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Abstract

In the 21th century, we see a trend in which CPU processing power is not evolving
at the same pace as it did in the century before. Also, in the current generation,
the data requirements and the need for higher speed are increasing every day. This
increasing demand requires multiple middlebox instances in order to scale. With
recent progress in virtualization, middleboxes are getting virtualized and deployed
as software (Network Function (NF)s) behind commodity CPUs. Various systems
perform Load Balancing (LB) functionality in software, which consumes extra CPU
at the NF side. There are research work in the past which tried to move the LB
functionality from software to hardware. Majority of hardwarebased load balancer
only provides basic LB functionality and depends on NF to provide the current
performance statistics. Providing statistics feedback to LB consumes processing power
at the NF and creates an interdependency.

In this thesiswork, we explore the possibility ofmoving the loadbalancing functionality
to a SmartNetwork Interface Card (smartNIC). Our load balancerwill distribute traffic
among the set of CPUs where NF instances run. We will use P4 and C programming
language in our design, which gives us the combination of highspeed parallel packet
processing and the ability to implement relatively complex load balancing features.
Our LB approach uses latency experienced by the packet as an estimate for the current
CPU loading. In our design, higher latency is a sign of a more busy CPU. The Latency
Aware smartNIC based Load Balancer (LASLB) also aims to reduce the tail latency by
moving traffic from CPUs where traffic experiences high latency to CPU that processes
traffic under low latency. The approach followed in the design does not require any
statistics feedback support from the NF, which avoids the tight binding of LB with
NF.

Our experiment on different traffic profiles has shown that LASLB can save ~30%CPU
forNF. In terms of fairness of CPU loading, our evaluation indicates that in imbalanced
traffic, the LASLB can load more evenly than other evaluated methods in smartNIC
based LB category. Our evaluation also shows that LASLB can reduce 95th percentile
tail latency by ~22% compared to software load balancing.
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Chapter 1

Introduction

The data volume of users is growing ever since the internet is started. As per
Cisco survey[10], it is expected that by 2023 there will be 5.3 billion users using
the internet. Apart from the number of users, there is a tremendous data growth
expected from upcoming technologies such as smart home/city, machinetomachine
communication, internet of things, and vehicletovehicle communication, to name
a few. The survey[10] noted that fixed broadband speed would increase twofold
to an average 110Mbps and mobile speed by 3 fold to 43.9Mbps by 2023. The
increase in user count and advancement of technologies will create a requirement to
support more traffic volume. As the user and device are getting connected, one general
trend observed in the data is getting more centralized using cloud data centers. As
the information is stored remotely, it requires data transfer if the user accesses the
application, increasing network traffic. The increasing data requirement indicates that
in the future, internet services should process more data than they are processing
now at a much faster pace. As more users need to be served at a higher traffic
volume, more computational power is needed at the server infrastructure in the cloud.
One common approach followed was adding a server or replacing the hardware with
higher processing power. Modifying the hardware can disrupt ongoing service, and
further expansion feasibility depends on factors like cost and availability. In terms
of processing power increase, we have already reached the end of Moore’s law[17],
which indicates that in the future, CPU computing ability will not grow as it did in
20th century.

The latency requirement is another dimensionwhere networking is going to experience
significant change. The growth of the telecommunication sector, especially 5G, brings
many attractive services such as remote surgery, augmented reality, and machineto
machine communication near to reality. As per surgical experiment[36], it is possible
to operate remotely with a delay of 300 milliseconds or less, and the study also
highlights that it is essential to have consistent latency to achieve a smooth surgical
operation. The 3rd Generation Partnership Project (3GPP) has introduced the support
for low latency application under its ultraReliable and Low Latency Communication
(uRLLC) umbrella. As per IMT2020[23], the uRLLC should provide user plane
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CHAPTER 1. INTRODUCTION

latency of 1milliseconds and reliability of 99.999%. With technologies trying to
increase available bandwidth, there is a push towards decreasing the Round Trip Time
(RTT). Even though 5G can provide 1millisecond user plane latency communication,
the endtoend latency matters most for the low latency communication. The latency
requirement has been an essential part of the network Service Level Agreement (SLA).
In the future, with the emergence of newer latencysensitive applications, a lower
latency will be critical in success.

Data centers or cloud environments host (virtualized) middleboxes, also denoted
as Network Functions (NF) in the remainder of this thesis. The NF’s required
computational power is typically provided by the set of CPUs hosted on a data center or
cloud environment. A load balancer distributes traffic among these sets of CPUs, so we
utilize the resource efficiently. There exist multiple loadbalancing techniques which
perform the load balancing functionality depending on different Quality of Service
(QoS) requirements. The LB functionality in itself requires computation power which
is usually provided by the dedicated hardware or general CPU pool of the NF. SLB
is the most common LB mechanism, which shares processing power with the other
hosted networking service. The SLB provides flexibility in load balancing and has
significant drawbacks in terms of latency and traffic processing ability during higher
traffic load[24]. SLB requires cores for the load balancer to run, taking precious CPU
cycles away from serving user requests. Compared to the SLB technique, theHardware
Load Balancing (HLB) based method does not share processing power with network
services, which provides NF with full CPU resources. Hardwarebased load balancer
lacked flexibility in terms of programming. However, they reduced the tail latency[20]
and provided LB functionality at much higher data rates. Dedicated hardware for LB
means an additional cost for an operator, which is in our newer design we want to
reduce by using the smartNIC. The smartNIC, apart from providing the traditional
Network Interface Card (NIC) features, supports programmability, which can be used
to implement LB functionality.

1.1 Background

The load balancing functionality is an integral part of many NFs that facilitate it with
the proper traffic distribution to achieve QoS requirements[24]. The data center
or cloud computing environment consists of many CPUs that perform dedicated
functionality to achieve parallelism. These systems depend on the load balancer
to supply the right input on different CPUs, so it becomes crucial that LB takes
steps wisely, resulting in efficient utilization of resources. There exist different
load balancing approaches which differ depending on the service they provide. The
statelessbased LB (Example RSS and Round Robin (RR)) is a simple mechanism that
does not maintain the system’s current state. In this approach, the load balancing
decision to select serving CPU is made depending on fixed attributes such as 5
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CHAPTER 1. INTRODUCTION

tuples1 hash, packet arrival time, and counters. On the other hand, statefulbased
LB (Example RSS++[7], Poster[6], and SilkRoad[28]) are heavy in implementation
but can help in providing lower latency, flow connection consistency, and fair CPU
distribution.

A loadbalancer is further classified as software or hardwarebasedLBdepending on the
physical deployment. The SLB can support featurerich load balancing functionality,
but QoS is impacted drastically when the system is loaded heavily. The software load
balancing has variable latency, and latency increases with an increase in the input
load[18]. This factor can seriously impact low latency communication as they rely
heavily on lower endtoend latency for functioning. In comparison, the hardware
based LB can support better QoS, but feature lists are limited due to hardware
programmability. The emergence of programmable NIC providing us the framework
by which programmable hardware can be used flexibly to perform a complex packet
processing function like load balancing.

1.2 Problem description

The functions of LB require a considerable amount of processing power. In the current
SLB approach, the LB functionality is deployed on dedicated CPUs or share CPUs
with NF service. In both the deployment model, the softwarebased LB functionality
consumes the precious CPU processing power leaving fewer resources to process NF
specific tasks. Onemore issue with coexisting is that CPUs have a shared resource like
cache and system bus, resulting in suboptimal performance if two different software
runs parallel. The previous studies [18] have shown that doing the load balancing in
software canmake software a bottleneck. With SLB, the latency increases sharplywhen
the system is loaded heavily with traffic, and total traffic processing capability reduces
drastically. For example, the Deep Packet Inspection (DPI) NF used in our system has
LB functionality running on the software side, and this is limiting the higher traffic
processing ability of our DPI. The data requirements will increase in the future, so it
is more important that we save processing power for the NF. In this thesis, we aim to
find an answer to the question of ”How can we freeup processing power which in the
current design is occupied by the SLB functionality?”.

SLB can perform intelligent load balancing decisions in software and supports complex
algorithm design. However, smartNIC hardware has architectural limitations in terms
of programmability and memory support. In this thesis, we aim to find an answer to
the question of ”How canwe use limited programmability of smartNIC to perform load
balancing and at the same time achieve better QoS?”.

1Combination of Source and destination IP address, source, and destination TCP/UDPport, Protocol
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1.3 Thesis objective and goals
Our thesis objective is to design, implement and evaluate a smartNICbased load
balancer that does not require statistics feedback from NF. Our plan is to use
smartNIC[2] limited programmability to implement our LB functionality. To achieve
our objective, one of our goals is to use the highlevel programming language of
P4[13] and ”C”. We use the P4 language due to its inherent support to parallelize
packet processing and achieve highspeed traffic handling. The ”C” language is used to
implement the core algorithm part to make our LB smarter. Our other goal is to make
LB latency aware. By making LB latency aware, we wanted to act depending on overall
system latency, which should help achieve fair CPU load distribution. We understand
that network traffic has various patterns depending on the day, location, and ongoing
activity. We plan to provide an algorithmic configuration in terms of latency tuning
(averaging) and frequency of algorithm trigger so our LB can be adjusted as per the
traffic burst, latency, and CPU usage requirements.

Our traffic simulation goal is to evaluate the smartNIC based load balancer under a
variety of traffic traces. We create a trace profile that simulates realworld traffic by
having both balanced (set of mice flows) and imbalanced (mice and elephant flows)
traffic. Further, we wanted to evaluate our new LB and compare results with RSS and
legacy softwarebased load balancing methods. We further aim to evaluate the new
smartNICbased load balancer with different algorithmic configurations and analyze
the results.

1.4 Research questions
The objective of the thesis and limitation of smartNIC programmability has led to the
following research questions. Our study and evaluation motive is to find an answer to
our research questions.

1. Can we design a latency aware load balancer in the smartNIC with limited
programmability support?

2. How does outsourcing the load balancing decision to the smartNIC impact
latency and throughput distribution for user traffic?

3. What is the impact of different user traffic profiles on traffic distribution among
host CPUs for our latency aware smartNIC based load balancer?

4. How does offloading LB functionality to smartNIC impact CPU consumption
inside the host CPUs?

5. What is the impact of how often load balancing is performed on achieved
performance metrics?

6. How does the additional complexity of performing LB inside the smartNIC
impact its packet processing performance?
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1.5 Ethics and sustainability
The load balancing functionality involves looking at every packet to make the load
balancing decision. Our load balancing system does not send statistics or information
to an outside node, so there is no risk of data being monitored. The data used in the
load balancing are not stored in the persistent storage, so there is no risk if an intruder
gets physical access to the NIC card.

The new LB will save the precious CPU processing power by offloading the LB
functionality to smartNIC. This indicates that NF can handle the same traffic
with fewer CPUs, which means less power consumption and carbon dioxide (CO2)
emissions, thus making the system more sustainable.

1.6 Methodology
We have started this thesis work by understanding the requirement of our DPI NF and
discussing various use cases. Our next step was to study different research work which
is carried out by other scholars in our target field. We have started designing our load
balancer by gathering requirements and knowledge of the work around our target field.
We have used our design to implement load balancer on the smartNIC. Our LB’s data
path is developed using P4[13] and ”C” programming language. Our next step was to
build an evaluation setup. Our evaluation setup consists of smartNIC hardware, DPI
NF, and a traffic generator. For traffic generation, we have used TRex[42] software. As
part of the evaluation, we have created different traffic profiles to simulate realworld
traffic patterns. We have created a test and statistics framework which is responsible
for test automation and statistic collection. We have performed different planned
tests considering different traffic profiles. As part of the evaluation, we tuned the
algorithm and discussed the impact of different parameter settings on performance
metrics. Finally, we have collected test results for planned evaluation using our test
and automation framework.

1.7 Stakeholders
This thesis is carried out by a combined effort from Sandvine Sweden AB and Karlstad
University. We have done our experiments in the Karlstad University premises using
DPI NF provided by Sandvine Sweden AB. In this thesis work, we have designed a
smartNIC based load balancing that reduces the processing power required at the
NF.

1.8 Delimitations
The scope of our thesis was to design, implement and evaluate load balancing on lab
environment using trace profile created as part of our thesis. The real field or customer
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environment test was not part of our scope. In our evaluation, the smartNIC can
process traffic at the rate of 80Gbps, but the traffic generator setup that we used can
generate a maximum of 40Gbps traffic. Further, our maximum throughput validation
with load balancing is limited by the number of CPUs available for DPI functionality
on the setup. Our current design assumes the setup will receive nonfragmented IP
packets. If the system gets fragmented packets, then the receiver will not be able to
recreate the original packet as our LB alters Internet Protocol (IP)’s identification field
by design.

1.9 Outline
The remainder of the thesis is organized as follows. Chapter 2 offers background
details required for our thesis topic, and it presents the related works done by scholars
in the field of our study. Chapter 3 will describe the design and algorithmic details
of our latencyaware load balancing (LASLB) system. Chapter 4 will present the
implementation details of LASLB and covers the TRex test automation framework,
which is used in our evaluation. Chapter 5 will describe the details of the evaluation
setup, traffic generator, and other environmental information. Chapter 6 will present
the various experiments and discussions on our test results. Finally, chapter 7
documents our conclusion on the LASLB system and future suggestions in a similar
path.
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Chapter 2

Background and Related Work

2.1 Background

Networking is experiencing tremendous growth, and the need for data is increasing
day by day. As per Cisco 2022 traffic forecast report[19], the need for IP traffic in the
year 2022 (396EB) will be 3 times that of 2017 (122EB). Traditionally, desktop users
dominated traffic, and the focus has always been on improving bandwidth capacity.
The traffic generated by mobile devices is already 13% more than traditional desktop
devices[38]. It is expected that mobile traffic will grow exponentially in the coming
decade, Ericsson further expects the number of mobile devices to grow to 8.8 billion
by 2026[15]. The operators are deploying additional hardware tomeet themarket data
demand. Adding new hardware requires physical change, which indicates there could
be possible downtime, and this mechanism is not always feasible considering various
strict SLA requirements. This situation suggests the need for not always increases but
also the efficient use of existing resources.

There is also a shift in the kind of traffic transported via the network in addition to
the increased data requirements. Apart from userinitiated traffic, future networks
will have lots of traffic generated from Machine to Machine (M2M) communication.
There is a huge demand for technologies such as smart house, Vehicle to Vehicle (v2v),
industrial automation, and health care sector monitoring, to name a few. As per Cisco
statistics[10], there will be significant growth in the number of M2M devices, and it is
expected that there will be 14.7 billion devices by 2023. It is anticipated that the M2M
communication will have bursty traffic with onoff nature and smaller packet sizes in
the range of 40256bytes[1].

In the coming section, we will cover different load balancing approaches and their
challenges. We will also describe P4 language, programmable NIC hardware, and
common traffic concepts required for understanding this research work.
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2.1.1 Load balancing

Load balancing is common terminology used in distributed systems and refers to the
act of performing proper traffic and workload distribution. The distributed system
has a set of processing entities that are used to host the NF. The NF is a functionality
provided by a middlebox as a service. The examples for NF are deep packet inspection
(DPI), firewalls, and Virtual Private Network (VPN) gateways. The load balancing at
the high level can be categorized as inter and intra server load balancing. The inter
server LB is responsible for load balancing traffic among the pool of servers. The
intraserver is responsible for load balancing the traffic among different processing
entities within a server. This thesis work focuses on intraserver LB, which performs
traffic load balancing within different CPUs present in a server. Even though load
balancing is a heavily researched topic, we still do not have the perfect solution because
data need is growing exponentially and traffic pattern varies depending on the target
application.

The load balancing system can be further categorized as static or dynamic LB. The
system will have preconfigured information in static LB, and the load balancing
decisionwill not consider runtime inputs. Static LBs are simple and fast but unsuitable
for applications where traffic characteristics change quickly[24]. The static LB
algorithm is prone to failure as it does not decide on the current traffic behavior. As
per author Alizadeh et al.[3] the static LB resulted in many networking failures due to
improper distribution of traffic, which resulted from sudden traffic burst. The common
example for static LB is RSS and RR method. RSS uses fixed 5tuple hashing to find
the destination processing entity. RR typically maintains a list of processing entity and
the LB chose the next CPU from the list for an arrived packet. In contrast to static, the
dynamic LB performs the traffic forwarding decision based on current system states
such as congestion, processing load, traffic types, availablememory, latency, and other
quality of service. Dynamic LBs are relatively complex in functionality in comparison
to static LB. However, they try to minimize the impact on NF by distributing traffic as
per the current state. One of the drawbacks of dynamic load balancing is the need for
higher resources. The intelligent processing of dynamic LB consumes extra processing
power, and the need for memory is higher due to more system state maintenance.
Many dynamic LBs depend on NF to provide the current system state, making them
highly dependent on NF. There are many LBs that are hybrid. These systems do have
preconfiguration, which does not change and also considers dynamic attributes. The
hybrid model provides flexibility that balances the resource requirement of LB and the
supported QoS.

The load balancing can be classified as flow aware and nonflow aware based LB
depending on system design to perform traffic distribution based on previous flow
statistics. The LBs which are flow aware maintain connection information of the flows,
and all the traffic for a flow is handled by one processing entity. Flow awareness
results in better cache usage and avoids the problem of Transmission Control Protocol
(TCP) reordering. The flow aware load balancer typically requires stateful memory

9



CHAPTER 2. BACKGROUND AND RELATEDWORK

for storing flow information. In the case of large flows, it requires a considerable
amount of processing power for fetching connection information for every packet. The
silkRoad[28] is an example of flow aware LB, which keeps perflow information and
provides flow to CPU connection consistency. In nonflow aware LB, a flow’s packet
can be served by different processing entities. The nonflow aware LB are simple in
implementation but usually result in lousy cache performance in the NF. Another
drawback of nonflow aware LB is, it can result in TCP reordering due to outoforder
packet processing in NF. This is a severe problem because the majority of current
internet traffic uses TCP.

The load balancer can be subdivided into SLB, HLB, or hybrid depending on the
location of load balancing. The subsection from 2.1.2 to 2.1.4 gives more information
about the SLB, HLB, and hybrid sub category of load balancing.

2.1.2 Software load balancing (SLB)
In SLB, the load balancing functionality will be performed using processing power
from the CPU. SLB deployment requires either a dedicated CPU or they share CPU
with NF. One of the advantages of SLB is that it is easier for deployment, as software
can be installed remotely without requiring any physical infrastructure changes. The
SLB provides a finer level of control in managing flows and can perform intelligent
decisions. In SLB, a developer can add a feature with less turnaround time as the
software is friendly for development.

The benefits of SLB come with some caveats, it requires dedicated cores for its
processing, or it consumes the processing power, which could have been used for other
application needs. In softwarebased LB, it is tough to process packets at the line rate
compared to hardwarebased implementation. Another issue with SLB is, the software
can be a bottleneck once the system is loaded at a higher capacity[18]. Although
SLB can provide complex load balancing functionality, the software implementation
leads to higher and more volatile added latency, which is more pronounced at higher
traffic rates. The volatile latency behavior of SLB can be concerning for the low latency
applications as they are susceptible to latency change. SLB can cause additional latency
due to the need for packet traversal between load balancing and packet processing
CPU. The hopping of packet between CPUs can result in inefficient cache utilization.
Though there are disadvantages of softwarebased load balancing, most layer4 based
load balancing is still done in software[28]. One example for softwarebased LB is
Ananta [33].

2.1.3 Hardware load balancing (HLB)
HLBuses a hardware device for performing the required load balancing. The hardware
device used can be part of the existing infrastructure, or it could be a new box added
for load balancing functionality. As hardwarebased LB are specially designed for
load balancing purposes, they can provide higher traffic processing capacity. Another
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advantage of HLB is, it helps in reducing latency due to its quick decisionmaking
ability. In previous research experiments, it is observed that HLB can reduce the tail
latency drastically[20]. The HLB is well suited for applications that are sensitive to
latency variation.

Since HLB is based on physical hardware, if an upgrade is required or a fault occurs in
the device, then physical replacement could be cumbersome. The hardwarebased load
balancing feature is limited by programming support on the hardware. The majority
of HLB is based on a static model. From observability and debugging point of view,
hardwarebased load balancing is considered less friendly.

The price could be another factor that will have a verdict when choosing between the
SLB and HLB. The price depends on many factors such as the scale of deployment,
existing infrastructure, onetime cost versus maintenance cost, future upgrades, and
service. Usually, in cloud and data center environments, there is a need to maintain
redundancy in the case of failure. Any system, either software or hardware, can fail,
and that failure should not disrupt user service. With softwarebased load balancing,
a watchdog monitors the health and activates redundancy version in case of failure.
The HLB methods can support redundancy, but the cost associated with maintaining
redundant hardware is relatively high[33].

2.1.4 Hybrid load balancing
The hybrid LB uses a combination of hardware and software for providing load
balancing functionality. This is themoderate approach to use the flexibility of software
and speed of hardware to gain both advantages. In this load balancing system, the
software running on the CPUs will configure the hardware or provide the required
intelligence to the physical device. The advantage of this method is that it can
provide all the hardwarebased features and support some intelligent traffic scheduling
depending on the control information from the software. One drawback of this
method is that this method relies on the level of hardware configuration support. The
HNLB[14] is a hybrid LB that uses Intel flow director.

2.1.5 Programmable NIC
The NIC is the lowest interaction point to receive and send packets on the network
link. Traditional NICs are fixedpurpose devices that are only responsible for network
transceiver functionality within a server. As the network is under continuous pressure
to support higher data transfer rates, the CPU requirement of NF is increasing rapidly.
The current generation is already taking the help of NIC for performing features
such as checksum offloading, hashing, and large segmentation offload. Recently,
NICs have been made more programmable due to the usage of new hardware
architectures such as network flow processors or Field Programmable Gate Arrays
(FPGA). This advancement allows outsourcing more generic and computational heavy
packet processing tasks to the smarter NIC. The smartNIC is an advancement from the
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traditional NIC. The advantage of smartNIC also comes from its location of placement,
which is the first interaction point for the packet. If a packet canbe processed at theNIC
level when a packet enters from a network, it avoids the communication (between NIC
and user plane) overhead and makes the processing faster. The smartNIC provides
additional processing power to the NF, which can be used to offload some of its
functionality, such as the load balancing functionality that is typically implemented
inside the NF to balance the load among the different processing cores.

There are multiple usecases for using smartNIC, starting from simple functionality
offload to complete switch functionality. Due to the advantages of smartNIC, the
network operators are already started moving to smartNIC[29], and by 2022 it is
projected that smartNIC will 31% share of NIC[12]. All Microsoft Azure server
deployed since 2015 is using AccelNet smartNIC[16]. From a cost perspective, the
difference between a smartNIC and a traditional NIC is not large for the gain they can
provide[9]. The previous research[9] observed that smartNIC are energyefficiency
compared to the energy consumed by NIC and CPU for the same functionality. The
energy efficiency can be a gamechanger point because the data center will consume
4.5% of total energy by 2025[27].

The smartNIC has different hardware architecture, andmajor types are (a)FPGA based
and Xilinx Alveo SN1000[43] is an FPGA based smartNIC that can support datarate of
200Gbps. Another common type is based on (b) Application Specific IntegratedCircuit
(ASIC). The final type, which is also used in the current thesis work, is (c) based on
Network Processor Unit (NPU). The Netronome provides NPU based smartNIC.

2.1.6 Netronome Agilio smartNIC family

The Netronome provides smartNIC hardware under Agilio platform. The Netronome
smartNIC are based on NFP4000, NFP5000, and NFP6000 Network Flow
Processor (NFP)s. In the Netronome smartNIC environment, the processing devices
are grouped into a unit called island, and devices are interconnected using the
Command Push Pull (CPP) bus. The smallest execution block on the Netronome
platform is called a Micro Engine (ME) which has its code and data segments. These
ME are present on island. The island on this platform can also contain devices such as
hardware accelerators and sharedmemory. Netronome[31] has a hierarchicalmemory
system, and figure 2.1.1 showsmemory size and corresponding access latency in cycles.
The local memory is the fastest memory with an access latency of 1 to 3 cycles and is
present on all the island blocks. Apart from local memory, Cluster Local Scratch (CLS)
and Cluster TargetMemory (CTM) are available on themajority of the island, and each
Flow Processing Cores (FPC) can access memory present in other islands using the
highspeed CPP bus. Netronome also supports higher size memory (SRAM) named
Internal Memory (IMEM) and External Memory (EMEM), but it has relatively higher
access latency compared to memory discussed above.

The Netronome Agilio has 3rd generation PCIe devices which can be used by x86
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Memory Type Instance Latency(Cycle) Access type Size

Local Memory Per Island 1-3 - 4KB

Cluster Local
Scratch (CLS). Most Island 20-50 In-order 64KB

Cluster Target
Memory(CTM) Most Island 50-100 threaded 256KB

Internal Memory
(IMEM). Two per chip 150-250 threaded 4MB

External Memory
(EMEM). Three per chip 150-500 threaded 3MB

DDR3 - - - 8GB

Figure 2.1.1: Hierarchical memory on Netronome

machine using single root input/output virtualization (SRIOV) interface. The
Netronome supports system programming using P4, MicroC, and a combination of
both (P4, MicroC). As part of the Netronome toolchain, a compiler is provided, which
converts the P4 programs into “C” program, further used to generate a firmware file
that can be loaded on the target hardware. Netronome support both P414 and P416
language version using v1Model architecture. TheC language supported byNetronome
is called MicroC, which is a strippeddown version of the actual C language. The
MicroC lacks features such as floatingpoint operation, string manipulation, and
dynamic memory allocation. The Netronome version of MicroC supports accessing
the hierarchical memory system and defines an API set to operate between different
memory.

Netronome has different smartNIC models depending on NFP, processing speed,
and accelerators supported. Netronome Agilio LX 1x100GbE[32] is based on NFP
6000 NFP and can support 100Gbps line rate processing. This model has 120 flow
and 96 programmable packet processing cores. The model also has various inbuilt
accelerators like crypto andhash. TheNetronomeAgilio CX2x40GbE[2] is a smartNIC
based on a 32bit NFP4000 flow processor series. This smartNIC has 60 flow and 48
packet processing cores which can process at a line rate of a maximum of 80Gbp/s.
Each FPC can support 8 threads, and this smartNIC at a time can support 480 (60*8)
packet processing.

2.1.7 P4 language
P4[13] is a highlevel data plane programming language started in the year 2014. P4
received its name from an initial paper published on the title ”Programming protocol
independent Packet Processors”. P4’s initial specification started with version P414,
and the latest version is P416 . P4 language is independent of target hardware, and
multiple hardware vendors (few names in section 2.1.5) support the P4 programming.
P4 is called protocolindependent because language is not bound to any set of existing
or new protocols. P4 programneeds to specify the header and fields onwhich it wanted
to operate.
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P4 language works on the concept of pipeline processing. We have ingress and egress
pipelines as a core part of packet processing. The Ingress pipeline refers to the action
performed when a packet enters the target hardware. The egress pipeline refers to
the action performed when a packet leaves the device. The P4 language has different
functional blocks: parser, ingress, egress, and deparser blocks. The parser block
receives a packet and is responsible for extracting the required packet header fields.
The extracted fields are stored in the internal header data structure. The parser block
has a state machine concept, and the first state in the parser block is indicated by the
keyword ”start” which marks the packet processing start. The program extracts the
required packet headers in the parser’s start state, and packet processing moves to the
next state. The following state could be another state or a decision to accept or drop
the packet.

After the parser, the next control block in the pipeline is called the Ingress block, which
contains functionality required at the ingress side of processing. This block consists of
matchaction processing. This block includes a set of tables consisting of a set of field
and control actions configured from the control plane interface. Each table entry has
a set of fields, and if the match condition evaluates to true for a packet, then ”action”
defines the corresponding control action to be performed. Once a packet is confirmed
to proceed, then it moves to the egress block. Egress block contains the set of match
action processing and can further perform logic required for the egress side and send
the packet to deparser if the decision is made to forward the packet. The deparser
phase performs a packet building job depending on the requirement and is responsible
for sending the packet out of the egress port. The number of programmable blocks
and the order in which the packet is processed depends on the P4 architectural model.
The commonmodel of P4 architecture is (a) v1Model, (b) Protable Switch Architecture
(PSA), and (c) ProtocolIndependent Switch Architecture (PISA).

P4 supports only static data types, and it does not support the dynamic type such as
C language pointers. P4 language supports builtin types required for typical packet
processing like bitstring, int, and bool. P4 supports custom or derived types, which
can be defined using keyword header, enum, tuples, struct, and header union. In P4,
users need to specify the set of protocol header fields which can be defined using the
struct andheader derived types. P4 supports persistent data structure like (a)Registers
which has data types and can store values. The (b) counter is a mechanism to store
statistics like the number of packets and their size in bytes. P4 has the concept of (c)
meters, which depending on the traffic pattern, marks it as green, yellow, and red as
per the rate configuration. The registers, counters, and meters can be defined as an
array to indicate multiple instances. P4 adds each packet with a metainformation
(metadata) that contains supporting information. P4 has standard metadata provided
by all targets and intrinsic metadata that contain targetspecific details.

P4 language supports interaction with functions written outside the P4 language using
the concept called extern objects. P4 program can trigger external function inside P4
program and interact using metadata variables. In the Netronome platform, an extern
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function can be implemented in the MicroC programming language.

2.1.8 Ethernet protocol
Ethernet is a layer2 protocol used in the wired network/device intercommunication.
The Ethernet is standardized under the IEEE 802.3[21] and can attain a max speed
of 400Gb/s. The Ethernet frame gets added at the sender side, and the receiver is
responsible for the extraction. Figure 2.1.2 shows the Ethernet frame format. The
48bit source Medium Access Control (MAC) address indicates the packet’s sender,
and the 48bit destination MAC address identifies the receiver MAC address. The
Ethernet frame format has a 16bit Ethernet type field that indicates the layer3 packet
present in the payload. For example, the value 0x0800 indicates the payload as an
IPv4 packet. Ethernet frame can carry layer3 payload of size 36812000bits. The
sender of the Ethernet frame calculates Cycle Redundancy Check (CRC) value on all
fields mentioned before and adds checksum at the end of an Ethernet frame. The CRC
checksum helps the receiver to detect corruption, if any, in the packet.

Ethernet

IP

TCP UDP

Destination MAC
Address

Protocol stack

Source MAC 
Address EtherType Payload CRC

4 Bytes

IEEE 802.E Ethernet Frame format

6 Bytes 2 Bytes
46-1500
Bytes6 Bytes

Figure 2.1.2: Ethernet frame format, type II

2.1.9 Internet protocol (IP)
The IP is a network layer protocol used heavily in the networking domain. This protocol
is responsible for transporting a packet from one node to another node using an IP
address as a reference. The initial version of IP protocol is called IPv4, which is heavily
used in the current networking domain, and successor IPv6 is also occupying the
network share gradually. Figure 2.1.3 shows the IPv4 header format. The IP protocol
has 4bit version information used to identify the protocol version of the current packet.
The version value of 4 and 6 indicate that it is an IPv4 and IPv6 packet, respectively.
The size of the IP header is indicated by the field internet header length (IHL), and
its value is multiple of 32bit. The minimum size of an IP header is 160bits which
is indicated by value 5, and the maximum length of an IP header is 480bits. The 8
bit type of service (TOS) field is used to indicate the QoS required. The header field
total length indicates the size of an IP packet, the minimum size allowed is 160bits
(IP packet with just header and no payload). Each IP packet has a 16bit identification
field used to identify a datagram for a unique flow within a fixed time duration. The
identification field is also used in the identification of the fragmented packets. The type
of layer4 protocol carried in the IP payload is indicated by the field 8bit protocol. The
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protocol value of 6 and 17 indicate that the payload is a TCP orUDPpacket, respectively.
Every IP packet has a 32bit source address which indicates the source IP address of the
sender, and a 32bit destination address which is the IP address of the receiver.

Version Total Length

Identification

Source address

Options

Bit 0 Bit 31Bit 16

IHL TOS

Flags Fragment offset

Header ChecksumTTL Protocol

Destination address

Figure 2.1.3: Internet Protocol (IP) IPv4 header

2.1.10 Transmission control protocol (TCP)
The TCP is a transportlevel protocol that is mostly used in network communication.
The TCP protocol is based on RFC793[35]. The TCP is a reliable connectionoriented
protocol, and it carries more than 90% of the internet traffic [4]. One of the features
provided by TCP is congestion control, which adjusts the sending rate depending on
the network condition like latency and bandwidth. Every packet in a TCP connection
has a 32bit sequence number indicating the packet’s position in a TCP flow. The TCP
will provide inorder delivery of the packet to upper layers; to achieve this receiver
will buffer the packets depending on the arrived sequence number. TCP makes sure a
lost packet is not permanently lost using its retransmission mechanism. The packet
receiver acknowledges the packet’s receipt by sending an ACK packet towards the
sender, and the sender marks all packets before the acknowledged sequence number
as successfully received. Apart from the acknowledgment mechanism, TCP uses the
timer to detect lost or delayed packets.

Source Port Destination Port

Sequence Number

Acknowledgment Number

DO RSV Flags Window Size

Urgent PointChecksum

Options

Bit 0 Bit 31Bit 16

Figure 2.1.4: Transmission Control Protocol (TCP) header

As TCP is a connectionoriented protocol, it establishes a connection during the start
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up phase, and both parties exchange a set of synchronization packets to communicate
the capabilities. Multiple TCP connections can be established between the two
parties, and each connection is called a flow. Each flow is uniquely identified by
the combination of 5tuple (IP.sourceAddress, IP.destinationAddress, IP.protocol,
TCP.sourcePort and TCP.destinationPort). Every TCP packet contains a 16bit source
and destination port, which identify the socket port number on the packet’s sender
and receiver, respectively. The receiver sends the acknowledgment number in the
TCP header to indicate the next expected sequence number in the acknowledgment
packet.

2.1.11 User datagram protocol (UDP)
User Datagram Protocol (UDP)[34] is a connectionless protocol compared to its peer
TCP transport protocol. In the traditional internet traffic, the percentage of UDP traffic
was less, but in the recent statistics, it is observed that UDP is picking up traffic share
due to smarter upper layers (QUIC, HTTP3). The advantage of UDP is its simplicity
and smaller header size (32 bits). UDP does not have any lucrative feature compared
to TCP except UDP header operation and checksum calculation. UDP protocol is used
when reliability is not much concern and delayed packets are not critical. Figure 2.1.5
shows the UDP header format, and the size of the UDP header is fixed (64bits). Every
UDP packet contains a 16bit source and destination port, which identify the socket port
number on the sender and receiver of the packet, respectively. The length field in the
UDP header indicates the combined length of a UDP packet (header + payload). UDP
header has a 16bit checksumvaluewhich can be used for error checking purposes.

Source Port Destination Port

ChecksumLength

Data

Bit 0 Bit 31Bit 16

Figure 2.1.5: User Datagram Protocol (UDP) header

2.1.12 Deep packet inspection (DPI)
DPI is a mechanism to closely examine the characteristics of network traffic flowing
between the sender and receiver. Traditional intermediary nodes were only looking
at the header fields that were required for forwarding purposes. The DPI feature
makes intermediary nodes capable of looking at multiple packet fields, which enables
them to support intelligent features such as traffic shaping, preventing an attack,
application monitoring, traffic filtering, and policy violation detection. The exact
functionality of DPI depends on the target user. The DPI functionality has been
widely adopted at the network service provider, government, and enterprise level. Tele
communication operator usually uses the DPI application in their packet core network
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tomonitor the current traffic characteristic, and the intelligence supplied by the packet
inspection is supplied to the Policy and Charging Control Function (PCRF) for network
configuration. This feature not only helps to improve network performance but also
help in reducing network outage by a sudden change in traffic.

The benefits of DPI come with some overhead costs. DPI functionality requires each
packet inspection and maintaining the state information on intermediary nodes. DPI
functionality will increase the node’s processing power requirements and require high
memory due to maintenance of flow statistics. DPI processing requires access to
the packet, either supplied by doing port mirroring (passive) or the same packet
traverse (active) via the packet inspection application. If a packet needs to traverse
an additional path, it will increase the RTT of a packet.

2.2 Related work
In the past, there have beenmany researchwork in the area of load balancing. The load
balancing approach had different challenges and requirements depending on intra and
interserver traffic distribution. We have majorly studied intra server load balancing
as it is connected to our field of study. We subcategorized intra server hardware
based load balancer into two categories depending onNIC type. Section 2.2.1 describes
the previous work on the load balancer, which uses the traditional NIC. Section 2.2.2
describes load balancers that are based on programmable NIC.

2.2.1 NIC based Intra server load balancing
The Intra server load balancing involves balancing traffic among the available
processing cores. One such algorithm designed by author Barbette et al. is RSS++[7].
One of the areas this work wanted to improve is resource wastage due to sharding.
For example, in RSS, we reserve the CPU resource by having fixed mapping between
5tuple hash and CPU, which is not an efficient usage of resource as due to elephant
flow, some CPUs can get overloaded compared to others. As noted by the author, this
kind of overload case can result in higher tail latency and packet drop problems. In
the case of RSS++, each CPU maintains a count of packets received by a bucket. This
information is used to indicate the percentage of the load caused by a bucket at the
CPU. All CPUs maintain a table that has per bucket packet received count. RSS++
control plane periodically fetches bucket table details from all the processing cores
involved. Internally this algorithmmaintains two lists that trackCPUswhich are highly
loaded and lightly loaded. This algorithm uses buckets packet count information to
estimate the percentage of the load caused by the particular bucket. The algorithm
migrates buckets if the core is overloaded to balance the load. Depending on the load
balancer decision, RSS++ will reconfigure the RSS indirection table depending on the
new buckets assignment. Due to its implementation of control plane inside the host,
complex RSS++ logic is possible to be implemented. However, it is difficult to move
such logic towards the smartNIC data plane due to its limited programmability. To
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avoid the reordering problem, RSS++ keeps track of when the previous CPU finishes
the packet processing, which arrived before the migration decision, by keeping state
association. A new packet that arrives during migration will be queued in the same
perbucket table and processed by the new CPU after migration. The author also noted
that smartNIC could be used for RSS++packet counting, which is done at the CPU level
in the current method. This method has multiple advantages: it can handle nearto
line rate traffic, fair resource usage, and better tail latency. This work improved 95th

percentile tail latency compared to traditional RSS. One problem in RSS++ is that it
does not process the packets that arrived during migration which can experience extra
latency.

Another stateful load balancer that offloads some part of load balancing to hardware is
done by Hybrid NICoffloading Load Balancer (HNLB) [14]. This load balancer uses
Intel’s flow director to store the connection table information at the NIC side. The
flow director on the NIC card based on HNLB configuration routes packets to the
appropriate core. If a new connection arrives and the flow director can not identify the
respective core, and it will forward an unknown connection to a default queue. The
software side of HNLB listen to the default queue and initially check if connection
details exist in the connection table. If the connection entry does not exist, it will
make a new entry on the software connection table and reconfigure the Intel flow
director with a new connection to core assignment. Once the connection details exist
in the connection table of the flow director, all the subsequent packets for the flow
will be placed in the respective queue of the CPU. This experiment has shown that a
load balancer with Intel’s flow director, NF can handle 50% more throughput than its
counterpart implementation in software (SLB) when handling 8000 connections. An
advantage of this approach is that it does not require special hardware as it builds on an
existing feature of Intel NIC. One problem with this method is that it can only support
8000 connections because of NIC’s memory limitation.

2.2.2 Programmable NIC based intra server load balancing

This section will go through different intra server load balancers that use
programmableNIC for performing the load balancing. In work Elastic RSS (eRSS)[37],
the author Rucker et al. used programmable NIC for scheduling purpose, which
is based on the mapreduce concept introduced by Taurus[40], which extends the
Protocol Independent Switch Architecture (PISA) by supporting an extra block of map
reduce. The motivation behind eRSS was to avoid the additional CPU for doing load
balancing and offloading those functionalities to NIC. eRSS functionality is divided
into two subcategories depending on the frequency of traffic estimation. On the NIC,
it performs finegrained processing where it estimates and performs load balancing
decisions per packet. On the host side, eRSS performs a slower estimation of traffic.
On the programmable NIC side, eRSS keeps a counter that measures the current input
rate in bits per second, which helps observe the current traffic trend and handle the
situation if there is a traffic burst. Another counter counts the residual load, ensuring
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enough core to serve the remaining queued packets. On the host side, eRSS software
calculates per core queued packets which application will serve, and this statistics is
periodically synced with NIC counters. The measured traffic estimation is used in
the map section to calculate CPU distance for each packet (5tuple hash). eRSS in
reduce section selects the serving CPU depending on minimum CPU distance. eRSS
will increase or decrease the number of servedCPUs depending on current and residual
traffic load. One good observation made by the author is that First Come First Serve
(FCFS) scheduling can result in high latency for small duration flows. The Elastic RSS
approach’s primary goal was to use the resource efficiently, and it compromises it by
increasing tail latency by 0.8µs3.3µs. The advantage of the elastic RSS approach is the
speed, as the map and reduce functionality is integrated into the pipeline processing.
This method can load balance keeping 75% of flow intact without breaking. One
drawback of this approach is that it is not generic since it requires a change in PISA
architecture.

iPipe[26] is a load balancing technique that uses a combination of host and smartNIC
hardware. In the work iPipe[26], the author Liu et al. has estimated smartNIC for
different areas such as communication latency, memory overhead, and packet size
versus the computation overhead. This system uses precalculated information while
making the load balancing decision over runtime. The iPipe also can move the process
dynamically between the host and smartNIC zones. One of the points highlighted here
was smartNIC should not be overloaded, so it cant process offloaded packets as it is
busy in other processing. The scheduling principle followed by iPipe is that it tries to
process the packet on the smartNIC side as long as it can and hand over the flow to
the host if smartNIC is getting loaded to a limit. The scheduler also has a mechanism
that flows can be moved from host to smartNIC if the load decreases on the smartNIC
side. As per author Liu et al.[26] we must dedicate the processing resource for a
flow, and if the goal is to minimize mean response time, then prioritizing the shortest
job first will give better results. The author has noted various areas upon which the
decision can be taken whether to process in a host or smartNIC. The advantage of this
method is that it is more robust because it considers various scheduling parameters
like different latencies, queue size, and load statistics from both host and smartNIC.
Also, thismethod uses different scheduling like firstcomefirstserve and deficit round
robin depending on packet dispersion rate. One of the disadvantages of this method is
CPU consumption due to complex algorithms and statistics management.

P4NFV[29] is a research work that is experimented on Netronome smartNIC and host
PC. In this research work, the author has precalculated some of the areas like latency,
PCIe overhead between smartNIC and host, memory availability, and computation
resource capabilities in advance, which are used by the agent control plane to create
match action tables. The goal of this work is to reduce total latency and increase
resource utilization. As per the author, Netronome supports dedicated caching, which
can be used to store flowrelated lookup information. This paper also highlights that
the smartNIC table update rate is limited, which must be kept while making decisions.
SDN agent runs an optimization job that decides the traffic flow sharing between the
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host and smartNIC based on Mixed Integer Linear Programming Problem. One of
the points highlighted in this work is that offloading helps reduce tail latency and
reduces the PCIe load, thus improving overall system performance. The smartNIC
supports various memory options with different access latency, which can be used to
place different data structures depending on need. The advantage of this method is it
hides the smartNIC configuration complexity from the central SDN controller and also
makes efficient use of smartNIC capability. One of the disadvantages of this method is
that traffic load sharing is static, which does not adjust with live traffic.

21



Chapter 3

Design

This section describes the design of smartNIC based load balancing (LASLB) system,
which makes optimized load balancing decisions depending on latency information.
In section 3.1, we describe an overview of our system. In section 3.2, we describe
LASLB requirements. Section 3.3 will describe different assumptions used in the
design. Section 3.4will explain different blocks of latencyaware load balancer. Finally,
sections 3.5 and 3.6 will cover the data plane and algorithm design.

3.1 Overview

A subscriber communicates with a server using the network. Packets sent from
the subscriber towards the server are called upstream traffic, and packets sent in
the reverse direction are referred to as downstream traffic. Figure 3.1.1 shows a
typical deployment model with upstream and downstream traffic. In this deployment,
smartNIC is connected to a network using the physical ports where packets are
intercepted by a middlebox. The middlebox deploys multiple NF instances (for
example, multiple DPIs) and has a smartNIC. This thesis aims to implement a load
balancer inside the smartNIC, which decides which NF instance to forward packets for
upstream and downstream traffic. For a particular traffic stream, there are two ports
associated with the smartNIC. For a traffic stream, one port is used to receive a packet
from the incoming link, and another port is used to send a packet towards the outgoing
link. Deployment could havemultiple traffic streams associatedwith different physical
port pairs in smartNIC. The NF interacts with smartNIC using the Virtual Function
(VF) interface. When smartNIC is not used for LB, the currently implemented solution
has its own SLB, which receives packets from each VF interface and forwards them to
a DPI instance. The DPI instance, after processing packet will forward the packet back
to a paired VF interface. The number of DPI instances will depend on the number of
CPUs available for packet processing and NF’s internal configuration.
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Figure 3.1.1: Deployment model overview

3.2 Requirements
The sender of TCP flow associates a unique sequence number to the packet to indicate
the relative position of the packet in the flow. The target receiver of TCP flow use
sequence numbers to provide an inorder delivery packet to an upper layer. If the
receiver does not receive the packet in the required order, they need to buffer a large
number of packets, and it can cause problems such as head of line blocking. One of the
reasons why outoforder packets can reach the destination is because the NF receives
and process them in random order. One of the design requirements is tomaintain flow
connection consistency as long as that corresponding CPU is not overloaded.

Another requirement of our load balancer is to develop LB without tight binding
between NF and LB. The majority of the LB that we have analyzed requires statistics
information from the NF to take load balancing action, which creates a dependency of
LB on NF. So we wanted to develop an LB which is generic and does not require any
statistics from an application it is serving. With this approach, the design is generic,
and the target application can use the maximum CPU capacity for NF.

3.3 Assumptions
In section 3.1, we have describedNF functionality when the LB is active on the software
side. In our target design, LB functionality will be performed in the smartNIC. In the
new approach, NF associates a DPI instance with a particular packet processing CPU.
Each DPI instance will poll the respective VF interface and forward packet on the same
interface after performing the intended deep packet inspection. DPI NF maintains
state information (flow context) for a flow it is serving on the respective CPU. If the LB
decides to move a set of flows across CPUs, such movement might require respective
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flow context to be moved between CPUs. Flow’s context movement can lead to cache
miss and performance penalties.

LASLB, over time, evaluates the latency of a set of flows and performs the required
load balancing action to maintain even latency across different CPUs. In this design,
we assume latency will increase or decrease linearly by traffic load. For example, if a
CPUXhas a latency of A+B andLBmoves the portion of flows that contribute B latency
to CPUY. In this case, we assume the latency of CPUY will increase by B and latency
of CPUX will decrease by B. This assumption may or may not hold true depending on
CPU load.

3.4 LASLB building blocks
In this subsection, we explain the individual subsystem which makes up our LASLB.
Subsection 3.4.1 explains how LASLB maintains flow to CPU mapping. Subsection
3.4.2 describes how LASLB maintains and uses latency.

3.4.1 Flow association
In our design, flow refers to a unique traffic connection that is established between
two parties. Each unique flow is usually identified by a 5tuple. A network can
have different flows, and its traffic share could vary depending on many factors.
RSS uses a fixed 5tuple to identify the target CPU, and this could lead to traffic
imbalance due to elephant flows. In our target design, we wanted to control the traffic
imbalance. Our initial design thought was to maintain perconnection details to have
a granular level of control, but this approach faced severe roadblocks. In basic form,
identifying a uniqueTCP flow connection requires storing 104bits, and to keep 1million
connections requires 104Mbit of storage space. This design approach was not feasible
and extendable to large connections considering smartNIC memory. Maintaining per
connection details also requires a higher number of looping or hash operations which
is not feasible for a smartNICbased system.

In our design, we use the concept of a bucket to maintain flow to CPU mapping. In
our design, a bucket is treated as a logic group with different flows, and figure 3.4.1
illustrates the mapping concept. The system will have Nbuckets which will map to
Xserving CPUs. In the diagram, we have used colorcoding, and the buckets with the
same color are served by a single CPU in the NF. In this design, each bucket maps to
a serving CPU which is responsible for handling the traffic. It is possible that multiple
buckets map to a CPU. In figure 3.4.1, the buckets 10 and 13 are served by CPU1. Once
a packet is received in the smartNIC, the system calculates a 5tuple hash, and the
resultant hash indicates a bucket number that will serve the flow. Hash operation
gives a unique number that is in the range of 0 to a maximum number of buckets
in the system. Further, this bucket number is used to fetch the CPU/VF identifier
that will be serving the flow. In our design, the mapping between flow to bucket
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always remains the same, but a mapping from bucket to CPU can change in case of
corresponding CPU overload. The Bucket system will help save the memory required
compared tomaintaining per connection details and achieve fixed connectionmapping
unless the bucket is moved to a different CPU. Another advantage of this method it
saves processing power on the smartNIC side, as a systemneeds to iterate over a couple
of buckets instead of looping over a large number of connections when making load
balancing decisions.
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Figure 3.4.1: Bucket to CPU mapping

The number of buckets to be used is fixed in our design and can only be configured
at compile time. The system also has a control plane interface that allocates the
initial mapping between the bucket and serving CPU. In the run time, the association
between bucket to CPU can change as per our algorithmic decision. This bucketto
CPU mapping requires minimal memory, and we do not have any restriction on the
number of buckets unless restricted by the total available smartNIC memory.

3.4.2 Latency estimation
Our system calculates latency for every packet that traverses through the system.
Figure 3.4.2 shows different timestamp that is captured in the LASLB system.
Whenever a packet enters an ingress block, the load balancer extracts the MAC
timestamp from the packet metadata and inserts the timestamp in the IP packet’s
identification field. Further, the updated packet is sent to the NF. Whenever a packet
is received back from the host, the algorithms take the current timestamp from the
metadata and derive a latency experienced by the corresponding packet. We have
chosen the current timestamp instead of the ingress timestamp as we also want to take
into account the delay caused by the packet processing and queuing at the smartNIC
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side. Our system calculates ”Current packet latency,” which is the difference between
the current time and time when the packet entered the system from the network.
Current packet latency is the total time packet present in the smartNIC and NF
(excluding the egress processing time towards the network). The current packet latency
includes time packet spent in NF, two times peripheral component interconnect
express (PCIe) traversal, smartNIC ingress, and smartNIC traffic manager processing.
Our design uses the IP packet’s identification field to store timestamp information
when sending packets towards theNF; this operationwill overwrite an existing value of
the IP’s identification field. Our design assumes that NF will not use IP’s identification
field for any operation. As a design alternative, we have considered adding a custom
telemetry header to hold the latency information during interaction with NF, but that
approach required an update to the DPI software, which we wanted to avoid as it will
create interdependency.

Network Func�on

SmartNIC

Network Function

Packet in from networkPacket out to network

t2
t1Current Packet Latency= t2 -t1

Figure 3.4.2: Timestamp points

latency = α ∗ currentPacketLatency + (1− α) ∗ previousPacketLatency

The latency is maintained bucketwise. A bucket is a logical group that serves multiple
flows. We use exponential smoothing while calculating the bucket latency as indicated
in the above formula. One of the reasons we went with exponential smoothing instead
of other techniques is that wewanted to track latency evolution over time. Thismethod
also gives further control by which system can be adjusted to act based on the traffic
burstiness requirements. The latency calculated on the P4 side is further used in our
algorithm (section 3.6) while making movement decisions.

3.5 Data plane architecture
In this section, we describe the LASLB data plane design. Figure 3.5.1 shows the packet
travel route in the LASLB system. In the diagram, pointed blue arrow indicates the
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packet travel path and blocks it visited for a packet received from the network. The
orange color pointed arrow shows a return path of the packet once it is processed at
NF. In the following sections, we explain LASLB’s packet processing design.
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Figure 3.5.1: Packet travel path in smartNIC and NF

3.5.1 Ingress parser
Ingress parser is the first interaction block that validates and extracts different protocol
headers. Initially, we check if the packet is a valid Ethernet frame; if yes, we check the
layer3 protocol type. If the packet is an IPv4 packet, we further extract it to check if
it is a valid TCP, UDP, or Internet Control Message Protocol (ICMP) packet. If we
receive any protocol type other than mentioned above, then the corresponding packet
will be dropped. Ingress parser handling is the same for all packets, and it does not
differentiate between the packet received from the network and the host. In our design
for a single packet, there will be two times (one per packet source) header extraction
done.
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Figure 3.5.2: Ingress parser processing

3.5.2 Ingress handling
Ingress is the next block that performs the majority of the LASLB packet processing.
Figure 3.5.3 shows different functionality performed as part of ingress handling. Our
system initially classifies the packet depending on packet origin (from network or
NF). We use an ingress port number to identify the source of a packet. If the packet
is received from the network, we perform a 5tuple hash, and the resultant hash is
used as a bucket number. The hash function always returns the same bucket number
for a flow, and so in our design, a flow will always map to the same bucket. As the
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following step, LASLB will get an ingress timestamp (t1 in figure 3.4.2) and insert it
into the identification field of the IP header. This timestamp will serve as the time the
packet enters the smartNIC from the network. The packet received from the network
from one port needs to be forwarded back once the NF’s functionality is finished. We
maintain a table called streamMap, which contains the source and respective target
port towards the network. The LASLB system fetches the egress port by using the
ingress port as a key in the streamMap table. In our architecture, we have a different
port for the upstream and downstream traffic. The streamMap table also helps to
identify the upstream and downstream traffic. The DPI NF that we have used requires
traffic direction information from the load balancer. In our design, LB will send traffic
direction information to NF by encoding the information into the Ethernet packet.
The Ethernet packet also stores the target egress port number, which is received from
streamMap table. Further details about Ethernet packet encoding are not disclosed
due to proprietary reasons. As a final step, we fetch the CPU information, which will
be serving the flow. In this design, a packet will be forwarded to a CPU by sending that
packet towards the associated VF. For example, if LB wants to send a packet to CPU0
in NF, then the corresponding packet will be sent to VF0. Serving CPU information
is fetched by using bucket number as an index into the bucketToVfMap register. As a
part of the transit phase, a packet will be sent to the proper CPU by sending it towards
the associated VF.

If the packet is received from the host on which NF is bonded, we first calculate
the packet latency using the method discussed in section 3.4.2. As the next step of
processing, we check if it is the right time to trigger the algorithm. LASLBmaintains a
timer that gets updated depending on packet arrival frequency. The algorithm (section
3.6) is triggered periodically depending on the fixed interval. Whenever a packet is
received from NF, we calculate a difference between the current time and the time
when the algorithm is triggered previously. If the time difference between now and the
last algorithm trigger is more than the periodicity interval, we trigger the algorithm
part. If the algorithm is triggered, the processing control will come back to the P4 side
after finishing the algorithm. The algorithm is responsible for validating the current
latency and updating bucketToVfMap register if required. Before the packet goes out
to the network, our system makes sure the Ethernet packet’s modified fields are set to
the original value. Also, we have decided to set the IP packet’s identification field to a
fixed value as our design modifies the original identification field.

3.6 Algorithm
The algorithm part is the core part of the LASLB system, where actual latency check
and bucket movement will be carried out (if required). This algorithmwill be triggered
periodically, as described in section 3.5.2. The algorithm is responsible for checking
each CPU utilization by validating each CPU latency. If a corresponding CPU is highly
loaded (decided based on latency), the algorithmwill try tomove the bucket to a lightly
loaded CPU. Our algorithm has different latency thresholds, which ensures there is no
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bucket movement pingpong effect. Our system calculates a high latency mark, and a
CPUwith a latency above this will be considered for bucketmovement. The design also
maintains a safe latency mark value, and CPUs which are under safe latency will be
used as bucket receiving targets. The algorithm calculates per CPU latency by adding
all buckets latency which is served by the corresponding CPU. We calculate average
system latency by adding all individual CPU’s latency divided by the number of CPUs.
We have developed two variants of the LASLB algorithm, and they differ depending on
theway to choose the target CPUs (bucket receiving targets) and the number of buckets
moved per interval. Figure 3.6.1 shows a system snapshot with buckets and respective
CPU mapping. Text inside each box indicates the bucket number and corresponding
latency. A number above each CPU indicates the total latency of the corresponding
CPU. In figure 3.6.1, CPU1 is serving four buckets, and its total CPU latency is 190.
In the section 3.6.1 and 3.6.2, we explain Maximum (MAX) and Lowest Two (LOW2)
variants of the algorithm.
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Figure 3.6.1: LASLB algorithm

3.6.1 Max algorithm (MAX)
In the MAX variant, all the CPUs that have a latency below the safe latency mark are
considered target CPUs. This algorithm considers all the possible target CPUs while
validating and deciding the movement of the bucket from highly loaded CPUs. In this
algorithm, we loops (in ascending order) through all possible CPUs and verify if the
total latency of the CPU is more than the high latencymark of the system or not. If the
CPU has latency more than the high latency mark of the system, we further consider
this CPU for bucket rearrangement. For each CPU with a latency more than the high
latencymark, we loops (in ascending order) through all the buckets it is serving and see
if the movement of the bucket can be done without increasing the target CPU latency
above average latency. Apart from satisfying the latency criteria mentioned above, the
bucket chosen first formovement depends on the bucket’s numerical order. The reason
whywewentwith numerical order is that sorting bucket based on latency requires extra
processing, and the amount of cache miss in the NF might depend on the size of the
bucket moved. For simplicity, our design selects a probable bucket to be moved based
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on the bucket’s numerical order. If a bucket can be moved to the target CPU, then
the algorithmwill do the requiredmovement and adjust internal database accordingly.
After each iteration, the logic validates if further iteration is required or not by looking
at the current latency of the CPU. As the name indicates, this particular algorithm
compares eachCPUwith a latencymore than the high latencymark against all possible
candidate CPUs where a bucket can be moved. This algorithm does not have a limit on
the number of bucket movements to be done per interval. This algorithm consumes
more smartNIC processing power compared to LOW2 as it tries to iterate over all the
target CPUs, and there is no limit on the number of bucket movements.
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Figure 3.6.2: Bucket mapping after completion of MAX algorithm

Figure 3.6.2 shows the bucket mapping after completion of the MAX algorithm for the
input snapshot shown in figure 3.6.1. For the system state shown in figure 3.6.1, CPU2
to CPU5 has latency below the safe latencymark, and this algorithm considers all four
CPUs as a probable bucket receiving candidate (target CPU). The algorithm selects
CPU1 as the latency of the CPU is above the high latency mark. MAX algorithm loops
(in ascending order) through bucket under CPU1 and checks if bucket can be moved to
the target CPUs without increasing its latency above the system’s average latency. The
algorithm picks CPU2 as an initial bucket receiving candidate, and the first bucket that
will be moved to CPU2 is bucket 2 (latency 36). The bluecolored numerical number
inside a box (top right) indicates the order of movement done in the diagram. In the
figure, a box with no color indicates that the corresponding bucket has beenmoved out
of the CPU. FromCPU1, we cannotmove any other bucket to CPU2 as it will increase its
latency above the system’s average latency; also, CPU2 can not be further used as target
CPU as its current latency is above the safe latency mark. The algorithm picks CPU3
as the next bucket receiving candidate, and the first bucket that will be moved from
CPU1 is bucket 0. The algorithm further picks CPU4 as a bucket receiving candidate
for bucket 3 (latency 32). Since all possible bucket of CPU1 has been moved to target
CPU, the algorithmmoves to CPU6 as its latency is above the high latency mark. Now,
CPU5 is the only CPU that has latency below the safe latency mark. The algorithm
picks the first bucket that is bucket 9 and moves it to CPU5. Since there is no CPU left
with latency below the safe latency mark, this algorithm will end.
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3.6.2 Lowest two algorithm (LOW2)
LOW2 is our second algorithm variant for making latency validation and bucket
movement decisions. This algorithm differs from the MAX variant in terms of target
CPU selection and a maximum number of buckets moved per algorithm interval. In
this section, we only describe LOW2 variant functionality which is different fromMAX.
This algorithm finds two CPUs with the two lowest latency among the available CPUs,
and only those will be considered as probable bucket receiving candidate CPU (target
CPU). Two CPUs with lowest latency are calculated at the start of the algorithm, and
LOW2 checks highly loaded (latency above high latency mark) CPUs against those
with the two lowest latency. If a CPU has latency more than the high latency mark, we
loops through all buckets inside it and see if we can move the bucket to a CPU with the
lowest two latency without increasing its latency above the system’s average latency.
LOW2 variant per algorithm trigger performs a maximum of two bucket movements.
This variant consumes less processing power as it has a maximum of two target CPUs
and two bucket movement decisions.
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Figure 3.6.3: Bucket mapping after completion of LOW2 algorithm

Figure 3.6.3 shows the bucket mapping after completion of the LOW2 algorithm for
the input snapshot shown in figure 3.6.1. In figure 3.6.1 the CPU5 has the lowest
and CPU3 has the secondlowest latency, and this algorithm considers these two CPUs
as probable bucket receiving candidates (target CPU). The algorithm selects CPU1 as
the latency of the CPU is above the high latency mark. LOW2 algorithm loops (in
ascending order) through bucket under CPU1 and checks if the bucket can be moved
to the target CPUs without increasing its latency above the system’s average latency.
The algorithm picks CPU5 as the initial bucket receiving candidate as it has the lowest
latency, and the first bucket that will be moved to CPU5 is bucket 0 (latency 41). After
the previous step, CPU5’s latency is increased above the safe latency mark, and it
will not be used as a bucket receiving candidate. The algorithm selects CPU3 as the
next bucket receiving candidate as it had the secondlowest latency. LOW2 selects
bucket 2 and moves to CPU3 as that movement does not increase its latency above the
system’s average latency. This algorithm will end now as it has performed two bucket
movements.

32



Chapter 4

Implementation

We have programmed LASLB using P416 and MicroC programming language. P4
language is used for data path implementation, and MicroC language is used for the
algorithmpart as an external function to the data path. Python is used for control plane
configuration and test infrastructure. In section 4.1, we explain how we developed
the data plane side of LASLB. In section 4.2, we explain how the LASLB’s required
configuration is implemented. Finally, section 4.4 explains the test and statistics
framework that we have developed for evaluation.

4.1 Data plane
In this section, we describe the data path implementation details. Section from 4.1.1
to 4.1.6 will explain the LASLB system’s different building blocks implementation. In
section 4.1.7, we will describe the ingress processing and algorithm side in detail.

4.1.1 Timestamp
LASLB uses Netronome’s MAC
timestamp support (enabled by option nfirc_mac_ingress_timestamp) to get time in
the system. We are using the ingress timestamp (ingress_global_timestamp), which
is the time when the packet enters the MAC chip block, and it is a 64bit relative time
in nanoseconds from smartNIC start. This time in our design denotes when a packet
enters the hardware device. We discard lower 8bits of timestamp and keep only the
next 16bits (bits range 23:8). By discarding lower 8bits, we will not calculate latency
below 255 nanoseconds, which is accepted for our target system considering other
processing delays involved. The reason for storing only 16bits is that we have identified
the IP protocol’s identification field as the target location to store the timestamp, and
the size of the field is 16bits. Since we are using 16bits, our system can handle max
latency of 16.77 milliseconds at a granularity of 255ns. This timestamp will be sent
towards the NF by adding information in the IP’s identification field and acts as packet
entry time (t1) during the latency calculation.
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When a packet is received from NF at the smartNIC, LASLB calculates the packet
latency, which is the time spent by the packet inside the NF, two times PCIe traversal,
egress handling towards the NF, and ingress handling. We collect current time (t2)
fromNetronomeMAC current time (current_global_timestamp), a 64bit relative time
with a granularity level of nanoseconds. We extract the 16bits from the current time
using the logic similar to ingress time, and further time difference (t2t1) indicates the
current packet latency.

4.1.2 Hash function

We use a hash function to associate the flow to a unique bucket. LASLB uses 5
tuple (IP.source address, IP.destination address, IP.protocol, value4, and value5) to
identify a unique flow. The code snapshot 4.1 shows processing performed during
bucket identification. The first three arguments of the 5tuple are extracted from the IP
header. The last two arguments we call value4 and value5 are constructed depending
on the layer4 protocol. In the case of TCP and UDP, the source and destination port
are used as value4 and value5, respectively. In the case of ICMP, we use type and
checksum header fields as value4 and value5 arguments. We perform hash also on
ICMP packets to have a good distribution of latency packets among all the CPUs. The
hash function output returns a bucket number (between 0 andMAX_BUCKET1), and
a CPU associated with the corresponding bucket will process the flow. The mapping
between flow to bucket number always remains constant nomatter which CPU process
the bucket. We use a hash function provided by Netronome hardware and use CRC32
as our hash algorithm in our implementation. We have compared the performance
result of CRC32 with other provided hash algorithms and finally concluded to use
CRC32 due to its better performance.

1 if (meta.type== IPPROT_UDP) {
2 value4 = hdr.udp.srcPort;
3 value5 = hdr.udp.dstPort;
4 } else if (meta.type== IPPROT_TCP){
5 value4 = hdr.tcp.srcPort;
6 value5 = hdr.tcp.dstPort;
7 } else {
8 value4 = hdr.icmp.type;
9 value5 = hdr.icmp.checksum;
10 }
11

12 hash (bucket_index , //Output (Bucket Number)
13 HashAlgorithm.crc32, //Hash algorithm
14 16w0, //Starting Value
15 {ipv4.srcAddr, ipv4.dstAddr, ipv4.protocol , value4, value5},//5-tuple
16 MAX_BUCKET);

Listing 4.1: 5tuple hashing
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Name Type Number of Entries

throughputPhyIn Counter Number of physical ports

throughputPhyOut Counter Number of physical ports

throughputVfIn Counter Number of virtual functions

throughputVfOut Counter Number of virtual functions

bucketLatency Register Number of Buckets

bucketToVfMap Register Number of Buckets

prevAlgoTriggerTime Register One

Table 4.1.1: P4 data structure

4.1.3 P4 data structures
This section describes registers and counters that are maintained as part of LASLB
stateful LB architecture.

4.1.3.1 Counters details

The counter throughputPhyIn and throughputPhyOut count the number of packets
and their size in bytes coming from the physical port and going towards the network
via the physical port. The throughputVfOut count the number of packets and their
respective size in bytes for a packet sent to the NF using the virtual function, and
throughputVfIn counts similar statistics but in the reverse direction (NF to smartNIC).
These statistics are maintained per physical port or virtual function as applicable.
These counters are only kept for observability perspective and are not used in load
balancing decisions.

4.1.3.2 Register details

The register variable stores the information which is required for the algorithm
functions. The bucketLatency register stores per bucket latency, which is calculated
using exponential smoothing. The bucketLatency register will be updated per packet
and used by the algorithm while making load balancing decisions. We use the
P4 control block and atomic annotation to update the bucketLatency register to
guarantee the atomic property. Without the atomic property, multiple packets may
update the packet latency of the same bucket on different microengines concurrently.
The association between the bucket and CPU/VF is maintained in the register
bucketToVfMap. Table 4.1.2 shows a sample bucket to CPU/VF association, each
register index indicates the bucket number (calculated from the hash function in
section 4.1.2). In the example table, the first row indicates that the first bucket has
an association with the first CPU or VF1.

1In Netronome, each VF identified by number starting with 768.
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Instance Example Value

bucketToVfMap[0] 768 (VF0)

bucketToVfMap[1] 769 (VF1)

.... ....

bucketToVfMap[n] 768+n (VFn)

Table 4.1.2: Sample bucket to CPU/VF mapping

On the P4 side, we have a timer that is used to trigger the algorithm periodically.
The register prevAlgoTriggerTime stores the time when the algorithm was triggered
previously. We use 64bit nanosecond level time, which is received as part of the
incoming packet. The register prevAlgoTriggerTime will be updated whenever there
is a new algorithm trigger condition satisfied. We perform all timerrelated operations
inside the control block with atomic annotation to ensure we do not have multiple
algorithm triggers due to the parallel processing of packets.

4.1.4 MicroC data structures

The data structuremaintained at theMicroC side is for algorithmic purposes. MicroC
data structure is populated from the register maintained on the P4 side whenever the
load balancing algorithm gets invoked. Netronome has hierarchical memory (section
2.1.6), and we are using a combination of local memory and CTM memory for our
implementation. Listing 4.2 show different variables and their corresponding data
type maintained at the MicroC side.

1 typedef struct bucketDatabase{
2 uint32_t bktLat; // Latency for a bucket
3 uint8_t bktIdx; // Bucket Index
4 }bucketDatabase;
5

6 typedef struct vfInfo{
7 uint8_t bktCount; // Number of bucket inside serving VF/CPU
8 uint32_t vfLat; // Total CPU/VF latencies (sum of all bucket

latencies under the CPU)
9 bucketDatabase bktDb[MAX_BUCKET];
10 }vfInfo;
11

12 struct database{
13 vfInfo vf[MAX_VF];
14 uint8_t twoLowestLatVf[2];//Used in LOW2 algo stores VF with 2 lowest

latencies
15 };
16

17 uint32_t bucketToCpuMap[MAX_BUCKET];//Stores the bucket to VF/CPU map
18 uint32_t bucketLatency[MAX_BUCKET]; //Stores The latency per bucket
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19 __declspec (ctm) struct database db;

Listing 4.2: MicroC Data structure

On the MicroC side, bucketToCpuMap array holds bucket to CPU/VF mapping,
which is initially a copy of P4 datapath’s bucketToVfMap register and gets
updated as per algorithm decision. When the algorithm is finished, the values in
bucketToCpuMap variable indicate the finalmapping between the bucket andCPU/VF.
The bucketLatency variable is used to store the current latency snapshot from the P4
datapath’s bucketLatency register and is further used in decision making. We have
used 32bit unsigned variables to store both bucket mapping and latency. The reason
for using 32bit isNetronomeprocessor[31] is 32bit, and the target value fits in the 32bit
range. On the MicroC side, we have a database (db in short) structure that stores
the current snapshot for the algorithm, which has information at the CPU/VF level.
Inside each CPU/VF, we have the bucket details which it is serving. Table 4.1.3 shows
the memory requirement of each variable for two different configuration2. We use
local memory to store bucketToCpuMap and bucketLatency as it is the fastest available
memory for our memory requirement. For storing the database (in short db), we use
CTM, the thirdfastest available memory, which satisfies our memory needs.

Name Size(B)(4CPU, 12BUCKET) Size(B)(8CPU, 24BUCKET)

bucketToCpuMap 48 96

bucketLatency 48 96

db 420 1604

Table 4.1.3: Memory requirement per configuration

4.1.5 Stream mapping table

The NF we are using is performing DPI functionality, and once the packet is processed,
it needs to be forward back to the final receiver. We provide a mechanism by which
the operator can configure the intended packet incoming and outgoing port. LASLB
maintains a streamMap table that stores incoming and outgoing port mapping. We
also use streamMap to store the traffic direction information as we have fixedmapping
between the incoming port and traffic direction in our environment. In the current
design, we send the traffic direction details towards NF, and no other action is taken
on traffic direction. The traffic outgoing portwhich is received from streamMap is used
in the return path to forward the packet back to the outgoing port (egress port).

2Please note that memory requirements will change depending on the number of VF and bucket
configuration
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4.1.6 Custom ethernet field
The LASLB uses a custom field in the Ethernet frame while interacting with the NF.
The reason for using a custom Ethernet field is twofold. The NF needs to know about
the traffic direction from LB, and we send this direction information by encoding it
into an Ethernet field. Another reason for using a custom Ethernet field is to store the
outgoing port details (refer to section 4.1.5 for port mapping). The above details are
encoded into the Ethernet packet, and further details about encoding are not disclosed
due to proprietary reasons.

4.1.7 Ingress handling
This section will explain how different functionalities are implemented in the ingress
parser and ingress side. Ingress is the first block that interacts with the incoming
packet. Figure 4.1.1 shows processing done in LASLB as the packet travels. We have
a number in the top right corner of a box to refer to the functionality step in the
diagram. Section 4.1.7.1 explains the implementation for the ingress parser, and in
section 4.1.7.2, we will go through the ingress part of processing.

4.1.7.1 Ingress parser

LASLB processing starts with a parser block, which will extract the required packet
header. Parsing starts by extracting the Ethernet frame header, and we check if a
payload is an IPv4 by validating the 16bit Ethernet type field. In our implementation,
we accept the packet as an IPv4 if the Ethernet type matches the specification value
(0x0800). If the packet does not match with above criteria, then the corresponding
packet will be dropped. Further, we extract the IPv4 header and check if the layer4
protocol type matches TCP, UDP, or ICMP. If protocol matches with the required
layer4 protocol type, we proceed with the corresponding layer4 packet extraction, else
the packet will be dropped. Once the packet is marked as accepted, it will move to the
ingress block.

4.1.7.2 Ingress

In the ingress, we classify a packet depending on the packet origin port. In our target
design, physical ports are connected to the network side, and if a packet is received
from the network, the ingress port will have a value in the range of 07. If a packet
is received from NF on the virtual function interface, then the ingress port will have a
value starting from 768 (virtual function 0). Figure 4.1.1 uses maroon color to indicate
processing done when a packet is received from the network. As a first step, LASLB
finds the bucket serving the flow using the 5tuple hashingmethod described in section
4.1.2. Our system keeps the statistics of packets and bytes received from the physical
port using the counter throughputPhyIn (section 4.1.3). As a part of the following
inline processing, we receive packet ingress time using themethod described in section
4.1.1. In step 16, we insert extracted ingress time into the IP packet’s identification field.
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Figure 4.1.1: Ingress processing flow
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The timestamp (referred as t1) inserted here will be used in latency calculation in step
4 when the packet is received back from NF.

As part of further packet processing handling for the packet received from the network,
we apply the streamMap table using the ingress port number as a key. The result
from the table match will give the network egress port and the direction of the traffic
as described in section 4.1.5. The information received from the table match will be
forwarded to NF by inserting information in the Ethernet packet. The traffic direction
information is only used by NF, and egress port information will be used in step 10
while forwarding the packet back to the network. The LASLB finds CPU/VF, which
serves the bucket by looking into register bucketToVfMap using bucket number as an
index. Our system further forwards the packet to CPU/VF by setting the appropriate
VF number (step 19). We also maintain a counter (throughputVfOut) that will track
the number of packets and bytes sent towards the NF. Finally, the packet will travel to
the egress block for further forwarding.

If the packet is received from the NF, we initially (step2) count the number of packets
and bytes received using counter throughputVfIn. Next, we extract egress port and
bucket number information from the Ethernet frame. We find current latency by
calculating a difference between the packet’s currentMAC time (t2) and the time when
the packet entered the ingress block from the network (t1). The packet arrival time
(t1) from the network was stored in the IP’s identification field in step 16. The latency
information is maintained per bucket, and previous latency information is stored in
register bucketLatency. We index the register using bucket number, and previous
latency information is used in average latency calculation. The average latency is
calculated using the method described in section 3.4.2. The calculated average latency
is further stored back in the register bucketLatency. The LASLB has algorithm (section
4.1.7.3) part will be triggered on a periodic interval. We use packet’s current time to
implement the algorithm timer. The register prevAlgoTriggerTime is used to store
the previous algorithm triggered time. The algorithm trigger timer is maintained
at nanosecond granularity. We look at the difference between the packet’s current
time and previous algorithm trigger time (step 9). If the difference between the last
trigger and now is more than the fixed algorithm interval, we trigger latency check and
bucket movement algorithm. The algorithm details are described in section 4.1.7.3. P4
processing continues at step 10, once the algorithm processing is finished, or in the
previous step, it is not the time to trigger the algorithm. We forward the packet to the
correct network physical port using extracted (in step 3) egress spec information. We
ensure the Ethernet frame’s field is set to the original value and set IP’s identification
field to a fixed value. Finally, in step 20, we count the number of packets and bytes
sent to the network per physical port. We do not have much functionality in the egress
part, and the egress deparser is only responsible for emitting packets towards the
interface.
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4.1.7.3 Algorithm

The algorithm will be triggered periodically from the P4 side using the extern object
concept in Ingress step 9. Figure 4.1.2 shows processing done in the algorithm, and
a number in the top right corner of a box is used to crossrefer the functionality. The
processing starts by copying register bucketLatency and bucketToVfMap into a local
database as described in section 4.1.4. We calculate per CPU latency by adding all the
bucket latency which are served by the CPU. As a next step, we calculate the system’s
average latency, a sum of all CPU’s latencies divided by the number of CPUs. We have
two variants of the LASLB algorithm as described in section 3.6. During compiletime,
we associate a variant to LASLB depending on a build configuration. In algorithm
step4, we call the LOW2 or MAX variant.
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Figure 4.1.2: Algorithm processing flow

The majority of processing is the same in LOW2 or MAX variant except that of target
CPU selection (step 5) and themaximumnumber of buckets to bemoved per algorithm
interval. We calculate the high latency mark and safe latency mark from the average
latency. The high latency mark indicates an upper threshold, and if the CPU has
latency above this mark, then the algorithm considers it for bucket move. The safe
latency mark is used to indicate less latency, and a CPU with latency below this mark
is safe to receive the buckets. In LOW2, the variant finds two CPUs which has the two
lowest latency among all the CPUs. In the case of the MAX variant, we consider the
CPU as a target CPU if the CPU’s latency is under the safe latencymark. As a next step,
we loop (in ascending order) through all the CPUs served by the system, and if a CPU
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has latency that is above the high latency mark, we move to step 9. In the subsequent
steps, we loop (in ascending order) through all CPUs under the target CPU list and
see if any bucket from the CPU with high latency can be moved. A bucket can only
be moved if the movement of the bucket does not increase the latency of the target
CPU above the system’s average latency. In this design, we assume that latency will
change linearly by traffic load, if a bucket with X latency moved, then corresponding
CPU latency will increase (target CPU) or decrease (source CPU) by X. If the algorithm
decides to move the bucket, then it updates the register bucketToVfMap with a new
CPUmapping. In the LOW2 algorithm, wemake amaximum of two bucket movement
decisions per algorithm interval. For the LOW2 variant, we move to step 13, where
the algorithm checks the number of buckets moved; if the algorithm moved 2 buckets,
then the algorithm will exit; else it continues the further validation (step 10). In the
case of the MAX variant, we do not have a restriction on the number of buckets moved,
so after step 12, the logic will continue at step 10. Once the algorithm finishes all the
iteration, the ingress processing will continue at Ingress step 10. Regarding processing
power consumption at smartNIC, the LOW2 variant has less overhead than the MAX
variant due to less iteration and validation.

4.2 Control configuration
In this section, we explain control configurations that are required for the functioning
of LASLB.

4.2.1 Number of virtual functions
In our target implementation, NF communicates with Netronome smartNIC using the
SRIOV VF interface. LASLB design assumes one to one association between VF and
CPU instance of NF. To use 8 CPUs for NF’s DPI functionality, we need at least 8
VFs to be created on the Netronome side. We configure the maximum number of
VF using the environment variable NUM_VFS in the Netronome configuration file
/lib/systemd/system/nfpsdk6rte.service as shown in listing 4.3. Please note that the
configuration that was done here only specifies themaximumVF instance to be created
during Netronome image bringup; the number of VF to be used is determined by the
load balancing algorithm’s and NF’s configuration. The number of VF instances for
which LB functionality has to be performed can be configured using common.h file as
shown in listing 4.4

1 [Service]
2 Environment=LOAD_NETDEV=1
3 Environment=NUM_VFS=8 #Number of virtual function

Listing 4.3: Number of VF configuration in Netronome

1 #define MAX_VF 8

Listing 4.4: MAX VF configuration in LB
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4.2.2 Stream mapping table
LASLB requires preconfiguration of streamMap table. This table contains traffic port
association and direction information. In the example table 4.2.1, a packet received
from the network on port 0 will be considered upstream traffic and forwarded on
destination port 2 once the corresponding packet processing is finished. We configure
streamMap table by specifying the configuration as a part of firmware loading. In
listing 4.5, we specify table configuration using ”c” command option.

Ingress/Incoming Port Egress/Outgoing Port Traffic Direction

0 2 Up Stream

2 0 Down Stream

Table 4.2.1: Stream mapping table

1 CONFIG_FILE=script/netronome/table.p4cfg
2

3 sudo ./pif_rte --sdk-debug -n 0 -p 20206 -I -z -s /opt/nfp_pif/scripts/
pif_ctl_nfd.sh -f $FIRMWARE_FILE -d $DESIGN_FILE -c $CONFIG_FILE >>
$LOG_FILE &

Listing 4.5: Table configuration

4.2.3 Initial bucket mapping
We are using the Netronome CLI interface for configuring the initial bucket to CPU
mapping. Bucket mapping is maintained as a P4 register in our design, and we
divide the number of buckets equally among the available CPUs. For example, if the
operator decides to have 12 buckets and 4 CPUs, the initial configuration will have 3
buckets allocated to each CPU. This mapping can change over runtime, depending on
the algorithm’s decision. Listing 4.6 shows a piece of initial configuration code that
sets the initial bucket to CPU/VF mapping by updating register bucketToVfMap using
Netronome nfprtsym CLI command.

1 for vfIdx in range (MAX_VF):
2 sizeInByte=(NUM_BUCKET_PER_VF*4)
3 vfNumber=BASE_VF+vfIdx
4

5 addr = (BASE_ADDR)+((NUM_BUCKET_PER_VF*4)*vfIdx)
6 command="sudo /opt/netronome/bin/nfp-rtsym --len=%i

_pif_register_bucketToVfMap:0x%x %i"%(sizeInByte , addr, vfNumber)
7

8 p = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True)

Listing 4.6: Initial bucket to VF/CPU mapping
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4.3 Traffic generation
We generate traffic using the TRex traffic generator on a different server that is
connected to smartNIC. In section 4.3.1, we explain TRex automation API that is used
in traffic generation. In section 4.3.2, we describe the TRex’s latency support.

4.3.1 TRex automation
We use the TRex automation framework to generate the traffic required for our
test. We have integrated our test framework (section 4.4) with TRex using TRex
automation APIs[11, 41] for both Advance Stateful (ASTF) and Stateless (STL) mode.
The automation script starts with creating an ASTFClient or STLClient instance which
is further used to connect to the TRex server. There is a difference in the automation
API between the ASTF and STL, but most concepts remain the same. In this section,
we will focus on the ASTF mode.

Listing 4.7 shows the code we developed for traffic generation. After connecting to
the TRex server, our framework calls reset API, which clears statistics and stops and
unloads the previous profile at the beginning of the test. The next step is to load the
actual test profile and pass the tunable arguments required. The profile contains traffic
details like connection attempts, number of application streams, and packet size. The
tunable option is used to pass the argument for the test profile. The test profile remains
the same throughout the test, and all our tests are timeboxed, meaning they run for a
specified duration.

The actual traffic starts by trying to pump data at a specific rate. We have pre
configured the required data rate in the script (example, data rate=[1Gbps, 5Gbps, and
8Gbps]), and the total traffic time is equally shared between all data rates. For instance,
if the test’s total duration is of 90 seconds and if there are three data rates, we pump
each data rate for 90/3 seconds. We ensure the statistics are reset between each sub
test, so previous data does not impact the next subtest. The TRex, by default, does
not provide the latency statistics, and we enable latency statistics explicitly using API
”start_latency (mult = packetCountPerSec)”. We collect the statistics on per seconds
basis, and our statistics helper framework (statsHelper) extracts the required statistics
into a CSV format.

1 def createClient (serverAddress , profileLocation , tunables):
2 client = ASTFClient (server = serverAddress) # create client
3

4 client.connect () # connect to server
5 client.reset () # Reset TRex statistics
6 client.load_profile (profileLocation , tunables = tunables)
7 return client
8

9 def runAstfTest (client, mult, duration):
10 try:
11 client.clear_stats () # Reset TRex statistics
12 # Start traffic generation
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13 client.start (mult = mult, duration = duration)
14 client.start_latency (mult = 1000) #Enable latency stats
15

16 start = time.time ()
17 waitDurationSec = duration #sub-test test duration
18 statsHelper.prevTime = time.time ()#serve as timestamp before test

for sleep
19 while client.is_traffic_active () and waitDurationSec >0:
20 timeDiffSec=statsHelper.sleep () #Sleep max 1 second
21 stats = client.get_stats () #Read Trex Stats into csv file
22 statsHelper.readStats (stats, timeDiffSec ,
23 type="astf", mult=mult)
24 waitDurationSec -= 1 #Reduce time by 1 second
25 finally:
26 client.stop_latency ()
27 client.stop ()

Listing 4.7: ASTF Traffic framework

4.3.2 TRex latency statistics
We use TRex’s latency feature for the latencyrelated statistics collection. We have
explicitly enabled the latency statistics using the TRex automation API, and in the
test, we are using 1000 latency packets per second to measure the latency. Our TRex
automation framework is using ICMP packets for the measurement of latency. The
latency packet generated by the TRex will travel through smartNIC and NF. TRex
inserts a timestamp in each ICMP latency packet, and TRex uses it to calculate average
latency when the corresponding ICMP packet returns. The automation framework
receives latency information from TRex on a persecond basis. The TRex provides
average latency information per port, and our statistics framework calculates average
latency by adding all port’s average latency divided by the number of ports. In our
test environment, we have used four ports. In this case, TRex will provide four
average latency, and we calculate a single average latency from the four input latency
provided by the TRex. The TRex also provides latency histogram per port wise. Our
test automation framework will loop through all the ports and adds respective bucket
latency counts to deliver a systemlevel latency histogram.

4.4 Test and statistics framework
For evaluation of this design, we have developed a test and statistics collection
framework. As part of the test start procedure, the framework reboots all themachines
involved in the test. As a next step, we flash the Netronome firmware and proceed with
a control plane configuration of smartNIC. The framework is also responsible for the
bringup of NF. As a next step, the framework invokes a TRex automation test for
generating traffic. The framework is also responsible for starting the right TRex server
depending on test mode (ASTF or STL). When the test is active, we collect statistics
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from traffic generator, Netronome smartNIC, and NF at every onesecond interval.
When the test is finished, this framework club the details to provide an overall view
of the system. We perform Network Time Protocol (NTP) time synchronization on all
machines involved in our test to get accurate persecond statistics.

Themajority of our statistics come from the TRex automation framework. Our test and
statistics framework interacts with smartNIC using apache thrift[5] protocol interface
provided by Netronome. From smartNIC, we collect various counters and registers
that will help in observing the current state of the LASLB system on a persecond basis.
The framework also interacts with NF using a proprietary interface and fetches current
CPU usage and packet distribution statistics.
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Test Environment

This section will describe the test environment that is used for LASLB evaluation. In
section 5.1, we provide the test setup details. Section 5.2 will provide details of the
traffic generator and traffic profile used in the evaluation. Finally, section 5.3 will
describe the algorithms that we have used for LASLB benchmarking.

5.1 Setup
Figure 5.1.1 shows the different components and their respective connections which
are involved in our evaluation. The LASLB functionality is hosted on the Netronome
smartNIC hardware. In our evaluation setup, the smartNIC is connected to the host
machine via the PCIe bus interface. Our NF is running as a virtual instance bonded to
smartNIC using the SRIOV virtual function. The Netronome Agilio CX 2x40GbE[2]
has two physical ports, which we have split into the 8x10G ports using breakout mode.
We have used a cross cable to connect the traffic generator and smartNIC. Even though
we have eight ports available from the smartNIC side, only four are connected to TRex
(as we have only 4 Intel NIC cards at the TRex host machine). A traffic generator is an
external machine that is generating traffic using the Intel x710 NIC interface.

We run our test and statistics framework on an external machine (Test controller host
in the figure). The reason for running the framework from an external machine is that
we do not want our statistics collection framework code to compete with other host
resources. The test and framework use the standard Secure Shell (SSH) protocol to
interact with the traffic generator and NF host machine. The framework interacts with
Netronome smartNIC using an apache thrift[5] interface and NF using a proprietary
interface.

5.1.1 Host specification
The machine which hosts NF is running the Ubuntu 18.04.5 operating system. The
host machine has Intel(R) Xeon(R) Silver CPUs, and they are operating at a clock rate
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Figure 5.1.1: Test setup overview

of 2.20GHz. There are 10 physical CPUs, and we have enabled HyperThreading (HT)
configuration for a total of 20 threads.

5.1.2 NF specification
For LASLB evaluation, we use Sandvine’s activeLogic DPI node as our NF. In our
setup, activeLogic is running as a Kernelbased Virtual Machine (KVM) instance. We
have allocated 16 virtual CPUs to activeLogic NF. The activeLogic reserves 7 CPUs for
userspace processing and the remaining 9 CPUs are used for packet processing. In
packet processing, only 8 CPUs are performing actual packet processing, and 1 CPU
is reserved for NF’s internal purpose. There are 8 instances of DPI in our evaluation
setup, and each instance is bonded to a unique VF interface provided by smartNIC. The
activeLogic uses Data Plane Development Kit (DPDK) for accessing the VF interface.
Each DPI instance polls the packet from VF and, after processing, it will forward back
the packet on the same interface. The activeLogic has an option to configure the
location of load balancing. In the case of LASLB evaluation, we configure activeLogic
in LB offloaded mode.

If activeLogic is configured in LB nonoffloadedmode, the software load balancing will
run on theNF’s CPUs. The core assigned for packet processingwill also be used for load
balancing. In our case, 8 CPUs are allocated for packet processing which handles the
DPI functionality, and in this case, they are shared with the SLB. In this mode, SLB
will receive the packets from the VF interface and forward them to the appropriate DPI
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instance. After finishing the intended DPI functionality, the DPI instance will forward
back packet to the paired VF interface of the received interface.

5.2 Traffic generator
We use opensource TRex[42] for all of our traffic generations. In our setup, TRex is
located in a physically different host PC with four Intel X710 ethernet network adapter
cards and each capable of supporting a 10Gbps bit rate. There were multiple reasons
because of which we have chosen TRex as the traffic generator apart from just being
an opensource tool. We wanted to simulate a very high number of active flows for
the evaluation, and we found that TRex can easily simulate 1 million connections
with moderate PC capabilities. TRex can provide accurate microsecond level latency
measurement even when operating at a high data rate[41]. TRex gives a lot of TCP,
UDP, and other flowrelated statistics, which can help in analyzing.

One of the reasons why TRex can achieve high performance is because of its DPDK[22]
library binding; it avoids the Linux kernel interaction. For our experiment, we have
used both TRex’s ASTF and STL mode as applicable. We have used ASTF mode for
creating a large number of flows and other latencyrelated measurements. Trex’s STL
mode is used in the traffic and some of the latency measurement experiments.

5.2.1 Traffic profile
In this section, we describe different traffic profile that is used in the evaluation.
Section 5.2.1.1, describe balanced traffic and the different application it simulates.
Section 5.2.1.2 explains an imbalanced traffic profile that consists of both mice and
elephant flows. Finally, section 5.2.1.3 describes the profile, which consists of only
UDP traffic.

5.2.1.1 Simulated realworld balanced traffic (Traffic Set 1)

The internet traffic has various packet sizes depending on the enduser application.
The typical packet size observed in the network ranges from size 40bytes to 1500 bytes,
and the average packet size is 850 bytes[8]. In this traffic profile, we are creating
a traffic pattern that is simulating realworld traffic. This profile consists of flows
that simulate user HTTP browsing of various sizes and mail exchange traffic. This
profile has realtime streaming traffic using Real Time Streaming Protocol (RTSP),
and also profile has traffic for Real Time Transport Protocol (RTP) voice and video call
simulation with different code rates. This profile does have various office application
traffic simulations, such as the traffic generated from the Citrix application.

This profile distributes the traffic among various IP and port ranges to replicate the
scenario of multiple users and flows in a network environment. This profile does have
flows of different time duration as it is common in the network to see short and long
duration flows[4]. This trace creates new flows over time as the traffic continues, to
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simulate the behavior of users joining and leaving the network. This profile initiates
multiple connections per second depending on the application behavior it is simulating.
This profile is created using TRex ASTF mode, and it initiates 1.9K connections per
second.

5.2.1.2 Simulated realworld imbalanced traffic (Traffic Set 2)

A network does have a different kind of traffic depending on the location of placement
and their target application. Usually, in the data center which connects between data
centers (interDC), it is observed that the majority of traffic (~80%) comes from a few
elephant flows [25]. In another network traffic characteristics study[30] on service
provider data centers shows that even though elephant flows account for just ~5% of
the total flow ratio, the traffic created by those flows accounts for roughly ~40%of total
bandwidth.

We achieve unbalanced traffic in this trace profile by adding a few elephants flows in
our traffic set 1. our goal was to create 40% of traffic from a few elephant flows, and
the remaining traffic is generated from the large set of mice flows. We use 20 elephant
flows, and offered traffic is equally shared between the 20 elephant flows. The packet
size used in elephant flows varies from 60bytes1500bytes. This profile is created by
using TRex’s ASTF and STL mode. For the 60% of traffic, this profile has the same
characteristics as traffic set 1 (section 5.2.1.1).

5.2.1.3 UDP traffic (Traffic Set 3)

Traditionally network traffic was dominated by TCP due to its congestion control and
error correction ability. However, there is a change in the pattern observed lately due
to the emergence of newer technologies likeHTTP3, QUIC, and streaming services[39].
In this profile, we generate traffic based on UDP protocol, and we change the packet
size to simulate different kinds of applications. This profile contains packet sizes
ranging from 60 bytes to 1500bytes, and the average packet size is 700 bytes.

Traffic Set 3

Offered load
(Gbps)

Average Active
Flows(K Flows)

Average Open
Flows(K Flows)

Average Packet
size(bytes)

Average Active
Flows(K Flows)

Average Open
Flows(K Flows)

Average Packet
size(bytes)

Average Packet
size(bytes)

1 3.8 44 728 1.9 27 707 700

2 11.6 137 728 5.8 93 707 700

5 19.5 228 728 9.8 115 707 700

6 27.7 274 728 11.3 215 707 700

8 35.8 366 728 16.6 268 707 700

10 45.3 427 728 20 323 707 700

15 100 490 728 35.9 440 707 700

Traffic Set 1 Traffic Set 2

Figure 5.2.1: Traffic profile characteristics
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5.3 Benchmark algorithm
We have chosen to compare the LASLB algorithm variants (MAX and LOW2) against
Sandvine’s legacy software load balancing (SLB) and widely used RSS load balancing
technique. Our evaluation uses the term smartNIC based load balancing (SBLB) to
collectively refer to load balancer on the smartNIC side, which includes RSS, LOW2,
and MAX LB.

5.3.1 Receive side scaling (RSS)
RSS is one of the widely used load balancing techniques. RSS algorithm uses 5tuple
(source IP, source port, destination IP, destination port, and protocol) hashing to
distribute the traffic among a set of backend CPUs. In our use case, the hash will
return a target CPU/virtual function serving the packet. The NF we use is not the final
consumer of the packet, and once the packet is processed, it needs to forward back
to the right outgoing port (section 4.1.5). We have added support of streamMap table
into RSS, so once a packet is processed, it can forward to the right outgoing port. In our
evaluation environment, the modified RSS is running on smartNIC hardware.

5.3.2 Software load balancing (SLB)
In SLB, load balancing functionality is also running on the CPU, which is allocated
for NF packet processing. Sandvine supplies the software load balancing that we
use for evaluation as part of activeLogic NF. In this experiment, the smartNIC acts
as a port forwarder between the physical port and virtual function. The smartNIC
also maintains traffic counters used to track per VF and physical port throughput
statistics.

5.4 Evaluation metrics
In this section, we describe different evaluation metrics and their source that is used
in our experiment.

• Average latency: This statistic is received from TRex by enabling latency
framework. The Average latency is calculated over all ICMP latency packets by
TRex and reported as part of statistics.latency.port.s_avg.

• Mean latency: This statistics is calculated using a latency histogram received
from TRex. Themean latency is calculated from TRex statistics.latency.port.hist
by using python’s statistics mean API function.

• Tail latency: This statistics is calculated using a latency histogram received
from TRex. The tail latency is calculated from TRex’s statistics.latency.port.hist
statistics. For our evaluation, we are calculating the 95th and 99th percentile
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tail latency. We use python’s NumPy percentile function while determining
percentile value.

• Cumulative Distribution Function (CDF): These statistics are calculated using
a latency histogram received from TRex. We collect all the latency histogram
values for a required offered load. We sort all the latency values, and those
values are used as input to the xaxis. On the yaxis, we depict the percentage of
occurrence of a corresponding latency. We use python’s NumPy sort and arrange
function during CDF calculation.

• Offered traffic load: The offered is the data rate that the test case is requesting
TRex to pump. In all our tests, the unit used for this metric is in Gigabits per
second (Gbps).

• Average achieved throughput: This statistics is calculated using TRex’s
global.rx_bps statistics. We calculate an average over all reported instances for
the test duration. In all our tests, the unit used for this metric is in Gigabits per
second (Gbps).

• Average CPUutilization: This statistic is received fromNF on a persecond basis.
The NF reports average CPU and per CPU utilization.

• CPU utilization’s standard deviation: This statistic is calculated using the CPU
utilization reported by the NF. We collect all the CPU utilization reports reported
per CPU wise for the complete traffic duration. We apply python’s statistics
standard deviation function to receive the CPU utilization’s standard deviation
for traffic duration.

• Packet distribution: These statistics are received from NF on a persecond basis.
The NF reports per CPU packet distribution.

• Packet distribution’s standard deviation: This statistic is calculated using
the packet distribution reported by the NF. We collect all the packet
distribution reports reported per CPU wise for the complete traffic duration.
We apply python’s statistics standard deviation function to receive the packet
distribution’s standard deviation for traffic duration.

Maximum value

First quartile(Q1, 25%)

Minimum Value

Second quartile(Q2, 50%)

Third quartile(Q3, 75%)

Figure 5.4.1: Box plot description

• Box plot: We use a box plot to show CPU utilization and packet distribution. Our
statistics framework collect CPU utilization and packet distribution statistics on
persecond interval from NF. Figure 5.4.1 shows different value box plot depicts.
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Evaluation

This section describes the different experiments thatwe have done as part of the LASLB
evaluation and our detailed analysis of the results. In our test, we use the traffic profile
described in section 5.2.1, and themajority of our statistics are taken from TRex unless
mentioned explicitly. In sections 6.1 to 6.5, we describe our evaluation of LASLB for
the different performance metrics. In section 6.6, we evaluate if the LASLB algorithm
trigger periodicity has any relation with achieved performance. Finally, in section 6.7,
we evaluate the LASLB to determine the maximum throughput handling limit.

6.1 How does outsourcing the load balancing decision
to the smartNIC impact latency?

In this experiment, we will check if using LASLB can improve average and mean
latency. Figures 6.1.1 and 6.1.2 show the average and mean latency observed against
the different load balancing techniques. We have conducted this experiment on both
imbalanced traffic (section 5.2.1.2) and balanced traffic (section 5.2.1.1). On the xaxis,
we have offered load (Gbp/s) our test framework trying to push, and on the primary y
axis, we have average achieved throughput (Gbp/s) at the TRex side. In all four figures,
we have depicted latency in the secondary yaxis.

In the case of imbalanced traffic, the SLB method was able to achieve a lower latency
when the system is lightly loaded, and we see latency increase sharply when the offered
load increase. When the system is loaded with 15Gbps traffic, the average latency
reached 380µs, and also not able to achieve a similar data rate as that of other LB
methods. From figure 6.1.1b, it can be seen that in the case of SLB, the mean latency
also followed a similar curve as that of average latency. RSS has the secondbest
latency when the system is loaded with a lower traffic load. With RSS also, we see
latency increase as we increase the traffic load. During 8 to 10Gbps offered traffic
load, RSS showed average and mean latency similar to that of LASLB based methods.
RSS showed a significant increase in average (325µs) and mean latency (255µs) when
the system is offered with a higher traffic load of 15Gbps. When the RSS is loaded
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(a) Average latency
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(b) Mean latency with standard deviation

Figure 6.1.1: Latency comparison for each offered throughput with imbalanced traffic
(traffic set 2)

with 15Gbps traffic, the system is only able to achieve 11.4Gbps in comparison to the
max achieved throughput of 13.7Gbps (LOW2). With the newer latencyaware based
algorithm of MAX and LOW2, average latency was relatively higher compared to the
SLB and RSS method during lower offered load. During higher offered traffic load of
15Gbps, we see that LASLB basedmethods average (~110µs) andmean (~95µs) latency
does not increase as sharply as that of other evaluated methods.

In the case of balanced traffic, the SLBmethod has a similar average andmean latency
behavior as that of imbalanced traffic. The smartNICbased RSS has the best latency
for the majority of the offered traffic load. In the case of balanced traffic, we see RSS
perform relatively well even in the case of a higher offered load of 15Gbps. In our
evaluation, we observe a latency spike in the NF during one of lower throughput (1
6Gbps), and this is observed in all of the tested LBs. With the latencyaware based
algorithm of MAX and LOW2, we see a relatively higher average and mean latency
in comparison to the RSS method, but the difference was not significant. During
higher offered traffic load of 15Gbps, we see that LASLB based methods achieved an
average (~110µs), and mean (~90µs) latency does not differ much from RSS achieved
an average (99µs) and mean (82µs) latency.

Our above experiment shows that all compared methods performed equally well in
terms of averages andmean latency during lower (16Gbps) offered load in imbalanced
traffic. Both SLB and RSS started showing a sharp increase in latency when the system
is loaded with a higher throughput of 10Gbps and 15Gbps. For the balanced traffic,
SLB showed latency behavior similar to that of imbalanced traffic. The RSS resulted in
the best latency for the majority of the offered balanced traffic load. The LASLB based
methods showed a relatively higher latency value than RSS, but number differences
were not significantly high.
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(b) Mean latency with standard deviation

Figure 6.1.2: Latency comparison for each offered throughput with balanced traffic
(traffic set 1)

6.2 How does outsourcing the load balancing decision
to the smartNIC impact tail latency?

Tail latency is an important metric used to depict the worst latency that a certain
percentage of traffic experiences. The average or mean latency can mask the problem
of latency spike in a large sample. In this case, tail latency can help in identifying if
there are any set of packets that experience very high latency.

In this section, we describe if LASLB can improve system tail latency. In section
6.2.1, we evaluate how LASLB can help in improving tail latency compared to SLB. In
section 6.2.2, we evaluate how LASLB can help in improving 95th percentile tail latency
compared to other LB techniques.

6.2.1 How well does LASLB improve tail latency compared to
SLB?

We have used both imbalanced (section 5.2.1.2) and balanced (section 5.2.1.1) traffic
profiles in this evaluation. We compare latency achieved by LOW2 LB against SLB for
8Gbps, 10Gbps, and 15Gbps offered load. The CDF graph is prepared using TRex’s
latency histogram as described in section 5.4. Figure 6.2.1 shows the latency CDF for
imbalanced traffic for the different loads. With imbalanced traffic, when the system is
loaded with 8Gbps traffic, LOW2 performs relatively well for the majority of packets.
For the 90th percentage, the latency achieved by LOW2 is 30% less than SLB. When
the system is loaded with a higher data rate of 15Gbps, LOW2 improved the tail latency
for majority of the packets. The unavailability of CPU during higher offered load in
SLB results in higher latency for a significant fraction of packets compared to LASLB
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method. As we increase traffic load, SLB resulted in poor latency overall. For the 50th

percentage, the LOW2 improved latency by 70% compared to the SLB method.
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Figure 6.2.1: Tail latency comparison between LOW2 and SLB for imbalanced traffic
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Figure 6.2.2: Tail latency comparison between LOW2 and SLB for balanced traffic

Figure 6.2.2 shows the tail latency CDF with balanced traffic for different offered
loads. With balanced traffic, we see that latency offered by SLB is higher than LOW2
technique for the majority of packets. With balanced traffic, the relative tail latency
gain is less than imbalanced traffic duringmediumoffered load. During the higher load
of 10Gbps and 15Gbps, the balanced traffic test showed a similar gain in tail latency as
that of imbalanced traffic with LASLB.

For the imbalanced traffic, it can be concluded that LASLB methods do improve the
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tail latency when the system is loaded with a moderate and higher traffic load. In the
case of balanced traffic, the latency gain is less during moderate offered load, and it
improves as we increase the offered data rate.

6.2.2 Can LASLB improve 95th percentile tail latency?
This experiment is performedon imbalanced (Figure 6.2.3) andbalanced (Figure 6.2.4)
traffic profiles for different offered loads. All the evaluated LBs showed a similar 95th

percentile tail latency for 1Gbps to 8Gbps offered load for the imbalanced traffic. As we
increased offered load, SLB’s 95th percentile tail latency was getting higher. In the case
of a higher traffic load of 15Gbps, RSS showed a very high tail latencywhich is five times
worse compared to LASLB based methods. In this experiment, both LOW2 and MAX
showed a similar gain in the 95th percentile tail latency. This experiment indicates that
the uneven load distribution due to elephant flows in RSS leads to increased tail latency
than SLB.
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Figure 6.2.3: 95th percentile tail latency with imbalanced traffic

In the case of balanced traffic, we observe that both LOW2 and RSS can achieve
relatively good 95th percentile tail latency. With MAX, we observed 1.5 times higher
tail latency during lower offered load than our best achieved tail latency numbers. As
the offered load increased, MAX showed a similar gain in tail latency as that of LOW2
and RSS. In this test, SLB has resulted in worse tail latency for the majority of the
offered loads.
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Figure 6.2.4: 95th percentile tail latency with balanced traffic

From our test result, it can be concluded that LASLB will help in reducing the 95th

percentile tail latency for both balanced and imbalanced traffic. In the case of balanced
traffic, RSS showed an almost equal tail latency to that of LASLB based methods. SLB
showed a sharp increase in tail latency when the system is loaded with higher offered
loads. LASLB variants, on average, were able to reduce 95th percentile tail latency by
~22% compared to SLB.

6.3 How does offloading LB functionality
to smartNIC impact CPU consumption inside the
host CPUs?

One of our motivations behind this thesis work was to provide higher CPU availability
to the NF by performing the load balancing functionality on the smartNIC side. In
this experiment, by saving, we mean providing NF with CPU processing power which
in the current design is occupied by software LB functionality. To find the answer
for CPU processing saving, we have tested LBs with both imbalanced and balanced
traffic profiles. Figure 6.3.1a shows the CPU consumption for imbalanced traffic with
different offered input loads. During 1Gbps offered traffic load, the average CPU
consumption of SLB was 1.4 times higher than that of SBLB based method, and as

58



CHAPTER 6. EVALUATION

the input load increased, the average CPU consumption started to increase sharply.
At a 10Gbps data rate, the SLB method consumed 30% more CPU than SBLB based
method. With SLB, when the system is offered with a higher traffic load of 15Gbps, the
average CPU consumption started reaching the upper CPU limit, and as a result, we
have started observing the lower achieved data rate compared to other evaluated LB
methods.

The smartNICbased LBs for imbalanced traffic showed similar CPU saving during
offered traffic load of 1Gbps to 10Gbps. For a higher offered load of 15Gbps, with
RSS, NF was not able to handle offered load, and as a result, we see a lower achieved
throughput of 11.3Gbps. The LASLB based variants resulted in similar average CPU
consumption, and both were able to achieve an average throughput of ~13.4Gbps.
With LASLBmethods, NF can process offered input traffic load with 3040% less CPU
consumption and can provide higher achieved throughput in comparison to SLB.
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(a) Imbalanced traffic
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(b) Balanced traffic

Figure 6.3.1: Average CPU consumption for each offered input load

With balanced traffic, the SLB method resulted in relatively 1.2 times higher CPU
consumption in comparison to SBLB based methods. With a higher traffic load of
10Gbps to 15Gbps, with the SLB, NF is not able to process the packet at the offered rate,
and as a result, we see decreased achieved throughput. In terms of CPU consumption
and achieved throughput, both LASLB based variants and RSS performed almost
equally. With SBLB methods, NF can process offered input traffic load with 2030%
less CPU consumption than the SLB method.

Fromour results, it can be concluded that, in case of imbalanced traffic, NFwith LASLB
can save 3040% CPU compared to using SLB. With balanced traffic, NF with LASLB
can save 2030%CPU in comparison to using SLB. For a higher data rate of 15Gbps, NF
with SLB is unable to process at themaximum rate, as it is short of available CPU.With
LASLB, the system can perform well under the higher offered input traffic load.
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6.4 Can fair loading of NF’s CPUs be achieved with
latency based load balancer?

The LASLB uses packet latency as a criterion to make the load balancing decision.
To answer the question ”Can latency be used to load CPU fairly?” we have used
the imbalanced traffic profile in this experiment. Figure 6.4.1 shows CPU usage
distribution for the different offered traffic loads. With SLB, we see overall higher CPU
utilization, but the method was able to load the CPUs fairly. The standard deviation
of CPU loading for SLB was in the range of 1.3% to 5%. With the RSS method, we see
overall higher CPU consumption compared to the other evaluated SBLB methods. In
the case of RSS, we see CPU are unevenly loaded, and the standard deviation of CPU
loading was in the range of 3.2% to 22.5%. In the smartNICbased LB category, LASLB
based variants were able to load the CPU more fairly. The standard deviation of CPU
loading in the case of LOW2was in the range of 1.6%12.7%, and forMAX, it was in the
range of 2.4% to 12.7%.
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Figure 6.4.1: CPU usage distribution for imbalanced traffic
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Figure 6.4.2: CPU usage distribution and latency with 15Gbps imbalanced traffic

Figure 6.4.2 shows different performance metrics results for 15Gbps of offered traffic
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load. The primary ”Y” axis shows the CPU utilization in the NF, and the secondary ”Y”
axis shows the average latency. In the figure, on top of each dotted latency line, the
text indicates the respective achieved throughput, mean latency, and CPU loading’s
standard deviation. The LOW2 and MAX were able to achieve a higher throughput of
13.6 Gbps and 13.7Gbps, respectively. In comparison, RSS resulted in a lower achieved
throughput of 11.3Gbps, and SLBwas able to achieve amoderate data rate of 13.1 Gbps.
The worst CPU usage distribution was observed in RSS, with CPU being loaded the
majority of time in the range from5298%and standard deviation of CPU consumption
was 22.5%. The SLB method has a better CPU loading range than other evaluated
methods but has higher CPU utilization overall. In SLB, the CPU utilization was in
the range of 9598%, and the standard deviation of CPU consumption was 1.8%. The
SLB was able to achieve a fair CPU loading because of its ability to perform the load
balancing functionality by taking into account the various system load criteria. With
LOW2, most of the time CPUs were loaded in the range of 6485%, and the standard
deviation of CPU loading was 12.7%. For a higher load of 15Gbps, MAX was loading
CPU the majority of the time in the range of 6680%, and it has resulted in a lower
standard deviation of CPU loading of 12.1% in the SBLB category.

Our experiment shows that SLB was able to load more fairly, but overall it has higher
CPU consumption. The MAX LB resulted in the secondbest number in terms of
fairness of CPU loading. The LOW2 LB does not differ much from MAX LB, and in
our evaluation resulted in the thirdbest number in terms of evenness in CPU loading.
The RSS resulted in uneven CPU loading for all of the offered loads.

6.5 Can LASLB provide fair packet distribution among
NF’s CPUs?

In this experiment, we evaluate how different algorithms are distributing packets
among the NF CPUs. On a persecond interval, we collect the number of packets
received on each CPU and systemlevel statistics from NF. We have used the above
collected statistics to calculate the percentage of packets sent towards a given CPU.
For example, a value of 25% indicates, the algorithm is sending 25 percent of total
packets towards a single CPU. We have performed this experiment with imbalanced
traffic. Figures 6.5.1 and 6.5.2 shows packet distribution for 10Gbps and 15Gbps
offered load, respectively. In the figure, the error bar is used to indicate the average
packet distribution’s standard division. For 10Gbps offered load, SLB is distributing
packetsmore fairly. In the case of SLB, themajority of the time, each CPU is processing
10%15% of packets. Considering profile’s packet distribution imbalance, secondbest
packet distribution (8.4%15.2%) is observed in MAX LB. The LOW2 LB resulted in
slightly uneven distribution (8.1%15.9%) compared to MAX LB. The most uneven
packet distribution (6.9%22.3%) of packets is observed in the case of RSS. The per
CPU packet distribution’s standard deviation observed in the case of LASLB based
method is high compared toRSS andSLB. InRSS andSLB, flows donotmove, allowing
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them to have a lower per CPU packet distribution’s standard deviation.
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Figure 6.5.1: Packet distribution among NF’s CPUs for 10Gbps offered load
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Figure 6.5.2: Packet distribution among NF’s CPUs for 15Gbps offered load

For higher throughput of 15Gbps, more even packet distribution is observed in LASLB
methods. Most of the time, MAX LB is loading a CPU with 8.2%15.6% of the total
packets. Across the CPU,MAXLBhas the best packet distribution’s standard deviation
of 5.04%. LOW2 resulted in secondbest even packet distribution (8.2%15.6%) and
has a packet distribution’s standard deviation of 5.5%. SLB has shown relatively
uneven packet distribution (7.4%18.2%). Similar to 10Gbps offered load, RSS resulted
in worse packet distribution (5.8%24.8%) and has a relatively bad standard deviation
of packet distribution of 8.61%.

From our evaluation, for medium offered load SLB has an even packet distribution.
The LASLB based methods resulted in second and third best even packet distribution.
In the case of higher offered load, LASLB basedmethod shown fair packet distribution
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across the CPUs. In both the offered loads, RSS resulted in uneven packet
distribution.

6.6 What is the impact of how often load balancing is
performed on achieved performance metrics?

The LASLB periodically validates the latency measurement and makes bucket
movement decisions (if required). The periodicity of the algorithm trigger is fixed
during runtime and can only bemodified using a compiletime option. In this section,
we evaluate if the periodicity of the algorithm trigger has any effect on achieved
throughput, tail latency, mean latency, and CPU consumption performance metrics.
In the evaluation, we have used both the imbalanced and balanced traffic profiles. We
have chosen to use the LASLB’s LOW2 variant for comparison. We have configured
LASLB software with algorithm trigger periodically of 100µs, 2000µs, and 30000µs as
required for the test. In this evaluation, a numeric number after the algorithm name
in the legend indicates the algorithm trigger periodicity in microseconds. The value
100 indicates that the algorithm to validate latency and move bucket (if required) is
triggered every 100µs1.

6.6.1 Effect on 99th percentile tail latency
We are interested in determining if the periodicity of algorithm triggering affects
tail latency. We have performed this evaluation for balanced (Figure 6.6.1a) and
imbalanced (Figure 6.6.1b) traffic for different offered traffic loads. For balanced
traffic, 30000µs algorithm trigger periodicity showed better 99th percentile latency
for the 1Gbps to 8Gbps offered load. In comparison, if we trigger the algorithm more
frequently (100µs), we see a relatively higher tail latency for the lower offered loads.
Trigger algorithm at a periodicity of 2000µs resulted in moderate 99th percentile tail
latency overall for balanced traffic. For the 10Gbps and 15Gbps offered load, 30000µs
algorithm trigger periodicity showed relatively high 99th percentile tail latency. For
higher offered load, triggering algorithm at lower or moderate algorithm trigger
periodicity resulted in a lower tail latency.

In imbalanced traffic, 30000µs periodicity resulted in better 99th percentile tail latency
than other periodicities for most of the offered loads. In comparison, if we trigger the
algorithm more frequently (100µs), the test resulted in a relatively poor tail latency.
With 2000µs algorithm periodicity test resulted in moderate 99th percentile latency
for the majority of the offered traffic load.

Our results show that when the system is lightly loaded with traffic, an algorithm
trigger with higher periodicity resulted in better tail latency. A more frequent
algorithm triggering test showed relatively higher latency. For balanced traffic,

1Our timer depends on packet inflow, so this is the minimum time to trigger algorithm
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(a) Balanced traffic
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(b) Imbalanced traffic

Figure 6.6.1: Effect of different LOW2 algorithm trigger periodicity on tail latency with
different offered load (15Gbps)

triggering algorithm at a higher periodicity of 30000µs results in poor tail latency
during higher offered loads. In the case of imbalanced traffic, better tail latency is
observed during higher algorithm trigger periodicity.

6.6.2 Effect on achieved throughput

Figure 6.6.2 shows the effect of algorithm trigger periodicity on the average latency
and achieved throughput. For balanced traffic, 30000µs resulted in overall better
achieved throughput. The trigger periodicity of 2000µs resulted in 25% less achieved
throughout in comparison to the best results. For imbalanced traffic, all the algorithm
trigger periodicity resulted in a similar achieved throughput for the traffic load of
1Gbps8Gbps. The achieved throughput is almost the same for periodicity of 2000µs
and 30000µs. When we trigger the algorithm more frequently at every 100µs, we see
a reduction in the achieved data rate for both traffic profiles.

6.6.3 Effect on mean latency

For the balanced traffic, triggering the algorithm at higher periodicity (30000µs) has
resulted in better mean latency during the lower throughput. As we increased offered
data rate (1015Gbps), the periodicity of 30000µs showed relatively worse mean
latency. When the system is offered with a 15Gbps traffic load, 30000µs algorithm
trigger periodicity resulted in 7% more mean latency than our best result. Triggering
algorithm at 2000µs periodicity resulted in better mean latency for the higher offered
traffic. For Imbalanced traffic, our test results show that 2000µs periodicity results in
better mean latency for the majority of the offered loads. In the case of balanced and
imbalanced traffic load, the frequent triggering of the algorithm resulted in relatively
worse mean latency.
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(b) Imbalanced traffic

Figure 6.6.2: Effect of different LOW2 algorithm trigger periodicity on mean latency
and achieved throughput for 15Gbps offered load

6.6.4 Effect on CPU utilisation

This section will discuss the effect of algorithm trigger periodicity on the average
CPU consumption and fairness of CPU loading. Figure 6.6.3 shows average CPU
consumption and achieved throughput for respective offered traffic load. For the
balanced traffic, CPU consumption is in a similar range for the offered load of
1Gbps to 8Gbps. The more frequent trigger of the algorithm at 100µs resulted in a
lower CPU consumption at NF, but it had overall lower achieved throughput. The
moderate algorithm trigger periodicity of 2000µs resulted in secondbest CPU usage
and achieved throughput. In our test, 30000µs algorithm triggering periodicity
resulted in slightly higher CPU consumption at the NF. For the imbalanced traffic,
we see a similar trend in CPU consumption as that of balanced traffic. The
frequent triggering of the algorithm resulted in lower CPU consumption and achieved
throughput. The algorithmwith 30000µs trigger periodicity resulted in slightly higher
CPU consumption than 2000µs trigger periodicity.

Figure 6.6.4 shows the CPU utilization box plot for balanced and imbalanced traffic.
In the case of balanced traffic and traffic load of 5Gbps traffic, the lower trigger
periodicity achieved a best standard deviation of CPU loading of 5.1%. The higher
periodicity of 2000µs and 30000µs have a similar CPU loading’s standard deviation
of ~6.2%. For the 15Gbps traffic load, the frequent triggering of the algorithm resulted
in more even CPU loading. In the case of imbalanced traffic and traffic load of
5Gbps, 100µs algorithm trigger periodicity resulted in fair scheduling compared to
other periodicities. For the 15Gbps traffic load, 30000µs resulted in more even CPU
loading.

From our experiment, it can be concluded that the LASLB algorithm trigger periodicity
does impact average CPU consumption. Our results indicate that a higher algorithm

65



CHAPTER 6. EVALUATION

2 4 6 8 10 12 14
Average Offered load(Gbps)

2

4

6

8

10

12

Av
er

ag
e 

Ac
hi

ev
ed

 lo
ad

(G
bp

s)

CPU Utilisation

Throughput
Low2 LB 100
Low2 LB 2000

Low2 LB 30000

10%

20%

30%

40%

50%

60%

70%

Av
er

ag
e 

Co
ns

um
ed

 C
PU

CPU Utilisation
Low2 LB 100
Low2 LB 2000

Low2 LB 30000

PS: Num CPU in NF: 8 Traffic: Traffic Set 1.  

(a) Balanced traffic

2 4 6 8 10 12 14
Average Offered load(Gbps)

2

4

6

8

10

12

14

Av
er

ag
e 

Ac
hi

ev
ed

 lo
ad

(G
bp

s)

CPU Utilisation

Throughput
Low2 LB 100
Low2 LB 2000

Low2 LB 30000

10%

20%

30%

40%

50%

60%

Av
er

ag
e 

Co
ns

um
ed

 C
PU

CPU Utilisation
Low2 LB 100
Low2 LB 2000

Low2 LB 30000

PS: Num CPU in NF: 8 Traffic: Traffic Set 2.  

(b) Imbalanced traffic

Figure 6.6.3: Effect of different LOW2 algorithm trigger periodicity on CPU
consumption
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Figure 6.6.4: Effect of different LOW2 algorithm trigger periodicity on CPU loading
fairness

66



CHAPTER 6. EVALUATION

trigger periodicity results in a higher average CPU consumption. Regarding fairness of
CPU loading, the frequent (100µs) algorithm triggering resulted in even CPU loading
for the majority of the offered load.

6.7 How does the additional
complexity of performing LB inside the smartNIC
impact its packet processing performance?

In this evaluation, our goal is to check if LASLB canperform the load balancing decision
at a higher offered traffic load. The Netronome Agilio CX 2x40GbE smartNIC used in
the evaluation can process packets at a line rate of 80Gbps. As indicated in section 5.1,
we are using four Intels x710 10GbE interfaces at the traffic generator machine, which
allows a maximum of 40Gbps traffic to be generated from the traffic generator. The
maximumhigher layer throughput that we can achieve using the TRex traffic generator
was 38Gbps, which is 2Gbps less from maximum due to lower layer header overhead.
This experiment uses TRex in STL mode and UDP traffic (section 5.2.1.3) to generate
maximum traffic load. In our evaluation setup, we have reserved 8 CPUs for NF’s
packet processing, and it can process a maximum of 16Gbps traffic load with its DPI
functionality enabled. To determine if LASLB has any restriction on maximum traffic
to be handled, we have set our NF to perform only packet forwarder functionality on
the virtual function interface so we can exercise higher traffic through the LASLB.
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Figure 6.7.1: Achieved data rate for higher offered traffic load

Figure 6.7.1 shows on the xaxis the offered load and on the yaxis the achieved
throughput. The traffic used in the test is traffic set 3, and we have done the evaluation
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only for the smartNICbased LBs. It can be seen from the figure that all smartNIC
based LB methods did equally well until 35Gbps offered load, and a slight variation of
0.5% from best achieved data rate observed during maximum offered load of 38Gbps.
We have done a similar experiment with different algorithm trigger periodicity, and we
do not see a big difference in achieved data rate numbers than noticed in this test.

The LASLB does consume processing power on the smartNIC side due to the load
balancing functionality. In themax throughput (38Gbps) test that we have carried out,
the LASLB can process packets without causing much impact on the average achieved
data rate.
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Conclusions and Future Work

In the current networking domain, the need for speed is growing rapidly, requiring
NF to provide faster processing. We see a trend where CPU processing capabilities
are not increasing at the same rate as in the 20th century, so we must use existing
resources efficiently. In this thesis work, we have designed a smartNICbased load
balancing algorithm that saves processing power to NF, which is consumed by the
software load balancing functionality in the existing design. There is a huge demand
to reduce communication latency in the current generation, especially from the low
latency communication application. In general, latency has a relation to the traffic
load the device is handling. For example, a highly loaded CPU tends to result in higher
latency. Our LASLB algorithm uses latency experienced by the packet as an input
metric to perform the load balancing. Our LASLB evaluation shows that apart from
fulfilling the load balancing functionality, it can help in reducing the CPU consumption
and improving tail latency. The experimental evaluation also shows that the smartNIC
can be used to perform relatively complex functionality like LB without causing much
impact on the achieved data rate.

To evaluate latency in the nearto realworld scenario, we have used both balanced and
imbalanced traffic profiles. The LASLB based methods improved average and mean
latency when the system is loaded with a higher traffic load in imbalanced traffic. In
the case of balanced traffic, we see RSS resulted in best average andmean latency. The
LASLB resulted in the secondbest average and mean latency numbers. LASLB based
algorithm improved 95th tail latency significantly when the system is loaded heavily
with traffic. In both traffic profiles, LASLB methods, on average reduced 95th tail
latency by ~22% compared to SLB.

We have evaluated the LASLB for CPU benefits in terms of average CPU consumption
and fairness of CPU loading. In the case of balanced traffic, our results show that
smartNIC based LB technique can achieve the same data rate as that of SLB based
method with 25% less average CPU consumption. When the system is loaded with
a higher data rate, smartNIC based LB technique achieved a higher data rate. In
comparison, SLB resulted in max CPU usage, and we saw a drop in the achieved data
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rate. In the smartNIC LB category the all the methods had almost equal CPU savings.
For imbalanced traffic, we see LASLB based technique showed 30% of CPU saving
compared to SLB. Regarding fairness of loading CPU, we see SLB loaded CPU more
evenly, but overall CPU utilization was high. The LASLB based technique resulted
in the second position in terms of evenness of CPU loading. With RSS, the CPU was
loaded unevenly during imbalanced traffic. Our evaluation indicates that latency based
load balancer can achieve fair packet distribution among CPUs.

Our LASLB evaluation results indicate that algorithm trigger periodicity impacts
performance metrics like tail latency, mean latency, achieved throughput, and CPU
usage. Triggering algorithm at the higher periodicity resulted in better achieved
throughput and tail latency in the majority of the offered loads. One benefit of
triggering the algorithm at lower periodicity is that it can help in reducing the average
CPU consumption. The LASLB system can achieve better mean latency when the
algorithm is triggered with moderate periodicity. In terms of fairness of CPU loading,
lower algorithm triggering interval results in more even CPU loading.

Further, we have stresstested our LASLB to see the maximum throughput it can
process without impacting the achieved data rate. In this evaluation, we have set NF to
perform basic port forwarder functionality to exercise max throughput through the LB.
With the smartNIC we have used in the evaluation, LASLB could handle the maximum
pushed offered load without causing much impact on the achieved data rate.

For future work, we suggest LASLB be evaluated for theoretical maximum traffic load
to determine the maximum traffic handling ability of smartNIC with load balancing
functionality. This activity will help in assessing the impact of LASLB on themaximum
throughput handling capability. In our evaluation, we have used a traffic pattern that
does not simulate the bursty traffic nature. Our LB does have a mechanism to adjust
latency averaging by tuning latency weight. We think if some experiment can be done
with a sudden change in the traffic pattern, it can help evaluate LASLB ’s ability to
handle such scenarios.
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Appendix A

First Appendix

A.1 Default evaluation configuration
Following is the configuration used in the evaluation unless mentioned explicitly.

Parameter Value Comments

MAX_VF 8 LASLB is configured for 8 CPU

MAX_BUCKET 32 Total number of buckets

ALGM_TRIGGER_INTERNAL 2000μs Algorithm trigger periodicity

α 0.25 Latency weight

AVERAGE_HIGH_TARGET 75 High latency will be +75% of average latency

AVERAGE_SAFE_TARGET 80 Safe latency will be -80% of average latency

Figure A.1.1: Default LASLB configuration

A.2 Microc data structure creation
The following code shows the algorithm code, which copies the P4 data structure into
the microc data structure.

1 for(bktIndx=0;bktIndx<MAX_BUCKET;bktIndx++) {
2 REG_READ32(&pif_register_bucketToVfMap[bktIndx], bucketToCpuMap[

bktIndx]);
3 REG_READ32(&pif_register_latency[bktIndx], bucketLatency[bktIndx]);
4

5 vfIdx = bucketToCpuMap[bktIndx] - BASE_VF_PORT;
6 bktCount = db.vf[vfIdx].bktCount;
7 db.vf[vfIdx].vfLat += bucketLatency[bktIndx];
8 latSum += bucketLatency[bktIndx];
9 db.vf[vfIdx].bktDb[bktCount].bktLat = bucketLatency[bktIndx];
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10 db.vf[vfIdx].bktDb[bktCount].bktIdx = bktIndx;
11 db.vf[vfIdx].bktCount += 1;
12 }

A.3 StreamMap table
For our evaluation purpose, we are creating a configuration file table.p4cfg, which
stores the details as discussed in section 4.1.5. We are using a python program to create
table configuration.

1 NUM_ENTRY=4 #Number of physical ports
2 direction=[0, 1, 0, 1] #0 -UpStream , 1 -Downstream
3 #srcPort contains port number on which traffic is supposed to come
4 srcPort= [0, 1, 4, 5]
5 #contains the paired output port.
6 dstPort= [1, 0, 5, 4]
7

8

9 #Core logic to generage the table
10 text += '\t\t"ingress::streamMap": {\n'
11 text += '\t\t\t"rules": [\n'
12 for i in range(NUM_ENTRY):
13 value = encodeDetails(dstPort[i], direction[i]) #Function body not

disclosed due to proprietary reasons
14 text += '\t\t\t\t{\n'
15 text += '\t\t\t\t\t"action": {\n'
16 text += '\t\t\t\t\t\t"data": {\n'
17 text += '\t\t\t\t\t\t\t"value": {\n'
18 text += '\t\t\t\t\t\t\t\t"value": "%i"\n' %(value)
19 text += '\t\t\t\t\t\t\t}\n'
20 text += '\t\t\t\t\t\t},\n'
21 text += '\t\t\t\t\t\t"type": "ingress::forward"\n'
22 text += '\t\t\t\t\t},\n'
23 text += '\t\t\t\t\t"name": "streamMap%i",\n' %(i)
24 text += '\t\t\t\t\t"match": {\n'
25 text += '\t\t\t\t\t\t"standard_metadata.ingress_port": {\n'
26 text += '\t\t\t\t\t\t\t"value": "%s"\n' %(srcPort[i])
27 text += '\t\t\t\t\t\t}\n'
28 text += '\t\t\t\t\t}\n'
29 if i == (NUM_ENTRY -1): #If this is last entry, no comma at end
30 text += '\t\t\t\t}\n'
31 else: #If not last entry, include comma after entry
32 text += '\t\t\t\t},\n'

Sample p4cfg configuration.

1 "ingress::streamMap": {
2 "rules": [
3 {
4 "action": {
5 "data": {
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6 "value": {
7 "value": "61697"
8 }
9 },
10 "type": "ingress::forward"
11 },
12 "name": "streamMap0",
13 "match": {
14 "standard_metadata.ingress_port": {
15 "value": "0"
16 }
17 }
18 },

A.4 TRex STL automation
1 def startUp(server, file):
2

3 # create client
4 client = STLClient(server = server)
5 passed = True
6 burst_size = 1000
7 pps = 100
8 pkt = STLPktBuilder(pkt=Ether() / IP(src="16.0.0.1", dst="48.0.0.1") /

UDP(dport=12, sport=1025) / 'at_least_16_bytes_payload_needed')
9 total_pkts = burst_size
10 s1 = STLStream(name='rx',
11 packet=pkt,
12 flow_stats=STLFlowLatencyStats(pg_id=5),
13 mode=STLTXSingleBurst(total_pkts=total_pkts ,
14 pps=pps))
15

16 # connect to server
17 client.connect()
18

19 # take all the ports
20 client.reset()
21

22 direction0 = [0, 1]
23 direction1 = [2, 3]
24

25 print("Mapped ports to sides {0} <--> {1}".format(direction0 ,
direction1))

26

27 # load stl profile
28 profileFile = os.path.join(stl_path.STL_PROFILES_PATH , file)
29 profile1 = STLProfile.load_py(profileFile , direction=0)
30 profile2 = STLProfile.load_py(profileFile , direction=1)
31 stlStream1 = profile1.get_streams()
32 stlStream2 = profile2.get_streams()
33
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34 # add both streams to ports
35 client.add_streams(stlStream1 , ports=direction0)
36 client.add_streams(stlStream2 , ports=direction1)
37 client.add_streams([s1], ports=[0])
38 return client
39

40 def perfromStlTest (client, duration, mult):
41 try:
42 direction0 = [0, 1]
43 direction1 = [2, 3]
44 # clear the stats before injecting
45 client.clear_stats()
46

47 client.start(ports = (direction0 + direction1), mult = mult,
duration = duration, total = True)

48 pgids = client.get_active_pgids()
49

50 waitDurationSec = duration
51 sh.prevTime=time.time()
52 while client.is_traffic_active(ports = (direction0 + direction1))

and waitDurationSec > 0:
53 timeDiffSec=sh.sleep()
54 stats = client.get_stats()
55 sh.readStats(stats, timeDiffSec ,"stl", mult=(mult.replace('gbps

', '')))
56 waitDurationSec -= 1
57

58 finally:
59 client.stop()
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Second Appendix

This appendix presents graphs related to our evaluation in section 6.

B.1 Packet drop statistics
Figure B.1.1 shows packet drop statistics for imbalanced traffic profile.

B.2 Latency boxplot for 95th percentile tail latency
Figure B.2.1 andB.2.2 shows 95th percentile tail latency box plots for imbalanced traffic.
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