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ABSTRACT User-centric radio access technology (RAT) selection is a key communication paradigm, given
the increased number of available RATs and increased cognitive capabilities at the user end.When considered
against traditional network-centric approaches, user-centric RAT selection results in reduced network-side
management load, and leads to lower operational costs for RATs, as well as improved quality of service (QoS)
and quality of experience (QoE) for users. The complex between-users interactions involved in RAT selection
require, however, specific analyses, toward developing reliable and efficient schemes. Two theoretical
frameworks are most often applied to user-centric RAT selection analysis, i.e., game theory (GT) and
multi-agent learning (MAL). As a consequence, several GT models and MAL algorithms have been recently
proposed to solve the problem at hand. A comprehensive discussion of such models and algorithms is,
however, currently missing. Moreover, novel issues introduced by next-generation communication systems
also need to be addressed. This paper proposes to fill the above gaps by providing a unified reference for
both ongoing research and future research directions in the field. In particular, the review addresses the most
common GT and MAL models and algorithms, and scenario settings adopted in user-centric RAT selection
in terms of utility function and network topology. Regarding GT, the review focuses on non-cooperative
models, because of their widespread use in RAT selection; as for MAL, a large number of algorithms are
described, ranging from game-theoretic to reinforcement learning (RL) schemes, and also including most
recent approaches, such as deep RL (DRL) and multi-armed bandit (MAB). Models and algorithms are
analyzed by comparatively reviewing relevant literature. Finally, open challenges are discussed, in light of
ongoing research and standardization activities.

INDEX TERMS Radio access technology selection, game theory, multi-agent learning, reinforcement
learning.

I. INTRODUCTION
Nowadays, communication devices are most often equipped
with multiple radio access technologies (RATs), and this
feature is set to increase in the future. Users are thus able to
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connect to several RATs, also referred to as heterogeneous
networks (HetNets), including wireless wide, metropolitan,
local, personal, and body area networks (WWANs, WMANs,
WLANs, WPANs, and WBANs). The development of Het-
Nets aims at providing multiple and heterogeneous services,
including end-to-end communication and data exchange
through the Internet, anytime, anywhere, and at reasonable
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levels of quality of service (QoS) and experience (QoE) to
anyone [1], [2].

Meeting QoS and QoE requirements, that depend on the
requested service, involves actuating the always best con-
nected (ABC) paradigm, including the action of selecting
the RAT(s) to be connected to [3], [4]. RAT selection is
therefore widely investigated by research and standardiza-
tion communities, and typically refers to HetNets selection,
user association, offloading, and horizontal/vertical handover
(or handoff) mechanisms [5]–[10] (cf. Section III). Network
selection is also often used to generically indicate RAT
selection [4]–[6].

RAT selection schemes differentiate depending upon how,
where, and why ABC procedures are executed [10]. In a
classic approach, dedicated controllers perform selection at
the network side (how and where), resulting in centralized
network-centric solutions, leading most often to a system
optimal configuration (why). In other approaches, the selec-
tion is performed either cooperatively between RAT access
nodes and user devices, or entirely at the user side (how
and where). These solutions, referred to as hybrid and dis-
tributed user-centric schemes, address the scalability issues
of centralized schemes, while putting more emphasis on user
satisfaction (why). A review of centralized vs. hybrid vs.
distributed RAT selection can be found in [9]–[11].

Centralized approaches often result in higher system per-
formance; there is however an increasing interest toward
user-centric schemes, due to two main reasons [4], [9]–[16]:
Densification: The ongoing exponential growth of het-

erogeneous access nodes and user devices challenges the
possibility to solve the selection problem by one or a few
network controllers. This is due to the high computational
complexity of finding a system-level optimal solution and the
huge increase of signaling messages from (to) the controllers.
Cognition: The increased cognitive and computational

capabilities of user devices enable autonomous rational deci-
sions based on context-awareness at the user end, i.e., by
observing and adapting to the surrounding context. This is in
line with recent trends toward the decentralization of several
network functionalities and decisions, as currently proposed
in edge and fog networking [17].

A. THEORETICAL FRAMEWORKS FOR RAT SELECTION
The theoretical analysis of RAT selection has been addressed
by adopting several approaches. For example, RAT selec-
tion has been often modeled as an optimization problem,
where the main goal is to maximize a system utility function
across network entities (e.g., users and RATs), under a set
of constraints that depend on how the problem is formulated
(e.g., maximize system throughput under possible resource
constraints of RATs). Assuming that users can connect to
a single RAT at a time, the problem is combinatorial and
NP-hard. In order to find a near-optimal solution, the con-
nection constraint is usually relaxed [9], and the resulting
convex problem can be solved, e.g., via Lagrangian dual
analysis [18]–[21], divide-and-conquer [22], and learning

approaches [23], [24]. In most cases, the analysis is only
partially focused on user-centric RAT selection schemes,
since part of the optimization is usually solved at network
side (e.g., see [18], where the problem is decomposed in
two sub-problems solved by running dedicated algorithms at
user and network sides). This is particularly true when RAT
selection is solved jointly with resource allocation (also, user
scheduling), that addresses the problem of howRATs allocate
their resources (e.g., time and/or frequency) to connected
users [22], [23].

This paper focuses on user-centric RAT selection,
as defined earlier in this section. The analysis involves the
interaction among end users, that may or may not cooperate
in the actuation of RAT selection strategies, in order to maxi-
mize (minimize) either their own or the overall system utility
(cost)1 function, which include QoS and/or QoE parameters.
The utility of users is affected by their own selection strate-
gies and may also be affected by the surrounding context,
e.g., radio conditions. A context retrieval procedure is thus
required to let each user learn over time the relationship
between context, strategies, and utility. The goal is to con-
verge to a set of strategies that optimize utility, while driving
the system into a stable configuration.

Two complementing theories are most widely adopted in
user-centric RAT selection analysis:
Game Theory (GT): GT is mainly used as a framework for

modelingRAT selection scenarios. GTmodels the interaction
among rational decision makers, referred to as players or
agents, having common or conflicting utility interests and
adopting either cooperative or non-cooperative strategies.
The set of GT models, in terms of both players’ behavior and
observed/shared information, provides a framework under
which distributed optimization problems can be analyzed.
In these scenarios, players may have different goals and
partial control over the system [25], [26].
Multi-Agent Learning (MAL): MAL is mainly used as

a framework for solving RAT selection games. Rooted in
single-agent learning (SAL), MAL provides algorithmic
solutions for the process (by each agent (learner)) of discov-
ering and adapting to the surrounding context (including other
agents). MAL algorithms define policies adopted by learners
to interact with one another and with the context, and aim at
the optimization of utility [27].

The mapping between players and learners reveals the
relationship between GT and MAL. The key point of a joint
GT-MAL analysis is that, if a GT solution exists, that is,
there exists an equilibrium as defined in non-cooperative
GT, the GT solution can be achieved by applying a MAL
algorithm. Hence, the challenge of analyzing so-called learn-
ing games is to demonstrate the existence of solutions by

1From now on, the analysis is mostly carried out in terms of utility, switch-
ing to cost whenever appropriate. Due to the different terms traditionally used
in game theory and multi-agent learning, payoff, reward, and return are also
used to identify utility or related functions, while regret may be used to refer
to cost. Changes in definitions are made explicit whenever needed.
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GTmodels, and adopt a reliable, practical, and scalable MAL
algorithm to reach them [28]–[30].

The applicability of MAL algorithms depends on the game
model in terms of both players’ behavior and observed/shared
information [31]. For non-cooperative games, when a player
knows in advance the features of the surrounding context,
such as the utility and how it is affected by strategies of
others, its iterative process focuses on learning the equilib-
ria [32], [33], i.e., finding a stable system configuration given
a pre-known context. In this case, algorithms derived from
game-theoretic analyses, e.g., best response dynamics (BRD)
and fictitious play (FP), can be adopted [27, Chapter 5]
[31, Chapter 5]. The assumption of a known context while
learning equilibria allows to adopt the hypothesis of full
rationality of players, i.e., players exclusively act to optimize
their utility [34], [35].

When the initial knowledge of the context is limited,
so-called multi-agent reinforcement learning (MARL) solu-
tions can be adopted, derived from single-agent reinforce-
ment learning (SARL) [27, Chapter 5] [31, Chapter 6]
[36], [37]. SARL is a branch of machine learning (ML)
addressing agent adaptation to its surrounding context (often
referred to as environment), that is unknown at interaction
kick-off [38]–[40]. SARL algorithms solve so-called Markov
decision process (MDP) and multi-armed bandit (MAB) sce-
narios, by balancing exploration vs. exploitation strategies
over time, i.e., alternating learning vs. utility optimization
strategies.

The idea behind MARL is that players learn the equilibria
while learning the context, e.g., by exploring all possible
strategies. In scenarios of extremely limited observable infor-
mation, players adopting MARL may even be unaware of
being part of a game [36]. The need for learning context and
equilibria leads to the hypothesis of bounded rationality of
players [35].

B. CONTRIBUTION
GT has been largely used to analyze the behaviour of
wireless communications [41]. Leveraging its application to
single-RAT scenarios for distributed channel selection [42],
GT has also been used for distributed multi-RAT selection.
More recently, MAL algorithms have also been used to show
the capability of users to solve RAT selection in a distributed
manner, under the hypothesis of initial limited knowledge of
their surrounding context.

Therefore, a large amount of literature focuses on analyz-
ing, modeling, and proposing methods for user-centric RAT
selection in a joint GT-MAL framework. A comprehensive
analysis of the proposed, but at times conflicting, GT models
and MAL algorithms is, however, missing. Moreover, novel
issues are raised by next-generation communication systems
and scenarios, which require further investigation toward
efficient and practical strategies.

This paper aims at providing a unified reference on
user-centric RAT selection from both GT and MAL perspec-
tives. In particular, the paper surveys users vs. users games

for user-centric RAT selection,2 where end users are the main
entities that interact, most often, indirectly with one another
during the selection process.

The contribution of this paper can be summarized as
follows:
• We provide a primer on RAT selection, by analyzing key
concepts and standardized mechanisms in use in current
wireless communication systems;

• We analyze and describe the most common non-
cooperative GT settings proposed for modeling
user-centric RAT selection. We also discuss practical
scenario aspects, i.e., adopted utility functions and net-
work topologies;

• We analyze and describe the most common MAL algo-
rithms proposed for solving user-centric RAT selection,
including game-theoretic, RL, DRL, and other schemes.
The literature is reviewed and analyzed, with particular
focus on user-centric RAT selection;

• We highlight the need for a multi-faceted performance
evaluation of RAT selection, by providing a taxonomy
of the main performance indicators to be considered in
order to provide exhaustive analyses;

• We discuss open challenges and possible future work,
in light of the ongoing evolution of GT, MAL, and
communication systems.

The proposed GT-MAL perspective allows for a critical
literature review, and ultimately suggests further refinements
toward addressing future challenges.

C. STRUCTURE
The paper is organized as follows. Section II provides the
background of the present work. First, it gives an overview
of applications of GT and MAL to wireless communica-
tions; then, it introduces existing surveys and tutorials that
discuss, to some extent, the application of GT and MAL
to RAT selection, ultimately comparing such investigations
with the contribution of this paper. Section III provides the
foundations of RAT selection, by discussing key concepts
and standardized mechanisms. Two aspects that are rele-
vant to the analysis of RAT selection by GT-MAL, i.e., the
definition of utility and the choice of a network topology,
are also analyzed. Section IV summarizes game-theoretic
aspects adopted for modeling RAT selection, while Section V
describes three non-cooperative models often used as RAT
selection games, and also provides an initial literature review.
Figures 1a and 1b provide a detailed content summary of
Sections IV and V. Section VI focuses on MAL, and
describes learning algorithms for solving RAT selection,
and further refines the literature review. Figure 2 provides
a detailed content summary of Section VI. A description
of the indicators used to analyze the performance of learn-
ing schemes is provided in Section VII, while Section VIII
reviews open challenges and possible future work. Section IX
concludes the paper.

2(User-centric) RAT selection is simply used in the following.
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FIGURE 1. Content summary of Section IV (a) and Section V (b).

FIGURE 2. Content summary of Section VI.

II. BACKGROUND AND RELATED WORK
A. GT AND MAL APPLIED TO WIRELESS
COMMUNICATIONS
In order to grasp the theoretical connections between GT and
MA(R)L with no specific focus on wireless communications,
the interested reader may refer to [27], [36], [37], [50]–[53],
among the vast literature on this subject. Furthermore, for
general assessments on the application of RL, in its deep
version (DRL) [54], [55], to multi-agent systems, the reader
may also refer to recent works such as [56], [57].

For detailed analyses on the use of GT and MAL
in wireless communications and signal processing, it is

useful to refer to notable books, such as [31], [58], [59]
and [60]. Reference [61] presents a comprehensive overview
of game-theoretic tools applied to wireless communications,
mainly focusing on static games, i.e., games where the inter-
action is limited to a single iteration, and thus learning is not
considered. A discussion on dynamic games and MAL, with
focus on signal processing applications, is provided in [32];
BRD, FP, regret matching (RM), and RL algorithms are
briefly described. The same algorithms are reviewed in [33],
where they are applied to a 2-player game between two
transmitter-receiver pairs, that aim at not interfering with one
another, while exchanging data on a common set of frequency
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TABLE 1. Key literature related to modeling and analysis of user-centric RAT selection, also with respect to the present work.

channels. More recently, [62] discusses the application of
DRL to multi-agent scenarios in wireless communications.

B. GT AND MAL APPLIED TO RAT SELECTION
This section summarizes the state-of-the-art in terms of sur-
veys and tutorials that focus specifically on RAT selection,
in order to frame the context and further highlight the contri-
bution of this paper.

Reference [5] presents an extensive literature review
of GT-based RAT selection, covering cooperative vs.
non-cooperative games and several other modeling aspects.
It classifies the literature into users vs. users, networks vs.
users, and networks vs. networks games. This taxonomy
is reused for example in [6]. Reference [5] also discusses
open challenges related to the definition of utility function,
tomulti-operator andmulti-technology scenarios, and to pric-
ing and energy consumption aspects. Basic concepts on GT
are provided, but MAL aspects are not analyzed (covered in
this work, in Section VI).

Reference [6] reviews the mathematical theories adopted
to model user-centric RAT selection, including Utility
and Markov decision theories, fuzzy logic, combinatorial
optimization, GT, and multiple attribute decision making
(MADM), a branch of the more general multiple criteria deci-
sion making (MCDM). GT is presented as one among several
modeling theories, but the aspect of learning the equilibria
while discovering and adapting to the context is beyond the
scope of [6]. In addition, the analysis of the Markov decision
theory, which includesMDPs andMABs, is carried out from a
single-player perspective (this work expands to a multi-agent
perspective, via the definition of stochastic games and corre-
sponding learning schemes, cf. Sections V-C and VI).

User-centric RAT selection is also discussed in [10],
where a baseline selection algorithm is introduced, build-
ing upon [43], [44]. The work analyzes aspects related to
network-assisted mechanisms, millimeter-wave (mmWave)
networks, and the effect of noisy measurements during con-
text retrieval, but provides a limited discussion on GT-MAL
joint analysis (covered in this work, in Sections IV-VI).

More emphasis on MAL is given in [16], that reports a
comparative analysis between centralized, hybrid, and dis-
tributed algorithms. Variable network topology, user den-
sity, and a specific utility function are considered, aiming at
providing a fair comparison between algorithms (also made
available as a software library). On the same line, a recent
review of selected works, with corresponding models and
learning schemes, is provided in [45]. These same works are
also discussed in this paper, and analyzed in comparison with
other existing literature.

Table 1 summarizes the above references, and compares
them against the contribution of the present work.

Other investigations discuss practical aspects rather than
theoretical modeling and analyses. Focusing on 5th gener-
ation (5G) cellular networks, user association is surveyed
in [9], in terms of metrics, topology, and control; GT is
reported as a modeling choice along with combinatorial opti-
mization and stochastic geometry. Literature overviews and
in-depth discussions on practical aspects related to offloading
and handover mechanisms can be found in [7], [8], [63],
and [64].

III. FUNDAMENTALS OF RAT SELECTION
Before moving to the analysis of GT and MAL in the context
of RAT selection, this section introduces the fundamentals
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FIGURE 3. A representation of centralized (a), hybrid (b), and distributed (c) RAT selection schemes. All cases assume that both users A and B are
initially connected to a higher priority RAT, represented as a cellular tower. The other available RAT is represented as an access point with smaller
coverage. In (a), dashed lines (label 1) represent the transmission of measurement reports from users to the controller (co-located with the highest
priority RAT), while small-dashed lines (label 2) represent the controller decision about the RAT users should connect to. In (b), dash-pointed lines
(label 1) represent the transmission of general information (e.g., congestion levels) from RATs to users. In (b)(c), small-dashed lines (label 2 in (b),
label 1 in (c)) represent the decision of users about the RAT to connect to. In (a)(b)(c), full lines (label 3 in (a)(b), label 2 in (c)) represent the
establishment of a data link between users and selected RATs.

of RAT selection, by providing key concepts and examples,
along with a review of standardized mechanisms. We also
discuss two aspects that are relevant for GT-MAL analyses
of RAT selection, i.e., the definition of a utility function and
the choice of a network topology.

A. KEY CONCEPTS AND EXAMPLES OF RAT SELECTION
As anticipated in Section I, RAT selection schemes can be
grouped in centralized, distributed, and hybrid, depending on
which network entities perform the selection.

Centralized schemes leverage dedicated network con-
trollers. In order to take tailored decisions, such controllers
require periodic reporting from users in terms of their cover-
age status and experienced performance. Hence, the ongoing
network densification challenges this approach and requires
more scalable solutions. Distributed and hybrid mechanisms
put end devices in charge of deciding the RAT(s) to con-
nect to. This may happen in a fully independent manner
(distributed), i.e., users collect their own information and
perform RAT decisions independently, or via network assis-
tance (hybrid), i.e., users also exploit indications shared
from the access points of the available RATs. In the second
case, these indications are usually not tailored on users and
represent general context information on congestion, load,
and expected performance of the RATs, as well as selection
policies to be preferably applied, and that may help users to
take better decisions. Both distributed and hybrid cases are
thus more scalable than centralized ones, where user-specific
information is continuously reported at the network side.
A representation of RAT selection operations is shown in Fig-
ure 3, which provides an example of centralized (Figure 3a),
hybrid (Figure 3b), and distributed (Figure 3c) selection with
two users and two RATs. All cases assume that both users A
and B are initially connected to a higher priority RAT, repre-
sented as a cellular tower. In Figure 3a, the highest priority
RAT also acts as the controller regulating users connection
across the two RATs. Users transmit the results of their con-
text retrieval (measurement reports) to the controller (label
1, dashed lines), which then decides on the RAT the users

should connect to (label 2, small-dashed lines); finally, user A
is instructed to remain on the highest priority RAT while user
B connects to the other RAT (label 3, full lines). In Figure 3b,
RATs sharewith users general indications on their status (e.g.,
congestion levels) (label 1, dash-pointed lines), and users
use this information and their own measurements to decide
the RATs they should camp on (label 2, small-dashed lines).
In Figure 3c, users only use their ownmeasurements to decide
the RATs they should camp on (label 1, small-dashed lines).
In both Figures 3b and 3c, user A decides to remain on the
highest priority RAT, while user B selects the other RAT
(label 3 in (b), label 2 in (c), full lines).

Major standardization entities are currently defining RAT
selection but also aggregation (aka multihoming) schemes
that enable users to use multiple RATs in parallel. Several
efforts toward enabling seamless usage of WWANs/WMANs
(e.g., 4G, 5G, and WiMAX), and WLANs/WPANs (e.g.,
WiFi), are underway. In the following, we refer to selection
and aggregation schemes as RAT interoperability procedures.

Regarding the 3rd generation partnership project (3GPP)
cellular systems, initial standardization has focused on how
and when to actuate horizontal handover between macro-
cells, that is, the transition of a user – also called user
equipment (UE) – across same-tier cellular access nodes.3

For 4G systems, including Long Term Evolution (LTE) and
LTE-Advanced (LTE-A), further attention has been given to
cross-tier handover betweenmacro and small cells (contained
in Release 12 (Rel-12, 2015)).

In terms of RAT aggregation, coordinated multi-point
(CoMP) has been introduced in Rel-11 (2012), where mul-
tiple cells can transmit (receive) the same data toward a UE,
in order to improve the communication quality in poor cover-
age areas. While CoMP lies across the physical and Medium
Access Control (MAC) layers, dual connectivity (DC) is

3Macrocell is a term widely used to identify a traditional cellular access
node covering medium-to-large areas. Over the years, aiming at deploying
multi-tier radio access networks (RANs), macrocells have been flanked
by small cells, which provide medium-to-low coverage. Depending on the
coverage size, small cells are categorized in femto, pico, and micro cells.
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another aggregation scheme performed in the above Packet
Data Convergence Protocol (PDCP) layer. Standardized in
Rel-12, DC allows UEs to exploit two not co-located LTE
cells, e.g., two evolved Node Bs (eNBs). The Master eNB
is part of the control plane toward the LTE Core, and coor-
dinates with the Secondary eNB to provide additional radio
resources to UEs. For 5G, initial proposals in Rel-15 (2018)
have led to extending DC to support a parallel use of LTE
and 5G New Radio (NR) access nodes, via several options of
so-called 5G Non-Standalone (NSA) deployments [65].

All of the above cases represent centralized RAT inter-
operability schemes. Indeed, UEs perform and report mea-
surements related to strength and quality of cell signals,
e.g., in terms of reference signal received power (RSRP
[dBm]), reference signal received quality (RSRQ [dB]), and
signal-to-interference plus noise ratio (SINR [dB]). Then,
cells act as controllers and coordinate on dedicated con-
trol channels, e.g., via X2 interfaces, ultimately deciding on
the necessity of handover/aggregation for each UE. This is
done by comparing current UE conditions with so-called
handover/aggregation trigger events, defined in 3GPP
specifications [66]–[70].

The focus is also on enabling interoperability between
3GPP and non-3GPP RATs, such as WiFi. In this context,
vertical handover is the term commonly used to indicate the
transition of a user between RATs having different priorities
(e.g., from cellular to WiFi). When the handover goal is to
decrease congestion on the high-priority network and better
balance users on available RATs, the selection process is also
referred to as offloading (note that, besides cellular to WiFi,
vertical handover and offloading are terms that also indi-
cate handovers between macro and small cells, as described
above). In this context, 3GPP introduced a user-centric mech-
anism via the Access Network Discovery and Selection Func-
tion (ANDSF) in Rel-8 (2008) [71]. ANDSF is an optional
element in the cellular Core, providing context information
on non-3GPP systems to UEs, ultimately promoting informed
selection of available WiFi networks. Considering the so far
low commercial interest in ANDSF, 3GPP introduced two
network-centric solutions in Rel-13 (2016), and extended
in Rel-14 (2017), i.e., LTE-WLAN Aggregation (LWA)
and LTE-WLAN radio-level integration with Internet Proto-
col (IP) security tunnel (LWIP) [72]. LWA and LWIP couple
cellular and non-cellular systems at the radio level, with
WiFi access points (APs) having similar functions of cellular
access nodes.4 APs and cells can be either co-located or not;
in either cases, UEs report WiFi-related measurements to the
cellular network, that decides whether activating the interop-
erability option. LWA is tailored for cellular integration with
trusted WiFi networks; hence, both aggregation and selection
functionalities are available via so-called split-bearer and
(slow vs. fast) link-switching modes. Full offloading toward

4LWA/LWIP-basedWiFi aggregation is regulated by the cellular network.
WiFi traffic is exited and reabsorbed from/into the LTE system via LWA
Adaptation Protocol (LWAAP) and LWIP Extension Protocol (LWIPEP),
so that it can be handled by the LTE Core.

WiFi is also provided via the switch-bearer mode. LWIP
targets integration with untrusted WiFi APs, and thus only
enables slow selection and offloading.

Similar mechanisms are envisioned for 5G [73], although
current standardization activities seem to be oriented toward
different approaches. In particular, the above mechanisms
are deployed at the radio layer, and this solution may be
cumbersome for 3GPP/non-3GPP interoperability, due to the
heterogeneity of resource allocation and modulation schemes
across RATs. Hence, 3GPP introduced the Access Traffic
Steering, Switching, and Splitting (ATSSS) architecture in
Rel-16 (2020) [74]. ATSSS exploits the capability of the 5G
Core of explicitly dealing with non-3GPP traffic, via the Non-
3GPP Inter-Working Function (N3IWF) defined in Rel-15;
a Multi-Access Protocol Data Unit is defined and exchanged
over multiple RATs, in both selection (steering and switch-
ing) and aggregation (splitting) functionalities, which are
deployed below or above the IP layer. In the second case,
ATSSS exploits interoperability mechanisms at the transport
layer, where RATs usually exploit common protocols. These
solutions have been largely investigated and, as a result,
several transport protocols have a multipath (MP)5 exten-
sion. For example, Transmission Control Protocol (TCP)
has a MP extension referred to as MPTCP, standardized by
the Internet Engineering Task Force (IETF) [75]. Moreover,
Concurrent Multipath Transfer (CMT) [76] and Multipath
QUIC (MPQUIC) (currently in two main versions under
discussion) [77] extend Stream Control Transmission Proto-
col (SCTP) and QUIC, respectively.

The use ofMPTCP has been proposed inATSSS [74], [78],
with further discussions also pointing at the adoption of
MPQUIC [79]. In all cases, MP functionalities are deployed
between the UE and the 5G Core, that essentially decides
and informs users on the policy to adopt for RAT interop-
erability. Such a use of MP transport protocols is denoted
as Core-centric, and delineates ATSSS as a hybrid RAT
selection solution, since the 5G Core decides on the selection
policy to adopt (e.g., among Active-Standby, Priority-based,
Smallest Delay, and Load-balancing [74]), leaving however
the actual RAT decision to the connection end points (users
and servers). A more general use of MP transport protocols,
referred to as Above-the-Core, does not require the cellular
Core to be involved in the policy decision. As a matter
of fact, the Above-the-Core integration enables transparent
interoperability, not specifically regulated by the cellular
network [72], [78], with MP functionalities deployed at
the communication end points, ultimately representing an
example of distributed RAT selection. As further discussed in
the next sections, there exist several investigations related to
distributed RAT selection, also in the context of MP transport
protocols (cf. Section VIII). However, ‘‘select WiFi when
detected’’ is still the predominant RAT selection policy,
although it is often sub-optimal in terms of QoS and QoE.
An enhancement of this simple strategy is the WiFi Assist

5In this context, the available RATs are often referred to as paths.
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solution, introduced by Apple in 2016, that automatically
switches back to the cellular network when WiFi is not able
to meet service requirements.

The above overview of existing RAT selection schemes
highlights that there is room for novel user-centric RAT selec-
tion schemes.

B. UTILITY
1) GENERAL CONCEPTS
The utility function characterizes RAT selection approaches,
particularly in user-centric scenarios. Several investigations
focused on proposing utility functions for RAT selection,
as also reported in [5], [6]. Most of the definitions orig-
inate in the so-called Utility Theory, where utility is a
mathematical formulation of the level of satisfaction of a
decision-maker with respect to a particular service, when one
or more attributes representing that service are taken into
account [80]. Formal representations proposed for example
in [81]–[85] emphasize that the utility function in RAT selec-
tion can be either user-specific or user-agnostic, depending
on the need for differentiating users in terms of requirements
and expected performance. Moreover, a utility function can
include one or multiple network attributes, such as avail-
able bandwidth, connection price, and energy consumption,
to mention a few.

When utility uses a single network attribute, literature
reports of wide use of monotonic functions (e.g., sigmoidal
and linear) [6]. When multiple attributes are considered,
MADM and MCDM techniques are more often used to com-
bine weighted and normalized attributes under a global defi-
nition, leading to methods, such as, simple additive weighting
(SAW), multiplicative exponential weighting (MEW), gray
relational analysis (GRA), and technique for order preference
by similarity to ideal solution (TOPSIS) [82], [83], [86]–[91].
The analytical hierarchy process (AHP) approach is usually
adopted for deriving weights associated to network attributes
(e.g., see [87], [92], where AHP is used in GRA). In both
single and multi-attribute cases, the assumption is that end
devices observe network attributes and use them to evaluate
a global utility.

GT highlights a further aspect that is somehow blurred
in the above discussion: the dynamics of most of the
attributes characterizing the RATs, e.g., the available band-
width, are affected by the strategies adopted by users
during the selection process, and so is utility. Therefore,
the hypothesis of devices being capable of observing sev-
eral attributes and draw the relationship between strategies
of other devices, attributes, and utility, may be challenging
for those devices with limited observation and computation
capabilities. As clarified in Section IV, this case is well
modeled by so-called imperfect and incomplete information
games. Here, it is most often assumed that end devices col-
lect sampled values of the utility, for which the relation-
ship with (observable or not) attributes may be unknown.
For this reason, the modeling assumption of imperfect and

incomplete information, most commonly adopted in RAT
selection games, avoids high-level, multi-attribute definitions
of the utility, and maps the latter with an observable QoS
parameter. As detailed in Section III-B2, the downlink (DL)
throughput experienced by a connection to a RAT is usually
adopted as the instantaneous utility associated to a strategy
(e.g., a selected RAT) [44], [93].

Slightly more complex utility functions that assume higher
degrees of observability or a-priori knowledge at the user
side have also been proposed, e.g., utility functions based on
a linear combination of DL throughput and other network
attributes, such as pricing and billing costs [94]–[96] and
energy consumption [97]. Energy aspects have also been con-
sidered in terms of either energy efficiency, usually defined
as the ratio between user data rate and energy consumption
(e.g, see [98], [99] for a system level perspective), or energy
consumption savings (e.g., see [100], [101]).

2) ADOPTED UTILITY FUNCTIONS
When RAT selection is analyzed in a GT-MAL framework,
the adopted utility is usually mapped onto a single QoS
parameter, e.g., DL throughput. Higher-level, multi-attribute
utility representations may challenge fully distributed solu-
tions and require to move to hybrid approaches, since infor-
mation signaled from other network entities, such as the
access nodes of candidate RATs, may be needed for evalu-
ating the utility. For example, three different cost functions
are compared in [102] aiming at casting RAT selection as
a congestion game (CG, see Section V-A). Being directly
related to the number of users connected to each RAT and
their throughput, the proposed functions require each user to
retrieve this information, e.g., via network assistance. A sim-
ilar model has been applied in [103], among others.

Defining the utility as the experienced DL throughput
allows to avoid information exchange. However, in order to
provide realistic simulations, a proper model is still required.
To this aim, WLANs and WWANs throughput models,
for example IEEE 802.11 (WiFi) [104] and cellular sys-
tems [105], are often used in RAT selection. In [44], the two
following models for the instantaneous throughput experi-
enced by user n connected to RAT an, referred to as M1 and
M2, are provided:

M1: rn,an = fan (81,an , . . . , 8n,an , . . . , 8Nan ,an ) (1a)

M2: rn,an = fan (Nan )×8n,an (1b)

for all n ∈ Nan , an ∈ An.

In (1a)(1b), rn,an is the throughput of user n connected
to RAT an, and An is the set of RATs available to user n.
Nan identifies the set of Nan users selecting candidate RAT an
(including user n), and 8n,an represents the physical rate,
i.e., the maximum achievable throughput by user n when it
is the only one connected to RAT an. Such a value depends
on radio conditions and adopted modulation and coding
schemes [43], [44], [93]. Finally, function fan is the same
across users but may differ across RATs.
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As also discussed in [44], [93], the M1 model resembles
a RAT adopting throughput fair (TF) user scheduling, e.g.,
WiFi. M2 resembles instead proportional fair (PF) mecha-
nisms, such as time division multiple access (TDMA) and
orthogonal frequency division multiple access (OFDMA),
as adopted for example in 4G and 5G cellular RATs. Hence,
M1 and M2 can be specified as follows:

TF: rn,an =
( ∑
k∈Nan

1
8k,an

)−1
(2a)

PF: rn,an =
8n,an

Nan
(2b)

for all n ∈ Nan , an ∈ An.

Besides providing the models, [44] also explores the
impact of noisy measurements. The analysis is later extended
in [93]. Indeed, (2a)(2b) provide instantaneous, nominal
throughput, the values of which are in practice influenced by
the dynamicity of physical and radio environments, e.g., user
mobility and channel fading. A Gaussian distribution with
mean equal to rn,an and standard deviation σ = e × rn,an
(with e between 0 and 1) is thus adopted in order to consider
this effect.

The models in (2a)(2b) are widely adopted in RAT selec-
tion learning games (see Section VI). Furthermore, slightly
different versions of the PF model have also been pro-
posed. On the one hand, weighted PF is suggested in [46],
where users congest RATs with different weights, depend-
ing on their traffic and applications. Moving a step toward
QoE, [46] proposes to translate throughput into mean opinion
score (MOS) values, by adopting the mapping given in [106].
On the other hand, the PF model is also considered at channel
granularity, e.g., in [107], where the assignment of frequency
channels is embedded in the RAT selection game, and thus the
physical rate also depends on how many frequency channels
are available and assigned to each user.

Amodel similar to PF is adopted in [96] and reused in [95],
[108], [109], among others. In this case, the user-specific
physical rate 8n,an is replaced by the capacity of the candi-
date RAT, denoted as Can and defined as the maximum data
rate sustained by the RAT, independently of users. This leads
to a user-independent utility definition, that complies with
evolutionary GT (eGT) modeling and, being very general,
also simplifies the analysis when RAT selection games are
modeled as CGs, potential games (PGs), and stochastic games
(see throughout Section V). A logarithmic function on top of
such a simplified PF is applied in [94]–[96]. Amodel that also
considers the assignment of frequency channels to users, and
thus possible inter-user interference, is used instead in [23].

As anticipated in Section III-B1, throughput-based utility
is sometimes complemented with other observable attributes,
leading to novel, mostly linear, utility representations. Pricing
and billing costs are commonly used in order to account for
operators and service providers. Indeed, network operators
may want to discourage new connections in case of saturated
RATs, by charging new connections with a price proportional

to the number of users [96], [109]. A-priori fixed prices can
be used for differentiating RATs from a cost perspective [94],
[95]. Energy aspects are also often considered in defining
utility functions. In [101], energy consumption of candidate
RATs, in terms of DL transmissions and management of UE
handovers, is considered as utility and fed back to UEs so that
those can account for it in selecting efficient policies. Among
others, energy efficiency, defined as the ratio of data rate
and power consumption, is considered in [22], where energy
efficiency at both UE and link levels is considered for solving
both RAT selection and user scheduling. In the context of
energy harvesting networks, [110] defines wasted energy as
the (harvested) energy used for unsuccessful transmissions.
Models for both energy harvesting and energy consumption
are given in [111].

C. NETWORK TOPOLOGY
The choice of a topology has key implications on both the-
oretical models and practical scenarios of RAT selection.
Figure 4 shows the most commonly adopted topologies,
i.e., Corridor (or Chain), Overlapping, and Nest [47], [112].

As regards GT models, different topologies lead to differ-
ent sets of strategies An for users involved in the game (i.e.,
for all n ∈ N ). For example, in the Corridor topology of
Figure 4a, users in Zone 1 and Zone 2 may have different
strategy sets: the ones in Zone 1 can select between the left
access node and the middle one, while the ones in Zone 2
can select between the middle access node and the right
one. Users still participate in the same selection game since
their strategies affect each other. A common assumption is to
assign a same strategy set across users, that is, A1 = A2 =

· · · = AN . This corresponds to analyzing the game in Zone 2
of the Overlapping topology of Figure 4b.

The selection of a network topology also leads to consider-
ing specific RAT selection mechanisms. As discussed in [47],
which is a notable example where the proposed RAT selec-
tion game and corresponding MAL schemes are evaluated
for the three topologies of Figure 4, the Corridor topology
well represents a roadside deployment of cellular macro-
cells or small cells, while the Overlapping structure general-
izes the Corridor, with macrocells and small cells randomly
deployed with overlapping coverage areas. These two sce-
narios are commonly used to analyze cellular horizontal han-
dover or user association acrossWiFi APs. The Nest topology
(Figure 4c) better represents more heterogeneous scenarios in
terms of available RATs, with a large area covered by higher
tiers of WWAN or WMAN systems, and smaller regions
where other RATs with smaller coverage are also available,
e.g., small cells andWiFi APs. Hence, this topology is prefer-
able for the analysis of vertical handover (e.g., cellular to
WiFi or macrocell to small cell offloading).

IV. GAME-THEORETIC MODELING OF RAT SELECTION
This section describes the most common game-theoretic set-
tings used for modeling RAT selection in realistic scenarios.
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FIGURE 4. Main topologies adopted in RAT selection analysis: (a) Corridor, (b) Overlapping, and (c) Nest. Blue dots, red
squares, and black circles identify users, candidate RATs, and RATs coverage areas, respectively. Grey areas highlight the
zones where users could actually perform RAT selection, since they detect more than one RAT. Different numbers in the grey
areas indicate that a different number and nature of RATs are available, and thus the users have a different set of
connection strategies.

Less commonly adopted settings are also reported and briefly
discussed for completeness.

A. COOPERATIVE VS. NON-COOPERATIVE GAMES
User-centric RAT selection has been modeled via both coop-
erative [113] and non-cooperative [114] games. Given the
widespread use of the non-cooperative case, this section and
the overall paper focuses on the non-cooperative case. A brief
and preliminary discussion on cooperative games, with exam-
ples of application to RAT selection, is also provided for
completeness.

Players consciously help each other in cooperative games.
Cooperation can be conveyed in a game in many different
ways. In team games, players have a common goal and
coordinate with one another in order to achieve the goal;
in bargaining games, players bargain with one another by
selecting one among several possible collaboration strategies;
in coalition games, that deal with the formation of subsets of
players (coalitions) in a coordinated manner. Other examples
are matching games, that model the problem of matching
players in distinct sets depending on their information and
preferences [115], [116], and bankruptcy games, where the
focus is on finding solutions for optimal allocation of a
resource across players when such a resource is not sufficient
to satisfy all players’ demand.

Cooperative games are usually devoted to evaluate fair-
ness, stability, and efficiency of decision-making processes
by which players are able to communicate and coordinate.
The solutions that are commonly adopted in cooperative
games include the core, the Shapley value, Nash bargaining,
and two-sided stable matching [117, Chapters 26-31]. The
application of cooperative GT to wireless communications
requires communication among network entities and possibly
extensive message exchange; this may invalidate the advan-
tage of distributed solutions over centralized schemes. Even
though cooperative games have been in general used to a
lesser extent than non-cooperative models, for RAT selection
scenarios, relevant work in the context of cooperative user
association and resource allocation can be found for example
in [118]–[124].

Non-cooperative games involve selfish players, whose
interests and strategies may negatively affect the utility

experienced by other players. In these games, players act
independently, with the goal of maximizing their own utility,
with no reason though to harm others. Some sort of coopera-
tion is thus possible in a non-cooperative setting, e.g., via tai-
lored learning schemes, by designing utility functions that are
inversely proportional to a metric of selfishness, and also by
including in the game the knowledge of common information
to help users coordinate with one another (in RAT selection
games, this may be achieved by means of network assistance
mechanisms, as detailed in Section IV-C). As discussed in
the following sections, non-cooperative games can either be
strategic or extensive (Section IV-B), and consider complete
vs. incomplete information (Section IV-C). Playersmay adopt
either pure or mixed strategies (Section IV-D). Finally, these
games are usually analyzed in terms of stable configurations,
known as equilibria (Section IV-E).

B. STRATEGIC VS. EXTENSIVE REPRESENTATION
Non-cooperative RAT selection has been most often repre-
sented as a strategic game, also known as normal or simul-
taneous game. A strategic game G is characterized by the
following features:

1) The set N = {1, . . . ,N } of players, that corresponds
to the set of users in a RAT selection game;

2) The set An of available strategies to player n (for all
n ∈ N ). In the simplest case, this set corresponds to
the set of RATs available to user n. According to a GT
common notation, a generic strategy for user n within
its set An is denoted by an. Different subscripts stand
for different users.6 These strategies are also referred
to as pure in GT; as discussed in Section IV-D, mixed
strategies extend pure strategies in a probabilistic man-
ner. Both pure and mixed strategies are used in RAT
selection games;

3) The utility, that is associated with the combinations of
players’ strategies. It measures the gain obtained by
each user when adopting a selection strategy, that is
when selecting one RAT, as a function of the selection
made by the other players. The utility for player n is

6Whenever needed, an explicit superscript will be added so to differentiate
strategies, e.g., ain 6= ajn, with ain, a

j
n ∈ An.
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FIGURE 5. Example of a game of imperfect information: the 2-user 2-RAT selection scenario. Strategic and tree forms are
given in (a) and (b), respectively. In (a), rows identify the strategies of User 1, while columns report the strategies of User 2.
Both users can select either RAT 1 or RAT 2. In (b), it is assumed that User 1 moves first, before User 2; imperfect information,
that is the uncertainty of User 2 on RAT selection by User 1, is represented by a dashed line connecting the vertices
representing User 2. The two vertices connected by the dashed line form the information set of User 2. In both (a) and (b), for
each strategy profile, that is, for all a = (a1,a2) ∈ Atot, the utilities of the two users are reported in the form (u1,u2).

thus defined onAtot = A1×· · ·×AN and takes values
on R, that is, un : Atot → R (for all n ∈ N ).

Altogether, a strategic game is commonly indicated as
G := {N , {An}n∈N , {un}n∈N }. Given a specific strategy
combination a = (a1, . . . , aN ) ∈ Atot, called strategy profile,
the utility of player n is denoted un(a). In order to highlight
player n in the strategy profile, common GT notation also
defines a as (an, a−n), where an indicates the strategy of
player n, while a−n represents the strategies of the other
players; the utility can thus be written as un(an, a−n). Specific
functions modeling the utility in RAT selection games have
been discussed in Section III-B.
In strategic games, each player chooses a strategy with no

information on the strategies adopted by the others at the
present time. This leads to considering the strategic game as
an imperfect information game, in contrast to perfect informa-
tion games, where the strategies adopted by the other players
are known. Strategic games are usually represented in matrix
(normal) form, where the utility for all players and strategy
profiles is reported in a A1 × · · · ×AN matrix.

The assumption of imperfect information is also verified
when players select their strategies in a non-simultaneous
manner, but cannot observe each other. If a predetermined
order among players exists, strategic games expand to
sequential games, also known as extensive games. Sequential
games introduce a timeline, and the tree (extensive) form is
a common representation for these games, where a rooted
tree represents players as vertices, strategies as branches, and
utilities as leaves of the final branches.

Figure 5 reports an example of a RAT selection game
between 2 users having 2 available RATs, in both matrix
(Figure 5a) and tree (Figure 5b) forms. In the second case,
User 1 applies one of its strategies (selecting RAT 1 or RAT 2)
before User 2. However, the game is an imperfect informa-
tion game, given that users cannot observe each other, and
thus the timeline introduced by the sequential representation
does not affect game dynamics and solutions. The imperfect
information is represented in the tree form via a dashed line
connecting the vertices that identify a player (see Figure 5b).
Then, the vertices and the dashed line are globally referred
to as the information set of the considered player. Note that,
in both Fig. 5a and Fig. 5b, the utilities of the two users for

each strategy profile (i.e., for all a = (a1, a2) ∈ Atot) are
reported in the form (u1, u2). In the example, utility is mapped
onto DL throughput, and a simplified PF model is assumed
(see Section III-B2); hence, users that simultaneously connect
to the same RAT, equally share the RAT capacity (50 Mbps
for RAT 1 and 30 Mbps for RAT 2).

In the case of extensive games with perfect information
(i.e., games where a player can observe the strategies of
previous players), the vertices representing a player are not
connected to each other, and thus form autonomous, singleton
information sets. Extensive games with perfect information
have been rarely adopted in wireless communications [32];
an example for RAT selection is provided in [125].

Due to the need for learning, RAT selection is most often
modeled as a dynamic game formed by multiple iterations
over time. In this case, for both strategic and sequential
games, each iteration is a game step or stage. Moreover,
the concept of perfect recall is defined [31, Chapter 3]:
A dynamic game is of perfect recall if, at game step t , each
player knows the game history, i.e., the strategies applied by
the other players up to step t − 1.

C. COMPLETE VS. INCOMPLETE INFORMATION
On the one hand, the difference between imperfect and per-
fect games depends on whether players observe each other
when applying a strategy; on the other hand, complete vs.
incomplete games differentiate with respect to the level of
information each player has on the structure of the game
itself, including knowledge of utility, other players, and their
strategies [126]–[128].

To exemplify, the RAT selection game in Figure 5 may
be considered as a complete information game when both
users know they are part of a game, and also know how to
represent such a game (i.e., how utility is affected by strategy
profiles). Otherwise, it is an incomplete information game,
where users have no knowledge of one another and may even
ignore the game structure, since they may have no informa-
tion on the number of other users and corresponding strategies
and utilities. The hypothesis of complete information pairs
with the need for learning the optimal RAT to be connected
to (knowing a priori the game structure), while incomplete
information also requires to learn the context (that is the
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utility on each available RAT and if other users are playing
the same game).

Different assumptions on complete vs. incomplete infor-
mation have triggered different analyses and proposed solu-
tions for RAT selection. As mentioned in Section IV-A,
obtaining basic information on the selection game, such as the
number of users and their selection strategies, is not straight-
forward in practice and requires signaling overhead. The
trade-off between context-awareness and signaling should
therefore be explicitly considered, by adopting for example
network-assisted approaches, where access nodes of can-
didate RATs may act as selection coordinators beaconing
relevant information to the involved users. On the other hand,
context retrieval, when performed by users, may be easily
affected by inaccuracies, due to measurement limitations and
fast environment dynamics. Users may observe noisy utility
samples, and thus utility should be represented as a random
variable.7 As discussed in the next sections, these aspects
affect convergence and practicability of the adopted learning
algorithms.

D. PURE VS. MIXED STRATEGIES
As mentioned in Section IV-B, the set of strategies An for
the n-th user involved in a RAT selection game usually cor-
responds to the set of available RATs. These strategies are
referred to as pure, and the adoption of a strategy results
in selecting the RAT to connect to. Mixed strategies can be
derived by defining a set of probability distributions over
the elements of An, denoted 1(An). A generic mixed strat-
egy of the user n, denoted πn(a1n, . . . , a

|An|
n ) ∈ 1(An),

assigns a probability of selection to each available RAT.8

That is, a probability pn(an) is assigned to each pure strategy
inAn, such thatπn(a1n, . . . , a

|An|
n ) := (pn(a1n), . . . , pn(a

|An|
n )).

It thus follows that a pure strategy is a mixed strategy where
the probability associated to the purely selected RAT is 1.
A joint probability distribution defined over 1(Atot),

referred to as mixed strategy profile, can be obtained by
multiplying all marginal distributions, thus assuming inde-
pendence among each player selection. It is indicated as
π = (π1(a11, . . . , a

|A1|
1 ), . . . , πN (a1N , . . . , a

|AN |
N )) or simply

π = (π1, . . . , πN ). GT notation (πn,π−n) is often used
to emphasize the contribution of a generic user n. A more
general definition relaxes the assumption of independence
between players. In this case, the joint probability distribution
is denoted 5. In the context of RAT selection, this models
situations where users actuate their selections by following
cooperation policies, either injected by selection coordinators
or autonomously derived through learning.

7It can be observed that noisy informationmay also be considered for other
game parameters rather than utility, e.g., number of available RATs and users.
To the best of our knowledge, however, such a modeling option is rarely
adopted in RAT selection. In most cases, these information are assumed to
be either known (with no uncertainty) or unknown.

8πn(a1n, . . . , a
|An|
n ) is a distribution over the elements in An. Hence,

it is a vector of probabilities pn(an), for all an ∈ An, such that
∑

an∈An
pn(an) = 1. It is not denoted using a bold notation since this is used to
represent a non-singleton group of players.

Both pure and mixed strategies have been adopted in RAT
selection games.Mixed strategies are, however, more general,
and better adapt to the dynamic nature of these scenarios.
As discussed in Section IV-E, the adoption of pure vs. mixed
strategies determines the type of solution (i.e., the type of
equilibrium) that can be achieved and, in turn, the learning
algorithm to use (Section VI).

E. SOLUTION CONCEPTS
The solution of a non-cooperative game is the equilibrium.
Pure and mixed Nash equilibrium (NE) and correlated equi-
librium (CE) are widely considered in strategic games. The
definitions provided below naturally map to complete infor-
mation games. However, the same concepts can be adopted
in incomplete information games since equilibria can be
achieved by using learning algorithms.
Definition 1 (Pure Nash Equilibrium (PNE) [114]): A

pure strategy profile (aNE
n , aNE

−n ) is a PNE if and only if it
satisfies the following condition:

un(aNE
n , aNE

−n ) ≥ un(an, a
NE
−n )

for all n ∈ N and an ∈ An. (3)

PNEs generalize into MNEs if mixed strategies are used.
Definition 2 (Mixed Nash Equilibrium (MNE) [114]): A

mixed strategy profile (πNE
n ,πNE

−n ) is a MNE if and only if it
satisfies the following condition:

ûn(πNE
n ,πNE

−n ) ≥ ûn(πn,π
NE
−n )

for all n ∈ N and πn ∈ 1(An). (4)

ûn(πn,π−n) represents the expected utility of the n-th
player when the mixed strategy profile (πn,π−n) is played,
that is:

ûn(πn,π−n) :=
∑
a∈A

[ ∏
n′∈N

pn′ (an′ )

]
un(a). (5)

When the assumption of independence among players’
mixed strategies is relaxed, MNEs are found to be CEs.
Definition 3 (Correlated Equilibrium (CE) [129]): A

joint strategy profile5CE is a CE if and only if it satisfies the
following condition:∑

a∈A
5CE(an, a−n)un(an, a−n)

≥

∑
a∈A

5CE(an, a−n)un(fn(an), a−n)

for all n ∈ N and functions fn : An→ An, (6)

where fn is any function allowing the n-th player to unilater-
ally change its played pure strategy.

By definition, once in a PNE, MNE, or CE profile,
no player has an interest in changing strategy, given that no
utility gain is obtained by doing so under the assumption that
the others do not change their own strategies either. At the
equilibrium, each player plays a so-called best response (BR)
strategy, that is, a strategy that maximizes utility in response
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FIGURE 6. Solution space for the RAT selection game of Figure 5, as a
function of utility of users. The set of possible CEs (green area) is shown
against the entire set of correlated strategies of users (yellow area). Blue
and red stars highlight the two PNEs and the single MNE for the game,
respectively.

to (i.e., given) the strategies applied by the others. Multiple
BRs may exist for a player (not all leading to equilibria); in
the following, given a strategy profile a−n, the set of possible
BRs of user n given a−n is denoted {BRn}|a−n.
Figure 6 shows the solution space for the RAT selection

game in Figure 5. The game has two PNEs, i.e., users
interchangeably split over the two available RATs. In these
two cases, the user connecting to RAT 1 experiences a util-
ity (throughput) of 50 Mbps, while the other user has a
throughput of 30 Mbps, on RAT 2. The game also possesses
a MNE, under which both users select RAT 1 and RAT 2 with
probabilities equal to 0.875 and 0.125, ultimately experienc-
ing the same average throughput (slightly above 28 Mbps).
Figure 6 shows that such NEs are the corner points (blue and
red stars) of a wider set of solutions, i.e., the set of CEs (green
area), at which the game can converge without the assumption
of users independence.

Also note that both users do not hold a strictly dominant
strategy, i.e., a strategy leading to the highest utility, irrespec-
tively of the strategies of the others.9 Furthermore, the two
PNEs of this game are Pareto-optimal (PO) profiles, i.e., they
lead to the highest utility for both users. Such profiles are also
social-optimum (SO) points, since the sum of users utilities is
the highest compared against the sum of other profiles. The
utility comparison between PO, SO, and NE profiles gives
initial indications on the optimality of the game equilibria.

GT provides several extensions to the above definitions.
In particular, ε-equilibria can be formalized. They somehow
relax the above definitions and make convergence simpler.
In Definition 1–3, each player keeps the current strategy
since it would experience a variation in utility 1un ≤ 0 if
it selected any other strategy. In an ε-equilibrium, a player
keeps the current strategy since it would observe a 1un ≤ ε

9If a strictly dominant strategy exists, it is played by a player in a NE.
Consequently, strategy profiles including strictly dominated strategies for
any particular player can be discarded while looking for NEs.

for any other strategy. An application to RAT selection is
given in [102].

Moreover, considering extensive games, a NE refinement
named subgame perfect (Nash) equilibrium (SPE), is also
used, given the definition of subgame [130]. Conceptually,
while some NEs may be somehow counter intuitive with
respect to rational thinking, SPEs represent credible solutions
among all possible equilibria [59].

Table 2 summarizes the concepts discussed in this section,
by highlighting how the analyzed GT modeling options map
onto RAT selection scenarios, and provides a handy reference
toward setting up a RAT selection game.

V. RAT SELECTION GAMES
In the previous section, we have reviewed game-theoretic
modeling choices for RAT selection, in terms of adopted set-
tings and practical considerations. This section complements
the former by describing three non-cooperative games, that is,
potential (and congestion) games, evolutionary games, and
stochastic games, all of which have been applied to RAT
selection, in particular in their dynamic form. A discussion
on how the models match with practical scenarios is also pro-
vided. It is worthmentioning that two further non-cooperative
models, known as Bayesian and Stackelberg (or Leader-
Follower) games, have been used to model RAT selection.
While Bayesian models have found limited application to
RAT selection (an example can be found in [95]), Stack-
elberg games require networks (RATs) to also take actions
and observe the corresponding utility [131]–[133]. In the
following, we will neither discuss Bayesian games, due to
their limited application, nor Stackelberg games, since the
focus of this paper is on strategies involving users vs. users
competition.

A. POTENTIAL AND CONGESTION GAMES
One of the most adopted models for RAT selection is the
potential game, in particular in its congestion form [134],
[135]. This is due to the properties of such games in terms
of utility and existence of PNEs, as described below.
Definition 4 (Potential Game (PG)): A strategic game G

is a PG if and only if there exists a global function
F : Atot → R, common to all players and referred to as poten-
tial, that can express the change in utility observed by players
when they change strategies.

The type of relationship between F and utility drives a
taxonomy across PGs [135]. In particular, exact PGs can be
defined as follows:
Definition 5 (Exact Potential Game (EPG)): A PG is an

EPG if and only if, for each player, the difference between
the utility of two strategies (given all other strategies being
equal) results in the same difference in the potential function,
i.e.:

un(an, a−n)− un(a′n, a−n)

= F(an, a−n)− F(a′n, a−n)
for all n ∈ N , an, a′n ∈ An and a−n ∈ Atot \An. (7)
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TABLE 2. GT modeling options and their use in user-centric RAT selection.

The following theorem holds for EPGs and other PGs:
Theorem 1: A PG with a finite number of players, each

one having a finite number of possible strategies, i.e., a finite
PG, always admits at least one PNE.10

Moreover, a correspondence between EPGs and so-called
congestion games exists [134], [135].
Definition 6 (Congestion Game (CG)): A strategic game

G is called CG if and only if, for each player, the utility of
a given strategy is a monotonically non-increasing function
of the number of players adopting that strategy.

Note how the RAT selection game in Figure 5 follows Def-
inition 6. CGs are most often defined in terms of cost, rather
than utility, associated with the available strategies; then,
by thinking strategies as resources, it follows that the conges-
tion cost (or load) experienced when selecting a resource is
a strictly non-decreasing function of the number of players
selecting the resource. The cost function may be different
among players along with pure strategy sets A1, . . . ,AN ;
in the latter case the CG is asymmetric, in contrast to a
symmetric CG, which is also referred to as crowding game.
The aforementioned correspondence between EPGs and

CGs is always verified in the case of unweighted conges-
tion games (uCGs), where the players congest the resources
equally, in contrast to weighted congestion games (wCGs),
where the players have different weights related to their
contribution in congesting a resource. In uCGs, an exact
potential function referred to as Rosenthal’s potential can be
expressed [112], [134], meaning that the game is also an EPG.
Corollary 1 follows from Theorem 1:
Corollary 1: uCGs always admit at least one PNE.
As discussed in Section III-B, a definition of cost (utility)

depending on the number of users selecting a RAT, e.g.,
the interference level or the achieved throughput, expresses
the rationale of using a CG to model user-centric RAT selec-
tion [94], [102], [103], [108], [112], [136]. Hence, Corollary 1
has been used in initial work on GT modeling of RAT selec-
tion to demonstrate the existence of PNEs. Moreover, two
further aspects reinforce this modeling choice:

10Theorem 1 relies on the acyclicity property of PGs, that allows to define
finite improvement paths (FIPs). End points of FIPs are PNEs [135].

• the existence of PNEs for wCGs, that in general do not
admit potential functions, has been demonstrated under
some constraints on the cost function [137], [138];

• the possibility to converge to PNEs in both uCGs and
wCGs by adopting several distributed learning algo-
rithms was proved [32], [33] (see Section VI).

Application of Potential and Congestion Games to RAT
Selection: PGs and CGs were adopted in initial work on
game-theoretic modeling of RAT selection, thus triggering an
initial prevailing focus on PNEs. A cost function dependent
on the number of users connected to each RAT, but inde-
pendent of exogenous factors related to context (e.g., radio
conditions), allowed the analysis of theoretical bounds on
the efficiency of distributed selection schemes converging to
PNEs [112]. Under the assumption of complete information,
full rationality, and observability of other users’ selection
strategies, the aspect of learning the equilibria was analyzed
in [102], where the BRD algorithm was used to achieve
convergence to PNEs (see Section VI-A1). The model was
also extended to a multi-leader / multi-follower game, where
user competition for selecting the best RAT was anticipated
byRAT competition for selecting the best frequency resource.
In this case, convergence to ε-SPEs was shown.
A CG model was also given in [108], where the

unique PNE of the proposed game was achieved via
BRD under complete information, and via a RL scheme
based on Q-Learning in the incomplete information case
(see Section VI-B).
PGs and CGs provide a specific structure for RAT selection

games in terms of utility (cost), albeit not directly embed-
ding the aspects of dynamicity and learning proper of such
scenarios. The introduction of advanced learning schemes
under a more realistic assumption of incomplete information
has driven the interest on broader solution concepts, such
as MNEs and CEs, thus relaxing the need for a PG or CG
model. On the one hand, this paradigm shift led to more
complicated analyses, due to the impossibility of evaluating
equilibria through the study of a player-independent func-
tion11; on the other hand, it has allowed to extend the analysis,

11PNEs corresponds to local and global minima of the potential cost
function. Hence, a study of the potential function reveals the equilibria.
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by considering aspects not directly associated to the level of
congestion of the selected RAT but still affecting utility, e.g.,
billing costs, energy efficiency, and mobility.

B. EVOLUTIONARY GAMES
Another approach for RAT selection modeling is evolution-
ary game theory (eGT), that takes inspiration from biology
and Darwinian evolution [58, Chapter 6] [139], [140]. eGT
extends non-cooperative GT by introducing the concept of
population. This concept can be introduced in RAT selection
as well, where one or different populations may implicitly
refer to groups of users having a same set of candidate RATs,
based on their position and the coverage area of the access
nodes of each RAT [96].

eGT also relaxes the assumption of full rationality, that
considers players always eager to maximize their utility, and
favors the hypothesis of bounded rationality, that assumes
players to be cognition-limited and thus eager to learn over
time12 [139], [141]. Once again, the assumption nicely maps
onto RAT selection situations, where users often have limited
knowledge on utility and other features.

In general, an evolutionary game is a repeated interaction
between players belonging to a same or different popula-
tions. For the sake of simplicity, a single-population game is
assumed from now on. At each t-th game step, NP players
forming a population P apply one of the available pure
strategies in the population strategy set AP .13 Let us define
the proportion of usage for the generic strategy aP ∈ AP

as faiP ,t
:=

N
aiP ,t

NP
, where NaiP ,t

is the number of players

adopting strategy aiP at time t . The population state fP,t is
then defined as the set of strategy proportions at time t , that
is, fP,t := (fa1P ,t

, . . . , f
a
|AP |
P ,t

).

As detailed in [31, Chapter 3], two interpretations can be
considered for the analysis of evolutionary games. In the
more general setting, the utility of the adopted strategy aiP
at time t depends on the population state at that same time,
and is referred to as u(aiP , fP,t ). It follows that the average
population utility is:

u(fP,t ) =
∑

aP∈AP

faP ,tu(aP , fP,t ). (8)

The goal of eGT is to analyze how an evolutionary pro-
cess drives a change of the population state toward a stable
population composition, i.e., an evolutionary equilibrium.
An evolutionary process promotes the selection of strategies
that perform better than others, thus triggering an increase of
proportions over time, but also a mutation of strategies, that
leads to new population states. The balance between selection
and mutation leads to the definition of several evolutionary

12The interested reader may refer to [141], and references therein, for an
insightful discussion on how the word evolution and the learning process in
eGT can be interpreted in either biological or cultural sense.

13In this section, the subscript assigned to the game parameters stands
for the entire population of players. The population is homogeneous if the
strategy set AP unconditionally applies to all players.

processes. Replicator dynamics (RD), that focuses on the
aspect of selection, is the most adopted process [142]. In the
analysis of a single-population game via RD, the rate of
change of a strategy proportion is regulated by the difference
between the utility obtained by the players adopting that
strategy and the average utility of the population. In contin-
uous time, this corresponds to a set of ordinary differential
equations. For strategy aiP , one has:

∂faiP ,t
∂t
= faiP ,t

[u(aiP , fP,t )− u(fP,t )]. (9)

Players adopting strategies leading to a utility higher than
the average population utility replicate themselves faster
than others, and thus their presence in the population grows.
An equilibrium is found by evaluating the steady-state of the
system of differential equations, that is, by equating to zero
and solving the replicator dynamics in (9), for all aP ∈ AP .
Several theoretical results justify the use of RD for the analy-
sis of evolutionary games [27, Chapter 5] [28], in particular:
Theorem 2: Any pure or mixed strategy profile that is a

PNE or MNE of the evolutionary game is a steady-state of
the RD.

Theorem 2 highlights that RD may converge to NEs.
A stronger condition can be derived by considering another
solution concept referred to as evolutionary stable strategy
(ESS). ESS is a refinement of a NE ({ESSs} ⊂ {NEs}) and
takes into account the aspect of mutation [140]. From the
evolutionary idea of survival of the fittest, ESS is a strategy
configuration that, being played by the population, over-
comes in utility any other configuration obtained as a result
of the mutation (i.e., the selection of a different strategy) of an
arbitrary small proportion of players. The following theorem
holds for ESSs [142]:
Theorem 3: An ESS is an asymptotically stable steady-

state of the RD.
Theorem 3 highlights that RDmay converge to ESSs under

the constraint of asymptotic stability of the RD solution, that
implies Lyapunov stability [143]. Theorems 2 and 3 provide
interesting insights on RD and its relationwith NEs and ESSs.
However, they do not provide a practical way of finding such
solutions. RD does not always converge to NEs or ESSs, and
the reciprocal of both theorems is not valid in a general sense.
However, the following theorem holds [28]:
Theorem 4: An asymptotically stable steady-state of the

RD is a NE of the evolutionary game.
The above theorems show that the convergence of RD

to an asymptotically stable steady-state corresponds to the
convergence of the evolutionary game to a NE, that may also
be an ESS. In order to confirm the game convergence to a
NE, Theorem 4 indicates to check the asymptotic stability of
the RD solution, which is verified when all the eigenvalues of
the Jacobian matrix associated to the RD have a negative real
part [144].

For example, Figure 7 shows the convergence of RD to the
MNE of the RAT selection game in Figure 5, independently
of the initial population state. As a matter of fact, such a game
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FIGURE 7. Application of RD to the RAT selection game of Figure 5. Convergence to the MNE is reported in terms of users utilities (a) and
probability of selecting RAT 1 (red lines) and RAT 2 (light-blue dashed lines) actions (b), for different initial population states. The complete vector
field of probabilities of selecting RAT 1 vs. RAT 2 and the convergence point (blue dot) are given in (c).

can be thought as a single-population evolutionary game due
to the symmetry of the utility matrix.
Application of Evolutionary Games to RAT Selection: Sev-

eral reasons have triggered the use of evolutionary games in
RAT selection, including the possible adoption of the concept
of population and of the hypothesis of bounded rationality.
Moreover, RD provides a powerful method for studying game
dynamics. Indeed, it is usually considered as a benchmark
for the convergence of distributed RAT selection schemes,
since finding the RD solution requires to observe the decision
and the utility of each user, in order to compute the average
population utility. As derived in Theorems 2–4, RD conver-
gence to an asymptotically stable steady-state provides a sort
of refined solution in terms of NE stability, and thus may be
used to compute specific equilibria in games with multiple
equilibria, and to check if distributed schemes lead to same
or different solutions.

ARD-inspired network-assisted selection schemewas pro-
posed in [96] and referred to as population evolution. The
RD solution was adopted as a benchmark for both this
scheme and a fully distributed algorithm based onQ-Learning
(see Section VI). Q-Learning convergence was also com-
pared against RD in [108]. The model in [96] was reused
in [145], adding further network constraints. It was assumed
that network operators may want to set some limits on their
RATs, e.g., the maximum number of accepted users, in order
to maintain the QoS to predefined values. This aspect was
analyzed by adding a constraint to one out of three available
RATs. The constraint was an indication function added to the
definition of utility for that particular RAT, triggering a sharp
utility decrease when the constraint is violated (punishment).
Such a game was finally solved via the population evolu-
tion algorithm proposed in [96]. Simulation results showed
that the punishment term biases the equilibrium: users stop
choosing that RAT when the game reaches the step where the
constraint was violated. This resulted in the termination of the
competition for that RAT, that instead continued for the other
candidates until an equilibriumwas achieved for them aswell.
The approach allowed to maintain the QoS of the first RAT
above a predefined minimum threshold. A similar analysis

was presented in [146], where, however, the utility function
was represented by a weighted combination of sub-utilities
obtained from different network attributes. Results showed a
rather fast convergence to the set of equilibria via a RD-based
scheme. In [145], [146], the IEEE 802.21Media Independent
Handover (MIH) protocol [147] was assumed to provide the
information on the other users in the same area, so that
each user could apply the algorithm based on RD. The work
in [146] was extended in [148], that considered different
users, different traffic (while [146] only considered streaming
users), and 4G and 5G RATs.

From these works, two limitations in using eGT and RD for
RAT selection emerge. First, the evolutionary model requires
a player-independent utility, i.e., all players in the population
that apply the same strategy have the same utility. This limits
the available utility functions. Secondly, RD drives the system
toward a fair configuration: at equilibrium, players do not
change strategies since they achieve a utility equal to the
average population utility. RD thus promotes load balancing
across RATs, which may be desirable but less efficient com-
pared to other solutions (note in Figure 7 how the RD applied
to the RAT selection game of Figure 5 converges to the fairest
NE among the available ones, where users achieve the same
utility).

Both issues are recently addressed in [149], that proposes
the use of fractional eGT in a RAT selection scenario involv-
ing macrocells and mmWave small cells, some of it being
provided by unmanned aerial vehicles (UAVs). Differently
from classic eGT, fractional eGT includes memory of play-
ers in learning dynamics. Hence, users take into account
instantaneous utility and previous decisions in the selection
process [150]. In particular, the power-law memory is used,
since it is widely adopted in economic processes and is exper-
imentally validated against the behaviour of human mem-
ory.14 The memory effect is incorporated in RD by replacing
the integer-order time derivative with the left-sided Caputo
fractional derivative of order β [150]. The case β = 1
represents classic eGT; hence, β ∈ (0, 1) and β ∈ (1, 2)

14See [149] for more details.
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are also analyzed. The scenario with user-independent utility
is extended to situations where users have a different util-
ity (i.e., a different throughput) depending on radio condi-
tions. In this setup, existence, uniqueness, and stability of a
fractional evolutionary equilibrium are theoretically derived
and numerically demonstrated. A positive memory effect is
obtained when β > 1, leading RD to converge to a fractional
equilibrium having higher per user utility than its classic
counterpart.

C. STOCHASTIC GAMES
User-centric RAT selection is also modeled as a stochastic
game, also known as Markov game, that can handle the
hypothesis of incomplete information [151]. With respect
to the strategic game G, the stochastic game GS introduces
the concepts of state and transition probabilities between
different states. A state can be thought of as an indication
of the conditions of the environment the players face during
the game. The environment and its dynamics are partially
or fully unknown when incomplete information is assumed.
The strategies selected by the players lead the environment to
transit across states. The states may have, in turn, an impact
on the utility experienced by players.

A stochastic game is formally represented by the tuple
GS
:= {N ,S,1(S), {An}n∈N , {un}n∈N }, where S repre-

sents the state space with elements s ∈ S.1(S) is a probabil-
ity distribution over S, containing the probabilities p(s′|s, a)
of switching from state s to state s′ given that a strategy profile
a is applied by players. 1(S) is Markovian, since the next
state s′ only depends on a and the previous state s.15 1(S)
is also stationary, since it does not change over time.16 The
definition given for GS assumes a unique state space across
players and state-independent pure strategy sets for each
player. However, player-specific states and state-depending
strategy sets may be considered for more general models
[31, Chapter 3]. In all cases, players utility at each game step
depends on both states and strategies.

The dependence of the game parameters on states suggests
a practical interpretation of a stochastic game; it can be seen
as a repeated interaction among players in a game with
changing structure over time. As shown in Figure 8, the fun-
damental caveat of this interpretation is that these games
can be seen as MDP and MAB extensions to multi-agent

15The Markovian assumption is valid from a game-wide perspective,
i.e., by considering the entire strategy profile a and its relation with
state transitions. However, it is not valid from the perspective of play-
ers applying their strategies without observing the others, i.e., inde-
pendent learners in imperfect and incomplete information games, since
they do not have a game-wide perspective. This situation arises when
SARL-native schemes, e.g., Q-Learning, are adopted in multi-agent scenar-
ios (see Section VI-B) [152].

16Similarly to the Markovian assumption, multi-agent scenarios pose
a challenge with respect to the environment stationarity. The assumption
holds from a game-wide perspective, since it allows to differentiate between
environment and players. However, independent learners cannot discriminate
between environment and other agents. Hence, the other agents are part of
the environment and contribute to its non-stationarity due to their learning
process [153].

FIGURE 8. Representation of a stochastic game. Dashed lines for the
environment and states depict the possibility of observing or not any of
them. Information observability and sharing across players (clouds with
dashed lines) regulate perfect/imperfect and complete/incomplete
information assumptions.

scenarios. This mapping is further discussed in Sections VI-B
and VI-C, where more detail on MDP and MAB models
is given prior to presenting the RL-based solutions applied
to RAT selection. To exemplify, assuming a probabilistic
observability of state at time t , i.e., st , for each player and for
all t , the stochastic game can be seen as a multi-agent exten-
sion of a partially observable MDP (POMDP). Moreover,
stochastic games may define player-dependent states, i.e., st
is replaced by sn,t , for all n ∈ N . Similarly, if states also
depend on actions, i.e., st is replaced by san,t ,t , for all an ∈ An
and n ∈ N , then the stochastic game represents a multi-agent
extension of a stateful MAB. On the contrary, with no defini-
tion of states, the stochastic game is a multi-agent extension
of a stateless MAB.

In all cases, the goal of players in GS is similar to the goal
of a single agent inMDP andMAB, that is, to find the strategy
at each state and time that maximizes their utility. Hence,
stochastic games inherit MDP and MAB tools in address-
ing aspects such as learning and adaptation to an unknown
environment [27, Chapter 1]. During the game, players thus
learn and build a strategy plan over the state (and time) space.
Such a plan is generally referred to as policy in the MDP
and MAB literature. Considering pure strategies, the generic
pure policy for player n can be denoted as aP

n = {an,t }t≥t0 ,
where an,t identifies the strategy applied at time t , and t0
is the time at which the policy starts to be adopted by the
player. The dependence on the state is implied since a state
is visited at each time t . A pure policy profile can then
be written as aP

= (aP
1 , . . . , a

P
N ) or (a

P
n , a

P
−n). Therefore,

the goal becomes the assessment of a policy profile, i.e., a
strategy profile for each state (and time) that maximizes the
expected utility of each player. The latter is evaluated by
cumulating the instantaneous utilities experienced from t0
(and corresponding state) on, meaning that the final goal is
to maximize a long-term expected utility. Under the com-
monly adopted infinite time-horizon discounted model, that
is, the game extends over t → +∞, the generic player n
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tries to maximize its so-called expected discounted utility,
also referred to as return, defined as follows:

Un,t0 := E

[
+∞∑
t=0

λtun,t0+t+1

]
, (10)

where, for the sake of simplicity, a notation more common
to MDP and MAB rather than GT is adopted (note that the
dependence of un on actions of players, e.g., an and a−n,
is omitted).Un,t0 is the return for player n from time t0 on, and
E[·] is the expectation over the environment state dynamics,
the (possibly mixed) policy profile, and the utility function.17

Moreover, un,t denotes the instantaneous utility of player n
(for all t > t0), and λ (0 < λ < 1) is the so-called discount
factor, that can be interpreted as the interest of players in short
vs. long-term returns.18

While trying to maximize their return, players possibly
converge to equilibria, the definitions of which closely follow
the ones provided in Section IV-E, where the concept of
policy profile is substituted to the one of strategy profile.

The above discussion considers pure policies. Given an
infinite stochastic game, a pure policy is an infinite sequence
of pure strategies. This challenges the definition of mixed
policies and thus another type of policy, referred to as behav-
ioral, becomes relevant [31, Chapter 6]. A behavioral policy
allows a player to randomize its pure strategies inAn at each
game step (i.e., at each state).19 The Kuhn’s Theorem [154]
allows to restrict the game analysis on behavioral policies,
since there exists a correspondence between behavioral and
mixed policies under the assumption of either perfect infor-
mation or perfect recall [31, Chapter 3]. The existence of
equilibria in terms of stationary behavioral policies, i.e., poli-
cies where the association between strategies and states does
not change over time, was proven for stochastic games with
finite sets of states and pure strategies [155].
Application of Stochastic Games to RAT Selection: The

adaptation of the above model to RAT selection requires
several observations. First, the definition of states depends
on the adopted model. For example, in the single-user MDP
model for vertical handover given in [156], the state at time t
is a joint information of available bandwidth and experienced
delay. RATs share information with users, that in turn use

17The instantaneous utility adopted in MDP, MAB, and thus Markov
games is in general stochastic. For example, in so-called finite MDPs,
strategies and states are finite and the utility for each (state, strategy) pair
has discrete outcomes with given probabilities [39]. In RAT selection, this
aspect usually maps onto the concept of noisy utility (see Section III-B).

18The discount factor is assumed equal across players. Moreover, Un,t0 is
in its non-normalized version, which is widely adopted inMDPs. Normalized
returns have a weighting term λ(1− λ)t−1 [31, Chapter 3].

19To exemplify, consider a one-stage extensive game between two players,
where both players play one strategy each, and then the first player can
play one more time. In this case, a mixed strategy for the first player
corresponds to randomize its two actions jointly, i.e., over the entire game
tree. A behavioral strategy allows instead to randomize step-by-step indepen-
dently, i.e., over each information set forming the game tree. In the example,
the first player adopts a behavioral strategy if it randomizes its first action
and then the other, independently. Behavioral policies extend behavioral
strategies over the state set.

it to evaluate the transition probabilities and an optimal,
stationary, pure policy, i.e, a RAT to connect to given a
state. Furthermore, the state observability is not certain and
may require network assistance [156]. Hence, POMDPs, that
generalize MDPs assuming a probabilistic state observation,
have also been proposed [157]. In general, modeling RAT
selection as a stochastic game does not even require an
explicit definition of states, as shown in [96], that is analyzed
in detail in Section VI-B1.a. From this perspective, also note
that the RAT selection game of Figure 5 can be thought of as
a simplified stochastic game (with no definition of states and
a deterministic utility).

Secondly, once states are defined, the knowledge on how
the environment transits across states and how states affect
utility should be carefully discussed. From a single-agent
perspective, assuming to know the state transition probabil-
ities and the utility function allows using dynamic and linear
programming policy discovery schemes, such as Value and
Policy Iteration algorithms [39, Chapter 4]. For example,
Value Iteration is used in [156] to derive the optimal RAT
for each state. However, transition probabilities and utility
may be unknown while looking for candidate RATs. Hence,
RL schemes could be used for discovering the context and
find an optimal policy. This aspect is more challenging in
multi-agent scenarios, considering that the learning process
of agents enhances the dynamicity of the system under anal-
ysis. Such a situation naturally maps onto a stochastic game
with incomplete information [31, Chapter 6], the solution of
which may still rely on RL. However, the use of RL algo-
rithms is not straightforward and depends on the assumptions
on rationality of players and game observability. Moreover,
it is not guaranteed that RL algorithms converging to opti-
mal policies in single-agent setups also converge to optimal
policies in multi-agent scenarios (Section VI).
In a RAT selection game, the focus is not on perfectly pre-

dicting which equilibrium is achieved, but rather to address
the challenges related to the discovery of a policy driving the
selection process toward an equilibrium. Hence, it is key to
compare different learning schemes in terms of achievable
utility, required information, convergence speed, amount of
RAT switchings, etc. Such a comparison is particularly rele-
vant under a stochastic incomplete information game model,
since in this case users can adopt different RL algorithms, that
may differ in terms of the above indicators.

A stochastic game model reinforces the trade-off between
solution efficiency, convergence speed, and practicability of
the adopted learning scheme. For example, algorithms reach-
ing less-efficient utility solutions in a short time may be
preferred to more rewarding but slower schemes, since a
possibly high scenario variability due to mobility, arrival and
departure of users, and other factors, might quickly nullify
the achieved convergence and require a new learning process.
Moreover, such a process may require users to switch several
times from one RAT to another before reaching a stable policy
profile, which is energy-inefficient; it then follows that the
design of learning schemes that require a few switchings is
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TABLE 3. Applicability of non-cooperative games to RAT selection.

key for RAT selection. Due to the strong connections with
learning schemes, literature examples of RAT selection mod-
eled as stochastic games are discussed in Section VI, where
the algorithms are also introduced.

Table 3 summarizes the concepts discussed in this section,
highlighting how the analyzed games can be used for model-
ing user-centric RAT selection, in terms of utility definition,
information observability, learning schemes (introduced with
literature examples in Section VI), and achievable solutions.

VI. MULTI-AGENT LEARNING FOR RAT SELECTION
This section reviews learning algorithms commonly adopted
for solving user-centric RAT selection. The main results in
terms of game-theoretic convergence are also discussed. The
applicability of the algorithms depends on how the game is
formulated. As a matter of fact, BRD and FP are prominent
examples of fully rational, learning-the-equilibria mecha-
nisms; hence, their use in RAT selection requires extensive
control message exchange across network entities. RL algo-
rithms, however, can be applied when the selection prob-
lem is modeled as an incomplete and imperfect information
game, which implies bounded rationality of users. Enhanced
algorithms can be adopted if information sharing is assumed
to take place during the selection process, and the observed
information can be used together with utility.

A. GT-BASED SOLUTIONS
BRD and FP are two GT-rooted MAL schemes. Their mech-
anisms are discussed in the following, and their application
to RAT selection is analyzed through literature examples.

1) BEST RESPONSE DYNAMICS (BRD)
BRD is a learning scheme tailored for complete information
games. BRD players select the strategy maximizing their own
utility at each game step, taking into account the strategies
played by the others. At game step t , the updating rule for
user n adopting simultaneous BRD (sBRD) with pure strate-
gies is as follows:

sBRD: an,t ∈ {BRn}|a−n,t−1, (11)

that is, the player selects the strategy maximizing its utility
given the strategies adopted by the others during the previous
game step. sBRD applies to complete but imperfect infor-
mation games where players cannot observe the strategies
adopted by the others at present time t , while the strategy pro-
file played in t − 1 is of common knowledge. Asynchronous
BRD (aBRD) is instead applicable to games where players
do not act simultaneously (e.g., sequential games) with the
following updating rule:

aBRD: an,t ∈ {BRn}|[a1,t , . . . , an+1,t−1, . . . , aN ,t−1].

(12)

In this case, the perfect information assumption is verified,
since each player observes the strategies of previous players
also in the present game step t .
aBRD converges to PNEs when applied to EPGs [29] [31,

Chapter 5], independently of the strategy profile at t = 1.
No general convergence results exist for sBRD; as a matter of
fact, [33] shows an unwanted, infinite strategy switching in a
simple 2-player game caused by sBRD. However, the adop-
tion of a stabilizing term can lead to PNEs [32], [158].

In RAT selection, aBRD is most often adopted, assuming
a null probability of users performing selection at the same
time. In particular, the work in [102], [103] shows con-
vergence to the set of PNEs for CGs. Reference [102] also
highlights that the number of iterations required by BRD to
converge increases as a linear function of the number of users
and available RATs (e.g., about 150 iterations for 200 users
and 15 RATs). Moreover, convergence to pure ε-SPEs is
shown when the game includes a previous step where RATs
compete for frequency resources. In [108], BRD is used to
solve the proposed CG, which has two available RATs and a
unique PNE, and show convergence time increasing with the
number of users (about 50 iterations with 250 users).

A BRD-inspired algorithm is proposed in [44] and shows
convergence to PNEs in a game using the utility functions
in (2a)(2b). On the one hand, the proposed procedure guaran-
tees convergence when only one between the two functions
is adopted, i.e., in case of homogeneous RATs; on the other
hand, the use of a hysteresis policy enables convergence when
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the two utility functions are used in parallel, ultimately solv-
ing scenarios with both WiFi and LTE RATs. Such a policy
stabilizes the switching of users across classes of RATs, e.g.,
from WiFi to LTE and vice versa, avoiding the selection of
a new RAT if the utility gain is lower than a predefined hys-
teresis value. The procedure is used as a benchmark in [46]
for a selection game with a QoE-based utility function.

2) FICTITIOUS PLAY (FP)
A BRD player is able to observe the strategies selected by
others right before its own move, e.g., at time t − 1 for sBRD
as reported in (11). FP expands the degree of observability to
perfect recall, as defined in Section IV-B.

Since this assumption requires high information sharing
and storage capability, FP has not been extensively used in
wireless communication scenarios, and RAT selection makes
no exception. However, it is discussed in this paper since,
as clarified later, its updating rule provides the starting point
of RL-based schemes (cf. Sections VI-B–VI-D).

Each FP player n is able to collect the history of
pure strategies selected by the others, from a given time
(e.g., t = 1) to the instant at which it plays its own strat-
egy. Then, at time t , the frequency with which players have
selected their strategies up to t − 1 is of common knowledge.
For example, the selection frequency at time t for strategy ain,
denoted as fn,t (ain) is:

fn,t (ain) =
1

t − 1

t−1∑
τ=1

1[an,τ=ain], (13)

where 1[... ] is the indicator function. The following recursive
way to compute the selection frequency is also verified:

fn,t (ain) = fn,t−1(ain)+ αn,t [1[an,t=ain] − fn,t−1(a
i
n)], (14)

where αn,t = 1
t and regulates the learning rate of player n

over time [32], [59]. Such a term has been generalized in other
RL algorithms applied to RAT selection, as discussed later.

Once evaluated for all an ∈ An, the selection frequen-
cies are used to draw an empirical probability distribution
π

emp
n,t (a1n, . . . , a

|An|
n ) = (fn,t (a1n), . . . , fn,t (a

|An|
n )), i.e., an esti-

mate of the mixed strategy of player n at time t . Finally,
given the empirical mixed strategy profile (πemp

n,t ,π
emp
−n,t ),

the updating rule of player n is:

FP: an,t ∈ {BRn}|π
emp
−n,t . (15)

Hence, player n best responds to the mixed strategy profile
estimated by observing the others, and selects the pure strat-
egy that maximizes its utility. While a BRD player aims at
maximizing the actual utility, the FP counterpart focuses on
expected utility (as in (5), with πn replaced by an).
The above description applies to simultaneous games.

An asynchronous FP version can be applied instead to
sequential games, similarly to BRD. A smoothed FP, also
referred to as stochastic FP, has also been proposed, where
players build a mixed strategy over time and apply it as an
updating rule [29], [33]. Such a flavor of randomicity allows

to avoid possible non-convergence issues of FP, that arise in
games with cyclic behaviors. Hence, FP converges to PNEs if
applied to PGs, since these are acyclic games [29] [31, Chap-
ter 5]; it may not converge in other games, where, however,
the following results are demonstrated [27, Chapter 5] [159]:

• PNEs are attractors to FP: if a PNE is played at game
step t∗, then it is played for all t > t∗;

• The convergence to a pure strategy profile of a FP pro-
cedure guarantees the convergence to a PNE.

In the above formulation, each FP player derives the empir-
ical strategy profile (πemp

n,t ,π
emp
−n,t ) assuming independent

players. However, as discussed in Sections IV-D and IV-E,
joint mixed strategy profiles allow to expand the set of game
solutions, including CEs. A further FP version has thus been
proposed and applied to stochastic games, where joint empir-
ical probability distributions are estimated and used by users
in their decision process [31, Chapter 5] [160].

When applied to RAT selection, FP convergence is chal-
lenged in [31, Chapter 5, Example 147], where an unwanted
cyclic behavior in a 2-player and 2 RATs game is shown.

B. RL-BASED SOLUTIONS WITH MDP MODELING
From Section V-C, solving a MDP implies to deriving a
policy that maximizes the agent return, i.e. (10) but with no
dependence on other agents due to the single-agent assump-
tion.20 Different policies can be compared by means of
the return for the agent, if applied. Considering an initial
state s, from which a generic policy Pol starts to be applied,
the so-called state-value function, denoted as VPol(s), can be
evaluated and associated to Pol (for all s ∈ S), as follows:

VPol(s) := EPol

[
+∞∑
t=0

λtut0+t+1

∣∣∣∣st0 = s

]
, (16)

where EPol[·] indicates the expectation with respect to Pol,
and st0 = s means that the first state visited under Pol is s.
While in a state, an either deterministic (pure) or stochastic
(mixed) Pol drives the agent to select an action, that is,
a strategy a ∈ A. Then, for all possible (state, action) pairs,
the so-called action-value function can be defined via corre-
spondingQ-values denotedQ(s, a). TheQ-value is a measure
of the overall expected return obtained when the agent is in
state s and performs action a, and then continues to apply
policy Pol. It is evaluated as follows:

QPol(s, a) := EPol

[
+∞∑
t=0

λtut0+t+1

∣∣∣∣st0 = s, at0 = a

]
, (17)

where at0 = a indicates that a is the strategy applied by the
agent at time t0 while the environment is in s.

The Bellman equations allow to write both state-value and
action-value functions in a recursive form [161]. For example,
assuming a state/action-finite MDP, the Bellman equation for

20For this reason, the subscript n is not used in this section, and the lack
of player-related subscripts implies the single-agent setup.
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the state-value function is:

VPol(s)=
∑
a∈A

pPol(s, a)
∑
s′∈S

p(s′|s, a)[R(s′|s, a)+λVPol(s′)],

(18)

where pPol(s, a) is the probability of adopting action a when
the state is s, as defined by policy Pol, and p(s′|s, a) is the
state transition probability, defined as in Section V-C but
in single-agent terms. Moreover, R(s′|s, a) is the so-called
reward function, representing the expected utility when a
transition from s to s′ occurs due to action a, that is:

R(s′|s, a) = E[ut+1|st = s, at = a, st+1 = s′]. (19)

Given a policy, the system of Bellman equations for
state-values (for all s ∈ S) or action-values (for all s ∈ S and
a ∈ A) has a unique solution [162]. Then, a policy is optimal
if it maximizes state-value and action-value functions, so that
it can be represented by the following values:

V ∗(s) = max
Pol

VPol(s) (20a)

Q∗(s, a) = max
Pol

QPol(s, a) (20b)

⇓

V ∗(s) = max
a∈A

Q∗(s, a). (21)

Writing Bellman equations for an optimal policy leads to
the system of Bellman optimality equations [161], that has a
unique solution, i.e., V ∗(s) orQ∗(s, a) values for all states and
actions. Hence, the system can be solved if the state transition
probabilities are known, and one among all possible policies
leading to optimal values can be identified. Based on the
optimality equations, two aspects can be highlighted:
• The search for an optimal policy can be restricted to the
set of deterministic and stationary policies, that map an
action to each possible state, since there always exists at
least one deterministic policy being optimal (under the
infinite time-horizon discounted model) [163];

• The evaluation of Q∗(s, a) is preferable while searching
for the optimal policy, since the Bellman optimality
equations for the action-value indicate that an optimal
policy always chooses an action that maximizes the Q-
value for a given state. Hence, an optimal policy is
greedy with respect to Q-values.

By denoting a deterministic optimal policy as Pol∗(s), and
observing a particular state s, the two above aspects result in
the following equation:

Pol∗(s) = argmax
a∈A

Q∗(s, a). (22)

Solving Bellman equations to derive an optimal policy can
be computationally expensive since the search space grows
with state and action sets. Even under the assumption of
knowing the environment dynamics, iterative methods are
thus more suitable. As mentioned in Section V-C, dynamic
programming algorithms such as Value and Policy Iteration

are, among others, largely used, and converge to an opti-
mal (deterministic) policy in case of finite MDPs. In case of
unknown state transition distribution, RL algorithms, e.g.,Q-
Learning, provide a robust method to find an optimal (deter-
ministic) policy; They iteratively solve approximated Bell-
man optimality equations, where the experienced state tran-
sitions are adopted in place of the unknown expected state
transition distribution [164].

1) Q-LEARNING
Q-Learning is one of the most famous RL algorithm to solve
finite MDPs under the assumption of unknown environment
dynamics, i.e., unknown state transition probabilities and util-
ity functions [39, Chapter 6] [164].Q-Learning belongs to the
temporal-difference (TD) methods, which combine dynamic
programming with so-called Monte Carlo methods, the latter
being another way of solving finite MDPs with no a priori
knowledge [39, Chapter 5]. In particular, Q-Learning is a
method that aims at learning optimal Q-values rather than
state-values [164]. By denoting (st , at ) the pair of state and
action at time t , the Q-Learning rule to update the Q-value
for this pair at time t + 1 is:

Q(st ,at )←Q(st ,at )+αt
[
ut+1+λmax

a∈A
Q(st+1, a)−Q(st , at )

]
,

(23)

where st+1 is the new state, ut+1 is the instantaneous utility,
and 0 < αt < 1 is the learning rate, that is assumed to
be time-dependent. The rate regulates how the agent updates
the estimate of Q(st , at ), considering both the old estimate
and the most recent observation, that depends on the instan-
taneous utility and the best value of the newly encountered
state Q(st+1, a) (maximized over all possible a ∈ A). Small
learning rates attribute more importance to the old estimates,
while large ones give more credit to the newest observation.
The max operator underlines the possibility for the agent to
adjust its policy at each step. For this reason Q-Learning
is also referred to as an off-policy method. An on-policy
alternative scheme is the SARSA algorithm [165], [166].
Both Q-Learning and SARSA require the agent to track

and updateQ-values for all possible combination of states and
actions. A popular approach is to embed the agent with a tab-
ular memory, so that it can update over time its own Q-table.
As also discussed in Section VI-B1.e, this approach hinders
the scalability of the algorithms, and additional methods are
needed in scenarios with large state and action spaces.
Q-Learning and SARSA converge to an optimal policy,

as shown in [164], [167], [168] for Q-Learning, and [169]
for SARSA. Two constraints are highlighted for Q-Learning:

• the learning rate has to reasonably decay over time;
• every state-action pair has to be visited infinitely often.

The first constraint implies:

∞∑
t=1

αt = ∞ (24a)
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∞∑
t=1

α2t < ∞. (24b)

The above conditions balance the trade-off between the
need for exploring, in the initial searching steps, vs. the goal
of converging to an estimate, as time goes by. However, due
to the need for fine tuning, and excessive convergence delays,
the above conditions are used in theoretical derivations, and
Q-Learning practical applications usually adopt a constant
learning rate. This rate has to be small enough in order to
avoid too large variations of Q-values in response to recent
observations [39]. Note however that a continuous variation
is preferable when dealing with non-stationary scenarios such
as multi-agent situations.

The second constraint avoids the iterative procedure to get
stuck into sub-optimal policies, that may seem optimal in
the short-term but are not. Hence, it allows for alternating
exploration and exploitation steps. In practice, when an action
must be selected, the agent cannot always be greedy with
respect to the evaluated Q-values (full exploitation), e.g.,
by applying (22) at each t; it must adopt instead a procedure
that allows to keep exploring other strategies over time [36],
[38]. Therefore, ε-greedy policies are widely adopted in com-
bination with Q-Learning, where a parameter 0 ≤ ε < 1
defines, at each state (time), the probability ε of the agent
exploring a randomly selected action while being greedy
toward the best (up to that moment) action with probability
1− ε. In stationary conditions the exploration is particularly
needed at the beginning of the process; hence, ε-greedy pro-
cedures with ε vanishing over time have also been proposed.
Another option is to use the so-called Boltzmann procedure
(BP), that selects action a′ in state swith probability pBP(s, a′)
defined as follows:

pBP(s, a′) :=
eQ(s,a

′)/T∑
a∈A

eQ(s,a)/T
, (25)

where the higher the so-called temperature T > 0, the higher
the randomicity of the exploration. A soft greedy exploitation
is preserved with BP, since actions with higher Q-values
have greater chances of being selected for all T ∈ (0,∞).
A detailed analysis of exploration strategies forMDP policies
can be found in [170].

The above discussion identifies Q-Learning as a powerful
MDP solver, and also shows its applicability to multi-agent
scenarios. Nothing prevents agents to applyQ-Learning inde-
pendently of one another; this directly maps to stochastic
games with imperfect and incomplete information, where
players may be unaware of being part of a game. Using
Q-Learning as a stochastic game solver is thus possible.
However, it leads to uncertain solutions, since convergence
to an optimal policy profile is not guaranteed due to non-
stationarity. The simplicity of this approach has triggered its
widespread use, also in RAT selection. A set of examples of
application of Q-Learning to RAT selection is reported and
discussed below. The literature is also summarized in Table 4.

a: Q-LEARNING AS MAIN ALGORITHM OR BENCHMARK
One of the first applications of Q-Learning to user-centric
RAT selection is found in [96]. The model intersects evolu-
tionary and stochastic games, since the adopted utility func-
tion is a user-independent version of the PF model in (2b),
with a further variable connection price (Section III-B2).
The possibility to converge to the evolutionary equilibrium
(where all users have same utility) is explored via either
a network-assisted RD-based strategy or a fully distributed
Q-Learning mechanism. For the latter, a simplified version
is actually used, where a Q-value is associated with each
possible pure strategy (a candidate RAT), with no explicit
state definition: users only observe their utility obtained when
they connect to a RAT. ε-greedy is used to balance exploration
and exploitation. The analysis in [96] is carried out in a sce-
nario with a fixed number of users (variable in some specific
analyses) and RATs, i.e., a WiFi AP, a code division multi-
ple access (CDMA)-based macrocell, and an IEEE 802.16
(WiMAX) base station (BS). It is shown that Q-Learning
converges to the evolutionary equilibrium and convergence is
obtained with a higher number of iterations compared to the
network-assisted solution, that however exploits broadcast
information about users and utility. A more detailed analy-
sis shows that the evolutionary equilibrium is reached for a
specific ε value.

A similar study is carried out in [109]; in a cellular scenario
including a macrocell and two, open- vs. closed-access fem-
tocells,21 fully greedy Q-Learning (ε = 0) achieves a
sub-optimal solution compared to RD.

The scheme in [96] has been widely used as a benchmark
for other methods proposed over the years. In [47], it is
compared against the so-called local improvement algo-
rithm (LIA) and its enhanced version (E-LIA) in a selec-
tion scenario where users have different utility. Utility is
a function of the user physical rate, adjusted with some
coefficients depending on required traffic (brittle, partially
elastic, and elastic) [81]. LIA introduces cooperation between
pairs of access nodes, each referred to as coupled network
pair (CNP), that share users by following an optimization
strategy. Exploiting the spatial distribution of access nodes
and assuming a priori knowledge of user required traf-
fic, LIA decomposes a global welfare optimization prob-
lem into low-complexity sub-problems, where each CNP
cooperatively re-associates users exploiting the knowledge
on their traffic. E-LIA speeds up LIA convergence using
the spatial independence among CNPs. Simulations in [47]
are performed for the topologies in Section III-C and show
that LIA and E-LIA outperform Q-Learning, with a welfare
improvement depending on the weights adopted to character-
ize the traffic classes. Q-Learning shows increasing issues in
heavily-loaded scenarios, i.e., about 100 users for the Corri-
dor scenarios and 60 for Overlapping and Nest scenarios.

21Open access cells allow all users to access, while closed access ones are
dedicated to pre-registered users. Moreover, all users are allowed to access
to hybrid access cells, but registered users have higher priority [182].
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TABLE 4. Examples of application of Q-Learning to RAT selection.
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In [46], Q-Learning is analyzed against a hybrid scheme
adopting collaboration and information exchange between
users and a dedicated cloud entity. The goal is to achieve a
PNE, which is proven to exist from a QoE perspective. Simu-
lation results show competitive performance of Q-Learning,
but it is claimed that it may take several hundreds of iterations
to converge even in scenarios with a low number of users.

The Q-Learning scheme in [96] is also adopted in [178] to
benchmark a learning scheme referred to as ALA. The sce-
nario includes WiFi, WiMAX, and OFDMA LTE-like RATs.
The utility is defined as a weighted logarithmic function
of the ratio between experienced and requested throughput,
with the latter depending on the service (voice vs. data).
The throughputs equate when the sum of the demands of
users choosing the same RAT is lower than RAT capacity.
Otherwise, the experienced throughput is equal to capacity
multiplied by the ratio between the user demand and the
sum of the demands of the other users. The capacity also
changes over time in a gradual (sinusoidal) vs. abrupt fash-
ion. Overall, the proposed utility formulation emphasizes
the concept of user satisfaction, that is dependent on the
requested service. Simulation results include several perfor-
mance indicators, such as user utility, switching rate, band-
width utilization, and convergence time, adopting various
number of users (from 500 to 800) in both scenarios of
gradually- vs. abruptly-changing capacity. It is shown that
Q-Learning needs more iterations than ALA to converge to a
load-balanced configuration (that is a PO and SO PNE for the
proposed game). However, ALA embeds a quite complicated
forecasting method requiring each user to store the historical
series of loads over the selected RATs (obtained via network
assistance).

A model similar to [96] is proposed in [171] and adopted
in a scenario including one macrocell and several femtocells.
An adaptive-ε exploration strategy is proposed and used in
the single-agent scenario, which forces the agent to explore
more when the knowledge about the environment is uncer-
tain. BP is adopted instead in the multi-agent setup. The
reward is the Shannon’s capacity when a RAT is selected,
with a bandwidth equally split across users. Convergence to
stable configurations is not analyzed, and results are given in
terms of instantaneous vs. average user throughput. The user
adopts eitherQ-Learning or a scheme where it selects the cell
initially leading to highest capacity.

In [108], BRD is compared against a Q-Learning solution
where ε is randomly picked, at each time step. The selection
of a RAT is the action, while the number of users connected
to each RAT is the state. The problem of sharing the state
information among users is not discussed. The utility function
is similar to [96] with a further fixed connection price. This
choice enables a further comparison against RD. Simulation
results show that Q-Learning converges to the unique game
PNE; it takes more iterations to converge with respect to BRD
and RD. The number of steps before convergence increases
with the number of users, with more than 3 × 104 steps to
converge in a scenario with 40 users and 2 RATs.

The methods proposed in [171] and [108] are used to
benchmark the network-assisted solution proposed in [177],
where users periodically perform RAT selection by using
association probabilities evaluated by a central unit. Users
connect to a RAT for a given amount of time and then
perform a new selection. In the meantime, the central unit
computes the association probabilities and provides them to
users, so that they can apply it in the next period.

A Q-Learning selection approach with ε-greedy explo-
ration is also proposed in [172] in a macro vs. picocells
scenario. Here, the so-called cell range expansion (CRE)
technique is also considered. Aiming at load balancing, CRE
allows to bias the value of the power received from the
picocells, thus influencing users to use them [183], [184]. The
state is user-specific since it includes, for each user, the two
power levels received from themacrocell and the best picocell
at a given time. Moreover, the selection of a cell defines the
action, and a cost is adopted to update the Q-values.22

The cost is defined as the number of users unable to achieve
the connection, referred to as UE outage. The cost values are
exchanged across cells over their backhaul connection and
then reported to users. Such a definition indirectly triggers
cooperation between users in a non-cooperative stochastic
game. Finally, in order to deal with the size of the Q-table,
the states are quantized between an upper and a lower bound,
and a new state is added only if it does not fit the table of the
previous time step. The convergence is not analyzed and the
throughput experienced after a fixed number of trials (5×105)
is considered as the performance indicator. The proposed
scheme outperforms plain Q-Learning but also a scheme
where users connect to cells using common and predefined
CRE values. An optimal but unpractical approach is also
used as upper bound, where the CRE values minimizing the
number of UE outages are found via exhaustive search.
Q-Learning is combined with offline unsupervised

ML (clustering) and online supervised ML (classification)
in [173]. X -means is used to cluster a given amount of
training data, that identify possible states of the candidate
RATs in terms of indicators, such as, load and DL SINR.
Then, the current user readings are associated with a cluster
via k-nearest neighbors (kNN). Once the appropriate cluster
is selected, Q-Learning is used to obtain the best action,
that is, the best RAT to use. The reward is a function of
experienced throughput and load, the latter being shared by
RATs. In a scenario with two LTE cells and three random
walking users, Q-Learning outperforms a selection scheme
based on the highest SINR, as well as a random selection
procedure. It is also shown that the random procedure, usually
adopted for showing performance lower bounds, surprisingly
outperforms the SINR-based scheme.

Reference [174] adopts ε-greedyQ-Learning for cellular to
WiFi offloading. A mobile user learns how to select between
a macrocell and randomly deployed WiFi APs, using its
connection history and current network states. The goal is

22Hence, users select minimum Q-values during exploitation.
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to decrease the connection time toward the macrocell while
maintaining a minimum QoS. The user moves through spe-
cific positions where the selection is performed. The state at
time t is defined as a tuple including the position and available
WiFi APs, obtained via 3GPP ANDSF. The macrocell utility
is the SINR experienced upon connection, while a more
complicated utility function is defined for the WiFi APs.
It considers SINR, handover delay, load, and an incentive
factor. The load is obtained via the channel busy fraction
parameter available in the IEEE 802.11k standard. Then, it is
weighted depending on the interest of the cellular operator,
i.e., the operator may want to increase offloading toward
WiFi when the macrocell is congested. The incentive factor
is defined as a logarithmic function of the inverse of the dis-
tance between user and macrocell. Q-Learning (unknown ε,
α = 0.5, and λ = 0.9) is evaluated against a selection scheme
based on received signal strength (RSS) and load. Results
show the possibility to decrease the cellular connection time
by appropriately tuning the weight associated to the load.
Then, the iterations to converge to the optimal policy increase
with the number of APs (about 50 iterations with 60 APs).
Note that in this investigation the implications related to a
multi-agent setup are not considered.

b: Q-LEARNING ENHANCEMENTS
A Q-Learning enhancement via knowledge transfer is pro-
posed in [48], [175], aiming at reducing Q-Learning action
set by using past experiences. This enhancement is tested
for both DL and UL RAT selection in a hybrid visible light
communication (VLC), LTE, andWiFi access system. PF and
TF throughput models are adopted for LTE and WiFi, while
a specific function is used for VLC. Then, DL and UL
throughput indicators are merged in different ways in order
to define the user utility in UL-dominant, DL-dominant, and
UL/DL-symmetric traffic scenarios. Q-Learning is enhanced
by considering that: a) not all RATs are suitable for all traffic
types, and b) network load has space-time patterns. The first
observation allows to decrease the size of the action set
(composed by the candidate RATs) according to traffic type,
e.g., VLC is not suitable for UL data. The second observation
highlights that the load at a given time and location is about
the same across different weekdays. Hence, a user can reuse
past experience and Q-values previously evaluated, instead
of initiating the RAT selection with null Q-values every time.
The user can also differently adjust its exploration probability
if previous knowledge is exploited, i.e., there is no need for
large exploration probabilities at the beginning of the process.
Simulation results show that the improved Q-Learning con-
verges more rapidly than its legacy counterpart.

Another Q-Learning enhancement is given in [176]. The
proposed model-driven framework intersects ML and GT
and consists of feature learning, game modeling, and strat-
egy learning steps; overall, it is referred to as random for-
est enhanced Q-Learning with game (RFEQG). For each
user, the action set comprises the available RATs while the
state is a tuple of three elements: the list of RATs with

corresponding load and packet success ratio (PSR). The load
is obtained via signaling mechanisms exploiting ANDSF or
IEEE 802.11u (aka WiFi Alliance Hotspot 2.0) functional-
ities [185]. PSR is instead derived at user side via the ran-
dom forest supervised learning algorithm. The latter is used
to model the relationship between PSR and some features
experienced by the users, such as RSRP [dBm], bit error rate
(BER) [%], and SINR [dB]. The algorithm is tested in amixed
LTE/WiFi scenario, adopting the utility functions in (2).
RFEQG users decide the action via ε-greedy Q-Learning.
However, before executing the strategy, they estimate the
possible improvement and actuate the decision only in case
of a significant estimated gain. This procedure is inspired by
the hysteresis policy adopted in [43], [44] to stabilize BRD
(Section VI-A1). When applied to Q-Learning, it rectifies
excessive RAT switchings, thus speeding up convergence
towards a PNE. In a scenario with 4 RATs (2 LTE macrocells
and 2 WiFi APs) and 15 users in a 80 × 80 m2 area, results
show convergence and utility improvements of RFEQG (and
intermediate algorithms from Q-Learning to RFEQG) with
respect to a traditional Q-Learning (ε = 0.1). However, it is
unclear how the state is defined for Q-Learning, since PSR
modeling via random forest seems to apply to RFEQG only.

c: Q-LEARNING-BASED HYBRID AND CENTRALIZED
SELECTION
The work in [179]–[181] provides further examples of apply-
ing Q-Learning to RAT selection. However, Q-Learning
is used here for hybrid and centralized selection. A short
description of these works is given for completeness.

In [179], Q-Learning based network selection (QBNS)
is proposed and tested in a wideband CDMA (WCDMA)/
WLAN scenario. QBNS takes into account network capacity
and QoS requirements of each user. When a new user enters
the system, a central entity implements QBNS, where the
state is a combination of WCDMA interference level and
WLAN busyness ratio, and the action is the selection of a
RAT type. The reward is a linear combination of network and
user utility, with the latter considering the required service
and the QoS in terms of data rate, delay, and BER. Simulation
results in a scenario with one WCDMA, two WLANs, and a
variable user arrival rate, show that QBNS outperforms an
algorithm based on a semi-Markov decision process (SMDP)
in terms of average number of users admitted in the sys-
tem, voice call blocking probability, and discounted reward.
Adopting α = 0.1 and λ = 0.95, QBNS converges in about
100 iterations.

A SMDP model is also adopted in [180] and solved by
Policy Iteration vs. ε-decaying Q-Learning in complete vs.
incomplete information cases. In SMDPs, actions have a
continuous time duration with respect to discrete and/or fixed
duration inMDPs. Reference [180] proposes SMDP to model
a network-assisted scheme, where networks learn how to
provide appropriate information, in terms of QoS parame-
ters and costs to be paid per amount of traffic, aiming at
encouraging/discouraging users to connect. The information
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is shared via logical signaling channels defined in IEEE
1900.4 [186]. The goal is to meet operator objectives, while
users maximize their utility. Users explicitly take the final
decisions, and thus the proposed scheme is a hybrid RAT
selection approach. Compared to Policy Iteration, and a sim-
pler policy called staircase, where the shared parameters
are not dynamically derived but optimally pre-configured,
Q-Learning shows lower average user throughput and higher
blocking probability.

A MDP model for centralized RAT selection in cellular
massive machine type communication (mMTC) is proposed
in [181]. In this case, a dedicated central entity selects a
cell for each MTC device. The state is the cell selected in
the previous time step. The reward is a linear combination
of the load of the selected cell and the device data rate,
which is zero in case of connection blocking. Q-Learning
is applied with three exploration schemes: ε-greedy, BP
(see (25)), and value-difference based exploration (VDBE),
that allows to define state- and time-dependent exploration
probabilities [187]. Simulations adopt cell topologies based
on real data23 and Poisson point process (PPP). In both
cases, VDBE outperforms the other exploration strategies
in terms of blocking probability and average transmission
rate. Compared against the highest-RSS selection scheme,
Q-Learning shows a lower blocking probability and achieves
load balancing across cells; however, it struggles in terms of
average rate.

d: Q-LEARNING GOES MULTI-AGENT – NashQ
Q-Learning originally targets single-agent scenarios and
its optimality and convergence are not demonstrated in a
multi-agent setup. It basically neglects themulti-agent nature,
minimizing in this way the need for information exchange and
observability among agents. However, several Q-Learning
extensions tailored to multi-agent systems exist in the liter-
ature along with other MARL algorithms [36], and can also
be applied to RAT selection games. An example is found
in [188], where the so-calledNashQ-Learning algorithm [50],
[189], referred to as NashQ below, is used to solve RAT
selection. Each NashQ agent observes actions and utility of
the others (i.e., the game is of perfect information), making
it possible to create and update a Q-table dedicated to each
opponent. This enables, at each game step, the computation
of a MNE for the game matrix induced by the set of Q-tables
in a given state. TheQ-values in eachQ-table are then updated
as follows:

Qn(st , at )← Qn(st , at )+ αn,t
[
un,t+1 + λQNash(st+1)

]
,

(26)

for all n ∈ N , where QNash(st+1) indicates the Q-value in
the next state st+1, when a MNE strategy is adopted in t .
QNash(st+1) can be evaluated assuming the observation of the
Q-values of each player for each state, and is formally defined

23‘‘Open cell ID’’, http://opencellid.org/, Accessed on: May 2021.

as follows:

QNash(st+1) := Qn(st+1,πNE). (27)

The convergence of NashQ to NEs is discussed
in [50], [189] and further analyzed in [27, Chapter 5].
In [188], RAT selection is obtained via NashQ in a

multi-agent setup, but a single-agent approach based on
Q-Learning is also discussed. In the second case, all users
within an area with three different RATs (4G, 5G, and IEEE
802.16m, known as WiMAX Release 2) are considered as a
single learning agent, and the services they require form a
queue.Within each learning episode, the services are selected
from the queue, one at a time, and associated to a RAT via
ε-greedy Q-Learning. Then, a new episode initiates with a
new service order. The states are defined as the tuples of net-
work available capacity ratios (ACRs), defined as the ratios
between currently available and total capacities. In order to
narrow down the state space to sixty-four elements, the ACRs
are quantized over four different levels. The utility is defined
as the product between ACR and user preference in choosing
a specific RAT. The latter depends on QoS requirements and
RAT attributes, with a mapping obtained via AHP. In the
multi-agent scenario, users are treated separately and NashQ
is used instead of Q-Learning. Simulation results adopting
ε = 0.5 (surprisingly high and not decreasing over time),
α = 0.1, and λ = 0.8, show both Q-Learning and NashQ to
better balance users over the available RATs with respect to
a) a fair yet inefficient random selection, and b) a selection
biased toward 5G.
The work in [190] integrates NashQ in the so-called smart

aggregated RAT access (SARA), that aims at maximizing
the long-term throughput of users in a cellular/WiFi hybrid
system. Considering a scenario with users having different
QoS requirements, SARA employs NashQ to solve a game
of RAT plus channel selection across the subflows of a single
user. Hence, the game players are the user’s subflows, and
NashQ is used to provide a set of feasible RAT/channel
selection strategies for each of them. Then, a Monte Carlo
tree search (MCTS) algorithm is sequentially adopted across
users to perform the final selection for all of them. Numerical
results in a scenario with less than 8 users and 2 candi-
date RATs show that SARA significantly improves network
throughput compared to traditional WiFi offloading schemes,
while guaranteeing traffic QoS requirements.

More recently, NashQ has been adopted in [92] to solve
RAT selection in a network-centric approach that also embeds
a user-centric perspective. The proposed framework is ana-
lyzed in a heterogeneous scenario with 5G, LTE-A, and WiFi
available RATs, and users requesting three different service
types (smart health, virtual/augmented reality, and industrial
machinery). Given a service type, AHP and GRA are used
to evaluate the best RAT to connect. This can be done at
the user side by a) considering service requirements in terms
of network attributes (throughput, energy efficiency, delay,
jitter, packet loss rate, and price), b) evaluating theweights for
each attribute via AHP, and c) using such weights in GRA for
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deriving a weighted grey correlation coefficient for each can-
didate RAT. The coefficient considers the RAT characteristics
in terms of the above attributes, and indicates the preference
of selecting a RAT for a specific service type. Each RAT
is a NashQ agent and, at each step, decides on the service
types (and corresponding users) to serve. Upon decision,
RATs evaluate their utility as the difference between the total
throughput of served users and blocking costs. Simulation
results highlight the convergence to stable selection policies
of the proposed framework. In comparison with the approach
in [176], the proposed scheme shows similar throughput and
energy efficiency performance, but lower user blocking prob-
ability and delay.

e: Q-LEARNING GOES DEEP – DEEP Q-LEARNING (DQL)
A well-known RL problem is its scalability. In Q-Learning,
the main issue is the need for maintaining and updating over
time the Q-table, the dimension of which grows with state
and action sets. NashQ adds further complexity, since each
agent must operate on N different Q-tables and evaluate a
MNE strategy at each time step. As clear from Table 4, this
challenge has been ignored when applied to RAT selection,
by either reusing the stateless approach proposed in [96] or by
limiting the size of both state and action sets. Nowadays, such
solutions are questionable, particularly in 5G and beyond sce-
narios of massive connectivity and network/user/service het-
erogeneity, including enhanced mobile broadband (eMBB),
ultra reliable low latency communication (URLLC), mMTC,
andmore general Internet of Things (IoT) paradigms. In these
cases, RL finds a good ally in deep learning [191].

A deep learning agent extrapolates high-level models from
data, without human intervention. The basic deep learning
component is a neural network (NN) with multiple hidden
layers, i.e., a deep NN (DNN). Starting from DNN, sev-
eral architectures have been proposed, including feedforward
neural networks (FNNs), recurrent neural networks (RNNs),
convolutional neural networks (CNNs), generative adversar-
ial networks (GANs), auto-encoders (AEs), etc. The descrip-
tion of these architectures is out of the scope of this work. The
reader can refer to [191] for an introduction; comprehensive
surveys on deep learning and its application to networking
can be found in [192].

DRL refers to the set of methods that approximate value
and action functions through DNNs [54], [55]. A DRL agent
is a DNN that continuously interacts with the environment
and receives feedback from it. As for RL, the agent takes
actions that trigger the environment into new states. The train-
ing goal of the DNN is to optimize its parameters so that the
agent can reliably select the actions leading to highest returns.
DRL suits problems with a huge number of possible states,
thus broadening the application of RL to high-dimensional
scenarios. Inspired by the achievements in other fields [193],
[194], DRL is under investigation for application to net-
working and communication problems, ultimately opening
novel research perspectives. A comprehensive survey is given
in [195] that also includes an exhaustive description of deep

Q-Learning (DQL) schemes, that are the main DRL actors
nowadays along with deep policy gradient methods [193],
[196]. Hence, the reader can refer to [195] for more details
on DQL. The main features of DQL are shortly summarized
below for the purpose of introducing its application to RAT
selection. The focus onDQL is due to its wider use for solving
user-centric RAT selection, compared to deep policy gradient
methods. Reference [24] provides a recent example of the use
of the deep deterministic policy gradient (DDPG) algorithm,
rather than DQL, for solving RAT selection in the context
of heterogeneous health systems embedded with 3G, LTE,
and WiFi RATs. Note that DDPG is used in [24] since it can
deal with the continuous action space defined in the model,
i.e., the percentage of data to transmit on each RAT, and the
compression ratio.

As for Q-Learning, in DQL the action is usually selected
by adopting an ε-greedy policy; however, DQL replaces the
Q-table with a so-called deep Q-Network (DQN), aiming
at approximating Q-values for each possible (state, action)
pair [193]. DQN embeds a DNN, i.e., the Estimation net-
work, that is characterized by a continuously updated vector
of weights θ , and provides Q-value approximations, so that
Q(s, a; θ ) ≈ Q(s, a). In order to stabilize DNN learning and
avoid local minima, a parallel Target network with vector
θT is updated every N step steps as a copy of the estimation
network, so that θT

← θ . In this setup, the optimization goal
is to minimize the following loss function:

LDQN
t (θ t)=E

[(
ut+1+λmax

a∈A
Q(st+1, a; θT

t )−Q(st , at ; θ t )
)2]
,

(28)

where the expectation is with respect to the observed
(st , at , ut+1, st+1) tuple at time t → t + 1. The term between
parentheses is also often referred to as TD error.

Note that the tuples experienced during learning are stored
in a so-called Experience Replay memory D. Then, during
the learning process, the estimation network is trained using
a random sample of tuples from D (often referred to as mini-
batch), instead of only using the current experienced tuples.
Figure 9 depicts, on a high level, the functioning on both
Q-Learning (Figure 9a) and DQL (Figure 9b) for a direct
comparison between the original algorithm and its deep evo-
lution. Starting from the above general architecture, several
variants have been proposed.
DQN With Prioritized Experience Replay (PER) [197]:

Experience Replay minimizes correlation between the tuples
used to train the DQN, by randomly using past tuples fromD
instead of current ones. PER allows to recall particular tuples,
i.e., those for which the estimation did not performwell, since
these are the tuples there is still something to learn about.
Double Deep Q-Network (DDQN) [198]: Rooted in dou-

ble Q-Learning [39, Chapter 6] [199], DDQN separates
action selection and action evaluation, to reduce possible
over-estimation of Q-values during the training process.
Dueling DQN [200]: Q-values express how good it is to

take a certain action in a given state. Hence, they can be
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FIGURE 9. General structure and operations for tabular Q-Learning (a) and DQL (b). In (a), the updating rule follows (23); in (b), the loss function
follows (28).

FIGURE 10. A3C general model (a) and application to RAT selection (handover) as proposed in [97] (b).

decomposed into two terms, so that Q(s, a) = V (s) + A(a),
where V (s) estimates the importance of being in a particular
state s and A(a) estimates the gain in selecting action a
compared to others.Moreover,Q-Learning andDQN struggle
in redundant situations [56], where two or more actions can
be selected without getting any negative result. In DQN,
such situations can be addressed via the dueling network
mechanism, where the DQN estimation network is split into
two sub-networks: the first, parameterized by θ1, estimates
V (s; θ1) while the second, with weights in θ2, focuses on
A(s, a; θ2). The two networks and corresponding estimates
are then aggregated to approximate the Q-values.
Asynchronous Advantage Actor-Critic (A3C) [201]: A3C

is an example of asynchronous RL, that tackles the same
problems addressed by Experience Replay, by proposing
the use of multiple (virtual or physical) agents in paral-
lel, interacting with their own version of the environment
(asynchronous). Moreover, similarly to the dueling scheme,

the network of each agent is decomposed in two sub-
networks: the actor estimates the Q-values, i.e., the pol-
icy, while the critic evaluates the value function. The critic
indicates to the actor how good the selected action was,
by evaluating and sharing the difference between the value
function and the discounted return over the last T steps
(advantage). Hence, the Actor-Critic method combines the
benefits of value-iteration methods, such as Q-Learning, and
policy-iteration methods, since the advantage mechanism
originates from the latter [196]. Finally, the parameters com-
puted independently by each agent are shared in a fully asyn-
chronous manner24 to a global DNN, that performs the global
optimization and communicates the results to the agents [57].
A3C functioning is depicted in Figure 10a.

The above DQN variants have been used in early works
exploiting DQL in RAT selection. More details on the same

24A synchronous version of A3C also exists and is referred to as A2C.
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and other variants can be found in [56], [57], [195]. In the
latter works, the multi-agent perspective is also introduced,
since it is becoming increasingly popular and is also key for
next-future analysis of RAT selection.

A mechanism for cellular handover is proposed in [97]
aiming at minimizing energy-inefficient handovers in a dense
deployment. A two-layer framework is proposed: the first
layer is regulated by a centralized controller that groups users
into clusters via unsupervised learning. Users in a same area
and with similar mobility patterns form a group. In the sec-
ond layer, users within each cluster independently perform
handovers across the available cells. Each user resembles an
A3C agent and learns its version of the optimal handover
policy for the entire cluster. It thus shares the learned param-
eters in a cluster-dedicated server, that ultimately derives the
parameters for the global policy. When a new user enters
the cluster, it fetches from the server the most recent copy
of the handover policy and then starts its own A3C cycle.
Hence, it does not start the policy discovery from scratch. The
framework is depicted in Figure 10b. The model is completed
by defining an action corresponding to the selection of a cell,
and as a state the RSRQ from the available cells. The reward
is defined as a weighted linear combination of user data rate
and handover energy consumption. The framework is tested
in a scenario with three 16 × 16 m2 areas, each covered by
six cells randomly deployed. Four walking users per area are
assumed. Results show that A3C achieves higher throughput
and lower handover rate than the algorithm proposed in [202],
based on a MAB model and solved via the upper confidence
bound algorithm (UCB1) (cf. Section VI-C).

In [203], cellular to WiFi offloading is solved via DQN,
aiming at minimizing user costs and energy consumption.
Users pay a penalty if their data transmissions do not end
before a given deadline. The state includes the user location
and the remaining size for all active data flows. The user
decides to transmit over WiFi or cellular RATs, or remain
inactive (idle) in a given time step. It also decides how to allo-
cate the flows on the channels available per RAT. Simulation
results show that DQN outperforms a dynamic programming
algorithm adopting incorrect transition probabilities.

DDQN is used in [204] to solve a joint user association
and channel allocation problem. Users adopt DDQN to find
the optimal policy in terms of cell to connect to and channel to
use, while taking into account a QoS constraint expressed in
terms of minimum required SINR. The actions are tuples of
selected cell and channel, while the state is a binary vector
where the n-th element is 1 or 0 if the n-th user is or not
satisfied (in terms of SINR) in the current configuration. Such
a definition requires each user to know the satisfaction bit
from the others: this is obtained via message passing from
1) users to the selected cell, and 2) across cells, to gather
all the information from users. Finally, the information is
transmitted back to the users. It is claimed that such a process
results in negligible overhead, following the analysis in [205].
The user reward is defined as the difference between profits
and costs. Profit is a function of the experienced data rate

while cost depends on cell-specific prices and action-specific
costs. Simulations are performed in a scenario with two
macrocells, twenty-four small cells (eight pico and sixteen
femtocells), a pool of thirty available channels of 180 kHz
each, and fifty users requiring a minimum SINR of 5 dB.
Results show that the convergence is obtained with a number
of iterations decreasing as the DDQN learning rate increases
from α = 0.001 to α = 0.1. The last value is thus used in
the following evaluation, where DDQN is compared against
DQN andQ-Learning, both with message passing, and shows
higher learning speed and system capacity.

The same model is extended in [206], where dueling
DDQN, referred to as D3QN, is proposed and adopted to
solve the same selection-allocation problem. The analysis
confirms the optimality of α = 0.1, and also shows the
impact of other DNN hyperparameters, e.g., the optimizer
used to minimize the loss function and the DNN structure
in terms of hidden layers and neurons. D3QN with mes-
sage passing, referred to as D3QN(GS), is then compared
with its counterpart without message passing, D3QN(SS),
as well as with DQN, Q-Learning, a genetic algorithm, and
a scheme based on maximum received signal power. It is
shown that system capacity increases with the number of
users; the absolute value depends on the adopted SINR con-
straint, in particular when the number of users increases
from 40 to 50. The number of steps before convergence
also increases with the number of users. Q-Learning based
methods perform similarly, slightly in favour of D3QN(GS),
while the genetic algorithm and the power-based scheme
fail to achieve optimal policies when the number of users is
high.

The work in [207] also adopts a dueling DQN architecture
to solve RAT selection in a fully-distributed manner. The sce-
nario includes a macrocell and several mmWave small cells.
Users are part of a stochastic game and apply dueling DQN
independently. Hence, they select an action (i.e., a cell), and
get an individual reward (i.e., the experienced throughput).
Then, they forward such rewards to the macrocell, that sends
back the cumulative system throughput. For deriving their
own selection policies, the users adopt the system throughput
as reward signal, thus implicitly coordinating one another
without exchanging information. In order to deal with par-
tial state observability, and non-stationarity induced by the
multi-agent setup, the hidden layers of DQN are composed of
a RNN, as suggested by [208], which allows to better aggre-
gate past information (e.g., previous observed states) in the
decisionmaking process. Finally, a so-called hystereticmech-
anism is also adopted, as originally proposed in [209], where
a higher learning rate is used to adjust the DQN weights
when the TD error is positive, thus giving more importance
to positive experiences. Simulation results in a scenario with
one macrocell and three small cells, and six to thirteen users,
demonstrate the effectiveness of the proposed approach, that
outperforms the association scheme based on highest SINR,
as well as a heuristic approach proposed in [210], in both
static and mobile cases.
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DQN is also proposed in [211] for symbiotic radio net-
works (SRNs) optimization. In this scenario, IoT devices par-
asitize cellular users for their own communications, aiming
at spectrum-, energy-, and infrastructure-efficient communi-
cations. While a cell serves users in TDMA, a DQN derives
the association between users and IoT devices; the latter aim
to associate with the best possible users in order to reliably
transmit their data using as power source the amount of power
received and harvested from the cell. The optimal associa-
tion would require real-time channel information while DQN
exploits historical information. Two schemes are proposed,
with the first making a joint decision for all IoT devices, and
the second separately deciding for each device. Both schemes
are deployed at the network side, with the second performed
in separated computing units (one for each IoT device) in a
same network entity. It is claimed that the second scheme
can be independently applied by IoT devices with enough
computing capabilities; this makes the analysis interesting
in the context of the present work. Results show that the
two schemes (which use ε = 0.2 at the beginning, then
ε decreases over time, α = 0.01, and λ = 0.3) outper-
form random association and achieve performance near to the
optimal policy.

C. RL-BASED SOLUTIONS WITH MAB MODELING
Stochastic games are multi-agent extensions of MDP and
MAB models (Section V-C). A detailed analysis of MAB
models and corresponding solving policies can be found in
[39, Chapter 2], while an initial review of their application to
networking problems is given in [212].

In its original form, the MAB model includes a learning
agent having access to a set of arms, i.e., actions (or pure
strategies), that provide an instantaneous reward (utility)
upon selection. An introduction to stateful and statelessMAB
models is provided below, along with a description of solv-
ing policies and their application to RAT selection, as also
summarized in Table 5.

1) STATEFUL MAB
In stateful MAB, a state evolving upon selection can be asso-
ciated with each arm andmay be observed or not by the agent.
Hence, the agent selects an arm at each time step, possibly
observes the arm state transition (assumed Markovian), and
gets an instantaneous reward, the distribution of which is
stationary over time, depends on the state, and is unknown
to the agent.25 Once an arm is selected, the state of that
arm, or the states of all arms, may change, leading to restful
(or frozen) vs. restlessMarkovianMABmodels, respectively.

The reward distribution in each state is unknown to the
agent, which only observes a reward sample for the selected
arm at each time step. Hence, without a learning process to
guide its exploration vs. exploitation dilemma, the agent may

25The description shows the similarity betweenMAB andMDP. However,
in MAB, a different set of states and state transition distributions can be
associated to each arm, while a MDP defines a unique state set for the
environment surrounding the agent (at least in its most common form).

select an arm leading to a lower reward with respect to the
others, and in particular with respect to a possibly existing
optimal arm. The latter is defined as the one having the high-
est average reward ūmax

= maxa∈A ū(a), where a indicates
a generic arm in the set A, and ū(a) represents the average
reward of arm a. The average arm reward corresponds to the
expected arm reward, since the reward distribution in each
arm state is stationary. Hence, ū(a) =

∑
sa∈Sa [ū(a|sa) ×

1(u(a|sa))], where sa indicates a generic state for arm a
within the set Sa, ū(a|sa) is the average reward of arm a in
state sa, and 1(u(a|sa)) is the distribution of the reward for
arm a in state sa. Notations similar to previous sections are
adopted in order to highlight the aspects conceptually similar
to GT. Hence, theMAB concept of reward is mapped onto the
concept of utility and denoted as u(·), the arms are denoted
as pure strategies, a ∈ A, and the corresponding states are
sa ∈ Sa for all a ∈ A.
On the one hand, keeping the optimal arm as a reference,

MAB models and corresponding policies can be analyzed in
terms of regret, that quantifies the cost of not selecting the
optimal arm at each decision time. At time T , i.e., after T
decisions, the agent cumulative regret is:

RMAB
T = T ūmax

− E
[ T∑
t=1

ū(at |sat )
]
, (29)

where ū(at |sat ) follows the definition given above and the
subscript t specifies the arm selected at that time. The expec-
tation reflects the state transition of each arm and the policy
being used to select the arms. Such a policy would target the
minimization of regret in (29).

On the other hand, similarly to MDPs, stateful MABs are
also analyzed in terms of discounted utility, as discussed in
Sections V-C and VI-B. This perspective is adopted in par-
ticular under the assumption of observable states and known
state transitions for each arm. In this situation, so-called
indexing policies have been proposed for solving Marko-
vian MABs. These policies associate real scalar values,
i.e., indexes, to each (arm, state) pair, indicating the reward
that could be obtained by selecting a particular arm in that
state. The arm with highest index is then selected at each
decision step. The policy proposed by Gittins in [218] is opti-
mal for frozen MABs, but the evaluation of Gittins indexes
is not simple since it depends on multiple factors, including
reward distributions. Hence, several algorithms to compute
Gittins indexes have been proposed [219]. In case of restless
bandits, Gittins and Whittle’s [220] policies are asymptoti-
cally optimal under certain conditions, but their optimality
does not hold in general. Further approximations for restless
MABs with unknown dynamics have been found and dis-
cussed in [221] and references therein.

In the context of RAT selection, the work in [222] discusses
the application of stateful MABs and Gittins policies for
modeling and solving cellular handover, deferring the details
for future work. Current handover schemes do not fully map
into Gittins theory; hence, so-called fractional Gittins indices

84446 VOLUME 9, 2021



G. Caso et al.: User-Centric RAT Selection: Survey of GT Models and MAL Algorithms

TABLE 5. Examples of application of MAB models and solutions to RAT selection.

are defined along with the procedures leading to optimal poli-
cies in case of restful MABs, which are also nearly optimal
for restless MABs. It is demonstrated that handover based
on thresholding schemes, e.g., CRE, leads to nearly optimal
decisions after proper threshold setup.

2) STATELESS MAB
Stateless MABs simplify stateful MABs, since they do not
have states; however, they may have non-stationary reward
distributions. Hence, the average reward for an arm at time t
is denoted as ūt (a) and equates to ū(a) in case of stationarity.
The regret can be written for instantaneous rewards, leading
to the so-called External regret, as follows:

RExt
T = max

a∈A
E
[ T∑
t=1

ut (a)
]
− E

[ T∑
t=1

ut (at )
]
, (30)

Such a regret is commonly used for evaluating the perfor-
mance of selection policies tailored for stateless MABs.

a: STOCHASTIC MODEL AND UPPER CONFIDENCE BOUND
ALGORITHM (UCB1)
Stateless MABs with rewards following specific density
functions (stationary or not) of given mean and variance
are known as Stochastic, and are the most used MAB mod-
els, also in RAT selection problems. In the stationary case,
the first term of (30) equates its counterpart in (29).

The pioneering work of Lai and Robbins [223] shows that
the regret grows at least logarithmically over time. Then,

optimal policies achieving this trend are derived for specific
reward distributions, i.e., Bernoulli, Poisson, Gaussian, and
Laplace.

The index policy referred to as UCB1, proposed by
Auer et al. along with UCB2, UCB-Tuned, and UCB1-
Normal extensions [224], shows logarithmic regret increase
for any reward distribution defined on a bounded support.26

According to (31), UCB1 evaluates an index for each avail-
able arm at each time step, denoted iT (a) for time T :

iT (a) =

∑Ta
t=1 ut (a)

Ta
+

√
2 lnT
Ta

. (31)

The index is the sum of two terms: the current average
reward and the size of the one-side confidence interval for
it, that includes the true expected reward with overwhelming
probability according to Chernoff-Hoeffding bounds [224].
In (31), Ta represents the number of times the agent has
selected arm a, so that Ta < T . At time T , the arm with the
highest index is then selected, as follows:

aT = argmax
a∈A

iT (a). (32)

An application of UCB1 to cellular handover scenarios is
proposed in [202], where it is first demonstrated that 3GPP
protocol for handover between macrocells is a special case
of the ε-greedy bandit algorithm, that is sub-optimal since it
leads to a linear regret increase over time [39, Chapter 2].

26An extension of UCB1 to frozen MABs is proposed in [225].
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Similar results are obtained for 3GPP handover schemes
adopted in macro vs. small cells scenarios, such as CRE
and the sticky protocol [69]. Finally, a novel, UCB1-based
handover protocol is proposed, that takes into account han-
dover costs in terms of overhead and transmission delay. The
proposed protocol reduces the handover rate by introducing
exploration in batches, that is, grouping time slots and for-
bidding handovers in there. Simulations are performed in a
single-agent setup, considering a user having eight candidate
cells, with throughput of each cell modeled according to a
Gaussian distribution. Results show that UCB1 outperforms
the 3GPP macrocell handover solution and leads to improve-
ments over time due to learning. Moreover, UCB1 with
batched exploration outperforms CRE and sticky protocols,
reducing the number of handovers.

A similar handover scenario is analyzed in [213], that also
introduces mmWave femtocells as candidate RATs. Due to
peculiar propagation properties, the adoption of conventional
handover mechanisms in mmWave HetNets may lead to
ping-pong effects, high outage probability, and thus redun-
dant handovers. The so-called SMART policy is introduced
in order to determine the conditions triggering the han-
dover, given both mmWave channel characteristics and QoS
user requirements, and handle the selection of a cell among
the candidates. SMART uses UCB1 in scenarios with low
user density, while high density scenarios are modeled as a
0-1 integer programming optimization problem and solved
by Lagrange dual decomposition with relaxation. SMART
is compared against rate-based and SINR-based handover
policies in a two-tier network comprising a 500 meters range
macrocell and varying number of users and mmWave plus
traditional femtocells. Simulation results show that SMART
reduces the number of handovers up to 47% compared to the
rate-based approach, leading to lower energy consumption
and outage probability. In terms of experienced through-
put, the rate-based approach outperforms the other schemes,
but the improvement is limited compared to SMART and
requires more frequent handovers. It is also shown that
SMART is slightly more complex than the other algorithms,
but presents an average signaling overhead similar to the
rate-based scheme.

User association in cellular systems is also studied in [110],
where an IoT scenario comprising a massive amount of
devices transmitting in UL and embedding energy harvest-
ing capabilities is considered. The multi-agent scenario is
explicitly considered through the combination of so-called
mean-field GT (MFGT) [226] and MAB, exploiting the
mean-field multi-armed bandit game introduced by [227],
[228]. Such a game relies on the mean-field approximation,
that is applicable in case of large amounts of players. The
approximation states that each player may consider the others
as being stationary. Hence, the individual moves of players
are irrelevant in terms of experienced utility, while the sig-
nificant interaction is the one between each player and the
mass of the others. In this context, the notions of equilibrium
reported in Section IV-E are not practical, and the so-called

mean-field equilibrium (MFE) is thus introduced. A MFE
is a configuration where players split in portions adopting
different strategies and such a split is stable over time. The
work in [227], [228] demonstrates that MFEs exist under
the assumption of Bernoulli-distributed utility for each arm.
Moreover, adding further constraints, it is demonstrated that
a unique MFE exists and is achieved by players adopting
the so-called mean-field dynamics. These are defined so that,
at each step, a player probabilistically incurs in either a
regeneration process27 or uses an arm selection policy that
is common among users. The policy can be, for example,
UCB1, that is tailored for single-agent scenarios but can
be applied in multi-agent setups with similar implications
already discussed for Q-Learning.
In [110], user association is thus modeled as a mean-field

multi-armed bandit game and solved with UCB1, with no
information exchange between users. Due to the need of a
Bernoulli reward process for each strategy, the utility func-
tion is defined by taking the real value of the throughput
experienced on the selected cell and turning it into a binary
value, according to the probability of meeting a minimum
required throughput. As stated by the authors, the Bernoulli
reward process restricts the model applicability, and thus
future work may focus on extending the analysis to other
reward distributions. The convergence to theMFE is analyzed
in a scenario with five small cells and 103 or 105 users. First,
themean-field dynamics perform better with 105 users, where
the MFE is achieved with less fluctuations, reinforcing the
idea that the mean-field approximation suits better games
with a high number of players. Second, with 105 users and
increased number of small cells (from three to seven), the con-
vergence to the MFE is obtained in 50 to 100 iterations.
Finally, with 103 users and three cells, the average number
of successful transmissions and wasted energy efficiency
(energy harvested but lost due to unsuccessful transmissions)
are analyzed. UCB1 is compared against an optimal cen-
tralized solution (exhaustive search) and other distributed
schemes: random association, ε-greedy, and Explore-then-
Commit. In the latter, users select cells in a round-robin
manner for a number of iterations (exploration); then, they
connect to the cell that showed higher average number of
successful transmissions during the exploration. Results show
that UCB1 performs better than the other distributed schemes
and consistently approaches the centralized solution.

UCB1 is used in [49] as a benchmark for three algo-
rithms, referred to as online network selection (ONES),
decoupled ONES (D-ONES), and virtual multiplexing ONES
(VM-ONES). These three schemes are derived from mod-
eling the selection problem as a continuous-time MAB
(CT-MAB) [229]. In this case, playing an arm takes a random
period of time, so the goal is to maximize the expected
reward obtained in one unit time, i.e., tomaximize the average

27In the RAT selection context, a regeneration step emulates the network
dynamicity, i.e., a regenerating user leaves the selection game and a new user
takes its place [110].
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reward rate. Similarly, ONES, D-ONES, and VM-ONES aim
at maximizing the reward rate defined as the ratio between
users’ QoE (in terms of MOS) and network access costs. QoE
and costs are defined in terms of network state information
(NSI), QoS, and traffic type (video, audio, or elastic). The
algorithms are tested in a scenario including three available
arms, i.e., two WLANs and one LTE macrocell, each one
characterized by discrete models of delay, packet loss, and
throughput. In a single-agent setup, the proposed schemes
converge to the optimal selection policy. In terms of QoE
reward rate, VM-ONES outperforms ONES, D-ONES, and
two versions of UCB1 where QoE and costs are not consid-
ered but the selection is driven by either delay or through-
put. In a multi-agent scenario, modeled by incorporating a
congestion effect (network load increasing with the number
of connected users), the algorithms converge to stable states,
the game-theoretic nature of which is, however, not discussed.
In scenarios with five to twenty users, VM-ONES achieves
higher utility than ONES, D-ONES, Q-Learning [96], and
BRD [43].
Measure-use MAB (muMAB) is proposed in [214] to

better adapt MAB models to RAT selection. Classic MABs
enable one possible action type in both exploration and
exploitation phases, that is, to select an arm and collect the
corresponding reward. However, a user may want to exe-
cute measurements on the candidate RATs (context retrieval),
which may not require the connection to them. Moreover,
such measurements (e.g., obtained via probing mechanisms
and signaling) may be shorter in time than actual connections
(Tmeasure < Tuse), since Tuse also include RAT switch-
ing procedures. Hence, muMAB differentiates between mea-
sure and use operations. In both cases, the user receives
the reward of the RAT being selected as a feedback, but
the reward translates into an actual performance gain only
when the use operation is performed, since the RAT is
exploited for data exchange only in that case. Both operations
happen in batches, with the number of steps required to
measure being lower than those spent to use a RAT. Two
algorithms are designed and evaluated under the muMAB
model: 1) measure-use-UCB1 (muUCB1) is derived from
UCB1 and inherits the selection rule reported in (31)(32).
muUCB1 performs a use operation when the selected arm
corresponds to the one with the highest average reward esti-
mate, otherwise it performs a measure operation; 2) mea-
sure with logarithmic interval (MLI) includes two phases.
In phase 1, MLI performs consecutive measure operations
on each arm, aiming at building reliable reward estimates.
In phase 2, use operations are predominant apart for sporadic
measurements vanishing over time. muUCB1 and MLI are
compared against UCB1, ε-greedy and ε-decreasing algo-
rithms, and the so-called price of knowledge and estimated
reward (POKER) algorithm [230]. Several probability den-
sity functions are used for the reward of five RATs, includ-
ing Bernoulli, positive-truncated Gaussian, and exponential
distributions. Results show that performance depends on
the adopted density function. muUCB1 and MLI guarantee

best performance as the ratio between Tuse and Tmeasure
increases; muUCB1 is the best algorithm when the arms
are characterized by similar average rewards, while MLI
prevails when an arm is significantly more rewarding than all
others.

b: ADVERSARIAL MODEL AND EXPONENTIAL-WEIGHT FOR
EXPLORATION AND EXPLOITATION ALGORITHMS
(EXP3/EXP4)
Another stateless MAB model known as Adversarial has
been used in RAT selection [101], [111], [215]. In adversarial
MAB, the reward does not follow a stochastic distribution but
it is instead randomly decided by an adversary at each time
step. The Internal regret is commonly used for performance
analysis in an adversarial setup, defined as follows:

RInt
T = max

a,a′∈A

T∑
t=1

pt (a)[ut (a)− ut (a′)], (33)

where pt (a) is the probability of selecting arm a at time t
and, differently from external regret, a pairwise comparison
of arms is considered in RInt

T . Note that, due to the adversarial
setting, no assumption on the reward distribution is provided.
The probabilities in (33) also suggest that adversarial MABs
are usually solved in terms of mixed strategies, i.e., find-
ing a probability distribution over the set of arms which
minimizes RInt

T .
Exponential-weight for exploration and exploitation

(EXP3), and EXP3 using expert advice (EXP4), are common
solving policies for adversarial MABs [231]. These algo-
rithms evaluate mixed strategies and associate to each arm a
selection probability proportional to the average experienced
regret, weighted by an exponential function.

The work in [101] uses EXP3 and EXP4 to solve han-
dover between small cells in an energy-efficient way. The
proposed batched randomization with exponential weight-
ing (BREW) algorithm performs batched exploration, reduc-
ing in this way unnecessary handovers. BREW relies on
EXP3 and it is then enhanced via an EXP4-based learning
strategy, referred to as ranking expert (RE). Both schemes
counteract possibly missing feedback when selection is per-
formed, and also deal with random activation and deactiva-
tion of small cells. The analysis is carried out in an envi-
ronment including six or twelve small cells, symmetrically
deployed at a distance of 80meters around a small indoor area
where several users randomly move. Results for a reference
user show a significant energy consumption decrease with
respect to 3GPP legacy handover solutions, and a better regret
behaviour over time with respect to a genie-aided optimal
scheme.

User association in a small cell network is analyzed
in [111], where an adversarial MAB with sleeping arms is
adopted. The sleeping feature models the possibility that the
set of available arms is time-varying, i.e., not all and same
arms are available during each selection step [232]. Small
cells sleep when they harvest energy, and thus cannot serve
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the users. Energy harvesting and consumption, channel qual-
ity, network traffic, and number of served users are unknown
random variables that affect the probability of QoS satisfac-
tion of users, i.e., successful DL transmissions. Users do not
select cells simultaneously, so each cell has an ordered queue
of users to be served, and deny service to those for which no
energy is left. Given a selection step, served vs. denied users
have +1 vs. 0 reward, respectively.

The adopted selection policy is the EXP4 version pro-
posed in [231] for adversarial MABs with sleeping arms,
that requires no information exchange across users. The only
shared information is from cells, that announce their sleeping
and activity periods via beacons. It is observed that a plain
EXP4 algorithm could also be used, resulting in lower com-
plexity but higher regret. In a network formed by five small
cells and a number of users between 50 and 70, the analy-
sis shows a similar behaviour for two reference users, both
converging to the selection of cells maximizing their success
probability. Similar results are obtained in a larger network
composed by ten small cells, a number of users between 120
and 150, and observing 15 users. EXP4 is compared against a
centralized optimal scheme, ε-greedy, ε-decreasing, Explore-
then-Commit, random association, and two more centralized
policies based on maximum received power and nearest cell.
EXP4 shows improved performance at the cost of a reason-
able complexity increase. Furthermore, results obtained in a
small cell multihoming scenario show the flexibility of the
proposed model.

An EXP4 extension is proposed in [215] for RAT selec-
tion. First, it is highlighted that bandit algorithms struggle in
dynamic scenarios; as amatter of fact, they perform optimally
in the stochastic case as they are usually designed to learn the
average reward of each arm. However, learning the average
reward may be sub-optimal if the scenario changes over time,
even in a predictable manner, e.g., following periodic and
repetitive patterns. In particular, RAT selection is modeled
as a periodic scenario, since the available data rate on the
RATs follows the behavior of users, which is repetitive and
regulated by patterns over space and time. A periodic adver-
sarial MAB is proposed and solved through periodic EXP4.
The policy is evaluated by considering a periodic regret,
which compares the obtained cumulative reward against the
best possible periodic selection of arms. Moreover, periodic
EXP4 exploits the repetitive structure of the targeted policy to
reduce the computational complexity of EXP4. Simulations
are performed in a scenario with 20 users and three RATswith
periodic data rate and availability. Users perform one selec-
tion every minute over a period of two months, with network
conditions having one-day periodicity. When connected to a
RAT, users equally share the available rate. Periodic EXP4 is
compared against EXP3 and a genie-aided scheme; it outper-
forms the former while approaching the latter under several
settings, including discrete vs. continuous data rate change,
and more realistic scenarios where imperfect knowledge of
data rate pattern is modeled by addingGaussian noise to exact
data.

c: CONTEXTUAL MODEL AND LINEAR UPPER CONFIDENCE
BOUND ALGORITHM (LinUCB)
In Contextual MAB, the agent observes at each time step
the instantaneous reward and a multi-dimensional vector of
features representing the selected arm (i.e., the context). The
agent then derives a mapping between context and utility for
each arm, and uses it to improve its future selections.

Algorithms developed for Markovian, Stochastic, and
Adversarial MABs can be adapted and used in Contextual
MABs, depending on the definition of reward. The linear
UCB (LinUCB) algorithm proposed in [233] is widely used
to solve Contextual MAB scenarios with stochastic utilities;
given a feature vector observed at time t , LinUCB adopts
ridge regression [234] to evaluate the expected utility for
each available arm and, similarly to UCB1, selects the arm
maximizing the estimated utility with a confidence bound.

LinUCB is used in [216] for solving RAT selection in intel-
ligent transportation systems (ITSs). The scenario considers
a train, embedded with sensors collecting and sending data to
a gateway. The gateway then forwards the data to the cloud
via LTE or Universal Mobile Telecommunications Service
(UMTS). The ridge regression estimates the data rate over
the two RATs based on several channel quality parameters.28

Then, selection is performed that maximizes UL throughput.
A slightly modified version of LinUCB is actually adopted,
that adds a further confidence parameter to better guide selec-
tion under severe network congestion. This parameter is mod-
eled as a rectified linear unit (ReLU) and enables the selection
of a second RAT when the data rate obtained on the previous
is much lower than the value estimated via regression. The
parameter is periodically reset in order to mitigate selection
bias due to perished information. The analysis is carried out
using experimental data, including four separate measure-
ment campaigns under mobility, and one campaign in a static
setup. A commercial off-the-shelf (COTS) device is used as
a gateway, embedded with both UMTS and LTE Subscriber
Identity Module (SIM) cards, and generating User Data-
gram Protocol (UDP) traffic while collecting channel quality
parameters. LinUCB is compared against a genie-aided algo-
rithm, using a priori knowledge of the observed throughput
for the candidate RATs, as well as four more approaches, that
is, an EXP3 extension to non-stationary reward processes,
presented in [217] and referred to as REXP3, and three algo-
rithms using a different regression model each, namely linear,
Bayesian, and support vector regression (SVR). These three
use the regression during a training phase on a specific dataset
and then select the RAT according to the values predicted by
the trained model. Results show that LinUCB performance
is affected by the data used in the training phase. By using
a specific dataset for training, LinUCB performs better than
the other algorithms and performs as well as the genie-aided
scheme.

28Based on experiments, received signal strength indicator (RSSI) and
energy per chip to power spectral density ratio (EcI0 ) are used to estimate
UMTS data rate, while RSSI and RSRP are adopted for LTE.
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TABLE 6. Examples of application of RM, SLA and CODIPAS-RL to RAT selection.

3) MULTI-AGENT MAB
From previous sections, several SARL-native algorithms
developed under a MAB model, e.g., UCB1, EXP3, and
EXP4, are adopted in multi-agent scenarios. On the one hand,
this is nearly optimal from a signaling overhead perspective,
since it removes the need for message exchange between
agents. On the other hand, it may result in unsatisfactory
results, since convergence to equilibria is not guaranteed and
may require several explorations.

A step toward native multi-agent MAB is provided
in [237], where a collaborative algorithm named Co-Bandit
is proposed and applied to RAT selection modeled as a CG.
In Co-Bandit, users probabilistically share information about
their throughput with neighbors, and also forward delayed
feedback received from others. Then, at each game step,
users either explore or exploit; in the latter case, users fol-
low the mixed strategy they are building based upon their
own and neighbors’ experience. Co-Bandit is tested against
a full information algorithm and EXP3, in static and dynamic
scenarios. In both cases, all users can hear each other; in the
static case, the number of users (20) and available RATs (5)
is constant, while it changes over time in the second case.
The capacity of each RAT is selected considering WiFi and
cellular performance, and this choice results in a unique NE
for the game. Results show that Co-Bandit approaches the
full information algorithm as users’ cooperation increases,
and rapidly converges to NE (a small gap is observed due
to exploration). Co-Bandit outperforms EXP3 in terms of
convergence speed and utility, and scales nicely as the number
of users and RATs increase.

As observed in [212], [237], the application of MAB
schemes to multi-agent scenarios leverages previous results
proving possible convergence to NEs and CEs [51], [238],
but still presents several open questions. Other recent
results, that may also be adapted to RAT selection, can
be found in [239]–[242], that extend MABs to multi-agent
environments and propose algorithms leading to nearly
logarithmically-increasing regrets. A systematic analysis of
multi-agent MAB with respect to the issue of convergence

from a game-theoretic perspective is, however, still
missing.

D. OTHER APPROACHES
This section presents a further set of RL algorithms. The
application to RAT selection games is discussed along with
literature examples, also summarized in Table 6.

1) REGRET MATCHING (RM)
A valuable feature for a learning algorithm is to allow con-
vergence to an extended set of equilibria, including CEs
(Section VI-A). This can simplify the achievement of a stable
and potentially efficient configuration. The two versions of
RM [243] and [244] that are reviewed below converge to the
set of CEs as t →+∞, that is a stable empirical distribution
over pure strategy profiles is achieved.

An important aspect in RM is the notion of regret, that
somehow extends the definition of regret in MAB models.
As analyzed in [243], where the first RM algorithm, denoted
RMv1 in the following, is introduced, each n-th player may
be able to compute, at time t , the regret of not using the other
available strategies in its set An, given that it has selected
strategy an,t . For all an 6= an,t ∈ An, the set of regrets for
player n is:

%(an, an,t ) = max[0,D(an, an,t )]

for all an 6= an,t ∈ An, (34)

where,

D(an, an,t ) =
1
t

∑
τ≤t:

an,τ=an,t

[un(an, a−n,τ )− un(an,τ , a−n,τ ].

(35)

At time t , the regret of not using a strategy an 6= an,t is
associated with the difference in the average utility that player
n would experience if it had selected an every time in the
past it has actually selected an,t . In RMv1, the set of regrets
%(an, an,t ) are used to update the mixed strategy of player n at
t + 1, as reported in (36), as shown at the bottom of page 37.
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In (36), µ is a large enough value to guarantee positive
probabilities, and can be assumed fixed over time, e.g., µ >
2Mn(|An| − 1), for all n ∈ N , where Mn is the upper bound
for the utility achievable by player n [243].
Several aspects can be discussed based on the RMv1

updating rule in (36) and regret evaluation in (34)(35). In par-
ticular, RMv1 can be directly applied to perfect and com-
plete information games; in this case, player n observes the
strategies selected by the others and is aware of how such
strategies and its own affect utility. Then, it can evaluate
utilities un(an, a−n,τ ), for all an 6= an,t ∈ An and τ ≤ t :
an,τ = an,t . In order to evaluate un(an,τ , a−n,τ ), a player
does not need to observe the others, since this is the utility
experienced upon selecting an,τ and does not require perfect
and/or complete information for its evaluation.

Slight modifications of (34)-(36) are proposed in [244]
and lead to a second RM algorithm (RMv2), that can be
used in imperfect and incomplete information games while
preserving the convergence to the set of CEs. Instead of
relying on the actual regrets, player n estimates them by
evaluating the set of %est(an, an,t ) = max[0,Dest(an, an,t )],
for all an 6= an,t ∈ An, with Dest as in (37), as shown at the
bottom of the next page.

In this case, player n relies on the past experienced utilities
of selecting either an or an,t for the evaluation of both terms in
(37), ultimately requiring neither the knowledge of the strate-
gies played by the others nor the impact on the utility. pn,τ (an)
indicates the probability of player n of selecting strategy an
at game step τ . The updating rule for RMv2 is then given in
(38), as shown at the bottom of the next page [244], where
0 < δ < 1, 0 ≤ γ < 1

4 , and µ follows (36). Further details
on the choice of these parameters are provided in [244].

In the context of RAT selection, RMv1 is applied in [94],
where a simplified PF model with RAT-specific fixed con-
nection price is considered as utility. In order to cope with
the lack of complete information, each RAT broadcasts the
missing information, enabling users to estimate the utility
achievable over the non-selected RATs, and in turn the regret
of not selecting them. The scenario includes 100 users and
4 candidate RATs; RMv1 shows convergence to a CE near
to the SO profile in about 15 iterations. RMv2 is considered
in [93] to solve an imperfect and incomplete information
gamewith noisy TF and PF utilities. A preliminary evaluation
on a 2-user 2-RAT game shows that RMv2 converges after
many iterations (about 6 × 103) and switchings across the
RATs (about 400) to a CE that is neither user- nor social-
optimal. Hence, network assistance is proposed to cope with
low performance. The access nodes broadcast denoised infor-
mation that are used by users in a version of RMv2 with a
slightly different updating rule. Such a scheme shows better
performance with respect to the original algorithm and the
BRD solution of [44] (Section VI-A1).

2) STOCHASTIC LEARNING AUTOMATA (SLA)
Proposed in [245], SLA is a RL algorithm converging to
PNEs in PGs (Section V-A). SLA agents exploit their own

instantaneous utility as reinforcement signal and adjust the
adopted mixed strategy over time, as given in (39), as shown
at the bottom of the next page, where ũn,t is the normalized
utility and 0 < α < 1 is the learning rate.29 The updating rule
in (39) derives from (14), and states that a high experienced
utility results in a high selection probability in the next step.
SLA converges to NEs if α is sufficiently small [245].

SLA is used in [107] to solve RAT selection in a cognitive
radio (CR) scenario. The so-called secondary users (SUs) can
connect to several primary networks for their data traffic,
but the availability of transmission channels depends on the
time-varying demands of primary users (PUs). The utility
function follows the PF definition in (2b), and depends on
the amount and capacity of available channels. The selection
game is an ordinal PG (OPG), that is, a relaxed version
of EPG still presenting PNEs [135]. SLA is evaluated in
a scenario with ten SUs and two RATs with three chan-
nels each, where the channels have predefined capacities.
It is shown that users adopting a random selection in the
beginning and then SLA converge to pure strategies in about
100 vs. 300 steps with α = 0.5 and α = 0.2, respectively.
However, the strategy profile achieved with α = 0.5 is not
a PNE, since a unilateral deviation of a SU leads the SU
to a higher throughput. SLA is compared against two other
approaches: 1) a scheme where users select the RAT with
the best per-channel throughput and 2) a centralized scheme
based on exhaustive search. With randomly distributed SUs,
SLA outperforms the first scheme, but is far from the second
in terms of system throughput (defined as the sum of per-user
throughputs). However, compared to the centralized scheme,
SLA converges to a solution with higher fairness across users,
evaluated via Jain’s index (see SectionVII). In a Nest network
where the SUs select between an indoor small cell and a
macrocell located far apart, SLA converges to a PNE that is
optimal in terms of system throughput and fairness.

3) COMBINED FULLY DISTRIBUTED PAYOFF AND STRATEGY
REINFORCEMENT LEARNING (CODIPAS-RL)
Similarly to SLA, the approaches under the CODIPAS-RL
framework follow the basic updating rule in (14), and
differ depending on how the agent utility is taken into
account when the selection probabilities are updated at t →
t + 1 [59]. Among others, CODIPAS-RL include so-called
Bush-Morsteller [246], Boltzmann-Gibbs, and multiplicative
weighted imitative algorithms. The updating rule for these
algorithms can be found in [235], where the use of the entire
framework is proposed for RAT selection. Beyond the three
above methods, the paper introduces other schemes with sim-
ilar updating rules and discusses the assumptions on the game
structure under which the schemes converge to equilibria. The
overall model allows users to adopt different CODIPAS-RL
schemes with variable learning rates. Users can also

29A constant and player-agnostic α is assumed in (39). This is in agree-
ment with [245], where SLAwas originally proposed, and [107], where SLA
is used for RAT selection. However, α may be different across players and
time-decreasing, as discussed for Q-Learning in Section VI-B1.
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a) switch across schemes during the game, thus performing
heterogeneous learning, and b) switch between active and
sleep modes (i.e., participate in the selection game only
when active). The use in a 2-operator 4G / WiFi network
is proposed and tested by network simulation. Results show
convergence to stable configurations in different scenarios,
including underloaded vs. congested RATs and different ser-
vice costs.

Bush-Morsteller and Boltzmann-Gibbs CODIPAS-RL are
compared in a WiMAX/WLAN scenario in [236], where
the latter shows faster convergence. Moreover, Multiplicative
Weighted Imitative CODIPAS-RL is used to benchmark the
network-assisted solution in [93] (Section VI-D1), showing
low performance in terms of convergence speed, per-user
switchings, and system utility compared to other learning
schemes, that however exploit more information and network
assistance. It is interesting to observe that the algorithm
achieves an equilibrium showing high fairness across users;
this is explained by considering that its learning dynamics are
similar to the ones of RD, as discussed in [247].

VII. PERFORMANCE INDICATORS
The analysis of user-centric RAT selection in a joint GT-MAL
approach is a challenging task. The case can be modeled
and solved in different ways and ultimately analyzed based
on multiple performance indicators. The heterogeneity of
such indicators highlights that a multi-faceted evaluation
framework is needed in order to exhaustively and reliably
compare different proposed solutions. This section discusses
commonly used indicators, by grouping them in three main
categories: Convergence, Efficiency, and Fairness.

A. CONVERGENCE
This category includes indicators of when and how a pro-
posed learning scheme converges to a game-theoretic equi-
librium. The following metrics are commonly used:

• Evolution over time of the number (or percentage) of
users connected to each RAT;

• Evolution over time of the probability for a user to select
each RAT;

• Number of iterations, i.e., game steps, leading to an
equilibrium;

• Number of switchings across RATs leading to an equi-
librium (for each user or by averaging across users).

The stability over time of the first two metrics suggests a
possible convergence to an equilibrium. For example, when
the second metric is independently evaluated for each user,
it may show convergence to a NE. The last two metrics
indicate instead how the proposed scheme moves toward the
equilibrium.As observed in previous sections, the dynamicity
of RAT selection requires a rather fast convergence to a
stable strategy profile, due to possible sudden perturbations
provoked by the arrival of new users for example, or the
detection of new candidate RATs, mobility, etc. Such changes
may invalidate the equilibrium, and require a new learning
process. Moreover, repeated switching across RATs results in
additional costs in terms of device energy consumption and
connection prices; hence, an excessive number of switchings
should be discouraged.

B. EFFICIENCY
This category includes the metrics on utility performance
obtained during the learning process and/or at equilibrium.
RAT selection games may present several equilibria, that may
be different in terms of per user and overall utility. Moreover,
the equilibria may perform poorly when compared to PO and
SO strategy profiles.

Initial investigations adopting complete information PGs
and CGs [94], [102], [112] use two specific performance indi-
cators to assess the efficiency of game equilibria, i.e., price of
anarchy (PoA) and price of stability (PoS).
Definition 7 Price of Anarchy (Stability) – PoA (PoS)

[248], [249]: Given a finite strategic game and a welfare

RMv1: pn,t+1(an) =


1
µ
%(an, an,t ) for all an 6= an,t ∈ An

1−
∑

an∈An:
an 6=an,t

pn,t+1(an) an = an,t (36)

Dest(an, an,t ) =
1
t

∑
τ≤t:

an,τ=an

pn,τ (an)
pn,τ (an,t )

un(an, a−n,τ )−
1
t

∑
τ≤t:

an,τ=an,t

un(an,t , a−n,τ ). (37)

RMv2: pn,t+1(an) =


(
1−

δ

tγ

)
min

{
max

{
0,
Dest(an, an,t )

µ

}
,

1
|An| − 1

}
+

δ

tγ |An|
for all an 6= an,t ∈ An

1−
∑

an∈An:
an 6=an,t

pn,t+1(an) an = an,t (38)

SLA: pn,t+1(an) =

{
pn,t (an)+ αũn,t [1− pn,t (an)] an = an,t
pn,t (an)− αũn,tpn,t (an) for all an 6= an,t ∈ An

(39)
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function w : Atot → R, the PoA (PoS) is defined as the ratio
between the optimal solution and the worst (best) NE in terms
of welfare function w. Considering pure strategy profiles and
PNEs,30 PoA and PoS are defined as follows:

PoA :=
max
a∈Atot

w(a)

min
aNE∈ANE

tot

w(aNE)
, (40)

PoS :=
max
a∈Atot

w(a)

max
aNE∈ANE

tot

w(aNE)
, (41)

whereANE
tot represents the set of game PNEs and 1 ≤ PoS ≤

PoA. Several welfare functions can be used; among others,
the sum of utilities across players is commonly adopted,
i.e., w(a) =

∑
n∈N un(a). In this case, PoA and PoS reflect a

comparison between the SO profile and worst and best PNE.
The calculation of PoA and PoS requires the evaluation of
the set of equilibria, that can be done, for example, by solving
the system of non-deviation inequalities [112]. With a similar
scope, [44] reports the average number of equilibria for the
proposed game and the fraction of them being PO.

Recent work is more focused on learning under imperfect
and incomplete information assumptions and thus provides
further insights on learning efficiency. The following metrics
are commonly adopted:
• Per user utility over time;
• System utility over time, evaluated by averaging (or
summing up) the user utility at each iteration.

A few papers adopting MAB models use regret to analyze
learning efficiency [101], [214]. Algorithms are also com-
pared in terms of signaling overhead in [93].

C. FAIRNESS
This category includes metrics that quantify to what extent
the proposed scheme promotes utility fairness between users.
Besides evolutionary games solved via RD, the equilibria
do not have fairness constraints per se, and this may be a
drawback for specific selection scenarios, e.g., offloading.
When fairness is explicitly considered, as for example in [46],
[93], [102], among others, the Jain’s index is used [250]:

J :=
(
∑N

n=1 ūn)
2

N × (
∑N

n=1 ū
2
n)
, (42)

where ūn denotes the average utility experienced by user n,
that is, the average throughput over time.

VIII. OPEN CHALLENGES
A. GT AND MAL EVOLUTION
After many years of development and application to several
societal contexts, GT is undoubtedly nowadays a mature
framework, while MAL is more recent and still under inves-
tigation, particularly in its DRL form. Hence, while many

30Definition 7 can be straightforwardly extended to MNEs and CEs.

connections between GT andMAL have been already discov-
ered, many others still need to be unveiled. Moreover, novel
MAL algorithms will most likely be proposed in the next
years, and the analysis of the relationship with GT is key for
their validation [36], [37].

User-centric RAT selection is a relevant use case for
both theories. The analysis of current literature shows that
SARL-native algorithms have been commonly adopted for
solving RAT selection games. Further work is thus needed
toward the analysis of schemes tailored for multi-agent sce-
narios. New GT models and MAL algorithms will provide
improvement of RAT selection schemes, leading to benefits
toward smart connectivity in next-generation systems and
networks.

A recent example is federated learning (FL), that is a
MAL framework that takes advantage of an increased com-
putational capability of end devices. In FL, devices collect
and use their own data to train a local ML model. Model
parameters are then transmitted to a higher-layer server, either
located in the cloud or at the network edge [251]. Hence,
devices do not send large amounts of data to the servers,
but instead only transmit processed parameters, ultimately
enhancing data privacy and avoiding communication over-
head. FL application to communication networks is surveyed
in [252], where FL mapping onto edge mobile networks is
also highlighted. Besides providing details on FL and open
challenges, FL applications to edge networking scenarios are
also reported, including cell association.

A FL-based approach is used in [253] for enabling the
sharing of local association policies among neighbor users.
The scenario is modeled as a mean-field game where it is
also assumed that users adopt an imitation mechanism. Users
exploit local conditions and policies of its neighbors to derive
their own DQL-based policy. The assumption is that neigh-
bors face similar conditions during their selections. The work
shows the advantage of collaborative learning.

In parallel, DRL-related research is increasingly focused
on multi-agent scenarios, thus enabling possible applications
to RAT selection. As selected examples, an actor-critic DQN
is proposed in [254] to converge to NEs in stochastic games;
the mean-field case is investigated in [255]. Focusing on deep
policy gradient methods rather than DQL, [256] proposes a
multi-agent extension of deterministic schemes [257].

B. COMMUNICATION SYSTEMS EVOLUTION
Along with GT and MAL, communication systems are also
evolving. Their enhancement leads to new challenges to
address, as clear nowadays with the advent of 5G. Network
evolution will continue beyond 5G with increased use of
artificial intelligence (AI) [258], [259].

From a RAT selection perspective, it is important to keep
aligning modeling assumptions. In particular, heterogene-
ity and massive connectivity, in terms of new RATs and
large amount of users, require the extension of modeling.
MFGT models seem a viable solution to handle ultra-dense
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scenarios, but the use in combination with MAL algorithms
is still in its infancy [110], [253], [255].

Moreover, novel scenarios and services, such as eMBB,
mMTC, and URLLC for 5G, require to better cope with
user heterogeneity. Coexisting users may have different goals
and thus their selection strategies could be driven by a
different utility. The latter may fall apart from tradition-
ally used throughput-based definitions, that seem directly
applicable to eMBB scenarios only. Hence, new definitions
are needed based on QoS indicators of service reliability
and energy efficiency/consumption (mMTC) and reliabil-
ity/latency (URLLC) [260]. A similar observation can be
done for novel vehicular communications, for which initial
GT-based RAT selection approaches can be found in [261],
[262]. Even when they have similar goals, users may still
show different capabilities in terms of context observa-
tion and computation, eventually adopting different learning
schemes. Besides initial work under CODIPAS-RL [235],
heterogeneous learning is still marginally investigated in RAT
selection and thus represents an extension for future work.

As mentioned while introducing FL, mobile edge net-
works and mobile (more recently, multi-access) edge com-
puting (MEC) are becoming of extreme interest for the
design and development of next generation systems. MEC
enables the placement of computational servers at the net-
work edges, e.g., co-located with radio access nodes. Such
servers host different network functions nearer to users, thus
reducing latency, congestion, and communication overhead
with respect to cloud architectures. MEC ultimately enables
the provisioning of services requiring extreme low latency
and high computational capabilities (e.g., tactile Internet,
self-driving cars, and IoT analytics, to mention a few). A sur-
vey on MEC concepts and applications to 5G and beyond
networks can be found in [263], while a survey connect-
ing GT and MEC is given in [264]. In the context of RAT
selection, a MEC instance may allow users to offload some
of their energy- and cost-demanding learning tasks to the
edge servers (e.g., train and maintain a DQN), and simplify
network-assisted selection schemes. MEC-enabled access
nodes may have sufficient resources to evaluate specific user
conditions and help a fast discovery of optimal selection
policies. Moreover, information between users and servers is
exchanged on shorter paths, allowing fast reaction in dynamic
scenarios (e.g., highly mobile users).

Finally, dynamic resource sharing and coexistence among
different RATs is a rapidly evolving paradigm, but still
marginally investigated in selection scenarios. An example is
in the spectrum domain, where spectrum sharingmechanisms
have been proposed in cellular standards, e.g., enabling LTE
to operate in unlicensed bands and competing with WiFi for
spectrum resources [15], [265], [266]. Such a paradigm is
being recently extended to 5G NR, which may compete in
the 60GHz spectrum against IEEE 802.11ad/ay, i.e.,Wireless
Gigabit (WiGig) [267], [268]. From a modeling perspective,
a utility only affected by users connecting to the same RAT
(e.g., as for CGs) is not representative of spectrum sharing

scenarios, since the selection of a different RAT may still
affect the utility, e.g., in terms of interference.

C. COMPARISON ACROSS SIMILAR MECHANISMS
As reviewed in Section III-A, multiple approaches for
enabling RAT selection exist in practice. While several
approaches are proposed to function at the radio layer, other
approaches work at the transport layer, e.g., via MPTCP and
MPQUIC protocols.

The core component of a MP transport protocol is the
scheduler, that decides how to redirect data on the avail-
able RATs (paths) at either flow or packet level. Several
policies driving scheduling decisions have been proposed,
ranging from simple path-agnostic round robin (RR) to
more sophisticated mechanisms that consider path status and
characteristics. Among them, the so-called minimum round
trip time (minRTT) scheme redirects data on the path with
lowest delay and is the default scheduler for MPTCP and
MPQUIC [269]. Other schedulers have been proposed to deal
with out-of-order delivery and blocking, as reported in [270].
An experimental comparison of MPTCP schedulers can be
found in [271].

On the one hand, recent work has initiated the modeling
of MP scheduling as a decision-making problem, ultimately
leveraging RL-based solutions. In particular, reinforcement
learning based scheduler (ReLeS) in [272] adopts DQN in
order to find optimal scheduling policies; Peekaboo [270]
models the scheduling task as a contextualMAB and employs
LinUCB and a stochastic adjustment in order to derive a
probabilistic policy.Modified-Peekaboo is proposed in [273],
in order to better deal with the high dynamicity of 5G
mmWave access. On the other hand, recent standardization,
such as the ATSSS architecture being proposed by 3GPP
for 5G and beyond, is moving toward cross-layer solutions,
aiming at full network interoperability. Further analyses are
thus needed to highlight the best approaches to use in dif-
ferent network scenarios (e.g., when and why is it better to
adopt network interoperability schemes at radio and/or trans-
port layers?), ultimately leading to improved and convergent
solutions.

D. DATA-DRIVEN MODELING, ANALYSIS, AND TESTING
The overview of RAT selection literature shows an ongoing
transition from pure theoretical modeling (e.g., under perfect
and complete information assumptions) to more practical
implementation of learning schemes (e.g., assuming imper-
fect and incomplete information). More recent investigations
have also proposed empirical analyses due to higher availabil-
ity of data collected in experimental open platforms, testbeds,
and large-scale measurement campaigns [93], [181], [261].
On this aspect, differently from RAT selection, MP schedul-
ing solutions are most often analyzed via experiments in real
scenarios, also thanks to the possibility of using existing soft-
ware implementations for several MP protocols. For exam-
ple, MPTCP implementation in the Linux kernel is available
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online.31 Such implementations can be embedded with new
components, e.g., a new scheduler, ultimately enabling the
validation in real networks. It is thus clear the need for
data-driven RAT selection analyses, aiming at deriving more
realistic models in terms of utility, and test proposed methods
in real systems and scenarios.

IX. CONCLUSION
This paper provides a unified reference in the context
of user-centric RAT selection regarding most commonly
adopted GT models and MAL algorithms, and highlight how
these map onto RAT selection scenarios. The GT and MAL
overview is complemented by a discussion on the assump-
tions commonly made in RAT selection in terms of utility
function, network topology, and key performance indicators.

The review provides a comparative literature analysis, and
emphasizes modeling trends and achievements. Open chal-
lenges and future work are also discussed, based on surveyed
literature, recent advances in GT, MAL, as well as ongoing
standardization activities related to RAT selection.

The present work ultimately provides a reference for
ongoing and future research activities, toward designing
high-performing user-centric RAT selection schemes.

APPENDIX
ACRONYMS
3GPP 3rd generation partnership project
4/5G 4th/5th generation
A3C Asynchronous advantage actor-critic
ABC Always best connected
ACR Available capacity ratio
AE Auto-encoder
AHP Analytical hierarchy process
AI Artificial intelligence
ANDSF Access Network Discovery and Selection

Function
AP Access point
ATSSS Access Traffic Steering, Switching, and

Splitting
BER Bit error rate
(a/s)BR(D) (Asynchronous/simultaneous) best response

(dynamics)
BS Base station
BP Boltzmann procedure
BREW Batched randomization with exponential

weighting
CE Correlated equilibrium
(W)CDMA (Wideband) code division multiple access
(u/w)CG (Unweighted/weighted) congestion game
CMT Concurrent Multipath Transfer
CNP Coupled network pair
CODIPAS-RL Combined fully distributed payoff and

strategy reinforcement learning

31‘‘MultiPath TCP - Linux kernel implementation’’,
http://www.multipath-tcp.org, Accessed on: May 2021.

CoMP Coordinated multi-point
COTS Commercial off-the-shelf
CRE Cell range expansion
D3QN Dueling double deep Q-Network
DC Dual connectivity
DDPG Deep deterministic policy gradient
DQL Deep Q-Learning
(D)DQN (Double) deep Q-Network
DL/UL Downlink/uplink
eMBB Enhanced mobile broadband
eNB evolved Node B
ESS Evolutionary stable strategy
EXP3 Exponential-weight algorithm for

exploration and exploitation
EXP4 Exponential-weight algorithm for

exploration and exploitation using expert
advice

FIP Finite improvement path
FL Federated learning
FP Fictitious play
GAN Generative adversarial network
GRA Gray relational analysis
(e/MF)GT (Evolutionary/mean-field) game theory
HetNets Heterogeneous networks
IEEE Institute of Electrical and Electronics

Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
ITS Intelligent transportation system
kNN k-nearest neighbors
(E-)LIA (Enhanced-) local improvement algorithm
LTE(-A) Long-Term Evolution (-Advanced)
LWA(AP) LTE-WLAN Aggregation (Adaptation

Protocol)
LWIP(EP) LTE-WLAN radio level integration with

Internet Protocol security tunnel (Extension
Protocol)

(CT/mu)MAB (Continuous time/measure-use)
multi-armed bandit

MAC Medium Access Control
MADM Multiple attribute decision making
MA(R)L Multi-agent (reinforcement) learning
MCDM Multiple criteria decision making
MCTS Monte Carlo tree search
(PO/S)MDP (Partially observable/semi-) Markov

decision process
MEC Mobile (or multi-access) edge computing
MEW Multiplicative explonential weighting
MFE Mean field equilibrium
MIH Media Independent Handover
ML Machine learning
MLI Measure with logarithmic interval
(m)MTC (Massive) machine type communications
mmWave Millimeter-wave
MOS Mean opinion score
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MP Multipath
N3IWF Non-3GPP Inter-Working Function
(P/M)NE (Pure/mixed) Nash equilibrium
(C/D/F/R)NN (Convolutional/deep/feedforward/recurrent)

neural network
NR New Radio
NSA Non-Standalone
NSI Network state information
OFDMA Orthogonal frequency division multiple

access
(D/VM)ONES (Decoupled/virtual multiplexing) online

network selection
PDCP Packet Data Convergence Protocol
(E/O)PG (Exact/ordinal) potential game
PO Pareto-optimal
PoA/PoS Price of anarchy/stability
POKER Price of knowledge and estimated reward
PPP Poisson point process
PSR Packet success ratio
QBNS Q-Learning based network selection
QoS/QoE Quality of service/experience
RAN Radio access network
RAT Radio access technology
RD Replicator dynamics
RE Ranking expert
ReLeS Reinforcement learning based scheduler
ReLU Rectified linear unit
RFEQG Random forest enhanced Q-Learning with

game
(D)RL (Deep) reinforcement learning
RM Regret matching
RR Round robin
RSR(P/Q) Reference signal received (power/quality)
RSS(I) Received signal strength (indicator)
(min)RTT minimum round trip time
SA(R)L Single-agent (reinforcement) learning
SAW Simple additive weighting
SCTP Stream Control Transmission Protocol
SIM Subscriber Identity Module
SINR Signal to interference plus noise ratio
SLA Stochastic learning automata
SO Social-optimum
SPE Subgame perfect Nash equilibrium
SRN Symbiotic radio network
SVR Support vector regression
TCP Transport Control Protocol
TD Temporal-difference
TDMA Time division multiple access
TF/PF Throughput fair / proportional fair
TOPSIS Technique for order preference by similarity

to ideal solution
UAV Unmanned aerial vehicle
(Lin)UCB (Linear) upper confidence bound
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications

Service

URLLC Ultra reliable low latency communications
VDBE Value-difference based exploration
VLC Visible light communication
WBAN Wireless boby area network
WiGig Wireless Gigabit
WLAN Wireless local area network
WMAN Wireless metropolitan area network
WiMAX Worldwide Interoperability for Microwave

Access
WPAN Wireless personal area network
WWAN Wireless wide area network
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