paper.

iv) (Fourth derivative term) The equation (1.1) is called a beam equation
which contains the fourth derivative term 𝛾𝑢𝑥𝑥𝑥𝑥 and appears when we
approximate the motion of a three-dimensional material by the one-
dimensional model. This kind of equations is a part of the Falk model
dealing with shape memory alloys and is well studied, mathematically.
Due to [3], this term is regarded as a description of non-local effect
induced by interfacial energy. In order to investigate the role of this
term we will observe the numerical results for solutions to P.

The aim of this paper is to establish existence and uniqueness of weak
solutions of P under the following conditions for 𝑓 :

𝑓 : R → R is Lipschitz continuous, monotone increasing and 𝑓(0) = 0.

Here, we give a remark for the proof of the uniqueness. From the as-
sumption for 𝑓 , the regularity of the solution is not enough to apply the
standard method for the uniqueness. Namely, we can get no good estimates
by multiplying (1.1) with the time derivative of the difference of solutions.
Therefore, we prove the uniqueness by using the approximate of the dual
equation.

The idea using the dual equation is found in [6] for proofs of unique-
ness of weak solutions to parabolic and hyperbolic equations. Niezgódka
and Pawlow had proved the uniqueness of weak solutions to the multi-
dimensional Stefan problem by approximating the dual equation of the
original equation in [8]. Also, by applying their method Aiki [1] proved
uniqueness of weak solutions to the Falk model. Moreover, Yoshikawa [11]
established uniqueness of solutions in a wider class than that in [1].

In this paper, since the stress function 𝑓 satisfies only Lipschitz con-
tinuity, it is also not easy to obtain uniform estimates for solutions of
approximate dual problems. In order to overcome this difficulty, we multi-
ply the approximate dual problem by (−Δ+ 𝐼)−1𝜂𝑛, where 𝜂𝑛 is a solution
of the approximate dual problem, −Δ is the Laplace operator and 𝐼 is the
identity. By this idea, we can obtain the useful estimate in Lemmas 2 and
3, and prove the uniqueness in the similar class to that of [11]. Moreover,
we can weaken the regularity conditions for the stress function 𝑓 discussed
in [1] and [11].

We define a weak solution for our problem and give a statement of our
theorem in the next section. In Section 3, we prove the uniqueness of a
solution to P. Finally, we show the existence of a solution by applying the
standard Galerkin method.
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2. Main result

Throughout this paper, we use the spaces

𝐻 :=
(︀
𝐿2(0, 1)

)︀2
, 𝑉 :=

{︁
𝑧 ∈

(︀
𝑊 2,2(0, 1)

)︀2|𝑧(0) = 𝑧(1), 𝑧𝑥(0) = 𝑧𝑥(1)
}︁

with standard norms denoted by | · |𝐻 , | · |𝑉 , respectively, and Z>0 :=
{𝑛 ∈ Z|𝑛 > 0}.

First, we give a definition for a weak solution of P.

Definition 1. A function 𝑢 from 𝑄(𝑇 ) to R2 is called a weak solution of 𝑃
on 𝑄(𝑇 ) if 𝑢 has the following properties: 𝑢 ∈𝑊 1,∞(0, 𝑇 ;𝐻)∩𝐿∞(0, 𝑇 ;𝑉 ),
𝑢(0) = 𝑢0 and satisfying

−𝜌
∫︁
𝑄(𝑇 )

𝑢𝑡 · 𝜂𝑡𝑑𝑥𝑑𝑡+ 𝛾

∫︁
𝑄(𝑇 )

𝑢𝑥𝑥 · 𝜂𝑥𝑥𝑑𝑥𝑑𝑡+
∫︁
𝑄(𝑇 )

𝑓(𝜀)𝑢𝑥 · 𝜂𝑥𝑑𝑥𝑑𝑡

= 𝜌

∫︁ 1

0
𝑣0 · 𝜂(0)𝑑𝑥 for 𝜂 ∈𝑊 1,2(0, 𝑇 ;𝐻) ∩ 𝐿2(0, 𝑇 ;𝑉 ) with 𝜂(𝑇 ) = 0.

We note that 𝑢 · 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 for 𝑢 = (𝑢1, 𝑣1), 𝑣 = (𝑣1, 𝑣2) ∈ R2. The
main result of this paper is as follows:

Theorem 1. Let 𝑇 > 0. If 𝑓 : R → R is Lipschitz continuous, monotone
increasing and 𝑓(0) = 0, 𝑢0 ∈ 𝑉 and 𝑣0 ∈ 𝐻, then 𝑃 has a unique weak
solution on 𝑄(𝑇 ).

The proof of the uniqueness is given in the next section. In Section 4
we prove the existence of solutions.

3. Uniqueness of the solution

In this section we give a proof of the uniqueness for a solution to P and
suppose that all assumptions of Theorem 1, satisfy.

Let 𝑢1 and 𝑢2 be solutions of P, namely, 𝑢1 and 𝑢2 satisfies the properties

of Definition 1. Also, we put 𝑢 = 𝑢1 − 𝑢2, and 𝑊 =
{︁
𝜂 ∈𝑊 2,2(0, 𝑇 ;𝐻)

∩𝐿2(0, 𝑇 ;𝑊 4,2(0, 1)2)
⃒⃒⃒
𝜂(𝑇 ) = 𝜂𝑡(𝑇 ) = 0,

𝜕𝑖𝜂

𝜕𝑥𝑖
(𝑡, 0) =

𝜕𝑖𝜂

𝜕𝑥𝑖
(𝑡, 1) for 𝑡 ∈ [0, 𝑇 ]

and 𝑖 = 0, 1, 2, 3
}︁
. For any 𝜂 ∈𝑊 , we have

−𝜌
∫︁
𝑄(𝑇 )

𝑢𝑡 · 𝜂𝑡𝑑𝑥𝑑𝑡+ 𝛾

∫︁
𝑄(𝑇 )

𝑢𝑥𝑥 · 𝜂𝑥𝑥𝑑𝑥𝑑𝑡

+

∫︁
𝑄(𝑇 )

{𝑓(𝜀1)𝑢1𝑥 − 𝑓(𝜀2)𝑢2𝑥} · 𝜂𝑥𝑑𝑥𝑑𝑡 = 0.
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By integrating by parts in this equation, we have

𝜌

∫︁
𝑄(𝑇 )

𝑢 · 𝜂𝑡𝑡𝑑𝑥𝑑𝑡+ 𝛾

∫︁
𝑄(𝑇 )

𝑢 · 𝜂𝑥𝑥𝑥𝑥𝑑𝑥𝑑𝑡

= −
∫︁
𝑄(𝑇 )

{(𝑓(𝜀1)− 𝑓(𝜀2))𝑢1𝑥 + 𝑓(𝜀2) (𝑢1𝑥 − 𝑢2𝑥)} · 𝜂𝑥𝑑𝑥𝑑𝑡

= −
∫︁
𝑄(𝑇 )

{𝐹0𝑎 · 𝑢1𝑥 + 𝑓(𝜀2)} 𝜂𝑥 · 𝑢𝑥𝑑𝑥𝑑𝑡, (3.1)

where 𝜀 = 𝜀1 − 𝜀2, 𝑎 =
(︁
𝑎(1), 𝑎(2)

)︁
,

𝐹0=

⎧⎨⎩
𝑓(𝜀1)−𝑓(𝜀2)
𝜀1 − 𝜀2

if 𝜀1 ̸=𝜀2,

0 if 𝜀1=𝜀2,
𝑎(𝑖)=

⎧⎪⎨⎪⎩
𝑢
(𝑖)
1𝑥 + 𝑢

(𝑖)
2𝑥

|𝑢1𝑥|+ |𝑢2𝑥|
if |𝑢1𝑥|+|𝑢2𝑥| ≠ 0,

0 if |𝑢1𝑥|+|𝑢2𝑥| = 0,

for 𝑖 = 1, 2, and 𝑢𝑗𝑥 =
(︁
𝑢
(1)
𝑗𝑥 , 𝑢

(2)
𝑗𝑥

)︁
for 𝑗 = 1, 2. Recall that 𝜀𝑗 = |𝑢𝑗𝑥|−1 for

𝑗 = 1, 2. Also, we put 𝐹 = 𝐹0𝑎 · 𝑢1𝑥+ 𝑓(𝜀2), and then (3.1) is represented
by 𝐹 as follows:∫︁

𝑄(𝑇 )
𝑢 · (𝜌𝜂𝑡𝑡 + 𝛾𝜂𝑥𝑥𝑥𝑥) 𝑑𝑥𝑑𝑡+

∫︁
𝑄(𝑇 )

𝑢𝑥 · (𝐹𝜂𝑥) 𝑑𝑥𝑑𝑡 = 0 for 𝜂 ∈𝑊.(3.2)

Since 𝑓 is Lipschitz continuous and 𝑢1𝑥∈𝐿∞(𝑄(𝑇 )), we have 𝐹 ∈𝐿∞(𝑄(𝑇 ))
and can approximate it by {𝐹𝑛} ⊂ 𝐶∞

0 (𝑄(𝑇 )) satisfying

{𝐹𝑛} is uniformly bounded in 𝐿∞(𝑄(𝑇 )) and

𝐹𝑛 → 𝐹 in 𝐿2(𝑄(𝑇 )) as 𝑛→ ∞. (3.3)

The first lemma is concerned with the existence of a solution of the approx-
imate dual problem.

Lemma 1. Let 𝜙 ∈ 𝐶∞
0 (𝑄(𝑇 )). For 𝑛 ∈ Z>0, there exists a unique

solution 𝜂𝑛 ∈ 𝑊 2,∞(0, 𝑇 ;𝐻) ∩ 𝐿∞
(︁
0, 𝑇 ;

(︀
𝑊 4,2(0, 1)

)︀2)︁
of the following

approximate dual problem:

𝜌𝜂𝑛𝑡𝑡 + 𝛾𝜂𝑛𝑥𝑥𝑥𝑥 − (𝐹𝑛𝜂𝑛𝑥)𝑥 = 𝜙 in 𝑄(𝑇 ), (3.4)

𝜂𝑛(𝑇 ) = 𝜂𝑛𝑡(𝑇 ) = 0 on (0, 1), (3.5)

𝜕𝑖𝜂𝑛
𝜕𝑥𝑖

(𝑡, 0) =
𝜕𝑖𝜂𝑛
𝜕𝑥𝑖

(𝑡, 1) for 𝑡 ∈ [0, 𝑇 ] and 𝑖 = 0, 1, 2, 3. (3.6)

We can easily prove Lemma 1 by the standard discretization method, see
Section 5.2 in [3], since (3.4) is linear. So, we omit its proof. The following
Lemmas 2 and 3 are keys in the proof of the uniqueness.

Известия Иркутского государственного университета.
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Lemma 2. For each 𝑡 ∈ [0, 𝑇 ] there exists a unique solution 𝜉𝑛(𝑡) ∈ 𝑉
such that {︂

−𝜉𝑛𝑥𝑥(𝑡) + 𝜉𝑛(𝑡) = 𝜂𝑛(𝑡) on (0, 1),
𝜉𝑛(𝑡, 0) = 𝜉𝑛(𝑡, 1) and 𝜉𝑛𝑥(𝑡, 0) = 𝜉𝑛𝑥(𝑡, 1).

(3.7)

Moreover, it holds that 𝜉𝑛 ∈𝑊 2,2(0, 𝑇 ; , (𝑊 2,2(0, 1))2) and

−𝜉𝑛𝑡𝑡𝑥𝑥(𝑡) + 𝜉𝑛𝑡𝑡(𝑡) = 𝜂𝑛𝑡𝑡(𝑡) on (0, 1),

𝜉𝑛𝑡𝑡(𝑡, 0) = 𝜉𝑛𝑡𝑡(𝑡, 1), 𝜉𝑛𝑡𝑡𝑥(𝑡, 0) = 𝜉𝑛𝑡𝑡𝑥(𝑡, 1) for a.e. 𝑡 ∈ [0, 𝑇 ].

This lemma is a direct consequence of the Riesz representation theorem

to the Hilbert space 𝑋 =

{︂
𝑧 ∈

(︀
𝑊 1,2(0, 1)

)︀2 ⃒⃒⃒⃒
𝑧(0) = 𝑧(1)

}︂
. In fact, we

define a weak solution of the problem (3.7), if 𝜉𝑛 satisfies

𝜉𝑛 ∈ 𝑋 and (𝜉𝑛, 𝑧)𝑋 =

∫︁ 1

0
𝜂𝑛(𝑡, 𝑥) · 𝑧(𝑥)𝑑𝑥 for 𝑧 ∈ 𝑋, (3.8)

where (·, ·)𝑋 is the standard inner product of 𝑋. Thanks to the Riesz
representation theorem, there exists a unique weak solution 𝜉𝑛(𝑡) of (3.7)
for each 𝑡 ∈ [0, 𝑇 ], since 𝜂𝑛(𝑡) ∈ 𝐻 for 𝑡 ∈ [0, 𝑇 ]. Moreover, it is easily seen
that 𝜉𝑛(𝑡) is a strong solution of (3.7).

From Lemma 2 we can get the following uniform estimate for 𝜂𝑛𝑥 with
respect to 𝑛.

Lemma 3. There exists 𝛼 > 0 such that

|𝜂𝑛𝑥|𝐻 ≤ 𝛼 on [0, 𝑇 ] for 𝑛 ∈ 𝑍>0.

Proof of Lemma 3. For 𝑛 ∈ Z>0, let 𝜂𝑛 be a solution for the approximate
dual problem (3.4) - (3.6), and 𝜉𝑛 be a solution of (3.7). By putting ̂︀𝜂𝑛(𝑡) =
𝜂𝑛(𝑇 − 𝑡), ̂︀𝜉𝑛(𝑡) = 𝜉𝑛(𝑇 − 𝑡), ̂︀𝐹𝑛(𝑡) = 𝐹𝑛(𝑇 − 𝑡) and ̂︀𝜙(𝑡) = 𝜙(𝑇 − 𝑡) for
𝑡 ∈ (0, 𝑇 ), and 𝑛 ∈ Z>0, we have

𝜌̂︀𝜂𝑛𝑡𝑡 + 𝛾̂︀𝜂𝑛𝑥𝑥𝑥𝑥 − (︁ ̂︀𝐹𝑛̂︀𝜂𝑛𝑥)︁
𝑥
= ̂︀𝜙 in 𝑄(𝑇 ), (3.9)̂︀𝜂𝑛(0) = ̂︀𝜂𝑛𝑡(0) = 0 on (0, 1),

𝜕𝑖̂︀𝜂𝑛
𝜕𝑥𝑖

(𝑡, 0) =
𝜕𝑖̂︀𝜂𝑛
𝜕𝑥𝑖

(𝑡, 1) on (0, 𝑇 ) for 𝑖 = 0, 1, 2, 3,

and

−̂︀𝜉𝑛𝑡𝑡𝑥𝑥(𝑡) + ̂︀𝜉𝑛𝑡𝑡(𝑡) = ̂︀𝜂𝑛𝑡𝑡(𝑡) in (0, 1),̂︀𝜉𝑛𝑡𝑡(𝑡, 0) = ̂︀𝜉𝑛𝑡𝑡(𝑡, 1) and ̂︀𝜉𝑛𝑡𝑡𝑥(𝑡, 0) = ̂︀𝜉𝑛𝑡𝑡𝑥(𝑡, 1) for a.e. 𝑡 ∈ (0, 𝑇 ). (3.10)



50 T.AIKI, C.KOSUGI

We multiply both sides of (3.9) and (3.10) by ̂︀𝜉𝑛𝑡, and then we have

𝜌̂︀𝜂𝑛𝑡𝑡 · ̂︀𝜉𝑛𝑡 + 𝛾̂︀𝜂𝑛𝑥𝑥𝑥𝑥 · ̂︀𝜉𝑛𝑡 = (︁ ̂︀𝐹𝑛̂︀𝜂𝑛𝑥)︁
𝑥
· ̂︀𝜉𝑛𝑡 + ̂︀𝜙 · ̂︀𝜉𝑛𝑡 in 𝑄(𝑇 ), (3.11)

−̂︀𝜉𝑛𝑡𝑡𝑥𝑥 · ̂︀𝜉𝑛𝑡 + ̂︀𝜉𝑛𝑡𝑡 · ̂︀𝜉𝑛𝑡 = ̂︀𝜂𝑛𝑡𝑡 · ̂︀𝜉𝑛𝑡 in 𝑄(𝑇 ). (3.12)

By substituting (3.12) into (3.11) we have

−𝜌
∫︁ 1

0

̂︀𝜉𝑛𝑡𝑡𝑥𝑥 · ̂︀𝜉𝑛𝑡𝑑𝑥+ 𝜌

∫︁ 1

0

̂︀𝜉𝑛𝑡𝑡 · ̂︀𝜉𝑛𝑡𝑑𝑥+ 𝛾

∫︁ 1

0
̂︀𝜂𝑛𝑥𝑥𝑥𝑥 · ̂︀𝜉𝑛𝑡𝑑𝑥

=

∫︁ 1

0

(︁ ̂︀𝐹𝑛̂︀𝜂𝑛𝑥)︁
𝑥
· ̂︀𝜉𝑛𝑡𝑑𝑥+

∫︁ 1

0
̂︀𝜙 · ̂︀𝜉𝑛𝑡𝑑𝑥 a.e. on [0, 𝑇 ].

Here, we note that∫︁ 1

0
̂︀𝜂𝑛𝑥𝑥𝑥𝑥 · ̂︀𝜉𝑛𝑡𝑑𝑥 =

∫︁ 1

0
̂︀𝜂𝑛𝑥𝑥 · ̂︀𝜉𝑛𝑡𝑥𝑥𝑑𝑥

= −
∫︁ 1

0
̂︀𝜂𝑛𝑥𝑥 · ̂︀𝜂𝑛𝑡𝑑𝑥+

∫︁ 1

0
̂︀𝜂𝑛𝑥𝑥 · ̂︀𝜉𝑛𝑡𝑑𝑥 on [0, 𝑇 ].

Accordingly, we have

1

2

𝑑

𝑑𝑡

(︂
𝜌
⃒⃒⃒̂︀𝜉𝑛𝑥𝑡 ⃒⃒⃒2

𝐻
+ 𝜌

⃒⃒⃒̂︀𝜉𝑛𝑡 ⃒⃒⃒2
𝐻
+ 𝛾 |̂︀𝜂𝑛𝑥|2𝐻)︂

= 𝛾

∫︁ 1

0
̂︀𝜂𝑛𝑥 · ̂︀𝜉𝑛𝑥𝑡𝑑𝑥

−
∫︁ 1

0

̂︀𝐹𝑛̂︀𝜂𝑛𝑥 · ̂︀𝜉𝑛𝑥𝑡𝑑𝑥+

∫︁ 1

0
̂︀𝜙 · ̂︀𝜉𝑛𝑡𝑑𝑥 a.e. on [0, 𝑇 ].

Since 𝜙 ∈ 𝐶∞
0 (𝑄(𝑇 )), there exists a positive constant 𝐶1 such that

|𝜙(𝑡, 𝑥)|≤𝐶1 for (𝑡, 𝑥) ∈ 𝑄(𝑇 ), and then we have

𝑑

𝑑𝑡

(︂
𝜌
⃒⃒⃒̂︀𝜉𝑛𝑥𝑡 ⃒⃒⃒2

𝐻
+ 𝜌

⃒⃒⃒̂︀𝜉𝑛𝑡 ⃒⃒⃒2
𝐻
+ 𝛾 |̂︀𝜂𝑛𝑥|2𝐻)︂

≤ 𝐶2

{︂
𝜌
⃒⃒⃒̂︀𝜉𝑛𝑥𝑡 ⃒⃒⃒2

𝐻
+ 𝜌

⃒⃒⃒̂︀𝜉𝑛𝑡 ⃒⃒⃒2
𝐻
+ 𝛾 |̂︀𝜂𝑛𝑥|2𝐻}︂+ 𝐶2

1 a.e. on [0, 𝑇 ],

where 𝐶2 is a positive constant depending only on 𝜌, 𝛾 and

max
𝑛∈Z>0

⃒⃒⃒̂︀𝐹𝑛 ⃒⃒⃒
𝐿∞(𝑄(𝑇 ))

.

By applying Gronwall’s inequality, we obtain

𝜌
⃒⃒⃒̂︀𝜉𝑛𝑥𝑡 ⃒⃒⃒2

𝐻
+ 𝜌

⃒⃒⃒̂︀𝜉𝑛𝑡 ⃒⃒⃒2
𝐻
+ 𝛾 |̂︀𝜂𝑛𝑥|2𝐻

≤ 𝑒𝐶2𝑇

(︂
𝜌
⃒⃒⃒̂︀𝜉𝑛𝑥𝑡(0)⃒⃒⃒2

𝐻
+ 𝜌

⃒⃒⃒̂︀𝜉𝑛𝑡(0)⃒⃒⃒2
𝐻
+ 𝛾 |̂︀𝜂𝑛𝑥(0)|2𝐻 + 𝐶2

1𝑇

)︂
on [0, 𝑇 ].

Известия Иркутского государственного университета.
Серия «Математика». 2021. Т. 36. С. 44–56



WEAK SOLUTIONS FOR THE MODEL OF ELASTIC MATERIALS 51

Hence, in view of (3.7) and (3.9), this lemma is proved.

Proof of the uniqueness. Let 𝑛 ∈ Z>0 and 𝜙 ∈ 𝐶∞
0 (𝑄(𝑇 ))2. By Lemma 1,

there exists a solution 𝜂𝑛 ∈ 𝑊 of (3.4) - (3.6). From (3.4), integration by
parts and (3.2), it follows⃒⃒⃒⃒
⃒
∫︁
𝑄(𝑇 )

𝑢 · 𝜙𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
∫︁
𝑄(𝑇 )

𝑢 {𝜌𝜂𝑛𝑡𝑡 + 𝛾𝜂𝑛𝑥𝑥𝑥𝑥} 𝑑𝑥𝑑𝑡,−
∫︁
𝑄(𝑇 )

𝑢 (𝐹𝑛𝜂𝑛𝑥)𝑥 𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒
∫︁
𝑄(𝑇 )

(𝐹𝑛 − 𝐹 )𝑢𝑥 · 𝜂𝑛𝑥𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒ for each 𝑛 ∈ Z>0.

Thanks to Lemma 3, we have⃒⃒⃒⃒
⃒
∫︁
𝑄(𝑇 )

𝑢 · 𝜙𝑑𝑥𝑑𝑡

⃒⃒⃒⃒
⃒ ≤ 𝛼 |𝑢𝑥|𝐿∞(𝑄(𝑇 ))

∫︁ 𝑇

0
|𝐹𝑛 − 𝐹 |𝐻 𝑑𝑡

≤ 𝛼
√
𝑇 |𝑢𝑥|𝐿∞(𝑄(𝑇 )) |𝐹𝑛 − 𝐹 |𝐿2(𝑄(𝑇 )) for 𝜙 ∈ 𝐶∞

0 (𝑄(𝑇 )).

Thus, (3.3) implies that∫︁
𝑄(𝑇 )

𝑢 · 𝜙𝑑𝑥𝑑𝑡 = 0 for 𝜙 ∈ 𝐶∞
0 (𝑄(𝑇 )),

and then 𝑢 = 0 on 𝑄(𝑇 ). Hence, we have proved the uniqueness of the
solution for P.

4. Existence of the solutions

In this section we prove existence of a solution to P. Since 𝑉 is a separable
Hilbert space, we can choose a complete orthonormal system {𝜓𝑛}∞𝑛=1 of 𝑉
normalized in 𝐻. Also, we shall use the closed linear space 𝑉𝑛 generated by
𝜓1, 𝜓2, . . . , 𝜓𝑛 for 𝑛 ∈ Z>0. Moreover, since 𝑢0 ∈ 𝑉 , 𝑣0 ∈ 𝐻 and 𝑉 is dense
in 𝐻, there exist {𝑢0𝑛}𝑛∈Z>0 ⊂ 𝑉 , {𝑣0𝑛}𝑛∈Z>0 ⊂ 𝑉 , and {𝑚𝑛}𝑛 ∈ Z>0

such that

𝑢0𝑛, 𝑣0𝑛 ∈ 𝑉𝑚𝑛 for 𝑛 ∈ Z>0,

𝑢0𝑛 → 𝑢0 in 𝑉 and 𝑣0𝑛 → 𝑣0 in 𝐻 and 𝑚𝑛 → ∞ as 𝑛→ ∞.
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We prove the existence by the Galerkin method, namely, first for 𝑛 ∈ Z>0

we find 𝑢𝑛(𝑡) =

𝑚𝑛∑︁
𝑘=1

𝑎
(𝑛)
𝑘 (𝑡)𝜓𝑘 satisfying

𝜌

∫︁ 1

0
𝑢𝑛𝑡𝑡(𝑡) · 𝜓𝑗𝑑𝑥+ 𝛾

∫︁ 1

0
𝑢𝑛𝑡𝑡(𝑡) · 𝜓𝑗𝑥𝑥𝑑𝑥

+

∫︁ 1

0
𝑓(𝜀𝑛(𝑡))𝑢𝑛𝑥(𝑡) · 𝜓𝑗𝑥𝑑𝑥 = 0 for 𝑡 ∈ [0, 𝑇 ] and 𝑗 = 1, 2, . . . ,𝑚𝑛, (4.1)

𝑢𝑛(0) = 𝑢0𝑛, 𝑢𝑛𝑡(0) = 𝑣0𝑛 and 𝜀𝑛 = |𝑢𝑛𝑥| − 1 on 𝑄(𝑇 ). (4.2)

We denote by P𝑛 the problem (4.1) and (4.2) for each 𝑛 ∈ Z>0. For proving
the existence of a solution 𝑢𝑛 of P𝑛 for 𝑛 ∈ Z>0, we solve the following initial
value problem I𝑛 for the ordinary differential equations:

Find 𝑎(𝑛) =
(︁
𝑎
(𝑛)
1 , 𝑎

(𝑛)
2 , . . . , 𝑎

(𝑛)
𝑚𝑛

)︁
∈ 𝐶2([0, 𝑇 ])𝑚𝑛 such that

𝜌
𝑑2𝑎(𝑛)

𝑑𝑡2
= −𝐹

(︁
𝑎(𝑛)

)︁
−𝐺

(︁
𝑎(𝑛)

)︁
on [0, 𝑇 ],

𝑎(𝑛)(0) = 𝑎
(𝑛)
0 ,

𝑑𝑎(𝑛)

𝑑𝑡
= 𝑏

(𝑛)
0 ,

where 𝑎
(𝑛)
0 =

(︁
𝑎
(𝑛)
01 , 𝑎

(𝑛)
02 , . . . , 𝑎

(𝑛)
0𝑚𝑛

)︁
∈ R𝑚𝑛 , 𝑏

(𝑛)
0 =

(︁
𝑏
(𝑛)
01 , 𝑏

(𝑛)
02 , . . . , 𝑏

(𝑛)
0𝑚𝑛

)︁
∈

R𝑚𝑛 , 𝐹 = (𝐹1, 𝐹2, . . . , 𝐹𝑚𝑛) , 𝐺 = (𝐺1, 𝐺2, . . . , 𝐺𝑚𝑛),

𝐹𝑗

(︁
𝑎(𝑛)

)︁
=𝛾

𝑚𝑛∑︁
𝑘=1

𝑎
(𝑛)
𝑘 (𝑡)

∫︁ 1

0
𝜓𝑘𝑥𝑥 · 𝜓𝑗𝑥𝑥𝑑𝑥,

𝐺𝑗

(︁
𝑎(𝑛)

)︁
=

∫︁ 1

0
𝑓

(︃⃒⃒⃒⃒
⃒
𝑚𝑛∑︁
𝑘=1

𝑎
(𝑛)
𝑘 (𝑡)𝜓𝑘𝑥(𝑥)

⃒⃒⃒⃒
⃒− 1

)︃(︃
𝑚𝑛∑︁
𝑘=1

𝑎
(𝑛)
𝑘 (𝑡)𝜓𝑘𝑥(𝑥) · 𝜓𝑗𝑥(𝑥)

)︃
𝑑𝑥

for 𝑗 = 1, 2, . . . ,𝑚𝑛.
Here, we note that Picard’s theorem for ordinary differential equations

guarantees the existence and uniqueness of the solution for I𝑛, since 𝐹 and
𝐺 are locally Lipschitz continuous on R𝑚𝑛 , and the uniform estimate (4.4)
for 𝑢𝑛 holds. Thus, we have:

Lemma 4. Let 𝑛 ∈ Z>0. If 𝑎
(𝑛)
0 =

(︁
𝑎
(𝑛)
01 , 𝑎

(𝑛)
02 , . . . , 𝑎

(𝑛)
0𝑚𝑛

)︁
∈ R𝑚𝑛,

𝑏
(𝑛)
0 =

(︁
𝑏
(𝑛)
01 , 𝑏

(𝑛)
02 , . . . , 𝑏

(𝑛)
0𝑚𝑛

)︁
∈ R𝑚𝑛 satisfying 𝑢0𝑛 =

𝑚𝑛∑︁
𝑘=1

𝑎
(𝑛)
0𝑘 𝜓𝑘,

𝑣0𝑛 =

𝑚𝑛∑︁
𝑘=1

𝑏
(𝑛)
0𝑘 𝜓𝑘, then there exists one and only one 𝑢𝑛 ∈ 𝐶2([0, 𝑇 ];𝑉𝑚𝑛)
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satisfying (4.1) and (4.2). Also, it holds that

𝜌

∫︁ 1

0
𝑢𝑛𝑡𝑡(𝑡) · 𝜂𝑑𝑥+ 𝛾

∫︁ 1

0
𝑢𝑛𝑥𝑥(𝑡) · 𝜂𝑥𝑥𝑑𝑥+

∫︁ 1

0
𝑓(𝜀𝑛(𝑡))𝑢𝑛𝑥(𝑡) · 𝜂𝑥𝑑𝑥 = 0

for 𝜂 ∈ 𝑉𝑚𝑛 . (4.3)

Now, we give a lemma dealing with the uniform estimate of 𝑢𝑛.

Lemma 5. If 𝑢𝑛 is a solution of P𝑛 on [0, 𝑇 ] for 𝑛 ∈ Z>0, the following
energy 𝐺𝑛 is conserved:

𝐺𝑛 =
𝜌

2

∫︁ 1

0
|𝑢𝑛𝑡|2 𝑑𝑥+

𝛾

2

∫︁ 1

0
|𝑢𝑛𝑥𝑥|2 𝑑𝑥+

1

2

∫︁ 1

0
̂︀𝑔(|𝑢𝑛𝑥|2)𝑑𝑥,

𝑑

𝑑𝑡
𝐺𝑛 = 0 on [0, 𝑇 ],

where ̂︀𝑔 is a primitive of 𝑓 , and satisfies ̂︀𝑔(1) = 0. Moreover, it holds that

𝜌

2

∫︁ 1

0
|𝑢𝑛𝑡|2 𝑑𝑥+

𝛾

2

∫︁ 1

0
|𝑢𝑛𝑥𝑥|2 𝑑𝑥 ≤ 𝐺𝑛(0) on [0, 𝑇 ]. (4.4)

Proof. Let 𝑢𝑛 be a solution of P𝑛 on [0, 𝑇 ], namely, it is represented by

𝑢𝑛 =

𝑚𝑛∑︁
𝑘=1

𝑎
(𝑛)
𝑘 𝜓𝑘 on 𝑄(𝑇 ) for 𝑛 ∈ Z>0. Since 𝑢𝑛𝑡 =

𝑚𝑛∑︁
𝑘=1

𝑑𝑎
(𝑛)
𝑘

𝑑𝑡
𝜓𝑘 ∈ 𝑉𝑚𝑛 on

𝑄(𝑇 ), we can substitute 𝜂 = 𝑢𝑛𝑡 into (4.3) and have

𝜌

∫︁ 1

0
𝑢𝑛𝑡𝑡(𝑡) · 𝑢𝑛𝑡(𝑡)𝑑𝑥+ 𝛾

∫︁ 1

0
𝑢𝑛𝑥𝑥(𝑡) · 𝑢𝑛𝑡𝑥𝑥(𝑡)𝑑𝑥

+

∫︁ 1

0
𝑓(𝜀𝑛(𝑡))𝑢𝑛𝑥(𝑡) · 𝑢𝑛𝑡𝑥(𝑡)𝑑𝑥 = 0 for 𝑡 ∈ [0, 𝑇 ].

Here, we put 𝑧 = |𝑢𝑛𝑥|2 and 𝑔(𝑧) = 𝑓(
√
𝑧 − 1) for 𝑧 ∈ R, and then we have∫︁ 1

0
𝑓(𝜀𝑛(𝑡))𝑢𝑛𝑥(𝑡) · 𝑢𝑛𝑡𝑥(𝑡)𝑑𝑥 =

1

2

∫︁ 1

0

𝜕

𝜕𝑡
̂︀𝑔(𝑧)𝑑𝑥

=
1

2

𝑑

𝑑𝑡

∫︁ 1

0
̂︀𝑔 (︁|𝑢𝑛𝑥|2)︁ 𝑑𝑥 for 𝑡 ∈ [0, 𝑇 ],

where ̂︀𝑔(𝑟) = ∫︁ 𝑟

1
𝑔(𝜉)𝑑𝜉 for 𝑟 ∈ R. Hence, we obtain

𝑑

𝑑𝑡

(︂
𝜌

2

∫︁ 1

0
|𝑢𝑛𝑡|2 𝑑𝑥+

𝛾

2

∫︁ 1

0
|𝑢𝑛𝑥𝑥|2 𝑑𝑥+

1

2

∫︁ 1

0
̂︀𝑔 (︀⃒⃒𝑢2𝑛𝑥⃒⃒)︀ 𝑑𝑥)︂ = 0 on [0, 𝑇 ].
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Clearly, ̂︀𝑔 is a primitive of 𝑔 and satisfies ̂︀𝑔(1) = 0. Since 𝑓 is monotone
increasing, we see that ̂︀𝑔(𝑟) ≥ 0 for any 𝑟 ∈ R. Thus, Lemma 4.4 has been
proved.

Lemma 6. It holds that {𝑢𝑛}𝑛∈Z>0
is bounded in 𝐿∞(0, 𝑇 ;𝑉 ) and

𝑊 1,∞(0, 𝑇 ;𝐻).

Proof. First, by the boundedness of {𝑢0𝑛}𝑛∈Z>0 in 𝑉 , {𝑢0𝑛𝑥}𝑛∈Z>0 is
bounded in 𝐿∞(0, 1). This shows that {𝐺𝑛(0)}𝑛∈Z>0 is bounded and
{𝑢𝑛𝑡}𝑛∈Z>0 and {𝑢𝑛𝑥𝑥}𝑛∈Z>0 are bounded in 𝐿∞(0, 𝑇 ;𝐻). Hence, it is clear
that the assertion of this lemma is true.

Next, we show existence of a convergence subsequense. Here, we put

𝑋 =

{︃
𝑧 ∈𝑊 1,2(0, 1)2

⃒⃒⃒⃒
⃒𝑧(0) = 𝑧(1)

}︃
, again.

Lemma 7. There exist a subsequence {𝑛𝑘} ⊂ {𝑛} and a function 𝑢 on
𝑄(𝑇 ) such that 𝑢 ∈ 𝐿∞(0, 𝑇 ;𝑉 ) ∩𝑊 1,∞(0, 𝑇 ;𝐻),

𝑢𝑛𝑘
→ 𝑢 weakly* in 𝐿∞(0, 𝑇 ;𝑉 ), in 𝐿2(0, 𝑇 ;𝑋),

and weakly* in 𝑊 1,∞(0, 𝑇 ;𝐻) as 𝑘 → ∞.

Proof. By Lemma 6 and the Aubin-Lions lemma (cf. [7]), it is easy to
show existence of the subsequence with the required condition.

The following lemma is concerned with approximation of the test func-
tion 𝜂.

Lemma 8. For 𝜂 ∈𝑊 1,2(0, 𝑇 ;𝐻)∩𝐿2(0, 𝑇 ;𝑉 ) with 𝜂(𝑇 ) = 0, there exists
{𝜂𝑛} ⊂𝑊 1,2(0, 𝑇 ;𝑉 ) such that

𝜂𝑛 ∈ 𝐿2(0, 𝑇 ;𝑉𝑛), 𝜂𝑛(𝑇 ) = 0, 𝜂𝑛(0) → 𝜂(0) in 𝐻 as 𝑛→ ∞,

𝜂𝑛 → 𝜂 in 𝐿2(0, 𝑇 ;𝑉 ) and 𝜂𝑛𝑡 → 𝜂𝑡 in 𝐿
2(0, 𝑇 ;𝐻) as 𝑛→ ∞.

Proof of the existence. Put 𝑢𝑘 = 𝑢𝑛𝑘
and 𝜂𝑘 = 𝜂𝑛𝑘

for 𝑘 ∈ Z>0. Since 𝑢𝑘
is the solution of P𝑛𝑘

, by Lemma 4 we obtain

𝜌

∫︁
𝑄(𝑇 )

𝑢𝑘𝑡𝑡 · 𝜂𝑘𝑑𝑥𝑑𝑡+ 𝛾

∫︁
𝑄(𝑇 )

𝑢𝑘𝑥𝑥 · 𝜂𝑘𝑥𝑥𝑑𝑥𝑑𝑡+
∫︁
𝑄(𝑇 )

𝑓(𝜀𝑛𝑘
)𝑢𝑘𝑥 · 𝜂𝑘𝑥𝑑𝑥𝑑𝑡 = 0,

and

−𝜌
∫︁
𝑄(𝑇 )

𝑢𝑘𝑡 · 𝜂𝑘𝑑𝑥𝑑𝑡+ 𝛾

∫︁
𝑄(𝑇 )

𝑢𝑘𝑥𝑥 · 𝜂𝑘𝑥𝑥𝑑𝑥𝑑𝑡+
∫︁
𝑄(𝑇 )

𝑓(𝜀𝑛𝑘
)𝑢𝑘𝑥 · 𝜂𝑘𝑥𝑑𝑥𝑑𝑡

= −
∫︁ 1

0
𝑣0𝑛𝑘

𝜂𝑘(0)𝑑𝑥 for 𝑘 ∈ Z>0.
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By letting 𝑘 → ∞ in this equation, Lemmas 7 and 8 guarantee that 𝑢
satisfies the condition in Definition 1. Hence, the existence of the solution
to P has been proved.

5. Conclusion

In this paper we have established existence and uniqueness of a weak
solution to the initial boundary value problem for the beam equation ac-
companying with the nonlinear stress and strain functions. We note that
we consider the stress function as a continuous function 𝑓 on R having
no singularity and the uniqueness is proved thanks to application of the
approximate dual problem. In near future we will investigate the similar
problem in case the stress function has the singularity such that 𝑓(𝑟) → ∞
as 𝑟 ↓ −1.
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Существование и единственность слабых решений для
модели, представляющей движения кривых из эластич-
ных материалов

T.Аики1, Ч.Косуги1

1Японский женский университет, Токио, Япония

Аннотация. Рассмотрена начально-краевая задача для уравнения балки с нели-
нейной деформацией. В нашей предыдущей работе эта задача была рассмотрена
в виде математической модели для растягивающих и сжимающих движений кри-
вой из эластичного материала на плоскости. Цель статьи — установить единствен-
ность и существование слабых решений. В частности, единственность доказывается
применением приближенного метода двойственных уравнений.
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