
Faculty of Health, Science and Technology
Master thesis in Computer Science
Second Cycle, 30 hp (ECTS)
Supervisor: Dr. Sebastian Herold, Karlstads University
Supervisor: Martin Olausson, Combitech
Examiner: Dr. Bestoun S Ahmed Al Beywanee
Karlstad, September 5th, 2021

Performance Impact of Migrating
a Mining Traffic Management
System To Docker

Mubdir Issa <MubdirIssa97@gmail.com>

Abstract

Software deployment is all of the activities that make a software system available
for use. An examaple of such activites can be installations, updating and removing
of software. Each deployment platform can differ in quality attributes such as
performance, maintainability, etc. Docker, a deployment platform using container
technology offering a more modular way of deployment has become increasingly
popular over the past few years. The aim of the project is to find out how a deployment
with Docker would affect the performance of a clientserver application from the
mining industry. Three scenarios were performed in a simulated environment for
the existing as well as the potential deployment platform. Measures of roundtrip
time were made for both sets of the scenarios. Results show a general decrease in
performance when running the application on Docker. This is especially seen in early
stages of each scenario, where Docker in average has 15 times higher roundtrip times
than the existing platform. However, results gathered from each scenario suggests
that while Docker does start much slower than the existing platform, in later stages of
each scenarios, Docker manages to narrow the gap and be at most 1.14 times higher
than the existing platform. In conclusion, while the deployment in which the existing
platform is deployed ondoes out performDocker, it still shows somepromise and could
potentially be a worthy option to look at for further work.

Keywords
Docker, Mines, SAFE, Combitech, Software Deployment, Performance, Performance
Evaluation, Latency, Round Trip Time, .NET Framework, Software, Software
Maturity

iii

Sammanfattning

Termen ”Software Deployment” handlar om alla aktiviteter som gör mjukvara redo
att användas. Ett exempel på sådan aktivitet kan vara att installera, radera eller
uppdatera mjukvara. Varje deployment plattform kan skilja sig i vad den kan förse.
Vissa plattformer är mer anpassade för prestanda, andra mer passande för att lättare
kunna underhålla system. Docker är en deployment plattform som använder så
kallade containers för att utföra deployment. Docker erbjuder ett mer modulärt
sätt att installera och köra system på och har därför ökat i populäritet under den
senaste tiden. Syftet med detta examensarbete är att undersöka ifall en deployment
med Docker skulle påverka prestandan hos en klientserver gruvindustri applikation.
Tre scenario fall skapades i ett simulerat miljö för både det redan existerande
deployment platformen, och den potentiella Docker. Roundtrip times mått samlades
för både deployment plattformen. Resultaten visar att sammantaget så försämrades
prestandan när applikationen kördes på Docker. Detta kan ses särskilt under de
tidigare fasen av respektive scenario, där Docker kunde ha ungefär 15 gånger högre
roundtrip tider än den existerande plattformen. Dock så pekar resultaten samlade
från respektive scenario på att även om Docker startar betydligt saktare, så kommer
Docker ikapp i senare körningar under varje scenario och har som mest bara 1.14
högre roundtrip tider än den existerande plattformen. Slutsatsen dras attmedans den
existerande plattformen har generellt visat sig bättre än Docker, så går det inte riktigt
att kasta bort Docker som ett framtids alternativ då den visar sig lovande i senare faser
under alla 3 scenarios.

Nyckelord
Master examensarbete, Docker, SAFE, Combitech, Prestanda, Latens, Gruvor,
Deployment, Software

iv

Acknowledgements

First and foremost, I would like to thank Karlstads University for five great years that
I will never forget. Furthermore, I would like to particularly thankmy supervisor from
Karlstads University, Sebastian Herold, For ALWAYS being there and being a great
source of help and support, even midsummer I got the help I needed which was more
than I could ever ask for!

I would also like to thank Combitech for making this thesis possible and giving me
this opportunity. Due to the Corona virus pandemic, I felt very sad to not have an
opportunity to spend any sort of time in the company with its employees. Special
thanks goes to my supervisor at Combitech, Martin Olausson, who always made him
self available and approachable andwas also a great source of help and support. Cheers
Sebastian and Martin, I could not dream of having better supervisors!

Finally, I would like to dedicate this thesis to first, my mother, who was always
obnoxiously motivating me to get it done. I love you bicche. I would like to further
dedicate this thesis to my father, who was a great source of support. Moreover, I
dedicate this thesis to my dear brother, who is doing his PhD at Linköpings University,
for always believing in me and parttime confusing me! I hope to see my name in the
”Acknowledgements” section in your doctoral thesis. Lastly, I would like to send special
thanks to a very special friend of mine, you know who you are. Nothing but love!

v

Contents

1 Introduction 1
1.1 Problem Description . 2
1.2 Objective and Goals . 3
1.3 Stakeholders . 3
1.4 Limitations . 3
1.5 Outline . 4

2 Background and Related Work 5
2.1 Software Deployment . 5

2.1.1 The Software Deployment Process 6
2.1.2 Deployment Methodologies . 7
2.1.3 Virtual Machines (VM) . 7
2.1.4 Container . 8
2.1.5 VM vs. Containers . 9
2.1.6 Docker . 9

2.2 Performance . 10
2.3 Related Work . 11

3 System Overview 13
3.1 TMS . 13

3.1.1 MapViewer . 13
3.1.2 MineSim . 15

3.2 Preliminaries . 15
3.3 SAFE . 16

3.3.1 SAFE Architecture Overview . 18

4 Methods Overview 19
4.1 Migration Method . 19
4.2 Methods of Performance Evaluation . 20

5 Migration 22
5.1 Why Migrate to Docker? . 22
5.2 PreMigration Architecture . 23
5.3 PostMigration Architecture . 26
5.4 Steps of Migration to Docker . 27

vi

CONTENTS

5.4.1 Steps 1 Converting to a Console Application 27
5.4.2 Steps 2 Introducing a Main Method 27
5.4.3 Steps 3 Creating Dockerfiles 27
5.4.4 Steps 4 Building and Running Dockerfiles 29
5.4.5 Steps 5 DockerCompose . 30

6 Performance Evaluation 32
6.1 Performance Measurement . 32

6.1.1 Experimental Setup . 32
6.1.2 Data Collection . 34
6.1.3 Data Analysis . 36
6.1.4 Results of Performance Evaluation 39

6.2 Discussion of Results . 48

7 Conclusions and Future Work 50
7.1 Conclusion . 50
7.2 Future Work . 51

References 53

vii

List of Figures

2.1.1 Software Deployment Process [3] . 6
2.1.2 Concept of a Virtual Machine [36]. 8
2.1.3 Concept of a Container [36]. 8

3.1.1 a descriptive figure showing the MapViewer running in ”Operator
Mode”. MapViewer can be seen at ”E” 14

3.1.2 a descriptive figure showing assignment details for a machine 15
3.3.1 Safe Architecture Overview . 18

4.2.1 The Traffic Flow of A Position Update Message 21

5.2.1 TMS ThreeTier Architecture . 23
5.2.2Fleet Server Architecture . 24
5.2.3The Deployment View Prior to Migration 25
5.3.1 The Deployment View After the Migration 26

6.1.1 Figure Showing The Simulation Environment, MapViewer 34
6.1.2 Sequence Diagram of Position Update Messages 35
6.1.3 Example of How Data Is Represented Through Box plots 38
6.1.4 Example of How Data Is Represented Through Histograms 38
6.1.5 Data Gathered From Scenario 1 Represented Through Box plots 40
6.1.6 Data Gathered From Scenario 1 Represented Through Histograms . . . 40
6.1.7 Data Gathered From Scenario 2 Represented Through Box plots 43
6.1.8Data Gathered From Scenario 2 Represented Through Histograms . . . 43
6.1.9 Data Gathered From Scenario 3 Represented Through Boxplots 46
6.1.10Data Gathered From Scenario 3 Represented Through Histograms . . . 46

viii

List of Tables

6.1.1 Starting Positions for Each Machine Under Each Scenario 34
6.1.2Mann Whitney, Mean, Median and Standard Deviation Results of

scenario 1 . 41
6.1.3 Mann Whitney, Mean, Median and Standard Deviation Results of

Scenario 2 . 44
6.1.4Mann Whitney, Mean, Median and Standard Deviation Results of

Scenario 3 . 47

ix

Chapter 1

Introduction

Software applications do no longer consist of a single standalone system. Instead, they
consists of a variety of applications that are integratedwith each other to create amulti
tier, complete system [3]. For example, Netflix makes use of so called microservices
architecture, where an application is built on an arranged amount of services working
together [2]. This creates a lack of need for the distribution of complete systems and in
turn challenges the developers to find a way to tackle the issues of the environment in
which the system will operate in. For example, before an installation or an update
of a system component, developers have to anticipate how the other parts of the
integrated system will react to a change in the component. Furthermore, developers
have to anticipate how a change in another part of the system could affect their own
component. This issue is also magnified when considering the growing complexity of
software systems. Moreover, this issue creates a challenge and uncertainty of handling
activities such as installing, updating, releasing, and the removing of components.
These activities, along with a few others make up a process that can be referred to as
software deployment [3].

The term ”Software Deployment” refers to all of the steps, processes and activities
that make a software system available for use. Some of the processes that make up
software deployment can be the installation, updating and releasing of software [6].
Deployment is one of the most important aspects of development since through it,
applications, modules, updates, and patches are delivered to users [27]. Different
deployment platforms can provide different quality attributes for a software system.
For example, deploying an application on a container offers a more scalable and
modular solution compared to traditional deployment on physical servers [23]. Each
organization has different business needs and a deployment platform should be picked
accordingly.

An example of such a deployment platform is SAFE (SituationAwareness for Enhanced
Security). SAFE is a product developed by SAAB for building command and control
systems. SAFE is used in places like airports, prisons, mines and law enforcement
facilities. SAFE is a distributed system with clients, a command and control server

1

CHAPTER 1. INTRODUCTION

(C2), a database, and a sensor integration platform, called the SIP interface which
can deploy socalled SIP Gateways (software) through windows services. These SIP
gateways are developed in the .NET Framework. Moreover, SAFE is deployed at client
sites on traditional physical servers. [33].

In 2017, SAFE saw its introduction when Epiroc, a mining machine vendor [11] and
Combitech, a techinical consulting company, created an application for the traffic
management of autonomous loaders in mines [34]. The solution was an application
called TMS, short for ”Traffic Management System”. In TMS, autonomous machines
are able to interact with each other and perform assignments in a shared area. TMS
is an application that is deployed in SAFE and can make use of all the concepts that it
provides such as sensors, alarms and issues. This allows the autonomous machines in
the mines to perform complete assignments such as a going from one point in a mine
to another.

Docker is another deployment platform. it is an increasingly growing, opensource
deployment platform. It is used for developing, delivering and running applications.
Docker uses container, which gives it the ability to separate your application from
its infrastructure and makes the delivery of software quicker. Containers can be
considered to be a lightweight version of virtual machines. A container is defined as
a standard unit of software. Instead of running an entire virtual machine, containers
bundle up a package that consists of everything that is needed in order to run a piece of
software. Containers includes all code, its dependencies, and also virtualizes parts of
the operating system itself. Thismakes it possible to run applications in amore flexible
way since you could almost run it anywhere: a desktop or on a cloud. [8]

In this master thesis, a presentation of how deploying software on different platforms
is investigated. TMS is moved from SAFE to Docker and the differences in terms of
latency performance is evaluated and compared.

1.1 Problem Description
Despite SAFE being a working platform for Combitechs TMS application, there are
several disadvantages associated with it. Firstly, SAFE appears to be costinefficient
and requires large maintenanceefforts to operate. Additionally, the installation and
upgrading of SAFE are processes that are shown to be tidious. It requires far too much
manual work and Combitech wishes it to be a more automated, smoother process.
Lastly, SAFE lacks the scalability to the clients preferences as it is not deployable in
a way that can be tailored towards the clients needs. This means that a client that
requires a smaller deployment site would still have to install a complete SAFE system
and pay the same price as a client who would require a bigger deployment site. With
that being said, there is a need for a new deployment platform that offers an easier,
cheaper and a more scalable way of deploying their application. Since Docker appears
to be such platform, Combitech are considering it as an execution platform of the TMS
software instead of the SAFE SIP server. Therefore, the aim of this thesis is to evaluate

2

CHAPTER 1. INTRODUCTION

how a deployment with Docker would affect TMS in terms of latency performance,
compared to the current deployment platform, SAFE. Furthermore, this thesis aims
to explore thematurity of Docker for an application built on the .NET framework

1.2 Objective and Goals
The objective of the thesis is to illustrate how a deployment with Docker would
affect the performance of an industrystrength, clientserver application of the mining
industry. Furthermore, a demonstration of how the performance of the two systems
can bemeasured in such a scenario is presented. Additionally, the maturity for Docker
on a .NET framework application is observed and is of particular interest forCombitech.
The goal of the thesis is to compare the deployment in Docker with the original
deployment and assess whether Docker could potentially be a worthy replacement to
SAFE.

1.3 Stakeholders
This thesis is done in collaboration with Karlstads University and Combitech, an
independent technical consulting company andpart of defence and security groupSaab
AB. The reason behind Combitechs interest in this thesis is to see if Docker would be
a solution that could potentially be able to replace parts of the current deployment
platform, SAFE. Furthermore, Combitech benefits from this thesis by knowing which
possible limitations there are with TMS on Docker and how mature it is for such an
application. In addition to that, Combitech is provided with an idea of how relevant a
switch from the execution platform of SAFE to Docker would be.

1.4 Limitations
This thesis provides an evaluation of how the performance of a mining industry
application is affected on different deployment platforms. However, the scope of the
performance evaluation focuses solely on the latency aspect of performance. This
means that in order to get a more complete evaluation of the performance, a study
that focuses onmore aspects of performance such as CPU utilization, I/O performance
and throughput measurements would have to be conducted. Such further study
could potentially result in a different conclusion to what was drawn for this thesis.
Furthermore, working on a single host machine has shown to prohibit a complete
performance evaluation. This is simply due to the resources on the host machine
not being enough and a more powerful machine or a better physical topology could
accomplish different results to what was obtained in this thesis. For example, a
stronger host machine could have resulted in a bigger sample size and therefore a
stronger base to stand on for the results section of the thesis. Moreover, Docker
seemed to lack maturity for the .NET framework. This is seen in multiple places

3

CHAPTER 1. INTRODUCTION

such as dockercompose, Dockerfiles, and general user experince. Being unable to
freely configure dockercompose and Dockerfiles could have left the thesis with some
limitations. Finally, a decision of only focusing on the evaluation of the performance
in terms of latency was done together with Combitech and Karlstads University for this
thesis thus limiting other aspects of performance.

1.5 Outline
This thesis report is structured as follows. In chapter 2, a detailed description about
background of the degree project is presented together with related work. In chapter
3, an overview of the system that is used in this thesis is presented. Chapter 4 provides
an overview of the methods that are applied to answer the problem presented are
described and explained. In chapter 5, an explanation of why and how the system is
migrated from SAFE to Docker and the results of themigration is presented. Similarly,
chapter 6 presents how the performance of the two systems is evaluated and how
they are compared to each other. Furthermore, chapter 6 shows the results of the
performance evaluation. Finally, in chapter 7, the thesis work is concluded and a
discussion of the thesis is done together with what could be done in the future to
improve the thesis.

4

Chapter 2

Background and Related Work

2.1 Software Deployment

Software deployment can be informally defined as all the steps, processes and activities
that are needed to make a piece of software available for its users. More formally put,
according to Dearles article, ”Software deployment, past, present and future”, software
deployment can be considered as the processes between the acquisition of software and
the execution of it [6]. Furthermore, software deployment is a process that consists
of multiple interrelated processes. Such processes can be the release, installation,
updating and the activation of software [6]. These previously named processes, along
with others, will be discussed in more detail in the following section 2.1.1. Moreover,
software deployment is an important part of the software development process since
it accounts for how adaptable the system is for customer needs. The faster the
adaptation and the release of patches/updates, the friendlier the user experience is [27].
Furthermore, there are multiple ways of deploying software. Depending on the client
requests, existing deployment tools can offer a more suitable option that fits the needs
of the client. An example for this can be Jenkins, which is an automation server where
its key feature is offering a simple way to build, install, and configure your software
[22]. Another one is Kubernetes, which uses containers to create application parts,
couples the containers together, and then form a complete application. Kubernetes
offers scalability and pairs well with other software development tools [24]. In the
following sections 2.1.2, 2.1.3 and 2.1.4, a brief description of software methodologies
is presented, followed by an explanation of what virtual machines and containers are
and how they differ against each other. Furthermore, an explanation of how software
can be deployed in containers using Docker is presented.

5

CHAPTER 2. BACKGROUND AND RELATEDWORK

2.1.1 The Software Deployment Process

Figure 2.1.1: Software Deployment Process [3]

Figure 2.1.1 describes the processes and activities that software deployment may
consist of. These processes and activities are more commonly referred to as the
deployment life cycle. In this section, the figure above is dissected for each of its
processes starting with the release process. The release process is what connects the
development process with the deployment process. Software is collected in small
packages that contains data that is necessary for it to describe what it depends on.
The derelease process is done when a system is no longer needed and no support for
it exists anymore. Moreover, prior to the activation process, the installation process
occurs and it is where the software is shifted from developers to the users and is
prepared for activation. The activation process executes the software. The execution
of software can be done through various ways such as scripts of daemon processes.
On the opposite side of the activation process is the deactivation process. The main
purpose behind the deactivation of software is to prepare the system for a potential

6

CHAPTER 2. BACKGROUND AND RELATEDWORK

reconfiguration of the software, such a reconfiguration can be something like a
software update. Updating is the process where a piece of installed software is changed
by the developers and then pushed on forward to the costumers. Deactivation connects
to updating in a sense that prior to an update, the software needs to be deactivated and
reactivated. Adaptation, however, is the process where already installed software is
modified. This is done to maybe meet user requirements. Finally, to remove software
that is already deployed is called the deinstallation process. [6]

2.1.2 Deployment Methodologies

One way to automate the deployment of software is through a method called
continuous deployment (CD). Continuous deployment allows for changes to be applied
quickly from the development of software to the production system. The main
goal of continuous deployment is to minimize time between the development of
software and the delivery of the final product for use. Furthermore, Continuous
deployment aims to automate the deployment of software changed into the production
environment. Continuous deployment is often best paired with a complete automated
system, such a system can be using continuous integration, which is a practice in
software development in which work done by software developers can be integrated
and merged frequently [32]. Furthermore, the deployment of software can be done
throughmultiple ways depending on what fits the stakeholders such as developers and
customers. One such a way is deployment to the cloud. Cloud deployment refers to the
process of deploying software that can be accessed by the end user at any certain time
through the enablement of software as a service (SaaS), platform as a service (PaaS),
or infrastructure as a service (IaaS). Container technology is frequently used in cloud
deployment [27].

2.1.3 Virtual Machines (VM)

Virtual machines is a technology that gives the ability to build virtualized computing
environments [17]. Simply put, a VM is an emulation of an actual physical computer.
Virtual machines have been around for some time now and serve as a foundation for
the first generation of cloud computing. VMs make it possible for developers to run
what seems to be multiple machines running multiple operating systems, on a single
computer [36]. The interaction between the physical computer and the VMs is done
through a software layer called a virtual machine monitor, or more commonly known
as a hypervisor. These hypervisors can separate VMs from each other and determine
how to distribute the allocation of processors, memory and storage between the VMs
[17]. Figure 2.1.2 show cases the concept of a virtual machine and the components
needed in order to achieve virtualization.

7

CHAPTER 2. BACKGROUND AND RELATEDWORK

Figure 2.1.2: Concept of a Virtual Machine [36].

2.1.4 Container
Containers are executable units of software where an applications code, libraries and
dependencies are packaged into so that it is possible to run it on multiple locations
such as desktops, clouds or traditional IT [17]. In order for containers to achieve this,
containers use a form of virtualization in which the host operating system kernel and
hardware are shared to and between all the containers created. This makes them able
to provide multiple isolated environments on a single host. Furthermore, this allows
them to be a more faster and more portable option than traditional virtual machine
since containers do not include the host OS in every instance created [36]. Figure 2.1.3
show cases the concept of a container and the components needed in order to achieve
virtualization.

Figure 2.1.3: Concept of a Container [36].

8

CHAPTER 2. BACKGROUND AND RELATEDWORK

2.1.5 VM vs. Containers
The first thing that we have to look at in this comparison is the level at which
virtualization occurs. Virtual machines and containers use different ways of achieving
virtualization. In VMs, a hypervisor virtualizes the physical hardware [37]. The result
of this is that each VM that is running, has its own guest operating system kernel, a
virtual copy of the hardware such as theCPUandmemory that theOSneeds in order for
it to run, and an application along with its dependencies [35]. In containers, Instead of
virtualizing the underlying hardware, the operating system itself is virtualized (most of
the time its Linux). Each container only contains the application and its dependencies.
Containers are small, fast, scalable, and also portable since it does not include a guest
OS kernel in every instance created. Instead, containers makes use of the OS kernel
underlying features and leverages the features and resources of the host OS [35].

Compared to VMs, containers allow improvement of CPU and memory utilization
of physical machines. This is because of containers taking less hardware resources
because it does not need to virtualize a complete OS. Furthermore, different containers
on the same local machine are able to share the OS, this is not possible for VMs [42].
Moreover, Containers also enable microservices architectures, where components of
an application can be deployed and scaled in amore detailedmanner. However, unlike
VMs, containers does not provide the same level of isolation that virtual machines
achieve [17].

2.1.6 Docker
Docker is an opensource deployment platform that creates, implements and executes
containerized applications [8]. This is achieved through an application deployment
engine. This engine is added on top of the environment in which virtualized containers
are executed in. Furthermore, Docker utilizes four core components: The Docker
engine, Docker images, registries, and finally, Docker containers. TheDocker engine is
essentially theDocker server inwhich theDocker client talks to. TheDocker engine and
client can both be run on the samehost or you can connect theDocker client to a remote
engine running on another host. Furthermore, To create a container, Docker makes
use of so called Images. An image is a template that consists of a set of instructions
for the creation of containers. Images make it easy to unpack applications and to pre
configure server environments. These images can also be used for your own private
use, or being shared publicly with other docker users. all images created can be shared
privately and publicly are stored in registries [40].

Dockerfiles

In order to assemble an image, Docker uses so called Dockerfiles. A Dockerfile consists
of a text document containing commands that are called on by the CMD when a
container is build. In order to examplify this, consider this Dockerfile:

FROM ubuntu:18.04

9

CHAPTER 2. BACKGROUND AND RELATEDWORK

WORKDIR . /app
COPY . /app
RUN make /app

The instructions in the Dockerfile above creates a layer of its own. Starting from the
FROM instruction, a layer of the ubuntu:18.04 image is created. WORKDIR creates a
working directory inside the container. the COPY instructions copies file from a host
directory to a container directory. Finally, RUN, builds this application withmake [10].
This is just an example of how a Dockerfile can look like and how the syntax works.
More on Dockerfiles can be found in chapter 5.

DockerCompose

Compose is a tool that exists in Docker which is used for defining and running multi
container Docker applications. By using a YAML file [31], application services are
configurable by the user. With the help of three steps: 1) Define an app environment
with a Dockerfile so it can be reproduced anywhere. 2) Define services that make up
your app in dockercompose.yml. 3) Finally, run dockercompose.yml in isolation.
Furthermore, DockerCompose offers features such as: a single host to have multiple
isolated environments and mounting volume data that might be required for an
application to run to a container. Moreover, one could also perserve the volumes that
are used by containers. This is done in order to not lose the volumes for your container
if it is for example, deleted. Finally, DockerCompose can be used to connect the
containers not only to each other, but also to other networks that do not have relation
to containers [9].

2.2 Performance
According to the ISO 25010 Standard [20], performance can be described as: How a
system responds to actions performed in regards to a certain period of time. There are
three subcharacteristics that make up the definition for performance. The first one is
time behaviour. Time behaviour can be described as the “degree to which the response
and processing times and throughput rates of a product or system, when performing
its functions, meet requirements”. The second one is resource utilization, which is the “
degree to which the amounts and types of resources used by a product or system, when
performing its functions, meet requirements”. Lastly, Capacity, which is the “ degree
to which the maximum limits of a product or system parameter meet requirements.
In this thesis project, focus lies mainly on measuring performance through the first
two subcharacteristics. With that said, in this thesis, the performance is measured
through latency. Latency can be defined as: the time between a request being made by
a user until a response is sent by an application or server.

In this project, latency is measured in terms of roundtrip time [5]. Furthermore,
the reason for why performance is evaluated is to give a metric that can be compared

10

CHAPTER 2. BACKGROUND AND RELATEDWORK

between the two systems on each deployment platforms. through simulating multiple
scenarios, data for each of the deployment platforms can be visualised and thus be
compared fairly. Additionally, data gathered can also help identify where problems
may lie in the system and to be discussed in future work [14].

2.3 Related Work
Evaluating performance for technologies making use of containers is something that
has become increasingly popular. Performance can bemeasured through various ways.
Dependability benchmarking is something that is getting more popular by the day. A
variety of methods to measure performance exists. In the article by Casalicchio et al.
[4], various tools available for themeasurement of performance ofDocker are explored.
One goal of the article is to examine which, upon many alternatives, is the best tool to
measure a containerized application in terms of the CPU and disk I/O performance.
The article also aims to investigate the characteristics of the overhead introduced by
Docker containers in terms of CPU load and disk I/O throughput. To achieve this,
various test cases are performed. Each case is run 10 times. every test is logged and
the data is filtered later on. The results of the article showed that when the CPU load
requested by the containerized application is between 65 and 75 procent the overhead
can be accounted for 10 procent. Furthermore, a correlation between the CPU qouta
and the overhead can be found as well. As for the disk I/O, the overhead range from
10 to 30 procent. However, no pattern or dependency have been found between the
overhead and the size of the input.

In another article by Paolo et al. [7], an exploration of how to assess Docker containers
impact on the performance of the genomic pipelines. This is done through using a
realistic computational biology usage scenario based on the recomputation of selected
subsets of the mouse ENCODE analysis. To evaluate the impact of Docker usage on
the bioinformatic tools performance, the experiment conducters benchmarked three
different genomic pipelines and then a comparison of their execution times with and
without Docker is made. The three benchmark results suggests that using containers
has negligible overhead on the pipeline performance. However, this is only foundwhen
times that the task are run in are medium to long which are common in computational
genomic pipelines. Furthermore, the article suggests that containers provide a more
”homogeneous” execution. This is due to the standard deviation being smaller for all
three becnhmarks when running with Docker.

The article by Spoiala et al. [38] compares the performance of the WebRTC servers
when ran on Docker and on Virtual machines running in a fitting scenario for
multimedia workloads. The WebRTC server is simulated through a Kurento Media
Server (KMS)which is an open sourceWebRTC serverwith a powerful set of client APIs.
The tests are done through using a so called KMS performance tool. The tool is able to
test the KMS performance in multiple environments. The tests gathered data for the
CPU usage and latency tests. each test is ran for 200 seconds and all results are saved

11

CHAPTER 2. BACKGROUND AND RELATEDWORK

to a CSV file. The results suggest that Docker containers don’t have the same overhead
as virtual machiens (KVM). This allows them to get more of existing hardware due to
it supporting realtime performance. The test also concluded that Docker outperforms
virtual machines especially for latency.

Ismail et al. ” [19] focuses on the evaluation of Docker as an edge computing platform.
The evaluation is based on four fundamentals which are: Deployment and termination,
resource and service management, fault tolerance, and finally, caching. To examine if
Docker could potentially be used to enable Edge computing, a testbed is set up. This
testbed is made of a datacenter and three edge sites to simulate the environment. Each
edge site will properties of its own. An application is then deployed in a container at
these edges sites. After the evaluation, Docker is concluded to be a fitting candidate.
All though challenges did arise, Docker was found to provide a faster deployment,
and a better performance when compared to virtual machine based Edge computing
platforms

Finally, Lingayat et al. [26], a study regarding the evaluation of Dockers performance
on baremetal and virtual machines is presented. The evaluation of the performance
is done through a benchmark for Docker that calculates the startup time for Docker
containers for baremetal and virtual machines respectively. To obtain the time for
deploying the containers, 5 steps are performed on each the baremetal and virtual
machine. The results of the paper suggests that virtual machines are slower than
baremetal in regards to startup time. Baremetal Docker containers outperform virtual
machine containers by almost 50 procent. Furthermore, the research suggests that this
lack of performance with virtual machines in regards to startup times is experienced
less when working with a fewer number of Docker containers.

This thesis is similar to the related works presented in the manner of the performance
evaluation of Docker and comparing it to another type of system. this thesis explore
how a partial migration from SAFE to Docker would affect the performance of the
system. This thesis differs in what is being compared however. In the majority of the
related work presented, Docker is being compared to another type of virtualization
such as virtual machines. In this thesis however, Docker is being compared to
a traditional deployment on physical servers. Furthermore, in the related works
mentioned, multiple performance metrics are gathered and the performance is judged
based on all of the metrics. This thesis solely focuses on the evaluation of performance
through measuring latency in terms of roundtrip times.

12

Chapter 3

System Overview

This chapter presents a detailed theoretical description of the system that is at hand
for this thesis project.

3.1 TMS
TMS (Traffic Management System) is an application made for the traffic management
of autonomous loaders in mines. In TMS, autonomous machines are able to interact
with each other and performassignments in a shared area. This allows the autonomous
machines to share roads, service locations, and loading and dumping sites without any
collisions or miscommunication between them. TMS is built in a generic way and can
therefore be customized to other autonomous solutions where machines, drones or
trucks are able to perform predefined tasks. Such tasks can be an assignment for a
machine to go frompoint “A” to point “B” and dropping a load. Furthermore, machines
can be created and given assignments. This is done by a human operator that is
running the TMS application. The machines that are in the actual mine can be seen
through a visualization of the mine. the visualization that shows the mines is called
the MapViewer.

3.1.1 MapViewer
The TMS client is represented by a so calledMapViewer. TheMapViewer asmentioned
before, is a visualization of the mine at hand. Depending on the site where mines
operate. The MapViewer visualizes it and is customized accordingly. It is also
developed by Combitech and installed together with TMS. The MapViewer is installed
by running a powershell script. Furthermore, the script preps the MapViewer with an
IPaddress that connects it to the server that TMS is running on and hosts it on the
TMS client. In the MapViewer, the user can interact with a visualization of the actual
mine at hand. The MapViewer can also be started in different roles such as operator
mode or observer mode. The roles differ in functionality depending on what the user
wants to do. For example, operator mode allows the user to create and run the tasks

13

CHAPTER 3. SYSTEM OVERVIEW

that are described in section 3.1 ”TMS”. Observer mode shows the user what is going
on in the map in current time but does not allow the user to change or create tasks.
It is solely used for observing what is going on inside a mine. These two modes are
the most commonly used when using the MapViewer, however, there are more modes
which also adapt in functionality depending on what the user intends to do. Figure
3.1.1 below shows us the GUI of the MapViewer running in ”Operator Mode”. The
simulation of the mine it self can be seen in ”E”. The descriptive table also explains
what each highlighted part is.

Figure 3.1.1: a descriptive figure showing the MapViewer running in ”Operator Mode”.
MapViewer can be seen at ”E”

14

CHAPTER 3. SYSTEM OVERVIEW

Figure 3.1.2: a descriptive figure showing assignment details for a machine

The figure above shows the assignment details for a machine called Skopis1. Skopis1
will performa load anddumpassignment of a total of 50 tons. The loadwill be collected
form destination 118E09 and will be dumped in D4.

3.1.2 MineSim
MineSim is as the name implies, a simulation of a mine. This simulation loads the
TMS SIP Gateways with simulated data such as maps, machines, safety gates and
other mining objects which tms is reveloped to handle. To perform tests on TMS,
Combitech configures MineSim to replicate the target mine site in order to replicate
reallife scenarios. This simulation is also used to perform the performance evaluation
conducted in this thesis.

3.2 Preliminaries
this section introduces some brief background to some of the technologies used by
Combitechs application in both its deployment, but also its functionality.

Windows Communication Foundation (WCF)

Windows Communication Foundation is a framework used to build serviceoriented
applications. WCF sends data as asynchronous messages from one service endpoint

15

CHAPTER 3. SYSTEM OVERVIEW

to another. An example of such an endpoint can be a service that is hosted on an
application. A client requesting data from a service endpoint can be considered an
endpoint. The asynchronous messages can be simple and complex. For example, a
simplemessage such as a single character could be sent throughWCF but also, so could
a flow of binary data. WCF offers features such as service orientation, security, and
interoperability to name a few [29].

Representational State Transfer Application Programming Interface (REST
API)

REST is a set of architectural constraints in where API developers can implement in
various ways. If a request that comes from a client is made through a REST API, a
representation of the state of the resource is transferred to the endpoint. This delivery
of information can be portrayed in multiple formats via HTTP. Such formats can be
JSON. HTML,PHP or even plain text [15].

Software Development Kit (SDK)

SDK is considered to be a software development tool collection that comes installable
in one package. SDKs are usually provided by themanufacturer of a hardware platform,
operating system or a programming language. Therefore, SDKs help developers create
applications specifically for the platform they are intended to be used in. A basic SDK
usually will include a compiler, debugger, and application programming interfaces
(APIs) [16].

3.3 SAFE
SAFE (Situation Awareness for Enhanced Security) is an openintegration software
platform for building command and control systems. Moreover, SAFE is a distributed
system with clients, C2 servers [13], a database, a sensor integration platform (SIP)
which runs on phyiscal servers. SAFE can be integrated with other systems, databases
and sensors, and has an increasing library of system integration. It is used in places
like airports, prisons, mines and law enforcement facilities [33]. SAFE integrates all
elements of a control room into a single software application.

To integrate SAFE with other systems, the gateway SDKs, short for software
development kit is used. SDKs can be described as a set of software tools and programs
to create specific platform applications. In SAFEs case, any system that has sensors
with commands, statuses, position and/or alarms can be integrated. However, in order
to integrate with SAFE, a custom gateway needs to be implemented via the gateway
SDK by implementing a .NET Interface. Moreover, the implementation is instantiated
by SAFE as a Window Service. The .NET interface mentioned is called IGateway.

The IGateway can be implemented by developers to create gateways. IGateway is called
by SAFE to provide gateways with their configurations and to invoke commands on

16

CHAPTER 3. SYSTEM OVERVIEW

sensors. This interface is what provides the gateways in TMS its functionality. All
gateway services use the WCF service for the communication between SAFE and the
external subsystems. A big concept of gateways, are sensors. A sensor can be created by
the Gateway using sensor configuration. An example of a sensor is a door. This sensor
can have statuses that can be changed by SAFE. In the case of the door, a status could
be that it is opened or closed. Another big concept in SAFE are alarms. An alarm is
defined as a state change on the sensor, for example, a door could be open for too long
or an intrusion could occur, in this case, SAFE would issue an alarm to the system and
an operator would have to solve this issue. In TMS, a sensor could be an autonomous
machine, which can send different types of alarms such as if a machine is offline.

To integrate sensors and alarms from external subsystems into SAFE, a Sensor
Integration Platform (SIP) is used. The SIP module is responsible for all the
communication regarding sensors and alarms with external subsystems. This
communication is done through the Windows Communication Foundation (WCF)
which as mentioned before, is a framework building service oriented application. Data
can be sent from one endpoint to another as asynchronous messages. Furthermore,
each subsystem that is integrated with SAFE can differ in functionality from one
another. This means that the SIP module is made up of different gateways for each
subsystem. As mentioned before, all the gateways share the common service interface,
IGateway and may also use functionality that is already provided by the SAFE SIP
module. However, they can otherwise be tailored towards each integrated subsystem.
all gateways in TMS are integrated via the SIP module and uses it in order to integrate
its sensors and alarms functions to SAFE. Its important to know that this is the biggest
part of SAFE that TMS is dependent upon.

SAFE is also built around issue management. Issues carry information regarding one
ormore events which have taken place within the system. Moreover, issues are created
by either rules or users. A rule is what makes up the business logic of a SAFE based
system. In TMS, issue handling is integrated through the REST API, which is a set of
architectural constraints in where API developers can implement in various ways. An
example of an issue in TMS can be a task to a machine to go from point ”A” to point
”B”.

17

CHAPTER 3. SYSTEM OVERVIEW

3.3.1 SAFE Architecture Overview
To further understand SAFE and its components, a brief description of its architecture
is presented.

Figure 3.3.1: Safe Architecture Overview

SAFE uses a threetier service oriented architecture (SOA) [39]. As seen in figure
3.3.1 above, the client tier not only communicates via the WCF services, but also with
the HTTP REST API. This is used by clients that do not wish for any communication
directly with the WCF services.

The data tier in figure 3.3.1 above shows how SIP, as mentioned in section 3.3 is made
up of gateway services for each integrated subsystem. Furthermore, its shown that
these gateway servicesmakes use of theWCF communication protocol to communicate
with the integrated subsystems. SIP stores events and alarms in the SIP database seen
in the data tier.

The service tier consists of the SAFE C2 (Command and control) server. The C2 server
is the main SAFE server which contains the business logic for each SAFE deployment.
The business logics such as issue types, sensor types, alarm types, users, roles and
automations rules is created by an SAFE administrator using a point and click interface.
The business logics are stored in anMS SQL database. When all is configured in the C2
server users can interact with issues using SAFE client. Issues can also be handled by
external systems using REST API. C2 server controls the SIP Gateways using the SIP
interface over WCF.

The client tier is the user interface tier of SAFE. SAFE uses a SAFE client which is
responsible for providing information from SAFE to the user. Furthermore, the SAFE
client also handles actions performed and triggered by the user by calling services in
the service tier.

18

Chapter 4

Methods Overview

In this chapter, a detailed description regarding how to answer the question of how
Docker could affect TMS in terms of performance is presented. Furthermore, the
methods that were used to obtain the data needed is explained. The project is
approached in a way that could be divided into two phases. The first one being the
migration phase of the project. i.e., how Docker was introduced and installed on to
TMS (Moving TMS from SAFE to Docker). The second phase is about a comparative
benchmark of the system before and after migration.

4.1 Migration Method

To measure the impact of Docker, an implementation based on Docker is carried out
and thus a migration of the system is required. However, as the main purpose of the
thesis being to investigate if amigration toDockerwould be a viable option, it is decided
that only parts of the system which are critical are to be moved and a prototype of the
system is created. After a discussion with Combitech regarding which parts of TMS
to migrate to Docker, it was concluded that the two critical parts of the system are
to be migrated, those being the Fleet Server Gateway and the Safety System Gateway.
The reason as to why these two parts are chosen is due to how essential they are,
the Fleet Server gateway carries out most of the load in the system and is therefore
the natural choice for evaluating the performance of the system. The Safety System
gateway is the part that is responsible for the personal safety in the system, which is
a very important part of autonomous mines. Furthermore, In order to migrate TMS
from SAFE to Docker, the two previously mentioned gateways need to be adapted
before migration. These parts needed a bit of adaptation such that they could be run
as separate containers in Docker. Therefore, they are converted to a type that can be
containerized. A more detailed description on how the system is migrated is found in
chapter 5, which is all about how the system is migrated from SAFE to Docker.

19

CHAPTER 4. METHODS OVERVIEW

4.2 Methods of Performance Evaluation

The two versions of TMS that are running on Docker and SAFE will be tested in the
simulated environment, MineSim and will be visualized by the MapViewer. Three
scenarios are made on each deployment platform and each scenario contains 5 runs.
The first run starts with one machine. After each run, the number of machines in the
simulation is increased by one. This means that the last run in each scenario contains
5 machines. The reason as to why the amount of machines was determined to 5 was
due to the system on Docker not tolerating more than five machines. The application
would crash if the number of machines is increased to more than 5.

The only variable that changes during these 3 scenarios on each deployment platform
are the starting positions of themachines. This is to ensure that the starting position of
the machines does not have any effect on performance. Details regarding the starting
positions of the machines are found in chapter 6. Moreover, the scenarios are run via
MineSim, which is a simulation of a mine. This simulation is visualized and operated
on through the MapViewer. As aforementioned, the MapViewer is a UI showcasing a
mine with seven drives, each drive can have a maximum of one machine in it.

To evaluate the performance of TMS, traffic (load) needs to be generated for the
application to put it under stress. This traffic is generated thorugh machine update
positions which the autonomous machines send each half a second. A critical part of
the system is that the Fleet Server does not experience a lot of latency. This is due to
the Fleet Server being essential and playing a central role in the system. The Fleet
Server is what connects the logical layer of TMS, to its user interface. If the Fleet
Server experinces a heavy load, it could lose connection to other gateways which can be
crucial for the systems functionality. Furthermore, theMapViewer, which is where the
simulation is visualized, depends on the Fleet Server. This is because of the fact that
the Fleet Server forwards position update messages from the autonomousmachines to
theMapViewer. Once the position updatemessage is recieved, theMapViewer updates
the machines position graphically. Therefore, the roundtrip time fromwhen the Fleet
Server forwards the updated machine position to the MapViewer, to when the Fleet
Server receives an acknowledge message (ACK) from the MapViewer is measured.

Figure 4.2.1 shows the traffic flow generated when a machine that is in our simulated
environment updates its position. The machines sends out its updated position every
half a second. Once the machine updates its position, a message is sent from the
autonomousmachines to themachine servers. Eachmachine has its own server where
it stores the information of the machines and forwards it to appropriate destinations.
In this case, the machine server forwards this message to the ACMS gateway which in
turn sends it further to the Fleet Server. After the message reaches the Fleet Server, it
is forwarded to the MapViewer and finally, the position is updated graphically.

20

CHAPTER 4. METHODS OVERVIEW

Figure 4.2.1: The Traffic Flow of A Position Update Message

While generating this load, the performance of the system is evaluated through
calculating roundtrip times of the position update messages. the data gathered is
measured and logged. Furthermore, The data gathered is then used to analyse and
measure how the system performed on each deployment platform, Docker and SAFE.
To make sure that every scenario is as accurate and as comparable as possible, the
machines always start in the same position and are given the same assignment to do.
The range of variable change, one to five, is determined through limitations and trial
and error. The reasoning behind this was the following: the limitation part being that
for this specific simulated environment, themaximumnumber of machines is nomore
than seven. However, once more than five machines was running, the system would
crash when running on Docker. Furthermore, an idea of running multiple instances
of the simulation was attempted, but it was quickly discarded as this caused immense
stress on the system causing it again, to crash. The data gathered for each scenario is
visualized and compared through various graphical representations such as box plots,
line plots, and histograms. The data is also compared in terms of means, medians
and standard deviation. Finally, to ensure the validity of the data gathered, the data is
statistically tested through theMannWhitneyU test [25] to prove that the the gathered
data from each deployment is not identical.

21

Chapter 5

Migration

In this chapter, an overview of how the system is migrated from SAFE to TMS
is presented. This chapter features the steps taken in order to achieve this move,
the system architecture prior to the move, and the system architecture after the
move.

5.1 Why Migrate to Docker?
As outlined in section 1.1, the reason for the migration of TMS from SAFE is that
the deployment process of SAFE is found to be a manual and tidious one. For
example, to install SAFE, a user would first need to install the MS SQL database
that it uses. To do this, the database is downloaded and installed from Microsoft.
Furthermore, the same process is repeated but with SAFE. Installing it takes a lot of
manual work and questions have to be answered for SAAB. Additionally, SAFEhas a lot
of dependency on hardware resources and the server on which it runs on. This makes
it require regular maintenance since a check up is needed to assure that the system is
performing correctly. This in turn makes life difficult sometimes for the developers
using it since such a task is not in their control. Furthermore, SAFE is also not that
easily configurable, the cost of it does not scale together with its deployment, i.e, a
deployment for a small mine that requires far less functionality than a bigger one still
have to use SAFE as a whole product. Meaning that the product owner would have
to pay the same price for a smaller deployment site as a big one. Therefore, a need
arises for a smoother deploymentmethod hencewhyDocker is investigated. Moreover,
since Docker promises a more lightweight, easier way of delivering deployment, its
found to be a natural choice for Combitech to investigate. With Docker, there is no
longer the problem of having dependencies on hardware and servers. Docker offers a
more modular approach meaning that parts of the system could be configured with
minimized impact on the host machine and servers. This is due to the fact that
everything is run on containers. In addition, the container stack can be tailored to
each deployment site which solves the problem of having to install a complete SAFE
on a deployment site that does not really require it. With Docker and containers, its

22

CHAPTER 5. MIGRATION

possible to adapt the size of the deployment site. This means that a deployment site
that is small in size would require less amount of containers and a deployment site that
is big requires more containers. Deployment sites can be further tailored to the clients
requirements and resources. This also takes away from the problem of SAFEs fixed
price tag. Prices can be adjusted according to how big a deployment site is.

5.2 PreMigration Architecture
To be able to understand the steps of migration taken, a proper description of how the
original design of TMS is presented.

TMS is designed in a threetier architecture [18]. The threetier architecture separates
applications into three different tiers, the presentation tier, the application tier and the
data tier. Themain benefit of running a threetier architecture is that each tier runs on
its own infrastructure.

Figure 5.2.1: TMS ThreeTier Architecture

The presentation tier is the user interface and communication layer of the application,
this is where the client interacts with the application. The purpose of the presentation
tier is to provide to and attain information from the user. In the case of TMS, the
presentation tier contains the MapViewer and a part of SAFE called the SAFE client. A
SAFE client is a user interface application providing a user interface to a SAFE based
system. AMapViewer is a user interface application providing the client with aGUI of a
mine. TheMapViewer is hosted in the SAFE client. Section 3.1.1 provides more details
regarding what the MapViewer is and how it works. Moving on to the Application
tier, which can be considered to be the logical part of the threetier architecture and

23

CHAPTER 5. MIGRATION

where the main functionality of an application lies. In this tier, information gathered
from the presentation tier is processed. TMS has an application tier that is developed
using Csharp .NET framework. For the scope of this thesis, its decided to concentrate
on three out of the five gateways that TMS consists of. Those three gateways (usually
five, see chapter 3 for full TMS architecture) are integrated with SAFE via the REST
API and the SIP interface. The REST API handles the integration of the issues that
SAFE receives and the SIP interface handles the sensor and alarm integration of SAFE.
Simply put, an example of what the REST API is responsible for can be assigning
a task such as go from point ”A” to point ”B” to a machine, while the SIP interface
can for example be responsible for acknowledging and warning if a gate in a mine is
broken. For this thesis, focus lies on the Safety System Gateway, which is responsible
for all functionality that provides safety to a mine, the Fleet Server Gateway, which is
responsible for processing all data coming to the presentation tier and out of it, and the
MS Gateway, short for Machine Server Gateway which forwards messages that come
from the underlying machine server (in figure 5.2.2, ACMS gateway is the same as MS
gateway. old name). Thesemessages can bemachines position update, machine status,
etc. Furthermore, the data tier is where databases servers are found. Information is
stored and retrieved in this tier. For the scope of this thesis, the data tier consists of the
SafetySystem PLC, which acts as a database for the Safety System Gateway. The PLC
stores the information regarding alarms and sensors of the mine. More specifically
which alarms are on and off. Furthermore, the data tier consists of the machine server
”Epiroc MS” which stores information such as position and the state of the machines
used in the Epiroc mines. Finally, everything that is done in SAFE is stored in an MS
SQL database. The communication between the data tier and the application tier is
done throughOPCUA, which is communication protocol used formachine tomachine
communication. Moveover, the communication between the application tier and the
presentation tier is done through WCF and the RESTful API.

Figure 5.2.2: Fleet Server Architecture

24

CHAPTER 5. MIGRATION

To further understand the systems architecture, a look at the Fleet Server architecture
is seen in figure 5.2.2. The Fleet Server has a so called RequestHandler which is all
about the issue management of TMS and is therefore integrated to the SAFE back
end via the RESTful API. The RequestHandler takes care of assignments such as
load and dumps, go to point, manual machine loading if needed, etc. Furthermore,
the Fleet Server contains data regarding the status of machines in a mine. This is
done by communicating with the Machine Server Gateway (MS Gateway) via the WCF
communication protocol. The MS Gateway gets this information from the underlying
MS Server through OPCUA machine to machine communication. Finally, the Fleet
Server stores the locations in a mine. This can be routes, maps, points, and zones. All
this is necessery for theMapViewer to function correctly. The communication between
theMapViewer and the Fleet Server is also done via theWCF communication protocol.
As seen in the figure, the Fleet Server is then integrated with SAFEs backend through
SIP and RESTful API. The same thing can be noted for the MS Gateway in the figure
above, where it is also integrated via the SIP interface and the RESTful API.

Figure 5.2.3: The Deployment View Prior to Migration

The figure above describes the premigration deployment view of TMS. The TMS server
seen in the figure is a windows server in which TMS runs on. This windows server uses
theMSSQLdatabase seen in figure 5.2.1 to store everything needed. Again in the figure
above we see that the client side is running SAFE and the MapViewer clients. TMS is
deployed on SAFE with the help of two things. The RESTful API, which takes care of
issue management in TMS andmostly, the SIP interface which helps integrate sensors
and alarms between TMS and SAFE. For this thesis, the main task for the migration
is to get rid of the SIP interface. This is because the SIP interface is the main reason
as to why SAFE is used for TMS and by Combitech. A move away from it would be a

25

CHAPTER 5. MIGRATION

big step in a move away from the complete SAFE platform. The so called automation
network in the figure above is the underlying system which allows the machines and
safety system to function autonomusly. Finally, the MQTT broker is responsible for
sending messages when a sensor or an alarm is triggered and thus allowing the user to
know if something is wrong.

5.3 PostMigration Architecture

Figure 5.3.1: The Deployment View After the Migration

While the logical components of TMS does not change in any major sense. The
deployment view of TMS is changed quite a bit. Observing figure 5.3.1 above, the
design of the postmigration architecture completely removes any relation between
the containerized gateways and the SIP interface, meaning that there is no longer any
sensor integration for the two gateways. Its important to know that the migration step
does not completely get rid of SAFE, rather it gets rid of all the dependencies that TMS
has for SAFE such as SIP. TMS still makes use of the C2 Server and the SAFE clients
issue management functionality. The postmigration architecture is made possible
with the help of Dockers ”dockercompose” feature. The dockercompose feature
orchestrates the running ofmultiple container applications, in this case theFleet Server
Gateway and the Safety System Gateway are ran together in an isolated environment.
By doing so and running dockercompose, a communication between the parts left in
TMS, in this case, the Machine Server Gateway, and the isolated Docker environment
is established.

26

CHAPTER 5. MIGRATION

5.4 Steps of Migration to Docker
In this section, each of the steps required to move TMS from SAFE to Docker will be
presented and explained in their own subsection. Furthermore, its important to know
that the application is only partly containerized.

5.4.1 Steps 1 Converting to a Console Application
The first step in the migration phase of the project starts by the adaptation of the
system to the introduction of Docker. To make this adaptation, The output type of
the fleet server and the safety system gateway projects needs to be changed from a
“Class Library” to a “Console Application” type in Visual Studio. An output type of
“Class Library” produces dynamiclink library files (.dll) and a “Console Application”
produces executable files (.exe). This enables the ability to containerize these two
classes since only executable files can be containerized with docker.

5.4.2 Steps 2 Introducing a Main Method
In order to get the executable application to run, a mainmethodmust be implemented
to the two classes. This is because of the reason that in a console application, the first
thing that is invoked once an application is started is the main method. Moreover, the
main method restarts the bootstrapper for each gateway and a function, Start(), which
performs the initialization of the gateway application, Is called upon. Furthermore,
everything that involves the SIP interface is removed from the code of the fleet
server gateway and the safety system gateway since there is no need for it anymore.
Everything else in the old implementation is left as it is and is reused for the console
application. The two projects (Safety SystemGateway and Fleet Server) should be able
to be executed from visual studio at this point.

static voic Main(string[] args)
{

BootstrapperForFleetServerConsole.Reset();
var program = new Program();
program.Start();

System.Console.WriteLine("Started. Press return to stop");
System.Console.ReadLine();
program.Dispose();
Environment.Exit(0);

}

5.4.3 Steps 3 Creating Dockerfiles
Once the newly transformed application is fully functional and can be ran without any
issues, Docker is introduced and thus the begining of the third step. The first thing

27

CHAPTER 5. MIGRATION

to do is creating a Dockerfile in the same directory as the newly transformed projects.
Dockerfiles can simply be explained as text documents that contains instructions for
Docker to build a container. These instructions are commands that are called upon
by the user on the command line to build an image (refer to chapter two for a more
detailed description of Docker and Dockerfiles). Fortunately, Visual Studio makes this
step easy. By right clicking a console application project, container support can be
added to a project and a Dockerfile is auto generated. This process was done to both
the Safety SystemGateway and the Fleetserver Gateway. Below are the twoDockerfiles
that were used to build and run the Fleet Server and the Safety System gateway on
containers.

#DOCKERFILE FOR FLEET SERVER
FROM mcr.microsoft.com/dotnet/framework/runtime:4.8-windowsservercore-20H2
WORKDIR /app
COPY c/repos/acm/sw/Ermms.FleetServer.Console .
VOLUME c:/app/bin/Debug/logs
VOLUME c:/TMS/Configuration
VOLUME c:/TMS/SsEventLog
EXPOSE 22001
EXPOSE 22002
EXPOSE 22003
EXPOSE 22004
EXPOSE 22005
EXPOSE 22006
EXPOSE 22007
EXPOSE 22008
EXPOSE 30052
RUN echo 172.26.80.1 acms-server >> "C:/Windows/System32/drivers/etc/hosts"
ENTRYPOINT ("C:\\app\\Ermms.FleetServer.Console.exe")

#DOCKERFILE FOR SAFETY SYSTEM
FROM mcr.microsoft.com/dotnet/framework/runtime:4.8-windowsservercore-20H2
WORKDIR /app
COPY c/repos/acm/sw/ermms.gatewaycontainer.safetysystem .
VOLUME c:/app/bin/Debug/logs
VOLUME c:/TMS/Configuration
EXPOSE 30055
RUN echo 172.26.80.1 safetysystem-server >> "C:/Windows/System32/drivers/etc/hosts"
ENTRYPOINT ("C:\\app\\Ermms.FleetServer.Console.exe")

28

CHAPTER 5. MIGRATION

The following section will explain commands that are used in the Dockerfile, starting
with the first command, “FROM”. Docker images are built in layers in which each
command creates a new layer, The FROM command specifies a base image that a
container can be built upon it. In the case of the Dockerfile seen above, since our
application is of .Net framework, we pull a .Net Framework 20H2 Windows Server
image in which, our container will be built upon.’ The second command, WORKDIR,
sets the directory in where the commands will operate inside of the container, in
this case, the working directory for the container is /app. The WORKDIR command
can be considered to be the same as the “cd” command. It is important to know
that, as previously mentioned, the WORKDIR commands sets the directory inside
the container. Moreover, the COPY command takes the first argument, in this
case, c/repos/acm/sw/Ermms.GatewayContainer.SafetySystemand copies everything
there. The second argument in the COPY command is where everything will be pasted
in the container. In this case its set to a “.”, which means that it will be pasted in our
WORKDIR which in the Dockerfiles seen above, is /app. The VOLUME command is
used for data that is generated by and used by Docker containers. It creates volume
folders in the container that can be attached to folders that has necessary data for the
application. In this case, two volume folders are created inside the container. The
attachment process is done through the dockercompose. Likewise, Docker ports can
also be mapped to ports on the Docker host using the EXPOSE command. EXPOSE
allows the container to listen on the specified port. The default command lets the
container listen on TCP. Like volumes, the ports that are exposed in the Dockerfile
above are all necessary for the communication of the Fleet Server and the Safety System
Gateway to the rest of the system. Note that in the Safety System Dockerfile, the only
port that is exposed is 30555, which is actually the port that is needed to access the Fleet
Server. The RUN command simply runs a command on build time and lastly, when
the container is running, the first process that is started is stated by the ENTRYPOINT
command. In the Dockerfiles above, the .exe files that are generated when the output
type is switched from a class library to a Console Application are ran. This will in turn
make the container run the project.

5.4.4 Steps 4 Building and Running Dockerfiles

The fourth step goes through how to build and run containers once the Dockerfiles
are create. Before running the container, the Dockerfile needs to be built. This can
simply be done in the CMD by writing in the following command for each of the two
containers:

docker build -t ermmsgatewaycontainersafetysystem .

docker build -t fleetserverconsole .

The “.” In this case is the current directory in the Command Terminal, which in our
case is the following: c/repos/acm/sw/fleetserverconsole
or c/repos/acm/sw/ermmsgatewaycontainersafetysystem. Once the build is complete,

29

CHAPTER 5. MIGRATION

the containers are ran using the docker “run” command:

docker run ermmsgatewaycontainersafetysystem .

docker run fleetserverconsole .

Once the container is up and running, the application behaves similarly to how it did
before the switch to docker. The application is now packaged and is running on the
container.

5.4.5 Steps 5 DockerCompose
The next step is to allow the containers to not only communicate with each other, but
also the rest of the system. This is done in the dockercompose file. Dockercompose
is a powerful tool that supports the creation of multicontainer applications. It allows
containers to communicate with each other and the rest of the system. Below, a figure
of the dockercompose.yml file is demonstrated and explained.

version: '3.4'

services:
ermms.gatewaycontainer.safetysystem:

image: ${DOCKER_REGISTRY-}ermmsgatewaycontainersafetysystem
build:

context: .\sw\Ermms.GatewayContainer.SafetySystem
dockerfile: Dockerfile

volumes:
- ./Configuration:c:/TMS/Configuration
- ./logs:c:/app/bin/Debug/logs
ports:
- "30055:30055"
networks:
- tms

ermms.fleetserver.console:
image: ${DOCKER_REGISTRY-}ermmsfleetserverconsole
build:

context: .\sw\Ermms.FleetServer.FleetServer\Ermms.FleetServer.Console
dockerfile: Dockerfile

volumes:
- ./Configuration:c:/TMS/Configuration
- ./logs:c:/app/bin/Debug/logs
- ./SsEventLog:c:/TMS/SsEventLog
ports:
- "22001:22001"
- "22002:22002"
- "22003:22003"

30

CHAPTER 5. MIGRATION

- "22004:22004"
- "22005:22005"
- "22006:22006"
- "22008:22008"
- "30052:30052"
networks:
- tms

networks:
tms:

ipam:
config:
- subnet: 172.26.80.0/24

First and foremost a specification of the services that make up the application
are defined. In this case the ermms.gateywaycontainer.safetysystem and the
ermms.fleetserver.console so they can be run together in an isolated environment.
Moving on, a specification of the image, the build, volumes, ports, and networks are
defined for each of the containers. The build instruction here builds the Dockerfile
specified in context of where the dockercompose file is. Volumes attach volumes
created in the container to volumes on the Docker host, The /Configuration file
is the volume that’s attached on the Docker host to the volume file created in the
container, c:/TMS/Configuration. This attachment moves all the config files needed
for the application to run to the docker container. Running the container without the
configuration files results in an error since the container lacks data that is needed for
functionality. The logs volume is created to store the container logs to then be able
to go back and checkout. Furthermore, in the dockercompose file, port mapping is
also made easy. Map the previously exposed ports from the Dockerfiles to the ports
on the Docker host. The syntax for mapping ports is HOSTPORT:CONTAINERPORT.
The ports mapped in the dockercompose file above allow for communication between
the two containers that are created, and the rest of the system. The list of ports and
what they represent can be seen in the table above. Finally, a network called “tms” that
each of the containers can join and become reachable by other containers on the same
docker host is created. Dockercompose is then ran by:

docker-compose up

Upon running the dockercompose up command, a fully functional, containerized
system was achieved.

31

Chapter 6

Performance Evaluation

In this chapter, a detailed description on how the performance of the system was
measured and evaluated, is presented. Furthermore, this chapter presents the results
of the performance evaluation. Finally, This chapter is concluded with a brief
discussion of what meaning the results hold and how it reflects on this thesis.

6.1 Performance Measurement
In this section, The experimental setup is defined and the method used to measure
the performance of TMS in the old deployment and the new one are presented.
Furthermore, the implementation of the method is explained.

6.1.1 Experimental Setup
In this section, the experimental setup that was used in order to measure the
performance of the two systems is presented.

TMS is deployed on two different platforms that are evaluted respectively. First,
The performance of TMS is evaluated on the old deployment platform, SAFE, and
then, TMS is evaluted on the new deployment platform, Docker. To be able to
perform the experiment, SAFE and all its dependencies needs to be installed on
the local machine in order to run TMS on SAFE. The installation of SAFE also
includes the SAFEClient, which is the UI used to interact with features offered
from SAFE and TMS. Furthermore, to setup the experiment with Docker, Docker
Desktop has to be downloaded and installed. Once Docker Desktop is installed, its
crucial for the experiment that Docker is running Windows Containers through the
Windows Subsystem for Linux [30]. Finally, to be able to perform the experiment, the
MapViewer has to also be deployed. When deploying the MapViewer for the first time,
Combitech delivers a zipfile containing a script. This script is then run on Windows
PowerShell. Furthermore, the script automatically installs theMapViewer on the client
and also connects it to TMS. However, once the MapViewer is installed on the client

32

CHAPTER 6. PERFORMANCE EVALUATION

together with TMS and a newer version of TMS needs to be installed, there is no longer
a need for redeploying the MapViewer. In the case of such a scenario, the Fleet Server
discovers that the MapViewer version is older than TMS and sends the MapViewer
a weblink containing an updated version of the MapViewer. This updated version
is then run by the old MapViewer. The setup of the experiment consists of a mine
that is simulated via MineSim , one MapViewer client, which as explained before, is a
visualization of the simulated mine which contains 7 drives made for Epiroc [11]. In
a MapViewer client, autonomous machines can be created and be given assignments.
In this particular experimental setup, a limit of 5 machines is set for the MapViewer.
Starting the first experiment with one machine, the second one with two, etc. Each
experiment is run for a 30 minutes interval and is done three times. Once all the
experiments are done, an evaluation for a scenario is concluded. In total, therewill be 3
scenarios to cover. Moreover, eachmachine can be assigned a position for loading and
aposition for dumping. The positions for each scenariowill vary, this is done to support
the ensurement of that the assigned machine positions does not act as a factor that
could potentially affect the performance for the two deployment platforms. Table 6.1.1
below describes the machines starting positions for each scenario. As observed from
the table, In the first scenario, every machine starts in the same position in each lane
and are given the exact same tasks. In the second scenario, the starting position are
randomized for eachmachine in themine and eachmachine is assigned its own random
position. The last scenario puts every machine in two different but predetermined
positions. Furthermore, the only thing different for each machine is the point where
they dump the load in. Each machine is assigned an amount to carry for each load
and dump run that it does. For each run the machines dump 15 tonnes of loads. The
amount of load that the machine is assigned to carry is not found to be interesting
in this case since it does not affect the performance of the system. It is just used to
keep the machines busy for a longer time and is therefore set to 1000 tons for each
machine.

33

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.1.1: Figure Showing The Simulation Environment, MapViewer

Machine Name Scenario 1
Positions

Scenario 2
Positions

Scenario 3
Positions

Skopis1 E11 E07 E10
Skopis2 E11 E10 E5
Skopis3 E11 E04 E10
Skopis4 E11 E02 E5
Skopis5 E11 E04 E10

Table 6.1.1: Starting Positions for Each Machine Under Each Scenario

The figure above shows the simulation environment where the machines are run in. In
each lane, the positions where the machines can be created in goes from 0212. This
means that there are 10 positions to start the machines in. each machine created in
the first experiment is created at position 11. Furthermore, There are 7 drives where a
machine can be created in. These go from 118 to 106. Its important to note that only
5 drives are used since hardware resources did not allow for more than 5 machines
before crashing. Moreover, table 6.1.1 shows the starting position of the machines for
each scenario. It is important to note that each scenario starts with only ”Skopis1”, and
after ever 30 min, another machine is added.

6.1.2 Data Collection
During the 30minutes that themachines run in, the roundtrip times for eachmachine
is gathered. Each half a second, the machines in the simulation sends a message

34

CHAPTER 6. PERFORMANCE EVALUATION

containing its new position. this message is sent from the actual machine itself using
its own machineservers. This message is then forwarded to the MSGateway which is
Combitechs gateway that communicates with the machine servers. The MSgateway
forwards this message to the Fleet Server gateway which in turn forwards it to the
MapViewer. Whens this position update reaches the MapViewer, a graphical update
of the machine is done. The interesting thing to measure here is the roundtrip time
from where the Fleet Server sends its message containing its the machines updated
position until the graphical update of the MapViewer is done and an ACK message is
sent out. By doing this, we measure how the systems performance is affected when a
variable increases, in this case, the amount of machines in the MapViewer in terms of
roundtrip times. This means that every time the MapViewer is updated graphically,
we get the round trip time of the machine update messages.

Figure 6.1.2: Sequence Diagram of Position Update Messages

The figure above shows the sequence diagram of the machine position update message
that is sent every half a second. The EntityPositionChanged function informs the
MapViewer of the machines new position. The moment the EntityPositionChanged
function is called, the timestamp is stored in a variable called positionSent. Moreover,
the EntityPositionChangedAck function sends an acknowledge message (ACK) to the
FleetServer that the position is recieved in the MapViewer. Furthermore, the time
from where the FleetServer informs the MapViewer of the new position and when
the MapViewer sends the ACK is considered to be the roundtrip time in this case.
RTT can be defined as the time it takes to send a packet of data and receiving its
acknowledgment (ACK). To measure the RTT Following that, a small piece of code is
written to calculate the round trip time of the update messages sent by machines:

if(sendInfoAction.Method.Name.Contains(nameof(EntityPositionChanged)))
{

positionSent = DateTime.Now;
Logger.Warning($"Position Update Sent");

}
sendInfoAction.Invoke();

The idea here is tomeasure the time fromwhich themachine sends its updated position

35

CHAPTER 6. PERFORMANCE EVALUATION

and see how long it takes for it to reach the MapViewer client and an acknowledge
message is sent out. In order to do so, the timestamp in which the position update
is sent from the machine is saved in a variable called positionSent. This is where
TimeStamp A is acquired.

public void EntityPositionChangedAck(string machineId)
{

Logger.Warning($"RTT{(DateTime.Now - positionSent).TotalMilliseconds} ms");
}
sendInfoAction.Invoke();

Furthermore, once the the acknowledgement from the EntityPositionChangedAck
function is received by the FleetServer, DateTime.Now acts as our TimeStamp B. The
roundtrip time is the time from a message is sent until it is received. Therefore, The
calculation needed will be the timestamp in where an acknowledgemessage is received
from the MapViewer to the Fleet Server (TimeStamp B) minus the time in where the
Fleetserver informs the MapViewer of the newmachines position, which is also stored
in the variable, positionSent (TimeStamp A). As mentioned in the methods chapter,
the performance here is evaluted in multiple runs, each run generates more round trip
times since there is an increase in the amount of machines. For example, having 3
machines means that we get the RTT’s for 3 machines, each half a second.

6.1.3 Data Analysis
In this section, a description of how the systems performance reaction to the
differences in deployment platforms is analysed. The aim here is to see how the system
differs in performance in terms of roundtrip times of position update messages sent
from the Fleet Server to the MapViewer. Furthermore, a look at how the increase
of machine numbers in the simulation environment affects the systems performance
depending on the deployment platform. It is expected that for both of the deployment
platforms, an increase of machines in the simulation will result in higher load on
the system, thus increasing the roundtrip times that are gathered. However, the
interesting thing to look at is how Dockers performance is affected in comparison to
SAFE when increasing the amount of machines in the simulation. To analyse this,
each run in a particular scenario, the roundtrip times are gathered and stored into
a log file that can be converted to a CSV file. The log manager used to view the logs is
LogMX [28], which is, according to them is ”an intuitive and crossplatform tool, for
developers and administrators analyzing log files”. The CSV file is then used in order
to plot the roundtrip times in several ways. Furthermore, in order to compare the
two deployment architectures, supported by the plots, the roundtrip times obtained
from each run are analysed in various ways. For each run, the standard deviation,
along with the mean and median for the roundtrip times are calculated for both
architectures and then compared. Moreover, by increasing the number of machines in
each run, a comparison of how the roundtrip time behaves with an increasing number
of machines is done and presented through box plots, line plots, and histograms. All

36

CHAPTER 6. PERFORMANCE EVALUATION

plots and calculations are done with Pythons Pandas library.

Mean, Median and Standard Deviation

As mentioned in the previous section. One of the ways used to compare the two
deployment architectures was through calculating themean, median, and the standard
deviation for the roundtrip times gathered. The mean roundtrip times is analysed to
enable the comparison between the two deployment platforms in terms of what is their
average roundtrip times. The median however, is calculated to find out the centre
roundtrip time value of the data set. The median is then compared to the mean in
order to get a better understanding of how evenly distributed the data sets are. The
closer the median and the mean are to each other, the more evenly distributed the
data set is, from the lowest to the highest value. Finally, the standard deviation is
calculated to see how much the roundtrip times deviates from its calculated mean.
higher standard deviation values means that our roundtrip time are more spread out
from theirmean valuewhile lower standard deviation valuesmeans that they are closer
to to the mean value.

Analysis With Box Plots

One way the data is represented is through box plots. Box plots are used in order to be
able to identify mean values.it is also used to see how the data is dispersed and shows
how many ”outliers” there are in a data set. Box plots are of good use when quickly
trying to identifymean values such as, themaximumvalue, theminimumvalue and the
median. Thewhiskers in between the box showswhere the first quartile (25 procent) of
data and the last quartile. Furthermore, the whiskers shows where the minimum and
maxiumum values are. The line in the box tells where the median is and also shows
where the second quartile (everything under the line) and the third quartile lies [12].
Box plots also contains so called ”Outliers” which are data points that are considered
to not fit the overall distribution. For this thesis, outliers are not considered in the
results.

The way box plots are used in this thesis is by comparing the data gathered from
the runs in each scenario of the two different deployment platforms. As mentioned
previously in section 4.2, we conducted each scenario 5 times and each time thenumber
of machines in the simulation is increased. Therefore, the box plots will show how
the 5 runs for each scenario compare to each other in terms of round trip times.
Furthermore, the box plot will include all five runs on the same graph such that it is
easy to read and compare. Finally, A comparison between Docker and SAFE are done
for each run, meaning that we compare a Docker run with a simulation containing one
machine with a similar SAFE run, then Docker and SAFE with two machines, and so
on. The figure below shows an example of how the box plot can look like for the SAFE
architecture.

37

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.1.3: Example of How Data Is Represented Through Box plots

Analysis With Histogram Plots

Lastly, the data is represented through Histograms [41], which enables us to see the
frequency of the values in a data set. This will be used in order to see how reoccuring
some of the roundtrip times are. This gives an idea of the datas frequency distribution.
Here, all experiments done on the two different architectures, with the same number
of machines is compared in the same graph. This gives a comprehensive idea of how
the data frequency distribution for each architecture looks like and makes it easy to
compare the two in terms of roundtrip times. The figure below shows an example of
how the histograms can look like. it describes the frequency distribution of the round
trip times for an experiment with 5 machines.

Figure 6.1.4: Example of How Data Is Represented Through Histograms

38

CHAPTER 6. PERFORMANCE EVALUATION

Mann Whitney U Test

To ensure the validity of the data that is analysed, an approach of statistical testing
is done. This is done through the Mann Whitney U test [25] which is a test used to
compare the differences of two independent groups to see if the distribution of data
would differ or not and therefore show that our results are actually accurate. In this
thesis, the Mann Whitney U Test is performed in order to prove that data samples
gathered are not identical. This means that the null hypothesis, H0 assumes that the
distribution of the data sets for each test is equal. The alternative hypothesis, H1

assumes that the distribution of the data sets is not equal. If the p value gathered
from the Mann Whitney U tests is less than 0.05 than the null hypothesis is proven
to be correct. Furthermore, The Mann Whitney U test is done to prove the validity of
sample sets required from the experiments that were conducted in order to gather data
and compare the data sets between the two systems and to prove that the data collected
is not identical.

6.1.4 Results of Performance Evaluation

This section shows the results obtained from the performance evaluation for each of
the deployment platforms. A presentation of the two individual deployment platforms
under each of their respective scenarios performed will be visualised and discussed.
Initially, a table that represents the mean, median and standard deviation values
obtained from each scenario is presented. This table is then further backed by a
visualization of its data contents through box plots and histograms. Each of the
plots will compare the will be evaluated and discussed. Furthermore, A table for
the mean, median, standard deviation will be presented for all scenarios. Finally the
results of each run in respective scenarios will be concluded with a proof by the Mann
Whitney U test that the data for each of the deployment platform are not identical. The
structure for presenting the results of each scenario will be the same as table 6.1.1 in the
experimental setup section whichmeans that it starts by analysing scenario 1, scenario
2 and finally scenario 3.

39

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.1.5: Data Gathered From Scenario 1 Represented Through Box plots

Figure 6.1.6: Data Gathered From Scenario 1 Represented Through Histograms

40

CHAPTER 6. PERFORMANCE EVALUATION

No.
Of
Ma
chines

Mann Whitney U Test (U,
p)

SAFE
Median

Docker
Median

SAFE
Mean

Docker
Mean

SAFE
Standard
Deviation

Docker
Standard
Deviation

1
130253
p<10^4

1.0017 15.639 1.433 18.73 1.564 11.89

2
253799
p<10^4

1.0018 15.6901 2.74 20.683 6.135 13.17

3
1735369
p<10^4

1.9998 18.0996 4.91 27.282 6.117 17.11

4
10613972
p<10^4

5.0005 20.4929 9.71 29.518 10.92 20.77

5
42362274
p<10^4

14.9955 31.1964 24.0067 35.63 27.2655 28.34

Table 6.1.2: MannWhitney,Mean,Median and StandardDeviation Results of scenario
1

The figures above describes the distribution of the data between SAFE and Docker
through box plots and histograms. If outliers are not considered, the data gathered
from SAFE range from approximately 13 ms when running one machine in our
simulation, while the data gathered from Docker ranges from approximately 731ms.
Going along figure 6.1.6, an increase of the roundtrip time is seen in both deployment
platforms in respect to the increase of number of machines in the simulation
environment. the general trend is that an increase in numbers of machines leads to
an increase in roundtrip times. This proves that the system is under a bit of stress
thus leading roundtrip times to naturally increase. Furthermore, In the box plot figure
6.1.5 and table 6.1.2, which contains the data gathered from the first scenario in which
every machine starts at the same position (see table 6.1.1), SAFE shows a significantly
lower median and overall distribution of data points for the first three runs in the first
scenario. For the first, second, and third run respectively, Dockers median is 15.61,
15.6, and 9.05 times higher than SAFE. For the fourth and fifth runs however, the
difference becomes smaller with Dockers median being 4.10 and 2.08 times higher
than SAFE. Moreover, looking at the relation between the SAFE and Docker means,
the means for Docker are in each respective run is 13.07, 7.54, 5.55, 3.04, 1.5 times
higher than SAFE means. Though the mean and median values in Docker are all
higher than SAFE, the general trend here is that the difference between SAFE and
Docker becomes smaller when the number of machines increases. Furthermore, when
comparing how much Docker means and medians increase in percentages against the
increase in SAFE, its evident that the increase is higher when the number of machines
increase in SAFE rather then Docker. The Increase in SAFE mean from running one
machine to five machine is 16.75 times larger, going from 1.433 to 24.0067, while the
increase in Docker is only 1.79 times higher from one machine to five, going from
18.73 to 33.63. Moreover, the higher the amount of the machines for Docker shows
that there is less difference between the median and mean. In this case we see that
the difference is only 2.4336 between the two for Docker when running 5 machines,
whilst for SAFE, the difference is 9.0112. The closer the median and mean are to each
other, the more evenly distributed the data set is. In addition, table 6.1.2 shows how

41

CHAPTER 6. PERFORMANCE EVALUATION

SAFE and Docker also differ in terms of standard deviation. Backing this with the
histograms in figure 6.1.6, which shows that the distribution frequency for SAFE lies in
general at the lower end values of roundtrip times whilst Dockers distribution is a bit
more unstructured. Again, for the first, second and third run, the standard deviation
is significantly lower in SAFE than Docker and as the numbers of machines increase,
the deviation becomes more similar for the two platforms. This is also backed by the
histograms, the last histogram shown in figure 6.1.6 shows a more even distribution
between the two platforms where both values are spread out in a similar manner. An
interesting thing to notice in the histograms is that in the majority of cases, Docker
does not seem to have values below 15ms. Finally, TheMannWhitney tests performed
showed that all the data gathered for the first scenario has proved to be nonidentical
thus proving the null hypothesis that was mentioned in section 6.2.3.

42

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.1.7: Data Gathered From Scenario 2 Represented Through Box plots

Figure 6.1.8: Data Gathered From Scenario 2 Represented Through Histograms
43

CHAPTER 6. PERFORMANCE EVALUATION

No.
Of
Ma
chines

Mann Whitney U Test
(U,p)

Safe
Median
(ms)

Docker
Median
(ms)

SAFE
Mean (ms)

Docker
Mean (ms)

SAFE
Standard
Deviation

Docker
Standard
Deviation

1
501733
p<10^4

1.0049 15.57 3.615 11.92 4.29 6.44

2
2383023
p<10^4

2.0018 16.21 7.29 24.06 9.96 16.67

3
10583111
p<10^4

8.9963 16.02815 14.58 17.48 15.93 17.11

4
25319554
p<10^4

12.0005 24.6639 19.80 30.76 21.41 26.69

5
44930460
p<10^4

18.004 30.5677 28.60 32.73 30.43 24.27

Table 6.1.3: MannWhitney,Mean,Median and StandardDeviationResults of Scenario
2

Looking at the results for the second scenario, where positions for each machine
is randomized (positions can be seen in the table 6.1.1 in the ”Experimental Setup”
section), The behaviour is for the most part the same as the previous scenario.
Exceptions here are found in run 4 and 5. The maximum value for both of these
experiments in SAFE is higher than in Docker. However, the median and mean is
lower in SAFE than in Docker, but the Standard deviation when running 5 machines
on SAFE is a bit higher at 30.43 then in Docker which is at 24.27. This can be caused
by multiple things such as the host machine not being in an optimal state or that some
processes in TMS acted unusually. Additionally, in run 2 and 3, the Docker run with
2 machines produced a higher mean and median values (24.06 against 17.48 means
and 15.57 against 16.21 medians) and performed in general worse than the run with
3 machines. This again can be because of setup issues since it does not fit in the
general trend of roundtrip time increments. Furthermore, the same behaviour of
the first scenario is seen here. The relation of means and medians from 1 machine
to 5 is seen here as For SAFE, the mean for five machines is 7,9 times larger than the
mean with one machine, whilst Docker is 2.74 times larger with five machines than
with one. Furthermore, the means of Docker for each respective run is 3.3, 3.3, 1.19,
1.55, and 1.14 times higher than SAFE. whilst the median is 15, 8.1, 1.78, 2.055, and
1.7 times higher for each respective run. Additionally, SAFE mean roundtrip times
increments from the first run to the last is again high, going from 3.615 to 28.60
which is 7.9 times as much, while docker only increases from 11.92 to 32.73 which
is 2.75 times higher. This again proves the trend seen in the first scenario where the
difference between SAFE and Docker becomes smaller when increasing the number of
machines and that Dockermay potentially pay off in a larger scale. Moreover, similarly
to the first scenario, the difference between the median and mean becomes smaller
for Docker when the number of machines are increased thus leading to a more evenly
distributed data set when compared to SAFE. When running 5 machines for example,
the difference between Dockers mean and median is 2.1623 while the difference for
SAFE is 10.54. Furthermore, The histograms show a similar behaviour of the data
as presented in the previous scenario. The histogram plot containing five machines

44

CHAPTER 6. PERFORMANCE EVALUATION

however, shows a difference in behaviour. the data from the fifth experiment is more
evenly distributed across the two deployment platforms. This is also backed by the
standard deviation being higher, at 30.43 for SAFE and 24.27 for Docker. Moreover,
the trend of Docker having the highest amount of data at around 15ms is seen here
again in all histograms. Finally, in this scenario, The Mann Whitney U test showed
once more that the null hypothesis is true proving that the data sets gathered from
Docker and SAFE are not identical.

45

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.1.9: Data Gathered From Scenario 3 Represented Through Boxplots

Figure 6.1.10: Data Gathered From Scenario 3 Represented Through Histograms

46

CHAPTER 6. PERFORMANCE EVALUATION

No.
Of
Ma
chines

Mann Whitney U Test
(U,p)

Safe
Median
(ms)

Docker
Median
(ms)

SAFE
Mean (ms)

Docker
Mean (ms)

SAFE
Standard
Deviation

Docker
Standard
Deviation

1
449829
p<10^4

1.0032 15.573 3.353 12.468 4.490 7.360

2
1193520
p<10^4

1.0385 15.637 6.228 16.500 10.661 9.990

3
7515029
p<10^4

6.996 15.668 13.195 19.157 15.237 11.659

4
23058069
p<10^4

11.996 18.034 20.221 27.461 22.676 17.420

5
49735828
p<10^4

18.0011 28.4823 30.335 31.937 34.595 22.474

Table 6.1.4: MannWhitney,Mean,Median and StandardDeviationResults of Scenario
3

In the third scenario, where each machine starts on E10 and E05 (see table 6.1.1) is
represented by the figures and table above. This scenario follows a similar structure to
the other two that are shown and briefly discussed above. Considering the box plots
in figure 6.1.9. All the medians and means for all SAFE runs are lower than Dockers.
Moreover, there is a clear increase in mean values when increasing the numbers of
machines. However, the same thing can not be said for Docker. As observed the
docker runs with 1, 2 and 3machines show very similar results in terms of theirmedian
values all at 15.573, 15.637, and 15.668 respectively. The mean values for Docker are
3.72, 2.65, 1.45, 1,36, and 1.05 times higher than SAFE means for each respective run.
However, the Standard Deviation of SAFE is higher for all experiments expect for the
first one. In this scenario, the observation of the SAFE value increase being bigger
than Docker in terms of percentage values from one experiment run to another applies
again. SAFE first run in this scenario with only one machine has a mean value of
3.353ms while the last experiment with five machines has the mean value of 30.335ms
which is 9.04 times higher to the fore mentioned. When looking at Docker however,
the first experiment has a mean value of 12.468ms and the last is 31.937ms which is
less then 2.56 times as high. Again, the difference of mean and median for Docker
with higher number of machines is smaller than the difference for SAFE. Running 5
machines on Docker, the difference between the mean and median is 3.4447, and is
again, smaller than the difference of mean and median for SAFE (12.3339). This again
backs that the distribution for Dockers data set is more evenly distributed than SAFEs
when running a higher number of machines. This scenario shows again the possibility
of Docker being able to potentially pay off when used in a larger settingwhen compared
to SAFE. Furthermore, looking at histogram for one and two machine its clear that
SAFE performs better and has an overall distribution towards the left end of the graph.
However, that changes when looking at the rest of histogram. The overall distribution
looks to be more evenly distributed between the two. Similarly to the two previous
scenarios, Docker seems to have its highest number of values at around 15ms (Again,
here histograms can be misleading due to not having relative frequency). The Mann
Whitney U test showed that the null hypothesis is true, thus proving once again that

47

CHAPTER 6. PERFORMANCE EVALUATION

the data sets gathered from Docker and SAFE are not identical for this scenario.

6.2 Discussion of Results
In this section, a discussion regarding the results of the performance evaluation is
presented. For each of the three scenarios, its clear to see that the roundtrip times
increase when the number of machines increase. This is something that is found
to be mutual in behaviour for both the deployment platforms. Furthermore, when
comparing themedians andmeans for SAFE andDocker for each scenario, its sound to
say that SAFE is always performing better than Docker. This is not to say that Docker
is not performing, its just saying that SAFE is getting better values than Docker for
the specific scenarios made for this thesis. Dockers’ values are not necessarily bad.
However, with that being said, The differences between SAFE and Docker, in terms of
median and mean values, becomes smaller when the number of machines is increased.
This is something that is observed in all three scenarios conducted. In addition to that,
when comparing how high of an increase in mean roundtrip times from one machine
to fivemachines, its found that there is amuch larger increase fromonemachine to five
machines on SAFE rather than Docker. Comparing the two in that aspect, Docker has
proven to increase in a slower pace when increasing the number ofmachines thanwhat
SAFE does. Lastly, when comparing SAFE with Docker when running one machine,
the mean for Docker could be more significantly higher than SAFEs mean with one
machine, however, when comparing the two running 5 machines the difference is not
significantly higher. All of this could potentially mean that Dockermight be able to pay
off when used in a larger setting.

The observation of SAFE and Docker closing in on each other when the number
of machines increase is interesting since when running 6 machines on Docker, as
discussed in the Methods Overview chapter, the system completely crashes and its
tough to get any more than 5 machines running on Docker. This could however be an
issue of the experimental setup and hostmachine not being powerful enough to handle
the Docker set up. Another interesting observation is that when running Docker with 1
machine, its hard to justify the fact that the mean/median value for it is more than 10
times higher then SAFE since it does seem to run as smoothly. An assumption is made
of that it could be that there is a constant overhead for Docker that couldmake it slower
such that the roundtrip times always have their actual time, plus the overhead from
Docker. One thing that is backing this assumption are the histograms seen in figures
6.1.6, 6.1.8, 6.1.10, there seems to be some sort of a barrier of 15ms for Docker in which
in the majority of cases, Docker does not seem to perform under, even for the lowest
number of machines. This can be seen in both the histograms, where Docker seems to
have its majority of values at 15ms and not much under it, and in the box plots where
the third quartile of the majority of box plots for Docker, starts at around 15ms.

The article “Measuring docker performance:What a mess!!!” [4], discussed in related
works, further backs this assumption. the aim of the article mentioned is to investigate

48

CHAPTER 6. PERFORMANCE EVALUATION

the characteristics of the overhead introduced byDocker containers. It is found that the
containerized application utilized 65 to 75 procent of the CPU, the overhead accounts
for 10 procent. This assumption is not backed by anything and this aspect would
require further investigation.

Another thing to consider when evaluating the performance of Docker against SAFE is
the amount of data that is removed from Docker in comparison to SAFE. Each of the
two deployment platforms contain initially almost the same number of data. However,
in the data gathered, some roundtrip times account to 0 ms. This is not correct
since there is no such thing as 0ms roundtrip time. The reason as to why 0 values
are received is that because the update message is still stuck in a queue containing
position update messages. This means that the higher amount of zeros gathered lead
to a higher amount of position update messages stuck in the queue. Those zeros are
then filtered out and removed from the data set. The problem here is that the amount
of zeros found in Dockers data set is larger than the amount found in the SAFE data
set. This means that the data sets postfiltering differ in size, SAFE being larger in size
than Docker. However, again this could be referred to as a setup problem with the
local machine not being powerful enough to handle the extra resources required when
running Docker. Furthermore, The standard deviation of SAFE for the last scenario is
higher than all Dockers which means that the values from the data sets gathered from
scenario 3 deviates more from the mean then Dockers.

To summarize and conclude this section, SAFE out performedDocker in every scenario
that was done but, it seems that when the scale of the setup becomes larger, the
difference between SAFE and Docker becomes smaller. This could potentially mean
that Docker is paying off when the amount of machines increases. According to Tom
Arbuthnot [1], a principal solutions architect in Microsoft, a ”poor” roundtrip time
is considered to be greater than 500 ms. With that in consideration, regardless of
which deployment platforms performed better than the other, both of the deployment
platforms showed sufficient results. having a maximum mean roundtrip time value
of 35ms is not at all bad for either Docker or SAFE

49

Chapter 7

Conclusions and Future Work

7.1 Conclusion

This thesis covers how a deployment with Docker would affect the performance of an
industry strength mining application called TMS. The objective of this thesis was to
illustrate how a deployment with Docker would affect the performance of TMS and
how the performance of the two deployment platforms can bemeasured in the scenario
given. Furthermore, the maturity of Docker on a .NET framework application was
of particular interest for Combitech. The goal of this thesis is to compare SAFE and
Docker and see if Docker could potentially replace software hosting in SAFE (SIP). To
achieve the objective and goal of the thesis, the project is divided by two phases. In the
first phase, the application ismigrated from the original deployment platformSAFE, to
the new Docker. For the second phase, an evaluation of how the systems performance
differs between the two deployment platform is done through performance latency
evaluation. This evaluation is done through 3 scenarios, performed in a simulated
environment.

To conclude the first phase, a partial move of parts of the system is done from SAFE
to Docker. This move saw success though came also with some limitations that are
discussed in the results section. However, its concluded that a move from SAFE to
Docker is something that is achievable, at least for the scope of this thesis. However,
Docker is observed to lack maturity for a Windows .NET framework application
such as TMS. This can be seen in the dockercompose file in chapter 5, in section
subsection 5.4.5. In the code listing shown, there should not be any need to specify
the networks and subnet. This should be automatically done via the special DNS name,
host.internal.docker, which is able to resolve to the internal IPaddress used. However,
host.internal.docker does not exist in the .NET Framwork image. This is probably
due to the .NET Framework community being very small in Docker and the problem
has thus not been addressed [21]. With that being said. Docker did show promise in
being able to potentially scale. The containers did work and multiple instances of the
containers can be run.

50

CHAPTER 7. CONCLUSIONS AND FUTUREWORK

The second phase showed initially a significant difference between the two deployment
platforms. Generally, SAFE outperformed Docker when the amount of machines that
are in the simulation is low. However, its seen that with an increasing number of
machines in the simulation, Docker eventually started catching up to SAFE and the
difference between them became almost insignificant. To conclude the second phase,
Docker could potentially pay off if used in a larger setting where a higher number of
machines is required.

To summarize, though intercepted by some minor problems due to a lack of maturity
for Docker onWindows and the .NET framework, amigration from SAFE toDocker for
parts of TMS was done successfully. In addition to that, the performance, in terms of
roundtrip times from machine messages, is evaluated on both deployment platforms.
The data from each scenario is gathered to be measured and evaluted. The results of
themeasurements suggests that all though SAFEoutperformsDocker for themost part,
Docker did see some success when being ran with a higher number of machines and
came significantly closer to SAFE if compared to runs performed with lower number
of machines. This means that Docker could potentially be a worthy option to replace
SAFE and should not be ruled out as a future platform for Combitech to deploy TMS
on.

7.2 Future Work
While the results of the thesis do suggest that Docker, in regards to performance
latency, could potentially be a replacement to parts of SAFE, especially when running
a higher number of machines, further work has to be conducted in order to draw a
clearer conclusion as to whether Docker could work as a replacement to the execution
software in SAFE.

One thing that could be done in order to further clarify this conclusion is increasing
the sample size of the scenarios. This means that more than 3 scenarios are made
with a higher amount of machines (more than five) in order to further back the
conclusion of Dockers potential to working better in a larger scale. Furthermore, an
improvement of the physical topology can bemade. Rather than running everything on
a single machine (Computer), more accurate data is gathered if the physical topology
is distributed in a way that simulates actual work cases. This might lead to better
performance results since it takes a load that is on onemachine and distributes it across
multiple machines. If that can not be achieved, simply obtaining for a more powerful
hostmachine could even be sufficient to gain further clarity on the results. The running
of Docker containers, SAFE, TMS and other services on Windows on a single machine
could take its toll and affect the results. For the case of this thesis for example, no
more than 5 machines could be ran when running the scenarios made on Docker,
however, seven machines are easily run when running SAFE. This is because more
resources are used when running Docker on the specific host machine where the thesis
is conducted. However, an attempt of evaluating the running of 7 minemachines on

51

CHAPTER 7. CONCLUSIONS AND FUTUREWORK

Docker with a more powerful host machine was done and was successful in doing so.
Again, this could allow for the gathering of better data thus enhancing the clarity of
the results. Moreover, the evaluation performed in this thesis covers only the latency
aspect of performance. Further work could improve upon this through evaluating
other performance metrics such as CPU and memory utilization, I/O performance,
throughput. Finally, Combitech are intressted in more than just the impact of Docker
on latency performance. Dockers maturity and performance in aspects other than
latency are two other things that Combitech find interesting. Though the maturity of
Docker is briefly described in this thesis, further research is needed in order to assess
how Docker could potentially work for a .NET framework on Windows application
such as TMS. Furthermore, Combitech would benefit greatly from research conducted
regarding how Dockers performance is evaluated in aspects other than latency.

52

Bibliography

[1] Arbuthnot, Tom.What are Thresholds for Good and PoorNetwork Packet Loss,
Jitter and Round Trip Time for Unified Communications? 2021. URL: https:
//tomtalks.blog/2018/05/what- are- thresholds- for- good- and- poor-
network - packet - loss - jitter - and - round - trip - time - for - unified -
communications/ (visited on 07/08/2021).

[2] CaoDucNguyen.ADesign Analysis of CloudbasedMicroservices Architecture
at Netflix. 2020. URL: https : / / medium . com / swlh / a - design - analysis -
of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
(visited on 08/16/2021).

[3] Carzaniga, Antonio, Fuggetta, Alfonso, Hall, Richard S, Heimbigner, Dennis,
VanDerHoek, André, andWolf, Alexander L.Acharacterization framework for
software deployment technologies. Tech. rep. Colorado State Univ Fort Collins
Dept of Computer Science, 1998.

[4] Casalicchio, Emiliano and Perciballi, Vanessa. “Measuring docker performance:
What a mess!!!” In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion. 2017, pp. 11–16.

[5] cloudflare. What is Rtt. 2021. URL: https://www.cloudflare.com/en- gb/
learning/cdn/glossary/round-trip-time-rtt/ (visited on 08/18/2021).

[6] Dearle, Alan. Software deployment, past, present and future. Tech. rep. 2007,
pp. 269–284.

[7] Di Tommaso, Paolo, Palumbo, Emilio, Chatzou, Maria, Prieto, Pablo, Heuer,
Michael L, and Notredame, Cedric. “The impact of Docker containers on the
performance of genomic pipelines”. In: PeerJ 3 (2015), e1273.

[8] Docker. About Docker. 2021. URL: www.docker.com (visited on 03/15/2021).

[9] Docker. DockerCompose Overview. 2021. URL: https://docs.docker.com/
compose/ (visited on 03/15/2021).

[10] Docker. Dockerfile Reference. 2021. URL: https://docs.docker.com/engine/
reference/builder/ (visited on 03/15/2021).

[11] Epiroc. Epiroc. 2021. URL: https : / / www . epiroc . com / sv - se (visited on
08/16/2021).

53

https://tomtalks.blog/2018/05/what-are-thresholds-for-good-and-poor-network-packet-loss-jitter-and-round-trip-time-for-unified-communications/
https://tomtalks.blog/2018/05/what-are-thresholds-for-good-and-poor-network-packet-loss-jitter-and-round-trip-time-for-unified-communications/
https://tomtalks.blog/2018/05/what-are-thresholds-for-good-and-poor-network-packet-loss-jitter-and-round-trip-time-for-unified-communications/
https://tomtalks.blog/2018/05/what-are-thresholds-for-good-and-poor-network-packet-loss-jitter-and-round-trip-time-for-unified-communications/
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://www.cloudflare.com/en-gb/learning/cdn/glossary/round-trip-time-rtt/
https://www.cloudflare.com/en-gb/learning/cdn/glossary/round-trip-time-rtt/
www.docker.com
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://www.epiroc.com/sv-se

BIBLIOGRAPHY

[12] Galarnyk, Michael. Boxplots. 2021. URL: https://towardsdatascience.com/
understanding-boxplots-5e2df7bcbd51 (visited on 08/16/2021).

[13] Grimmic, Robert. What is C2? 2021. URL: https://www.varonis.com/blog/
what-is-c2/ (visited on 08/23/2021).

[14] Hackapedia. Latency. 2021. URL: https://hackapedia.com/terms/l/latency
(visited on 04/08/2021).

[15] Hat, Red. What is a REST API? 2021. URL: https://www.redhat.com/en/
topics/api/what-is-a-rest-api (visited on 08/06/2021).

[16] Hat, Red.What is an SDK? 2021. URL: https://www.redhat.com/en/topics/
cloud-native-apps/what-is-SDK (visited on 08/06/2021).

[17] IBM. Container vs. Virtual Machines (VMs):What’s the Difference. 2021. URL:
https : / / www . ibm . com / cloud / blog / containers - vs - vms (visited on
06/13/2021).

[18] IBM. ThreeTierArchitecture. 2021. URL: https : / / www . ibm . com / cloud /
learn/three-tier-architecture (visited on 08/16/2021).

[19] Ismail, Bukhary Ikhwan, Goortani, Ehsan Mostajeran, Ab Karim, Mohd Bazli,
Tat, Wong Ming, Setapa, Sharipah, Luke, Jing Yuan, and Hoe, Ong Hong.
“Evaluation of docker as edge computing platform”. In: 2015 IEEE Conference
on Open Systems (ICOS). IEEE. 2015, pp. 130–135.

[20] ISO. ISO 25010 Standards. 2021. URL: https://iso25000.com/index.php/
en/iso-25000-standards/iso-25010 (visited on 04/08/2021).

[21] issue, github. host.docker.internal not accessible. 2021. URL: https://github.
com / microsoft / dotnet - framework - docker / issues / 295 (visited on
08/16/2021).

[22] Jenkins. What is Jenkins. 2021. URL: https://www.jenkins.io/ (visited on
08/16/2021).

[23] Karuppuchamy, Vinoth Kumar. Containers, Virtual Machines, and Physical
Servers. 2020. URL: https://faun.pub/containers-virtual-machines-and-
physical-systems-the-know-how-9d7b331a2c1a (visited on 08/25/2021).

[24] Kubernetes.What is kubernetes. 2021. URL: https://kubernetes.io/ (visited
on 08/16/2021).

[25] laerd. Mann Whitney U Test. 2021. URL: https://statistics.laerd.com/
spss-tutorials/mann-whitney-u-test-using-spss-statistics.php (visited
on 08/16/2021).

[26] Lingayat, Ashish, Badre, Ranjana R, and Gupta, Anil Kumar. “Performance
evaluation for deploying docker containers on baremetal and virtual machine”.
In: 2018 3rd International Conference on Communication and Electronics
Systems (ICCES). IEEE. 2018, pp. 1019–1023.

[27] Logic, Sumo. What Is Software Deployment. 2021. URL: https : / / www .
sumologic.com/glossary/software-deployment/ (visited on 06/06/2021).

54

https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://www.varonis.com/blog/what-is-c2/
https://www.varonis.com/blog/what-is-c2/
https://hackapedia.com/terms/l/latency
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/cloud-native-apps/what-is-SDK
https://www.redhat.com/en/topics/cloud-native-apps/what-is-SDK
https://www.ibm.com/cloud/blog/containers-vs-vms
https://www.ibm.com/cloud/learn/three-tier-architecture
https://www.ibm.com/cloud/learn/three-tier-architecture
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://github.com/microsoft/dotnet-framework-docker/issues/295
https://github.com/microsoft/dotnet-framework-docker/issues/295
https://www.jenkins.io/
https://faun.pub/containers-virtual-machines-and-physical-systems-the-know-how-9d7b331a2c1a
https://faun.pub/containers-virtual-machines-and-physical-systems-the-know-how-9d7b331a2c1a
https://kubernetes.io/
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
https://www.sumologic.com/glossary/software-deployment/
https://www.sumologic.com/glossary/software-deployment/

BIBLIOGRAPHY

[28] logmx. logmx. 2021. URL: https://www.logmx.com/ (visited on 08/16/2021).

[29] Microsoft.What is Windows Communication Foundations? 2021. URL: https:
//docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf (visited on
08/06/2021).

[30] Microsoft. WSL Documentation. 2021. URL: https://docs.microsoft.com/
en-us/windows/wsl/ (visited on 08/16/2021).

[31] RetHat. What is YAML. 2021. URL: https://www.redhat.com/en/topics/
automation/what-is-yaml (visited on 08/18/2021).

[32] Rossel, Sander. Continuous Integration, Delivery, and Deployment: Reliable
and faster software releases with automating builds, tests, and deployment.
Packt Publishing Ltd, 2017.

[33] SAAB. SAFE. 2021. URL: https://www.saab.com/products/safe- airport
(visited on 08/06/2021).

[34] Schedin, Anna Sigurdsson. TMS. 2021. URL: https : / / www . combitech . se /
nyheter-inspiration/stories/vagen-mot-en-autonom-gruva/ (visited on
08/06/2021).

[35] Sharma, Prateek, Chaufournier, Lucas, Shenoy, Prashant, and
Tay, YC. “Containers and virtual machines at scale: A comparative study”. In:
Proceedings of the 17th International Middleware Conference. 2016, pp. 1–13.

[36] Singh, Pradeep Kumar and Kumari, Madhuri. Containers in OpenStack:
Leverage OpenStack services to make the most of Docker, Kubernetes and
Mesos. Packt Publishing Ltd, 2017.

[37] Smith, Jim and Nair, Ravi. Virtual machines: versatile platforms for systems
and processes. Elsevier, 2005.

[38] Spoiala, Cristian Constantin, Calinciuc, Alin, Turcu, Corneliu Octavian, and
Filote, Constantin. “Performance comparison of a webrtc server on docker
versus virtual machine”. In: 2016 International Conference on Development
and Application Systems (DAS). IEEE. 2016, pp. 295–298.

[39] Sprott, David and Wilkes, Lawrence. “Understanding serviceoriented
architecture”. In: The Architecture Journal 1.1 (2004), pp. 10–17.

[40] Turnbull, James. The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.

[41] Yi, Mike. A complete guide to histograms. 2021. URL: https://chartio.com/
learn/charts/histogram-complete-guide/ (visited on 08/16/2021).

[42] Zhang, Qi, Liu, Ling, Pu, Calton, Dou, Qiwei, Wu, Liren, and Zhou, Wei. “A
comparative study of containers and virtual machines in big data environment”.
In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD).
IEEE. 2018, pp. 178–185.

55

https://www.logmx.com/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/
https://www.redhat.com/en/topics/automation/what-is-yaml
https://www.redhat.com/en/topics/automation/what-is-yaml
https://www.saab.com/products/safe-airport
https://www.combitech.se/nyheter-inspiration/stories/vagen-mot-en-autonom-gruva/
https://www.combitech.se/nyheter-inspiration/stories/vagen-mot-en-autonom-gruva/
https://chartio.com/learn/charts/histogram-complete-guide/
https://chartio.com/learn/charts/histogram-complete-guide/

	Introduction
	Problem Description
	Objective and Goals
	Stakeholders
	Limitations
	Outline

	Background and Related Work
	Software Deployment
	The Software Deployment Process
	Deployment Methodologies
	Virtual Machines (VM)
	Container
	VM vs. Containers
	Docker

	Performance
	Related Work

	System Overview
	TMS
	MapViewer
	MineSim

	Preliminaries
	SAFE
	SAFE Architecture Overview

	Methods Overview
	Migration Method
	Methods of Performance Evaluation

	Migration
	Why Migrate to Docker?
	Pre-Migration Architecture
	Post-Migration Architecture
	Steps of Migration to Docker
	Steps 1 - Converting to a Console Application
	Steps 2 - Introducing a Main Method
	Steps 3 - Creating Dockerfiles
	Steps 4 - Building and Running Dockerfiles
	Steps 5 - Docker-Compose

	Performance Evaluation
	Performance Measurement
	Experimental Setup
	Data Collection
	Data Analysis
	Results of Performance Evaluation

	Discussion of Results

	Conclusions and Future Work
	Conclusion
	Future Work

	References

