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Abstract

Motivated by the study of the hypoxia problem in cancerous tissues, we propose a
system of coupled partial differential equations defined on a heterogeneous, periodically
perforated domain describing the flux of oxygen from blood vessels towards the tissue
and the corresponding oxygen diffusion within the tissue. Using heuristics based on
dimensional analysis, we rephrase the initially parabolic problem as a semi-linear elliptic
transmission problem. Focusing on the elliptic case, we are able to define a microscopic
ε-dependent problem that is the starting point of our mathematical analysis; here ε is
linked to the scale of heterogeneity.

We study the well-posedness of the microscopic problem as well as the passage to
the periodic homogenization limit. Additionally, we derive the strong formulation of the
two-scale macroscopic limit problem. Finally, we prove a corrector estimate. This specific
ingredient allows us to estimate, in an a priori way, the discrepancy between solutions to
the microscopic and, respectively, macroscopic problem. Our working techniques include
energy-type estimates, fixed-point type iterations, monotonicity arguments, as well as the
two-scale convergence tool.

Keywords: oxygen, hypoxia, elliptic pde, homogenization, two-scale convergence,
corrector estimate.
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Introduction

The aim of this work is to introduce a mathematical model describing the flux of
oxygen from blood vessels to tissues. The main application of the model we propose is
the hypoxia problem. The presence of hypoxia, that is low concentration of oxygen in
cells, can be related to other pathologies such as cancer [10], Alzheimer’s disease [31]
and diabetes [11]. Therefore, studying the hypoxia problem can help understanding and
solving other correlated medical issues. For instance, the presence of hypoxia can affect
the curability of solid tumors [33]. The presence of hypoxia corresponds to de-oxygenated
human body tissues invaded by cancer. Indeed, solid tumors are less well-oxygenated than
the normal tissues from which they arose [9]. For this reason, the model we propose and
analyze can be directly adapted to the medical study of tumors.

The oxygen problem has been studied from the mathematical modelling and compu-
tational perspective by many authors; we refer for instance to [19], [30], [20], [23], [25],
[3], [22].

In chapter one, we present the first model, which consists of a system of two parabolic
partial differential equations, with Dirichlet, Neumann and Robin boundary conditions.
Clearly, the two equations we introduce at the beginning describe the flux of oxygen in
the blood vessels and tissues, respectively. Therefore, they will be defined in two dif-
ferent domains that communicate to each other through an interface. The unknowns of
our problem are the concentrations of oxygen in the blood vessels and tissues, respec-
tively. For what concerns the flux of oxygen in the tissues, we consider a non-linear term
corresponding the the Michaelis-Menten type consumption rate [32]. Once the model
is introduced, we proceed with a dimensional analysis of all the mathematical quanti-
ties involved in the model. This procedure will be the idea behind the passage from
the parabolic problem to an elliptic problem. Since the latter is not the main aim of
our discussion, we just present an heuristic procedure that can be made mathematically
rigorous. The main interest of our work is to apply two-scale convergence and homoge-
nization techniques to an elliptic microscopic model, that we present in sections 1.3 and
1.4. The microscopic problem is meant to take into account the micro-oscillations in the
concentration of oxygen. This oscillating behavior can be applied to the study of the
hypoxia problem. Indeed, as we mentioned before, we are dealing with de-oxygenated
zones that can be mathematically represented through an heterogeneous concentration
of oxygen.

In chapter two, we study the well-posedness of the microscopic problem. Namely,
once we obtain the weak formulation of the microscopic problem, we prove the existence,
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uniqueness and energy estimates related to the solution of the microscopic problem. The
main difficulty of this part relies on the fact that our model is non-linear. For instance,
to prove the existence of solution for the microscopic problem, we rely on an iteration
scheme.

In the third chapter, after introducing main results regarding homogenization and two-
scale convergence, we proceed with the homogenization of our problem. The final goal is
to obtain the macroscopic two-scale elliptic limit system related to our original problem.
Clearly, we show that the solution of the macroscopic system exists and is unique. Finally,
we will prove a corrector estimate, which is the most interesting mathematical result of
the whole work. Indeed, the solution of the microscopic problem presents some oscillating
features, while the two-scale limit problem is meant to average those oscillations. When
it comes to the corrector estimate, the main question is how much information have we
lost after the averaging process is done? In order to prove the corrector estimate, we will
use both functional analysis results and geometrical arguments, that are correlated to the
geometrical reasoning behind the formulation of the microscopic problem.

Finally, we present the last chapter ”Conclusion and Outlook”, in which we sum up
all the most interesting results of this work together with some additional comments and
remarks. Moreover, we also leave some questions open regarding how we can improve our
work, also by touching other fields such as numerical analysis and simulations.

It is important to point out that the whole analysis of our work is in 2D, even though
the oxygen problem lives in a 3D setting. We made this decision to simplify the whole
discussion. However, it is possible to adapt the whole analysis to the 3D case. We do not
set all the assumptions on data from the beginning, but we prefer to add extra-assumption
on the moment we need to use them. This is meant to highlight those very assumptions
in the moment we require them.
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Chapter 1

Modelling

In this chapter, we propose a mathematical model to describe the concentration and
flux of oxygen from the blood vessels to the tissue where cells are located. Namely,
we start from a system of two parabolic partial differential equations with associated
boundary conditions of Dirichlet, Neumann and Robin type. The first step is the nondi-
mensionalization of the problem, with the goal of eliminating the time dependence in the
two parabolic equations, to eventually obtain a system of two elliptic equations. When
this step is done, the final aim of the modelling section is the formulation of the ε-problem,
involving a perforated domain that will be defined in terms of the initial domain.

1.1 From a parabolic problem to the elliptic problem

We consider the following geometry:

ΓD` ΓDr

ΓN

ΓN

Ωs
Ωf

Figure 1.1.1: Description of the geometry of the problem

We denote our domain as Ω, with Lipschitz boundary Γ. We then consider a partition
of Ω, namely Ω = Ωs ∪ Ωf , with Ωs ∩ Ωf = ∅.
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Ωf is the zone corresponding to the blood vessels, while Ωs is the region in which the
oxygen enters from the blood vessels. Let v and u denote the concentration of oxygen
in Ωf and Ωs respectively. Let S = (0, Tfin), with Tfin > 0. The following equation
describes the oxygen flow through the blood vessels:

∂tv +∇ · (−Dv(x)∇v +Bv) = 0 in Ωf × S, (1.1.1)

where Dv = Dv(x) is the non-singular diffusion matrix corresponding to v. The right
hand side of equation (1.1.1) is zero because we do not consider any source term related
to the oxygen flow in the blood vessels.

Regarding the situation in Ωs, we propose the following equation

∂tu+∇ · (−Du(x)∇u) = −F (u) in Ωs × S, (1.1.2)

whereDu = Du(x) is the non-singular diffusion matrix corresponding to u and F : R→ R,
with

F (r) =


αr

β + r
, if r ≥ 0

0, if r < 0
(1.1.3)

with

• α maximum rate of oxygen consumption, α ∈ (0,∞);

• β oxygen concentration at which F (r) = 1
2α, β ∈ (0,∞).

Expression (1.1.3) corresponds to the well-known Michaelis-Menten– type consumption
rate (see [32]) . The term −F (r) acts as a sink. This is due to the fact that the flow of
oxygen coming from the blood vessels needs to be balanced, otherwise there would be an
accumulation of oxygen in the domain Ωs.

Considering now the external boundary Γ, we set Dirichlet boundary conditions on
the left and right edges and Neumann conditions on the remaining two edges. Therefore,
we rewrite Γ = ΓD` ∪ ΓDr ∪ ΓN , and we suppose that the oxygen flows from the left edge
ΓD` to the right edge ΓDr .

We define Jv := −Dv∇v +Bv and Ju := −Du∇u to be the fluxes related to v and u,
respectively. In this scenario, we are able to formulate the boundary conditions on Γ:

u = ρ` on ΓD` (1.1.4)
u = ρr on ΓDr (1.1.5)

Ju · n = 0 on ΓN \ ∂Ωf (1.1.6)
Jv · n = 0 on Γ ∩ ∂Ωf , (1.1.7)

with ρr > ρ` > 0 and n is the outward normal vector. Notice that in the third boundary
condition we had to exclude ∂Ωf since we were considering Ju, that is the flux related to
the domain Ωs.
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However, we still need boundary conditions on the set ∂Ω \ Γ, that will allow us to
describe how the oxygen flows from Ωf to Ωs. We indeed want that the flux exiting from
Ωf is conserved when entering Ωs, we require:

Jv · n = −Ju · n on ∂Ω \ Γ. (1.1.8)

Since there is mass exchange of oxygen through the boundary of the blood vessels, it
is important to specify also a relation between u and v when the oxygen crosses the
boundary ∂Ω \Γ. Let H be the Henry constant (see [5]) and let σ be a positive constant.
We have the following relation

Jv · n = σ(u−Hv) on ∂Ω \ Γ. (1.1.9)

Finally, we need to set the initial conditions, namely

u(x, 0) = u0(x) (1.1.10)
v(x, 0) = v0(x), (1.1.11)

for all x ∈ Ω̄.

Summarizing, our hypoxia model is composed of equations (1.1.1), (1.1.2), (1.1.4),
(1.1.5), (1.1.6), (1.1.7), (1.1.8), (1.1.9), (1.1.10) and (1.1.11). Now that the problem is
set, we want to nondimensionalize it; in order to do so, we first provide a dimensional
analysis of all the mathematical objects involved in the problem. We proceed as in [26].

• [u] = [v] = ML−3;

• [t] = T , [x] = L;

• [Du] = [Dv] = L2T−1, [B] = LT−1, [u0] = [v0] = ML−3, [ρl] = [ρr] = ML−2,
[σ] = LT−1.

Notice that here we consider the problem as in a 3D setting, since we are referring to
the physics of the problem, and not on the modelling. We take xref := diam(Ω) to be the
characteristic length. The characteristic time scale tref will be chosen later. We choose

uref := max
{
‖u0‖L∞(Ω), ‖ρl‖L∞((0,T )×ΓD

l
)

}
,

and
vref := ‖v0‖L∞(Ω).

Let Ω̂s := 1
xref

Ωs, Ω̂f := 1
xref

Ωf , Γ̂ := 1
xref

Γ and T̂ = Tfin

tref
.

Let F̂ : R→ R be defined by

F̂ (r) =


α̂r

β̂ + r
, if r ≥ 0

0, if r < 0,
(1.1.12)
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where α̂ = α and β̂ = β
uref

. We rewrite Dv as Dv(x) := DvD̂v(x), where D̂v(x) is a
dimensionless matrix and Dv is a positive diffusion constant. We substitute in (1.1.1)
and (1.1.11) t := trefτ , x := xrefz, and v := vrefV and obtain

vref
tref

∂τV +∇z ·
(
−DvD̂v(z)vref

x2
ref

∇zV + Bvref
xref

V

)
= 0 in Ω̂f × (0, T̂ ) (1.1.13)

V (z, 0) = v0(z)
vref

in Ω̂f . (1.1.14)

We then do the same by setting u := urefU and Du(x) := DuD̂u(x) in (1.1.2), (1.1.10),
(1.1.4), (1.1.5) to obtain

uref
tref

∂τU +∇z ·
(
−DuD̂u(z)uref

x2
ref

∇zU

)
= −F̂ (U) in Ω̂s × (0, T̂ ) (1.1.15)

U(z, 0) = u0(z)
uref

in Ω̂s (1.1.16)

U(z, τ) = ρ`
uref

on Γ̂D` × (0, T̂ ) (1.1.17)

U(z, τ) = ρr
uref

on Γ̂Dr × (0, T̂ ). (1.1.18)

Setting σ = σref σ̃, with σref = xref
tref

, and using the same reasoning for the boundary

conditions (1.1.6), (1.1.7), (1.1.8) and (1.1.9), we end up with(
−DuD̂u(z)uref

xref
∇zU

)
· n = 0 on Γ̂N \ ∂Ω̂f , (1.1.19)(

−DvD̂v(z)vref
xref

∇zV +BvrefV

)
· n = 0 on Γ̂ ∩ ∂Ω̂f , (1.1.20)(

−DvD̂v(z)vref
xref

∇zV +BvrefV

)
· n =

(
DuD̂u(z)uref

xref
∇zU

)
· n on ∂Ω̂ \ Γ̂, (1.1.21)(

−DvD̂v(z)vref
xref

∇zV +BvrefV

)
· n = σref σ̃ (urefU −HvrefV ) on ∂Ω̂ \ Γ̂. (1.1.22)

The goal is to identify some parametric region where the hypoxia problem is a system

of two coupled elliptic equations. We multiply (1.1.13) and (1.1.15) by
x2
ref

Dvvref
and

x2
ref

Duuref
, respectively. We obtain

x2
ref

Dvtref
∂τV +∇z ·

(
−D̂v(z)∇zV + Bxref

Dv

V
)

= 0 in Ω̂f × (0, T̂ ) (1.1.23)

x2
ref

Dutref
∂τU +∇z ·

(
−D̂u(z)∇zU

)
= −

x2
ref

Duuref
F̂ (U) in Ω̂s × (0, T̂ ). (1.1.24)
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We consider the Robin boundary condition (1.1.22) and rewrite it as
(
−D̂v(z)∇zV + Bxref

Dv

V
)
· n = urefσref σ̃xref

Dvvref

(
U −H vref

uref
V

)
on ∂Ω̂ \ Γ̂. (1.1.25)

In order to obtain a couple of elliptic equations, we need to get rid of the terms involving
the partial derivative with respect to time in (1.1.23) and (1.1.24). This translates into

assuming that the terms
x2
ref

Dvtref
and

x2
ref

Dutref
are sufficiently close to zero. Since one of our

main interests is the analysis of the concentration of oxygen in the domain Ωs, where the
flux of oxygen is slower than the one in Ωf , we can actually choose tref to be arbitrarily
large in order to get a meaningful result. Therefore, we can set the problem such that
the two quantities mentioned before are negligible. However, we still want to keep the
information contained in (1.1.25). In order to do so, we observe that

x2
ref

Dvtref
= σrefxref

Dv

≈ 0

and
x2
ref

Dutref
= σrefxref

Du

≈ 0.

Since we want the coefficient urefσref σ̃xref
Dvvref

6= 0, we just set uref >> vref so that the

ratio is balanced and the whole quantity does not go to zero. Another way to say this is
that the concentration of oxygen in the tissue is bigger than the one in the blood vessels.

Eventually, we end up with the following elliptic problem

∇z · (−D̂v(z)∇zV + B̂V ) = 0 in Ω̂f (1.1.26)
∇z · (−D̂u(z)∇zU) = −Φ1F̂ (U) in Ω̂s (1.1.27)

(−D̂v(z)∇V + B̂V ) · n = Φ2(D̂u(z)∇zU) · n on ∂Ω̂ \ Γ̂ (1.1.28)
(−D̂v(z)∇zV + B̂V ) · n = Φ3σ̃

(
U − ĤV

)
on ∂Ω̂ \ Γ̂ (1.1.29)

(−D̂u(z)∇zU) · n = 0 on Γ̂N \ ∂Ω̂f (1.1.30)
(−D̂v(z)∇zV + B̂V ) · n = 0 on Γ̂ ∩ ∂Ω̂f (1.1.31)

U(z) = ρ`
uref

on Γ̂D` (1.1.32)

U(z) = ρr
uref

on Γ̂Dr , (1.1.33)

where

• Φ1 =
x2
ref

Duuref
, Φ2 = Duuref

Dvvref
, Φ3 = urefσrefxref

Dvvref
;

• Ĥ = H
vref
uref

, B̂ = Bxref
Dv

.
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The heuristic procedure used here to reduce the parabolic hypoxia problem to an
elliptic situation can be made mathematically rigorous. However, we do not do this here
as we prefer to study in details the homogenization problem.

1.2 Formulation of the microscopic problem

We open this section with a question:

What does ”microscopic problem” mean and why do we need to introduce it?

We remind that we want to be able to apply our model to the hypoxia problem. This
means that the concentration of oxygen in the tissues appears to be heterogeneous and
characterized by a lot of fluctuations. Introducing a microscopic model means to take
into account all of those fluctuations in the solution of our problem and in the diffusion
matrices as well. The first step in the formulation of the microscopic problem is to identify
and separate the different scales, that can be referred to as macro-scale and micro-scale.
The macro-scale takes into account the general behavior of our solution in the whole
domain, while the micro-scale takes into account the fluctuations and micro-oscillation
of the solution itself. What we said until now justifies the idea behind the mathematical
reason why we should introduce the microscopic model as starting point our analysis.
However, how do we actually take the micro-scale into account?

We notice that our geometry in Figure 1.1.1 presents a periodic structure. We consider
the period of our geometry as a cell and we denote it with Y (see Figure 1.2.1). We can
consider a partition of our cell, namely Y = Yf ∪ Ys ∪Σ, with Yf ∩ YS = ∅, Σ = Y f ∩ Y s.
Clearly, Yf corresponds to the part of the cell where the blood vessels are located, while
Ys corresponds to the tissue and Σ corresponds to the interface in between Ys and Yf .

Ys Yf

Σ

Figure 1.2.1: Periodic Cell Y

We now have to introduce a parameter, called ε, which is a real parameter taking
values in a sequence of positive rational numbers tending to zero. It is important to
underline that ε has a geometrical meaning. Indeed, one could take into account the
number of times the periodic cell Y is contained in Ω. Mathematically, if we consider
L := diam(Ω) and l := diam(Y ), we can define ε := l

L
. This means that, when studying

the microscopic model, we fix ε and we study the problem in an actual microscopic
prospective, since we are interested in what happens in the single cell. Our final aim is
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to obtain the two-scale limit elliptic system as ε goes to zero. This means that, after
studying the microscopic problem, we want to ”eliminate” the oscillatory characteristic
of the solution, considering a final averaged system, involving averaged quantities, that
takes into account only the general behavior of the solution itself. When it comes to the
applications, this procedure allows us to study complicated problems, such as the hypoxia
problem, in a simplified setting. Moreover, starting from the microscopic model, we use
two-scale convergence and homogenization techniques, that automatically guarantee the
well-posedness of the limit problem.

We now formulate the ε-dependent microscopic problem (we also refer to [15]). Let
χs(y) and χf (y) be the characteristic functions of Ys and Yf in Y , respectively.

We define the sets Ω̂ε
s :=

{
z ∈ Ω̂s;χs

(
z

ε

)
= 1

}
, Ω̂ε

f :=
{
z ∈ Ω̂f ;χf

(
z

ε

)
= 1

}
, Ω̂ε :=

Ω̂ε
s ∪ Ω̂ε

f and ∂Ω̂ε \ Γ := {z ∈ Ω̂; z
ε
∈ ∂Ω̂ \ Γ}.

We also define B̂ε := B̂
(
z

ε

)
, D̂vε(z) := D̂v

(
z

ε

)
and D̂uε(z) := D̂u

(
z

ε

)
. We suppose

that

• D̂v and D̂u are Yf -periodic and Ys-periodic, respectively;

• there exist m,M > 0, m ≤M , such that

m|ξ|2≤
2∑

i,j=1
D̂ij
u ξiξj ≤M |ξ|2, (1.2.1)

m|ξ|2≤
2∑

i,j=1
D̂ij
v ξiξj ≤M |ξ|2, (1.2.2)

for all ξ ∈ R2;

• D̂ij
u , D̂ij

v ∈ L∞(Y ) for all i, j ∈ {1, 2}2;

• D̂u and D̂v are symmetric.

We now present the ε-problem: Find the couple (uε, vε) satisfying the following system
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∇z · (−D̂vε(z)∇zvε + B̂εvε) = 0 in Ω̂ε
f (1.2.3)

∇z · (−D̂uε(z)∇zuε) = −Φ1F̂ (uε) in Ω̂ε
s (1.2.4)

(−D̂vε(z)∇zvε + B̂εvε) · n = Φ2(D̂uε(z)∇zuε) · n on ∂Ω̂ε \ Γ̂ (1.2.5)
(−D̂vε(z)∇zvε + B̂εvε) · n = εΦ3σ̃

(
uε − Ĥvε

)
on ∂Ω̂ε \ Γ̂ (1.2.6)

(−D̂uε(z)∇zuε) · n = 0 on Γ̂N \ ∂Ω̂ε
f (1.2.7)

(−D̂vε(z)∇zvε + B̂εvε) · n = 0 on Γ̂ ∩ ∂Ω̂ε
f (1.2.8)

uε(z) = ρ`
uref

on Γ̂D` (1.2.9)

uε(z) = ρr
uref

on Γ̂Dr , (1.2.10)

where uε(z) = u
(
z,
z

ε

)
and vε(z) = v

(
z,
z

ε

)
.

We want now to reformulate the microscopic problem such that we have homogeneous
Dirichlet boundary conditions. Without loss of generality, we consider Ω such that Ω =
[0, L]2 ⊂ R2, with L > 0. Let us define a continuous function g : Ω̂s → R,

g(z) := g(z1, z2) =
(
ρr
uref

− ρ`
uref

)
z1

L
+ ρ`
uref

. (1.2.11)

Since z1 = 0 and z1 = L correspond to Γ̂D` and Γ̂Dr , respectively, we have

g(z) = ρ`
uref

on Γ̂D` ,

g(z) = ρr
uref

on Γ̂Dr .

Moreover, we have that ∇zg =
((

ρr
uref

− ρ`
uref

)
1
L
, 0
)

:= w̃. Therefore, we can reformu-

late problem (1.2.3)-(1.2.10) taking into account ũε(z) = uε(z) − g(z). Notice that, in
order to define ũε, we need to consider the function g restricted to the perforated domain
Ωε
s.

Eventually, we end up with the following problem: Find the couple (uε, vε) (we still
write uε instead of ũε to simplify the notation) satisfying the following system
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∇z · (−D̂vε(z)∇zvε + B̂εvε) = 0 in Ω̂ε
f

∇z · (−D̂uε(z)∇z(uε + g)) = −Φ1F̂ (uε + g) in Ω̂ε
s

(D̂uε(z)∇z(uε + g)) · n = ε
Φ3

Φ2
σ̃
(
uε + g − Ĥvε

)
on ∂Ω̂ε \ Γ̂

(−D̂vε(z)∇zvε + B̂εvε) · n = εΦ3σ̃
(
uε + g − Ĥvε

)
on ∂Ω̂ε \ Γ̂

(−D̂uε(z)∇z(uε + g)) · n = 0 on Γ̂N \ ∂Ω̂ε
f

(−D̂vε(z)∇zvε + B̂εvε) · n = 0 on Γ̂ ∩ ∂Ω̂ε
f

uε(z) = 0 on Γ̂D`
uε(z) = 0 on Γ̂Dr .

Remark. We notice that the function g defined in (1.2.11) is C∞(Ω̂ε
s). Therefore, the

transformation ũε = uε − g is well defined. Indeed, when we will consider the weak
formulation of our problem, we will ask H1 regularity for ũ.

1.3 Summary of equations of the microscopic model

For simplicity, we remove the ˆ notation, therefore from now on we will refer to the
following microscopic problem: Find the couple (uε, vε) satisfying the following system

∇z · (−Dvε(z)∇zvε +Bεvε) = 0 in Ωε
f (1.3.1)

∇z · (−Duε(z)∇z(uε + g)) = −Φ1F (uε + g) in Ωε
s (1.3.2)

(Duε(z)∇z(uε + g)) · n = ε
Φ3

Φ2
σ̃ (uε + g −Hvε) on ∂Ωε \ Γ (1.3.3)

(−Dvε(z)∇zvε +Bεvε) · n = εΦ3σ̃ (uε + g −Hvε) on ∂Ωε \ Γ (1.3.4)
(−Duε(z)∇z(uε + g)) · n = 0 on ΓN \ ∂Ωε

f (1.3.5)
(−Dvε(z)∇zvε +Bεvε) · n = 0 on Γ ∩ ∂Ωε

f (1.3.6)
uε(z) = 0 on ΓD` (1.3.7)
uε(z) = 0 on ΓDr . (1.3.8)

Remark. The set ∂Ωε \ Γ is the oscillating surface, that corresponds to the interface
between Ωε

s and Ωε
f . When defining the microscopic problem (1.3.1)-(1.3.8), we need to

consider ε multiplying the right hand side of (1.3.3) and (1.3.4). The reason why will be
clearer when we will discuss the homogenization of our problem.
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Chapter 2

Well posedness of the microscopic
model

The first aim of this chapter is to derive the weak formulation of the problem (1.3.1)-
(1.3.8). After this step is done, we will use the weak formulation to prove the well
posedness of the microscopic problem. Namely, we will prove the existence and uniqueness
of weak solutions and an energy estimate. We list those results in section 2.2 and we
reserve section 2.3 for the proofs.

2.1 Weak formulation

Let H1
` (Ωε

s) := {φ ∈ H1(Ωε
s);φ = 0 on ΓD` }, H1

r (Ωε
s) := {φ ∈ H1(Ωε

s);φ = 0 on ΓDr }
and H1

`r(Ωε
s) := H1

` ∩H1
r .

We consider the problem (1.3.1)-(1.3.8). Let ϕ ∈ H1(Ωε
f ) and let us multiply the left

hand side of (1.3.1) by ϕ and integrate in Ωε
f ; we get∫

Ωε
f

∇ · (−Dvε∇vε +Bεvε)ϕdz =
∫

Ωε
f

(Dvε∇vε −Bεvε)∇ϕdz + εΦ3σ̃

∫
∂Ωε\Γ

(uε + g −Hvε)ϕdσz,

(2.1.1)

where we used the boundary conditions (1.3.4) and (1.3.6).

We then consider the left hand side of the equation (1.3.2), we multiply by φ ∈ H1
`r(Ωε

s)
and integrate over Ωε

s.

∫
Ωε

s

∇ · (−Duε(∇uε + g))φ dz

=
∫

Ωs

Duε∇(uε + g)∇φ dz − εΦ3

Φ2
σ̃
∫
∂Ωε\Γ

(uε + g −Hvε)φ dσz

=
∫

Ωε
s

Duε∇uε∇φ dz +
∫

Ωε
s

wε∇φ dz − ε
Φ3

Φ2
σ̃
∫
∂Ωε\Γ

(uε + g −Hvε)φ dσz, (2.1.2)

13



with wε(z) := Duε(z)w̃ and where we used (1.3.3), (1.3.4), (1.3.5), (1.3.7) and (1.3.8).

Definition 2.1.1. A weak solution of the problem (1.3.1)-(1.3.8) is a couple

(uε, vε) ∈ H1
`r(Ωε

s)×H1(Ωε
f )

that satisfies the following system:∫
Ωε

f

(Dvε∇vε −Bεvε)∇ϕdz + εΦ3σ̃
∫
∂Ωε\Γ

(uε + g −Hvε)ϕdσz = 0 (2.1.3)
∫

Ωε
s

Duε∇uε∇φ dz − ε
Φ3

Φ2
σ̃
∫
∂Ωε\Γ

(uε + g −Hvε)φ dσz = B(uε, φ), (2.1.4)

for all ϕ ∈ H1
0 (Ωε

f ), φ ∈ H1
`r(Ωε

s), with

B(uε, φ) = −
∫

Ωε
s

Φ1F (uε + g)φ dz −
∫

Ωε
s

wε∇φ dz,

with F defined in (1.1.12).

2.2 Statement of the main results concerning the mi-
croscopic model

Lemma 2.2.1. Let p ≥ 1. Assume Ω is bounded and ∂Ω is Lipschitz. Then there exists
a bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω)
such that

(i) Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω̄)

and

(ii) ‖Tu‖Lp(∂Ω)≤ C‖u‖W 1,p(Ω) for each u ∈ W 1,p(Ω), with the constant C depending
only on p and Ω.

See [17] and chapter 5 of [14] for details on the proof of Lemma 2.2.1.

Lemma 2.2.2. Let ϕ ∈ H1(Ωε). Then there exists a constant c̃ > 0, independent of ε,
such that the following inequality holds:

ε‖ϕ‖2
L2(∂Ωε)≤ c̃‖ϕ‖2

H1(Ωε). (2.2.1)

See [27] for the proof.

Lemma 2.2.3. Let p ≥ 1. Assume Ω is open and bounded with ∂Ω Lipschitz. Let
u ∈ W 1,p(Ω). Then there exists c = c(n, p) such that

‖u‖Lp(Ω)≤ c‖∇u‖Lp(Ω). (2.2.2)

14



We refer the reader to chapter 9 of [7] for details on Lemma 2.2.3.

Remark. Notice that, as a consequence of (2.2.2), we have that, if u ∈ H1(Ω), then the
norms ‖u‖H1(Ω) and ‖∇u‖L2(Ω) are equivalent. Indeed

‖∇u‖2
L2(Ω)≤ ‖u‖2

H1(Ω)= ‖u‖2
L2(Ω)+‖∇u‖2

L2(Ω)≤ (1 + c)‖∇u‖2
L2(Ω). (2.2.3)

Proposition 2.2.1. Let Bε ∈ L∞(Ωε
f ) with ‖Bε‖L∞(Ωε

f
) arbitrarily small and let σ̃ > 0

be arbitrarily small as well. Then the following inequality holds:

‖vε‖2
H1(Ωε

f
)+‖uε‖2

H1
`r

(Ωε
s)≤ γ‖g‖2

H1(Ωs)+δ‖F‖∞, (2.2.4)

where γ, δ > 0 depend on σ̃,Φ1, Φ2 and Φ3, but are independent of ε.

Proposition 2.2.2. Assume the hypothesis of Proposition 2.2.1 to hold. If there exist a
weak solution (uε, vε) to the problem (1.3.1)-(1.3.8), then it is unique.

We now want to show that there exists a weak solution (uε, vε) ∈ H1`r(Ωε
s)×H1(Ωε

f )
of problem (2.1.3)-(2.1.4). In order to do so, we will construct an iteration scheme which
will converge to the solution of our problem. We refer the reader to [18] for the application
of the iteration scheme in a similar context. Let us refer to problem (1.3.1)-(1.3.8), we
define the following iteration scheme:

Let {ukε}k∈N and {vkε}k∈N be two sequences of functions in H1
`r(Ωε

s) and H1(Ωε
f ), re-

spectively. Let u0
ε = v0

ε = 0. We have

∇z · (−Dvε(z)∇zv
k
ε +Bεv

k
ε ) = 0 in Ωε

f (2.2.5)
∇z · (−Duε(z)∇z(ukε + g)) = −Φ1F (uk−1

ε + g) in Ωε
s (2.2.6)

(Duε(z)∇z(ukε + g)) · n = ε
Φ3

Φ2
σ̃
(
uk−1
ε + g −Hvk−1

ε

)
on ∂Ωε \ Γ (2.2.7)

(−Dvε(z)∇zv
k
ε +Bεv

k
ε ) · n = εΦ3σ̃

(
uk−1
ε + g −Hvk−1

ε

)
on ∂Ωε \ Γ (2.2.8)

(−Duε(z)∇z(ukε + g)) · n = 0 on ΓN \ ∂Ωε
f (2.2.9)

(−Dvε(z)∇zv
k
ε +Bεv

k
ε ) · n = 0 on Γ ∩ ∂Ωε

f (2.2.10)
ukε(z) = 0 on ΓD` (2.2.11)
ukε(z) = 0 on ΓDr . (2.2.12)

The weak formulation related to (2.2.5)-(2.2.12) reads as follows:

Definition 2.2.1. For all k ∈ N, a weak solution of the problem (2.2.5)-(2.2.12) is a
couple

(ukε , vkε ) ∈ H1
`r(Ωε

s)×H1(Ωε
f )

that satisfies the following system:∫
Ωε

f

(Dvε∇vkε −Bεv
k
ε )∇ϕdz + εΦ3σ̃

∫
∂Ωε\Γ

(uk−1
ε + g −Hvk−1

ε )ϕdσz = 0 (2.2.13)
∫

Ωε
s

Duε∇ukε∇φ dz − ε
Φ3

Φ2
σ̃
∫
∂Ωε\Γ

(uk−1
ε + g −Hvk−1

ε )φ dσz = B(uk−1
ε , φ), (2.2.14)
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for all ϕ ∈ H1
0 (Ωε

f ), φ ∈ H1
`r(Ωε

s), with

B(uk−1
ε , φ) = −

∫
Ωε

s

Φ1F (uk−1
ε + g)φ dz −

∫
Ωε

s

wε · ∇φ dz,

with F defined in (1.1.12).

Lemma 2.2.4. Let H be an Hilbert space and assume that

B : H ×H → R

is a bilinear form, for which there exist constants m,M > 0 such that

|B[u, v]|≤M‖u‖H‖v‖H ∀u, v ∈ H, (2.2.15)

and
m‖u‖2

H≤ B[u, u] ∀u ∈ H. (2.2.16)

Let f : H → R be a bounded linear functional on H. Then there exists a unique element
u ∈ H such that

B[u, v] = 〈f, v〉 ,

for all v ∈ H.

We refer the reader to chapter 6 of [14] for the proof of Lemma 2.2.4.

Lemma 2.2.5. Let Bε ∈ L∞(Ωε
f ) with ‖Bε‖L∞(Ωε

f
) arbitrarily small. There exists a

unique solution of (2.2.13)-(2.2.14) for k = 1.

Theorem 2.2.1. Let Bε ∈ L∞(Ωε
f ) with ‖Bε‖L∞(Ωε

f
) arbitrarily small and let σ̃ > 0 be

arbitrarily small as well. Then the sequences {ukε}k∈N and {vkε}k∈N are Cauchy in H1
`r(Ωε

s)
and H1(Ωε

f ), respectively. Moreover, there exists a constant η ∈ (0, 1) independent of ε
such that

‖vk+r
ε − vkε‖2

H1(Ωε
f

)+‖uk+r
ε − ukε‖2

H1
`r

(Ωε
s)

≤ C
ηk(1− ηr)

1− η (‖v1
ε‖2

H1(Ωε
f

)+‖u1
ε‖2
H1

`r
(Ωε

s)+‖F‖2
L∞), (2.2.17)

with k, r ∈ N, c1, c2, C positive constants independent of ε, k and r.

Corollary 2.2.1. Under the same assumptions of Theorem 2.2.1, there exists a weak
solution of the problem (2.1.3)-(2.1.4). Moreover, the following estimate holds:

‖vε − vkε‖2
H1(Ωε

f
)+‖uε − ukε‖2

H1
`r

(Ωε
s)≤

Cηk

1− η (‖v1
ε‖2

H1(Ωε
f

)+‖u1
ε‖2
H1

`r
(Ωε

s)+‖F‖2
L∞), (2.2.18)

with η ∈ (0, 1) independent of ε, k ∈ N, C positive constant independent of ε and k.
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2.3 Proofs of the main results concerning the micro-
scopic model

Proof of Proposition 2.2.1

Combining (1.2.2) and (2.2.3), there exists a constant a > 0 such that

a‖vε‖2
H1(Ωε

f
)≤

∫
Ωε

f

Dvε∇vε∇vε dz.

Therefore, considering ϕ = vε in (2.1.3) and applying the triangular inequality, we get

a‖vε‖2
H1(Ωε

f
)

≤ εΦ3σ̃

[∫
∂Ωε\Γ

|uεvε| dσz +
∫
∂Ωε\Γ

|gvε| dσz +
∫
∂Ωε\Γ

|Hv2
ε | dσz

]
+ ‖Bε‖∞‖∇vε‖‖vε‖

≤ Φ3σ̃
[
ε

2‖uε‖
2
L2(∂Ωε

s)+ε(1 +H)‖vε‖2
L2(∂Ωε

f
)+
ε

2‖g‖
2
L2(∂Ωε

s)

]
+ ‖Bε‖∞

2
(
‖∇vε‖2+‖vε‖2

)
≤ Φ3σ̃c̃

[
‖uε‖2

H1
`r

(Ωε
s)+(1 +H)‖vε‖2

H1(Ωε
f

)+‖g‖2
H1(Ωε

s)

]
+ ‖Bε‖∞

2 ‖vε‖2
H1(Ωε

f
), (2.3.1)

where we used Young’s inequality and (2.2.1). Bringing
[
Φ3σ̃c̃(1 +H) + ‖Bε‖∞

2

]
‖vε‖2

H1(Ωε
f

)

to the left hand side of (2.3.1), and assuming that σ̃ and ‖Bε‖∞ are sufficiently small

such that ˜̃c := a− Φ3σ̃c̃(1 +H)− ‖Bε‖∞
2 > 0, we obtain

˜̃c‖vε‖2
H1(Ωε

f
)≤ Φ3σ̃c̃

[
‖uε‖2

H1
`r

(Ωε
s)+‖g‖2

H1(Ωε
s)

]
. (2.3.2)

We consider φ = uε in (2.1.4). Combining (1.2.1) and (2.2.3), there exists a constant
b > 0 such that

b‖uε‖2
H1

`r
(Ωε

s)≤
∫

Ωε
s

Duε∇uε∇uε dz

≤ ε
Φ3

Φ2
σ̃

[∫
∂Ωε\Γ

u2
ε dσz +

∫
∂Ωε\Γ

|guε| dσz +
∫
∂Ωε\Γ

|Hvεuε| dσz
]

+
∫

Ωε
s

Φ1F (uε + g)|uε| dz +
∫

Ωε
s

|wε∇uε| dz. (2.3.3)

Let η > 0 be arbitrarily small. We notice that∫
Ωε

s

Φ1F (uε + g)|uε| dz ≤
Φ1

2

[
1
η
‖F‖2+η‖uε‖2

]
≤ Φ1

2

[
1
η
‖F‖2+η‖uε‖2

H1
`r

(Ωε
s)

]
,

and ∫
Ωε

s

|wε∇uε| dz

≤
(

1
η
‖wε‖2

L2(Ωε
s)+η‖∇uε‖2

L2(Ωε
s)

)

≤
(

1
η
‖wε‖2

L2(Ωε
s)+η‖uε‖2

H1(Ωε
s)

)
.
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We apply (2.2.1) in (2.3.3) and we obtain

c??‖uε‖2
H1

`r
(Ωε

s)≤ c?
Φ3

Φ2
σ̃
(
‖g‖2

H1(Ωε
s)+‖vε‖2

H1(Ωε
f

)

)
+ Φ1

2η ‖F‖∞+1
η
‖wε‖2

L2(Ωε
s), (2.3.4)

with c?? := b− Φ1

2 η − 3c?
Φ3

Φ2
σ̃ − η > 0. Summing up (2.3.2) and (2.3.4) we end up with

˜̃c‖vε‖2
H1(Ωε

f
)+c??‖uε‖2

H1
`r

(Ωε
s)−Φ3σ̃c̃‖uε‖2

H1
`r

(Ωε
s)−c?

Φ3

Φ2
σ̃‖vε‖2

H1(Ωε
f

)

≤ Φ3σ̃c̃‖g‖2
H1(Ωs)+c?

Φ3

Φ2
σ̃‖g‖2

H1(Ωs)+
Φ1

2η ‖F‖∞+1
η
‖wε‖2

L2(Ωε
s),

where we used
‖g‖H1(Ωε

s)≤ ‖g‖H1(Ωs).

We adjust the coefficients in a proper way and choose σ̃ such that c1 := ˜̃c − c?
Φ3

Φ2
σ̃ > 0

and c2 := c?? − c?
Φ3

Φ2
σ̃ > 0. Moreover, defining γ :=

(
Φ3σ̃c̃+ c?

Φ3

Φ2
σ̃

)
/min{c1, c2} and

δ := Φ1

2ηmin{c1, c2}
, we prove the result. 2

Proof of Proposition 2.2.2

Assume that there exist (uε, vε) and (ũε, ṽε) weak solutions of the problem (1.3.1)-
(1.3.8). This means that both (uε, vε) and (ũε, ṽε) satisfy (2.1.3) and (2.1.4). We then
consider (2.1.3) in terms of (uε, vε) and we subtract (2.1.3) written for (ũε, ṽε). We choose
ϕ := vε − ṽε to obtain

a‖vε − ṽε‖H1(Ωε
f

)≤
∫

Ωε
f

Dvε∇ (vε − ṽε)∇ (vε − ṽε) dz ≤
∫

Ωε
f

Bε(vε − ṽε)∇ (vε − ṽε) dz+

−εΦ3σ̃H
∫
∂Ωε\Γ

(vε − ṽε)2 dσz + εΦ3σ̃
∫
∂Ωε\Γ

|uε − ũε| |vε − ṽε| dσz.

(2.3.5)

We have that ∫
Ωε

f

|Bε(vε − ṽε)∇ (vε − ṽε)| dz ≤
‖Bε‖∞

2 ‖vε‖2
H1(Ωε

f
).

Since we can choose ‖Bε‖∞ arbitrarily small, we can then use the same argument as in
the proof of Proposition 2.2.1.

Moreover, it holds

εΦ3σ̃
∫
∂Ωε\Γ

|uε − ũε| |vε − ṽε| dσz ≤ c̃Φ3σ̃
[
‖uε − ũε‖2

H1
`r

(Ωε
s)+‖vε − ṽε‖2

H1(Ωε
f

)

]
,

where we first used Young’s inequality and then (2.2.1). Controlling σ̃ in an analogous
way as we did in the proof of Proposition 2.2.1, (2.3.5) allows us to write

ã‖vε − ṽε‖2
H1(Ωε

f
)≤ −εΦ3σ̃H

∫
∂Ωε\Γ

(vε − ṽε)2 dσz + c̃Φ3σ̃‖uε − ũε‖2
H1

`r
(Ωε

s), (2.3.6)
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with ã > 0. Setting φ := uε − ũε in (2.1.4), we get

b‖uε − ũε‖2
H1

`r
(Ωε

s)≤
∫

Ωε
s

Duε∇ (uε − ũε)∇ (uε − ũε) dz

≤ −Φ1

∫
Ωε

s

(F (uε + g)− F (ũε + g)) (uε − ũε) dz

+ ε
Φ3

Φ2
σ̃
∫
∂Ωε\Γ

(uε − ũε)2 dσz +Hε
Φ3

Φ2
σ̃
∫
∂Ωε\Γ

|uε − ũε| |vε − ṽε| dσz (2.3.7)

Relying on similar arguments, (2.3.7) yields:

b̃‖uε− ũε‖2
H1

`r
(Ωε

s)≤ −Φ1

∫
Ωε

s

(F (uε + g)− F (ũε + g)) (uε− ũε) dz +Hc̃
Φ3

Φ2
σ̃‖vε− ṽε‖2

H1(Ωε
f

)

(2.3.8)

We notice that F ′(r) = αβ

(β + r)2 ≥ 0, therefore (F (r1 + g) − F (r2 + g)(r1 − r2) ≥ 0

∀r1, r2 ∈ R. Summing up (2.3.6) and (2.3.8), adjusting correspondingly the terms and
choosing σ̃ > 0 properly, we obtain

a1‖vε − ṽε‖2
H1(Ωε

f
)+b1‖uε − ũε‖2

H1
`r

(Ωε
s)≤ −εΦ3σ̃H

∫
∂Ωε\Γ

(vε − ṽε)2 dσz+

−Φ1

∫
Ωε

s

(F (uε + g)− F (ũε + g)) (uε − ũε) dz ≤ 0, (2.3.9)

with a1, b1 > 0. Relation (2.3.9) directly implies uε ≡ ũε and vε ≡ ṽε almost everywhere
in Ωε

s, and respectively, in Ωε
f , which means that there exists an unique weak solution of

the problem. 2

Proof of Lemma 2.2.5 We observe that, for k = 1, (2.2.14) can be written in the
following form:∫

Ωε
s

(β + g)Duε∇u1
ε∇φ dz

= ε
Φ3

Φ2
σ̃
∫
∂Ωε\Γ

g(β + g)φ dσz −
∫

Ωε
s

Φ1αgφ dz −
∫

Ωε
s

(β + g)wε∇φ dz. (2.3.10)

Indeed, we can just start from equations (2.2.6), (2.2.7), (2.2.9), substitute u0
ε = v0

ε = 0,
multiply both sides by (β + g) and then go on with the usual procedure to obtain the
weak formulation. From the definitions, we have that β is a positive constant and, since
ρr > ρl > 0, from (1.2.11) we have g(z) ≥ 0 for all z ∈ Ωε. This, together with property
(1.2.1) of Duε, implies that the form∫

Ωε
s

(β + g)Duε∇u1
ε∇φ dz

is bilinear, bounded and coercive. Moreover, from the linearity of g, we have that the
right hand side of (2.3.10) is linear and bounded for all ε > 0. Therefore, using Lemma
2.2.4, we conclude about the existence and uniqueness of the solution u1

ε ∈ H1
`r(Ωε

s).
Similarly, considering k = 1 in (2.2.13), we get∫

Ωε
f

(Dvε∇v1
ε −Bεv

1
ε)∇ϕdz = −εΦ3σ̃

∫
∂Ωε\Γ

gϕ dσz. (2.3.11)
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We have
(a− ‖Bε‖L∞(Ωε

f
))‖v1

ε‖2
H1(Ωε

f
)≤

∫
Ωε

f

(Dvε∇v1
ε −Bεv

1
ε)∇v1

ε dz,

and we can choose ‖Bε‖L∞(Ωε
f

) arbitrarily small so that (a−‖Bε‖L∞(Ωε
f

)) > 0. Therefore,
applying again Lemma 2.2.4, we can conclude about the existence and uniqueness of the
weak solution vε ∈ H1(Ωε

f ) of problem (2.3.11).

2

Proof of Theorem 2.2.1

Let wkuε
:= ukε−uk−1

ε and wkvε
:= vkε−vk−1

ε . We rewrite the respective weak formulations
(2.2.13)-(2.2.14) for (ukε , vkε ), (uk−1

ε , vk−1
ε ), we subtract them and we substitute φ = σ̃wkuε

and ϕ = wkvε
:∫

Ωε
f

(Dvε∇wkvε
−Bεw

k
vε

)∇wkvε
dz + εΦ3σ̃

∫
∂Ωε\Γ

(wk−1
uε
−Hwk−1

vε
)wkvε

dσz = 0, (2.3.12)

σ̃
∫

Ωε
s

Duε∇wkuε
∇wkuε

dz = ε
Φ3

Φ2
σ̃2
∫
∂Ωε\Γ

(wk−1
uε
−Hwk−1

vε
)wkuε

dσz

− σ̃
∫

Ωε
s

Φ1(F (uk−1
ε + g)− F (uk−2

ε + g)wkuε
dz. (2.3.13)

From (2.3.12) we have

(a− ‖Bε‖L∞(Ωε
f

))‖wkvε
‖2
H1(Ωε

f
)

≤ εΦ3σ̃

2
(
‖wk−1

uε
‖2
L2(∂Ωε\Γ)+(1 +H)‖wkvε

‖2
L2(∂Ωε\Γ)+H‖wk−1

vε
‖2
L2(∂Ωε\Γ)

)
≤ c̃Φ3σ̃

(
‖wk−1

uε
‖2
H1(Ωε

f
)+(1 +H)‖wkvε

‖2
H1(Ωε

f
)+H‖wk−1

vε
‖2
H1(Ωε

f
)

)
,

where we used Young’s inequality and (2.2.1). Assuming ‖Bε‖L∞(Ωε
f

) and σ̃ to be arbi-
trarily small, there exists a constant c1 > 0 such that

c1‖wkvε
‖2
H1(Ωε

f
)≤ c̃Φ3σ̃

(
‖wk−1

uε
‖2
H1(Ωε

f
)+H‖wk−1

vε
‖2
H1(Ωε

f
)

)
. (2.3.14)

Similarly, from (2.3.13) we obtain

bσ̃‖wkuε‖2
H1

`r
(Ωε

s)≤ ε
Φ3

2Φ2
σ̃2
[
‖wk−1

uε ‖2
L2(∂Ωε\Γ)+‖wkuε‖2

L2(∂Ωε\Γ)

]
+ ε

Φ3

2Φ2
Hσ̃2

[
‖wk−1

vε ‖2
L2(∂Ωε\Γ)+‖wkuε‖2

L2(∂Ωε\Γ)

]
+ σ̃Φ1

2

[2
δ
‖F‖2

L∞+δ‖wkuε
‖2
H1

`r
(Ωε

s)

]
, (2.3.15)

where we used Young’s Inequality and δ > 0 is arbitrarily small. We use (2.2.1) in (2.3.15)
to obtain

σ̃

(
b− c̃Φ3σ̃

Φ2
(1 +H)− Φ1δ

2

)
‖wkuε‖2

H1
`r

(Ωε
s)

≤ c̃Φ3

Φ2
σ̃2
[
‖wk−1

uε ‖2
H1

`r
(Ωε

s)+H‖wk−1
vε ‖2

H1
`r

(Ωε
s)

]
+ σ̃Φ1

δ
‖F‖2

L∞ , (2.3.16)
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Assuming σ̃ and δ to be arbitrarily small so that c2 := σ̃

(
b− c̃Φ3σ̃

Φ2
(1 +H)− Φ1δ

2

)
> 0,

we obtain

c2‖wkuε
‖2
H1

`r
(Ωε

s)≤
c̃Φ3σ̃

Φ2

(
‖wk−1

uε
‖2
H1(Ωε

f
)+H‖wk−1

vε
‖2
H1(Ωε

f
)

)
+ σ̃Φ1

δ
‖F‖2

L∞ . (2.3.17)

Summing up (2.3.14) and (2.3.17), we obtain

‖wkvε
‖2
H1(Ωε

f
)+‖wkuε

‖2
H1

`r
(Ωε

s)≤ η
(
‖wk−1

uε
‖2
H1(Ωε

f
)+‖wk−1

vε
‖2
H1(Ωε

f
)+‖F‖2

L∞

)
, (2.3.18)

with η := max
{
c̃Φ3σ̃, c̃Φ3σ̃H,

c̃Φ3σ̃

Φ2
,
c̃Φ3σ̃H

Φ2
,
σ̃Φ1

δ

}
.

We can still choose σ̃ arbitrarily small so that η < 1. Let r ∈ N, we obtain

c1‖vk+r
ε − vkε‖2

H1(Ωε
f

)+c2‖uk+r
ε − ukε‖2

H1
`r

(Ωε
s)

≤ C(‖vk+r
ε − vk+r−1

ε ‖2
H1(Ωε

f
)+...+ ‖vk+1

ε − vkε‖2
H1(Ωε

f
)

+ ‖uk+r
ε − uk+r−1

ε ‖2
H1

`r
(Ωε

s)+...+ ‖uk+1
ε − ukε‖2

H1
`r

(Ωε
s))

≤ C(ηk+r−1 + ...+ ηk)(‖v1
ε − v0

ε‖2
H1(Ωε

f
)+‖u1

ε − u0
ε‖2
H1

`r
(Ωε

s)+‖F‖2
L∞)

≤ C
ηk(1− ηr)

1− η (‖v1
ε‖2

H1(Ωε
f

)+‖u1
ε‖2
H1

`r
(Ωε

s)+‖F‖2
L∞),

where C is a positive constant independent of ε, k and r. 2

Proof of Corollary 2.2.1 From (2.2.17) we have that {ukε}k∈N and {vkε}k∈N are
Cauchy sequences in H1

`r(Ωε
s) and H1(Ωε

f ), respectively. Since H1
`r(Ωε

s) and H1(Ωε
f ) are

complete spaces, {ukε}k∈N and {vkε}k∈N converge strongly to uε and vε respectively. Taking
r → +∞ in (2.2.17), we obtain

‖vε − vkε‖2
H1(Ωε

f
)+‖uε − ukε‖2

H1
`r

(Ωε
s)≤

Cηk

1− η (‖v1
ε‖2

H1(Ωε
f

)+‖u1
ε‖2
H1

`r
(Ωε

s)+‖F‖2
L∞).

2

Remark. The iteration technique we just applied to prove the existence of solutions gives
us also the uniqueness. Namely, we showed two different ways to prove that the solution
(uε, vε) ∈ H1

`r(Ωε
s)×H1(Ωε

f ) of problem (2.1.3)-(2.1.4) is unique.
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Chapter 3

Passage to the homogenization limit

The aim of this chapter is to determine the strong formulation of the microscopic
problem (1.3.1)-(1.3.8). Since we need to use two scale convergence and homogenization
arguments, in the first section of this chapter we present some definitions and results of
the Homogenization theory. We refer to chapter 9 of [12], chapter 3 of [29], [4] for the
results related to homogenization theory and two-scale convergence; to [2], [16] when it
comes to the application of those results.

3.1 The concept of two-scale convergence

Let Ω be a bounded open set in RN and Y := ∏N
i=1[0, `i], with `1,..., `N given positive

numbers, be the reference cell.

Definition 3.1.1. Let fε be a sequence of functions in L2(Ω). One says that fε two-
scale converges to f0 = w0(x, y) with w0 ∈ L2(Ω×Y ) if for any function ϕ = ϕ(x, y) ∈
D(Ω, C∞# (Y )) one has

lim
ε→0

∫
Ω
fε(x)ϕ

(
x,
x

ε

)
dx = 1

|Y |

∫
Ω

∫
Y
f0(x, y)ϕ(x, y) dydx. (3.1.1)

We denote (3.1.1) by fε ⇒ f0, ε→ 0.

The following is a compactness result that is important for our discussions, it allows
us to pass to the two-scale limit.

Theorem 3.1.1. (i) Let fε be a bounded sequence in L2(Ω). Then there exists a subse-
quence f ′ε and a function f0 ∈ L2(Ω× Y ) such that f ′ε ⇒ f0, ε→ 0.

(ii) Let fε be a bounded sequence in H1(Ω), which converges weakly to a limit function
f0 ∈ H1(Ω× Y ). Then there exists f1 ∈ L2(Ω;H1

#(Y )/R) such that up to a subsequence
fε two-scale converges to f0(x, y) and ∇fε ⇒ ∇xf0 +∇yf1, ε→ 0.

Let Σε be a ε-periodic surface.
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Definition 3.1.2. A sequence fε ∈ L2(Σε) two scale converges f0(x, y) ∈ L2(Ω × Σ) if
for any ϕ ∈ D(Ω;C∞# (Σ) we have

lim
ε→0

∫
Σε

fε(x)ϕ
(
x,
x

ε

)
dσx =

∫
Ω

∫
Σ
f0(x, y)ϕ(x, y) dσydx. (3.1.2)

We denote (3.1.2) by fε
S

⇒f0, ε→ 0.

We present another compactness result related to ε-periodic surfaces.

Theorem 3.1.2. (i) From each bounded sequence fε ∈ L2(Σε), one can extract a subse-
quence fε which two-scale converges to a function f0 ∈ L2(Ω× Σ).

(ii) If a sequence of functions fε is bounded in L∞(Σε), then fε two-scale converges
to a function f0 ∈ L∞(Ω× Σ).

For the proof of (i) and (ii), we refer the reader to [28] and [24], respectively.

The final result of this section is an extension result in Sobolev spaces. We need
it in order to be able to apply the two-scale compactness, since in Theorem 3.1.1 we
consider the whole domain Ω, and not a perforated domain Ωε. For additional details on
extensions, see [1].

Theorem 3.1.3. Assume ∂Ωε to be Lipschitz. If fε ∈ H1(Ωε), it exists an extension
f̃ε ∈ H1(Ω) of fε, such that

‖f̃ε‖H1(Ω)≤ c‖fε‖H1(Ωε), (3.1.3)
where c is independent of ε.

3.2 Homogenization of the microscopic problem

Step 1: Extension

From Proposition 2.2.1 we have that uε and vε are uniformly bounded in H1
`r(Ωε

s) and
H1(Ωε

f ), respectively, namely there exist C > 0 independent of ε such that

‖uε‖H1
`r

(Ωε
s)≤ C,

‖vε‖H1(Ωε
f

)≤ C.

From (3.1.3) we obtain the existence of ũε ∈ H1
`r(Ωs) and ṽε ∈ H1(Ωf ) such that

‖ũε‖H1
`r

(Ωs)≤ C̃, (3.2.1)

‖ṽε‖H1(Ωf )≤ C̃, (3.2.2)

with C̃ > 0 independent of ε. From now on, when it comes to the homogenization process,
we will always refer to the extended functions. However, for simplicity, we get rid of the
tilde˜notation.
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Step 2: Compactness

Since uε is uniformly bounded in H1
`r(Ωs), applying Theorem 3.1.1, there exist

u0 ∈ H1
`r(Ωs;L2(Ys)),

u1 ∈ L2(Ωs;H1
#(Ys)/R)

such that
uε ⇒ u0,

∇uε ⇒ ∇u0 +∇yu1,

as ε→ 0. Similiarly, since vε is uniformly bounded in H1(Ωf ), there exist

v0 ∈ H1(Ωf ;L2(Yf )),

v1 ∈ L2(Ωf ;H1
#(Yf )/R)

such that
vε ⇒ v0,

∇vε ⇒ ∇v0 +∇yv1,

as ε→ 0.

We now rely on the following homogenization ansatz:

uε(z) =
[
u0(z, y) + εu1(z, y) + ε2u2(z, y) + h.o.t

]
|y:= x

ε

, (3.2.3)

vε(z) =
[
v0(z, y) + εv1(z, y) + ε2v2(z, y) + h.o.t

]
|y:= x

ε

(3.2.4)

Proposition 3.2.1. Assuming (3.2.3) and(3.2.4), we have u0 = u0(z) and v0 = v0(z).

Proof. If f = f
(
z,
z

ε

)
is a sufficiently smooth function, then the following calculation

rule applies:
d

dz
f
(
z,
z

ε

)
= ∂zf

(
z,
z

ε

)
+ 1
ε
∂y

(
z,
z

ε

)
|y:= z

ε

. (3.2.5)

We substitute (3.2.3) in (1.3.2) to obtain(
∇z + 1

ε
∇y

)
·
(
−Du(y)

(
∇z + 1

ε
∇y

)
(u0 + g + εu1 + ε2u2 + h.o.t)

)
= −Φ1F (uε + g),

(3.2.6)
with

F (uε + g) = α(u0 + εu1 + ε2u2 +O(ε2) + g)
β + (u0 + εu1 + ε2u2 +O(ε2) + g) .

Multyplying both sides of (3.2.6) by (β + u0 + εu1 + ε2u2 +O(ε2) + g), we get

(β + u0 + εu1 + ε2u2 +O(ε2) + g)
(
∇z + 1

ε
∇y

)
·(

−Du(y)
(
∇z + 1

ε
∇y

)
(u0 + g + εu1 + ε2u2 +O(ε2))

)
= −Φ1α(u0 + εu1 + ε2u2 +O(ε2) + g). (3.2.7)
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We consider the part of (3.2.7) corresponding to the term of power ε−2:

−(β + u0 + g)∇y · (Du(y)∇yu0) = 0 in Ys,

that is satisfied either if u0 = −β − g in Ys, which implies u0 = u0(z), or if

−∇y · (Du(y)∇yu0) = 0 in Ys. (3.2.8)

We substitute (3.2.3) in (1.3.3) to obtain

Du(y)
(
∇z + 1

ε
∇y

)
((u0 + g + εu1 + ε2u2 + h.o.t)) · n(y)

= Φ3

Φ2
σ̃(ε(u0 + g −Hv0) + ε2(u1 −Hv1) + h.o.t) on ∂Ys. (3.2.9)

In (3.2.9), we just consider the terms corresponding to ε−1 and we get

−Du(y)∇yu0 · n(y) = 0 on ∂Ys. (3.2.10)

Putting (3.2.8) and (3.2.10) together we obtain the following problem
−∇y · (Du(y)∇yu0) = 0 in Ys,
−Du(y)∇yu0 · n(y) = 0 on ∂Ys,
u0(z, ·) is Ys − periodic for each given z ∈ Ωs.

(3.2.11)

(3.3.7) implies u0 = u0(z), z ∈ Ωs.

We substitute (3.2.4) in (1.3.1) to obtain(
∇z + 1

ε
∇y

)
· (−Dv(y)

(
∇z + 1

ε
∇y

)
(v0 + εv1 + ε2v2 + h.o.t)

+B(y)(v0 + εv1 + ε2v2 + h.o.t)) = 0. (3.2.12)

We consider the part of (3.2.12) corresponding to the term of power ε−2:

−∇y · (Dv(y)∇yv0) = 0 in Yf . (3.2.13)

We substitute (3.2.4) in (1.3.4) to obtain(
−Dv(y)

(
∇z + 1

ε
∇y

)
(v0 + εv1 + ε2v2 + h.o.t) +B(y)(v0 + εv1 + ε2v2 + h.o.t)

)
· n(y)

= Φ3σ̃(ε(u0 + g −Hv0) + ε2(u1 −Hv1) + h.o.t) on ∂Yf . (3.2.14)

In (3.2.14), we just consider the terms corresponding to ε−1 and we get

−Dv(y)∇yv0 · n(y) = 0 on ∂Yf . (3.2.15)

Putting (3.2.13) and (3.2.15) together we obtain the following problem
−∇y · (Dv(y)∇yv0) = 0 in Yf ,
−Dv(y)∇yv0 · n(y) = 0 on ∂Yf ,
v0(z, ·) is Yf − periodic for each given z ∈ Ωf .

(3.2.16)

(3.3.8) implies v0 = v0(z), z ∈ Ωf . 2
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Remark. If we were to develop the analysis in 3 dimensions, we could have proved
Proposition 3.2.1 using a direct application of Rellich–Kondrachov theorem. We refer the
reader to section 5.7 of [14]. Indeed, we can use the fact that, in 3 dimensions, H1(·) is
compactly embedded in L2(·). Since uε is bounded in H1

`r(Ωs), it will converge strongly to
a function û0 = û0(x) in L2(Ωs). From Theorem 3.1.1, we know that uε converges weakly
to a function u0 = u0(x, y) in L2(Ωs × Ys). Therefore, from the uniqueness of the weak
limit, we conclude

û0(x) ≡ u0(x, y) ≡ u0(x).

Step 3: Weak formulation of the limit two-scale problem

For simplicity of notation, we define Σε := ∂Ωε \ Γ. We also assume

|Ys|= |Yf |= 1. (3.2.17)

We now consider (2.1.3) and we choose ϕ = ψ(z) + εψ1

(
z,
z

ε

)
, where ψ ∈ C∞0 (Ωf ) and

ψ1 ∈ C∞0 (Ωf ;C∞# (Yf )). We have

∫
Ωf

(Dvε(z)∇vε −Bεvε)
(
∇ψ(z) + ε∇xψ1

(
z,
z

ε

)
+∇yψ1

(
z,
z

ε

))
dz+

+ εΦ3σ̃
∫

Σε

(uε + g −Hvε)
(
ψ(z) + εψ1

(
z,
z

ε

))
dσε = 0. (3.2.18)

Rearranging the terms of (3.2.18), we obtain
∫

Ωf

(Dvε(z)∇vε −Bεvε)
(
∇ψ(z) +∇yψ1

(
z,
z

ε

))
dz

+ ε
∫

Ωf

(Dvε(z)∇vε −Bεvε)∇zψ1

(
z,
z

ε

)
dz+

+ εΦ3σ̃
∫

Σε

(uε + g −Hvε)ψ(z) dσε + ε2Φ3σ̃
∫

Σε

(uε + g −Hvε)ψ1

(
z,
z

ε

)
dσε = 0

(3.2.19)

We now pass to the two scale limit for ε → 0. We recall Definition 3.1.1 and 3.1.2 and
the compactness step; notice that the second and fourth integrals on the left hand side
of (3.2.19) go to zero when ε→ 0, we end up with

∫
Ωf

∫
Yf

[Dv(y) (∇v0 +∇yv1)−B(y)v0] (∇ψ(z) +∇yψ1 (z, y)) dzdy

= −Φ3σ̃
∫

Ωf

∫
Σ

(u0 + g −Hv0)ψ(z) dzdσy.

We now consider (2.1.4) and we choose φ = θ(z) + εθ1

(
z,
z

ε

)
, where θ ∈ C∞0 (Ωs) and

θ1 ∈ C∞0 (Ωs;C∞# (Ys)). We have
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∫
Ωε

s

Duε(z)∇uε
(
∇θ(z) + ε∇zθ1

(
z,
z

ε

)
+∇yθ1

(
z,
z

ε

))
dz

− εΦ3
Φ2
σ̃

∫
Σε

(uε + g −Hvε)
(
θ(z) + εθ1

(
z,
z

ε

))
dσε

= −
∫

Ωε
s

Φ1F (uε + g)
(
θ(z) + εθ1

(
z,
z

ε

))
dz

−
∫

Ωε
s

wε

(
∇θ(z) + ε∇zθ1

(
z,
z

ε

)
+∇yθ1

(
z,
z

ε

))
dz. (3.2.20)

Rearranging the terms of (3.2.20), we obtain∫
Ωε

s

Duε(z)∇uε
(
∇θ(z) +∇yθ1

(
z,
z

ε

))
dz + ε

∫
Ωε

s

Duε(z)∇uε∇xθ1

(
z,
z

ε

)
dz

− εΦ3

Φ2
σ̃
∫

Σε
(uε + g −Hvε)θ(z) dσz − ε2 Φ3

Φ2
σ̃
∫

Σε
(uε + g −Hvε)θ1

(
z,
z

ε

)
dσε

= −
∫

Ωε
s

Φ1F (uε + g)θ(z) dz − ε
∫

Ωε
s

Φ1F (uε + g)θ1

(
z,
z

ε

)
dz

−
∫

Ωε
s

wε

(
∇θ(z) +∇yθ1

(
z,
z

ε

))
dz − ε

∫
Ωε

s

wε∇zθ1

(
z,
z

ε

)
dzdy. (3.2.21)

Passing to the two-scale limit for ε→ 0 in (3.2.21), we obtain∫
Ωs

∫
Ys

Du(y)(∇u0 +∇yu1) (∇θ(z) +∇yθ1 (z, y)) dz − Φ3

Φ2
σ̃
∫

Ωs

∫
Σ

(uε + g −Hvε)θ(z) dzdσy

= −
∫

Ωs

∫
Ys

Φ1F (u0 + g)θ(z) dzdy −
∫

Ωs

∫
Ys

w(y) (∇θ(z) +∇yθ1 (z, y)) dzdy, (3.2.22)

with w(y) := Du(y)w̃. Notice that we used the continuity of F in order to pass to the
limit.
Definition 3.2.1. The weak formulation of the two scale limit problem reads as follows:

Find

(u0, v0, u1, v1) ∈ H1
`r(Ωs)×H1(Ωf )× L2(Ωs;H1

#(Ys)/R)× L2(Ωf ;H1
#(Yf )/R)

that satisfies the following system:

∫
Ωf

∫
Yf

[Dv(y) (∇v0 +∇yv1)−B(y)v0] (∇ψ(z) +∇yψ1 (z, y)) dzdy

= −Φ3σ̃
∫

Ωf

∫
Σ

(u0 + g −Hv0)ψ(z) dzdσy, (3.2.23)

∫
Ωs

∫
Ys

Du(y)(∇u0 +∇yu1) (∇θ(z) +∇yθ1 (z, y)) dz − Φ3

Φ2
σ̃
∫

Ωs

∫
Σ

(u0 + g −Hv0)θ(z) dzdσy

= −
∫

Ωs

∫
Ys

Φ1F (u0 + g)θ(z) dzdy −
∫

Ωs

∫
Ys

w(y) (∇θ(z) +∇yθ1 (z, y)) dzdy, (3.2.24)

for all ψ ∈ C∞0 (Ωf ), ψ1 ∈ C∞0 (Ωf ;C∞# (Yf )), θ ∈ C∞0 (Ωs), θ1 ∈ C∞0 (Ωs;C∞# (Ys)).
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Step 4: Strong formulation of the two-scale limit problem Integrating (3.2.23)
by parts, we end up with∫

Ωf

−∇z ·
(∫

Yf

Dv(y) (∇v0 +∇yv1)−B(y)v0 dy

)
ψ(z) dz

+
∫

Ωf

∫
Yf

−∇y · (Dv(y)(∇v0 +∇yv1)−B(y)v0)ψ1 (z, y) dzdy

= −Φ3σ̃
∫

Ωf

∫
Σ

(u0 + g −Hv0)ψ(z) dzdσy. (3.2.25)

Integrating (3.2.24) by parts, we end up with∫
Ωs

−∇z ·
(∫

Ys

Du(y)(∇u0 +∇yu1) dy
)
θ(z) dz

+
∫

Ωs

∫
Ys

−∇y · (Du(y)(∇u0 +∇yu1))θ1 (z, y) dzdy

= Φ3

Φ2
σ̃
∫

Ωs

∫
Σ

(uε + g −Hvε)θ(z) dzdσy

−
∫

Ωs

∫
Ys

Φ1F (u0 + g)θ(z) dzdy +
∫

Ωs

∇z ·
(∫

Ys

w(y) dy
)
θ(z) dz

+
∫

Ωs

∫
Ys

∇y · (w(y))θ1 (z, y) dzdy (3.2.26)

Choosing ψ = 0 in (3.2.25), we obtain

−∇y · (Dv(y)(∇v0 +∇yv1)−B(y)v0) = 0 in Ωf × Yf . (3.2.27)

Choosing ψ1 = 0 in (3.2.25), we obtain

−∇z ·
(∫

Yf

Dv(y)(∇v0 +∇yv1)−B(y)v0 dy

)
= −Φ3σ̃|Σ|(u0 + g−Hv0) in Ωf . (3.2.28)

Choosing θ = 0 in (3.2.26), we obtain

−∇y · (Du(y)(∇u0 + w̃ +∇yu1)) = 0 in Ωs × Ys. (3.2.29)

Choosing θ1 = 0 in (3.2.26), we obtain

−∇z ·
(∫

Ys

Du(y)(∇u0 +∇yu1) dy
)

= Φ3

Φ2
σ̃|Σ|(u0 + g −Hv0)− Φ1F (u0 + g) in Ωs, (3.2.30)

where we used that ∇z ·
(∫
Ys
w(y) dy

)
= 0.

Lemma 3.2.1. Let ∇y ·B(y) = 0. We can write

u1(z, y) = −
2∑
j=1

wj(y)∂zj
(u0 + g) + ũ1(z) (3.2.31)
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and
v1(z, y) = −

2∑
j=1

ŵj(y)∂zj
v0 + ṽ1(z), (3.2.32)

where the cell functions wj are solutions of the cell problems
−∇y · (Du(y)∇ywj) = −∑2

i=1 ∂yi
Dij
u (y) in Ys,∫

Ys
wj(y) dy = 0

wj is Ys − periodic for all j ∈ {1, 2},
(3.2.33)

and where the cell functions ŵj are solutions of the cell problems
−∇y · (Dv(y)∇yŵj) = −∑2

i=1 ∂yi
Dij
v (y) in Yf ,∫

Yf
ŵj(y) dy = 0

ŵj is Yf − periodic for all j ∈ {1, 2}.
(3.2.34)

Proof. We substitute (3.2.31) in (3.2.29) to obtain

−∇y · (Du(y)∇z(u0(z) + g)) = −∇y ·

Du(y)
2∑
j=1
∇ywj(y)∂zj

(u0 + g)
 ,

which implies (3.2.33).

We substitute (3.2.32) in (3.2.27) to obtain

−∇y · (Dv(y)∇zv0(z)−B(y)v0(z)) = −∇y ·

Dv(y)
2∑
j=1
∇yŵj(y)∂zj

v0

 .
Noticing that ∇y · (B(y)v0) = v0∇y · (B(y)) = 0, we obtain (3.2.34). 2

Assuming B to be divergence free and using Lemma 3.2.1, we are able to derive the
strong form of the two-scale limit problem.

Proposition 3.2.2. The strong formulation of the two-scale limit problem reads as fol-
lows

−∑2
i,k=1

[
Dik
v ∂

2
zizk

v0 −Bi∂zi
v0
]

= −Φ3σ̃|Σ|(u0 + g −Hv0) in Ωf ,

−∑2
i,k=1

[
Dik
u ∂

2
zizk

u0
]

= Φ3

Φ2
σ̃|Σ|(u0 + g −Hv0)− Φ1F (u0 + g) in Ωs,

(−Du∇zu0) · n = 0 on ΓN \ ∂Ωf

(−Dv∇zv0 + Bv0) · n = 0 on Γ ∩ ∂Ωf

u0(z) = 0 z ∈ ΓD`
u0(z) = 0 z ∈ ΓDr .

(3.2.35)

where
Dik
v :=

2∑
j=1

∫
Yf

(
Dik
v −Dij

v ∂yj
ŵk
)
dy,
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Bi =
∫
Yf

Bi(y) dy,

Dik
u :=

2∑
j=1

∫
Ys

(
Dik
u −Dij

u ∂yj
wk
)
dy.

Proof. From Lemma 3.2.1, we substitute (3.2.31) in (3.2.30) and (3.2.32) in (3.2.28),
respectively. 2

Remark. If one removes the assumption (3.2.17), the final strong formulation of the
two-scale limit problem reads as follows

−∑2
i,k=1

[
Dik
v ∂

2
zizk

v0 −Bi∂zi
v0
]

= −Φ3σ̃|Σ||Yf |(u0 + g −Hv0) in Ωf ,

−∑2
i,k=1

[
Dik
u ∂

2
zizk

u0
]

= |Ys|
(

Φ3

Φ2
σ̃|Σ|(u0 + g −Hv0)− Φ1F (u0 + g)

)
in Ωs,

(−Du∇zu0) · n = 0 on ΓN \ ∂Ωf

(−Dv∇zv0 + Bv0) · n = 0 on Γ ∩ ∂Ωf

u0(z) = 0 z ∈ ΓD`
u0(z) = 0 z ∈ ΓDr .

where
Dik
v :=

2∑
j=1

∫
Yf

(
Dik
v −Dij

v ∂yj
ŵk
)
dy,

Bi =
∫
Yf

Bi(y) dy,

Dik
u :=

2∑
j=1

∫
Ys

(
Dik
u −Dij

u ∂yj
wk
)
dy.
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Step 5: Well posedness of the two-scale limit problem

The existence of a solution of the strong formulation of the two-scale limit problem
is a direct consequence of the existence of the two-scale limit. Therefore, we just present
the proof of the uniqueness. For details on the following result, we refer the reader to
section 2.3 of [8].
Lemma 3.2.2. The operators Dik

v and Dik
u satisfy the following coercivity conditions:

There exists γ > 0 such that
2∑

i,k=1
Dik
v ξiξj ≥ α|ξ|2, (3.2.36)

2∑
i,k=1

Dik
u ξiξj ≥ α|ξ|2, (3.2.37)

∀ξ ∈ R2.
Proof.

Dik
v =

2∑
j=1

∫
Yf

(
Dik
v −Dij

v ∂yj
ŵk
)
dy =

=
∫
Yf

Dv(y) (−∇yŵk + ek) · ei dy =
∫
Yf

(Dv(y) (ei −∇yŵi)) · (ek −∇yŵk) dy,

so from the coercivity of Dv(y) we obtain (3.2.36). The procedure to obtain (3.2.37) is
analogous.
Proposition 3.2.3. Let B ∈ L∞(Ωf ) with ‖B‖L∞(Ωf ) be arbitrarily small and let σ̃ > 0
be arbitrarily small as well. There exists a unique solution (u0, v0) ∈ H1

`r(Ωs) ×H1(Ωf )
of the problem (3.2.23)-(3.2.24).
Proof. Let us assume there exist two different solutions (u0, v0) and (u0, v0) of our prob-
lem in the sense of Definition 2.1.1. Then both (u0, v0) and (u0, v0) satisfy (3.2.23),
so we subtract the corresponding weak formulations, use (3.2.32), and choose ψ1 = 0,
ψ = v0 − v0 to obtain∫

Ωf

∫
Yf

Dv(y)(I − Ŵ )∇(v0 − v0)∇(v0 − v0) dzdy =
∫

Ωf

∫
Yf

B(y)(v0 − v0)∇(v0 − v0) dzdy

− Φ3σ̃
∫

Ωf

∫
Σ

(u0 − u0)(v0 − v0) dzdσy + Φ3σ̃H
∫

Ωf

∫
Σ

(v0 − v0)2 dzdσy, (3.2.38)

where I is the identity matrix and

Ŵ =
(
∂y1ŵ1 ∂y1ŵ2
∂y2ŵ1 ∂y2ŵ2

)
.

Similiarly, both (u0, v0) and (u0, v0) satisfy (3.2.24), so we subtract the corresponding
weak formulations, use (3.2.31), and choose θ1 = 0, θ = u0 − u0 to obtain∫

Ωs

∫
Ys

Du(y)(I −W )∇(u0 − u0)∇(u0 − u0) dzdy = Φ3

Φ2
σ̃
∫

Ωs

∫
Σ

(u0 − u0)2 dzdσy

−HΦ3

Φ2
σ̃
∫

Ωs

∫
Σ

(v0 − v0)(u0 − u0) dzdσy − Φ1

∫
Ωs

∫
Ys

(F (u0 + g)− F (u0 + g))(u0 − u0) dzdy,

(3.2.39)
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with
W =

(
∂y1w1 ∂y1w2
∂y2w1 ∂y2w2

)
.

Using Lemma 3.2.2 we get

a‖v0 − v̂0‖2
H1(Ωf )≤

∫
Ωf

∫
Yf

Dv(y)(I + Ŵ )∇(v0 − v0)∇(v0 − v0) dzdy

and
b‖u0 − û0‖2

H1(Ωf )≤
∫

Ωs

∫
Ys

Du(y)(I + Ŵ )∇(u0 − u0)∇(u0 − u0) dzdy.

From this point on, the proof is analogous to the one of Proposition 2.2.2.

3.3 Corrector Estimates

We saw in section 3.2 that we can write

uε(z) = u0(z) + εu1

(
z,
z

ε

)
+ ε2u2

(
z,
z

ε

)
+ h.o.t.,

where uj(z, ·) are periodic functions in Ys for each j ∈ N, z ∈ Ω. It is possible to show
that we can write

u1

(
z,
z

ε

)
= −

2∑
k=1

χk1

(
z

ε

)
∂u0

∂zk
(z) (3.3.1)

and
u2

(
z,
z

ε

)
=

2∑
k,`=1

γk`1

(
z

ε

)
∂2u0

∂zk∂zl
(z), (3.3.2)

with χk1 ∈ H1(Ys) solving


−∇y · (Du(y)χk1(y)) = ∑2

i=1 ∂yi
Dij
u (y) in Ys,

−Du(y)χk1(y) · n(y) = Dij
u ni on ∂Ys,

χk1 is Ys − periodic,
(3.3.3)

and γk`1 ∈ H1(Ys) solving

−∑2
i=1

∂

∂yi

[
Dij
u (y)

(
∂γk`1
∂yj
− δ`jχk1(y)

)]
= −∑2

`,j=1
∂(χk1 − yk)

∂yj
− |Ys|
|Y |

q̂ik1 in Ys,

∑2
i,j=1D

ij
u (y)

(
∂γk`1
∂yj
− δ`jχk1(y)

)
ni = 0 on ∂Ys,

γk`1 is Ys − periodic,
(3.3.4)

where
q̂ik1 = 1

|Ys|

(∫
Ys

Dik
u (y) dy −

∫
Ys

Dij
u (y)∂χ

k
1(y)
∂yj

dy

)
.
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Similarly, we can write

vε(z) = v0(z) + εv1

(
z,
z

ε

)
+ ε2v2

(
z,
z

ε

)
+ h.o.t.

It is possible to show that we can write

v1

(
z,
z

ε

)
= −

2∑
k=1

χk2

(
z

ε

)
∂v0

∂zk
(z) (3.3.5)

and
v2

(
z,
z

ε

)
=

2∑
k,`=1

γk`2

(
z

ε

)
∂2v0

∂zk∂zl
(z), (3.3.6)

with χk2 ∈ H1(Yf ) solving


−∇y · (Dv(y)χk2(y)) = ∑2

i=1 ∂yi
Dij
v (y) in Yf ,

−Dv(y)χk2(y) · n(y) = Dij
v ni on ∂Yf ,

χk2 is Yf − periodic,
(3.3.7)

and γk`2 ∈ H1(Yf ) solving

−∑2
i=1

∂

∂yi

[
Dij
v (y)

(
∂γk`2
∂yj
− δ`jχk2(y)

)]
= −∑2

`,j=1
∂(χk2 − yk)

∂yj
− |Yf |
|Y |

q̂ik2 in Yf ,

∑2
i,j=1D

ij
v (y)

(
∂γk`2
∂yj
− δ`jχk2(y)

)
ni = 0 on ∂Yf ,

γk`2 is Yf − periodic,
(3.3.8)

where
q̂ik2 = 1

|Yf |

(∫
Yf

Dik
v (y) dy −

∫
Yf

Dij
v (y)∂χ

k
2(y)
∂yj

dy

)
.

We refer the reader to chapter 2 of [13] for a complete discussion of the results that
we just mentioned, i.e the structure of (3.3.5)-(3.3.8).

From now on, we denote with C a generic constant independent of ε. Let us define
two functions muε and mvε such that

• muε ∈ D(Ωs),

• muε = 0 if dist(z, ∂Ωs) ≤ ε,

• muε = 1 if dist(z, ∂Ωs) ≥ 2ε,

• ε

∣∣∣∣∣∂muε

∂zi

∣∣∣∣∣ ≤ C, i = 1, 2,
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• mvε ∈ D(Ωf ),

• mvε = 0 if dist(z, ∂Ωf ) ≤ ε,

• mvε = 1 if dist(z, ∂Ωf ) ≥ 2ε,

• ε

∣∣∣∣∣∂mvε

∂zi

∣∣∣∣∣ ≤ C, i = 1, 2.

Theorem 3.3.1. Let B(·) be divergence free. Let Bε ∈ L∞(Ωε
f ). Let us assume there

exists a constant γ such that

‖Bε −B‖L∞(Ωε
f

)≤ Cεγ, (3.3.9)

with C independent of ε. The following estimate holds:

‖uε−u0−muε(εu1+ε2u2)‖H1
`r

(Ωε
s)+‖vε−v0−mvε(εv1+ε2v2)‖H1(Ωε

f
)≤ c1ε

1/2+c2ε
γ, (3.3.10)

with c1 and c2 independent of ε.

Proof. We have to find an estimate for the function

Φuε := uε − u0 −muε(εu1 + ε2u2) = φε + (1−muε)(εu1 + ε2u2),

where φε := uε − (u0 + εu1 + ε2u2).

We introduce the following operators:

U0 = −∇y · (Du(y)∇y) ,
U1 = −∇z · (Du(y)∇y)−∇y · (Du(y)∇z) , (3.3.11)
U2 = −∇z · (Du(y)∇z) .

Let us introduce the following notation:

∂f

∂νU0

:= Du(y)∇yf · n.

Equating the coefficients corresponding to the powers ε−2, ε−1 and ε0 in (3.2.7) and the
ones corresponding to the powers ε−1, ε0 and ε1 in (3.2.9), respectively, we obtain:

U0u0 = 0 in Ys,
∂u0

∂νU0

= 0 on ∂Ys,

u0(z, ·) is Ys − periodic for each given z ∈ Ωs,

(3.3.12)


U0u1 = −U1(u0 + g) in Ys,
∂u1

∂νU0

= −Du(y)∇z(u0 + g) · n(y) on ∂Ys,

u1(z, ·) is Ys − periodic for each given z ∈ Ωs,

(3.3.13)
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
U0u2 = − u1

β + u0 + g
[U1(u0 + g) + U0u1]− Φ1α(u0 + g)

β + u0 + g
− U1u1 − U2(u0 + g) in Ys,

∂u2

∂νU0

= Φ3

Φ2
σ̃(u0 + g −Hv0)−Du(y)∇zu1 · n(y) on ∂Ys,

u2(z, ·) is Ys − periodic for each given z ∈ Ωs.

(3.3.14)

We can show that, if we consider a sufficiently smooth function fε(z) = f
(
z,
z

ε

)
, the

following chain rule of differentiation holds:

−∇z · (Duε∇zfε) = [(ε−2U0 + ε−1U1 + U2)f ]
(
z,
z

ε

)
. (3.3.15)

We have that on Ωε
s, the function φε satisfies

−∇z · (Duε∇zφε) = [(ε−2U0 + ε−1U1 + U2)φ]
(
z,
z

ε

)
= −∇z · (Duε∇zuε)− ε−2U0u0 − ε−1(U0u1 + U1u0)
− (U0u2 + U1u1 + U2u0)− ε(U1u2 + U2u1)− ε2U2u2

= −Φ1F (uε + g) + Φ1α(u0 + g)
β + u0 + g

− ε(U1u2 + U2u1)− ε2U2u2,

where we used (3.3.12), (3.3.13), (3.3.14), and (1.3.2). Notice that we also used

∇z · (Duεw̃)
(
z,
z

ε

)
=
[(
∇z + 1

ε
∇y

)
· (Duεw̃)

]
|y= z

ε

.

Similarly, using (1.3.3), (3.2.9), we obtain that on Σε, φε satisfies the relation:

Duε∇zφε · n = ε
Φ3

Φ2
σ̃(uε − u0 −H(vε − v0))− ε2Duε∇zu2 · n.

Therefore, φε satisfies the following system:

−∇z · (Duε∇zφε) = gε in Ωε
s,

Duε∇zφε · n = ε
Φ3

Φ2
σ̃(uε − u0 −H(vε − v0))− ε2Duε∇zu2 · n on Σε,

φε = −εu1 − ε2u2 on ΓD` ∪ ΓDr ,
Duε∇zφε · n = −ε2Duε∇zu2 · n on ΓN \ ∂Ωε

f ,

(3.3.16)

where

gε := −Φ1F (uε + g) + Φ1α(u0 + g)
β + u0 + g

− ε(U1u2 + U2u1)− ε2U2u2. (3.3.17)

Let φ ∈ H1
`r(Ωε

s) be taken arbitrarily. We have∫
Ωε

s

Duε∇zφε∇zφ dz =
∫

Ωε
s

gεφ dz

+
∫

Σε

(
−εΦ3

Φ2
σ̃(uε − u0 −H(vε − v0)) + ε2Duε∇zu2 · n

)
φ dσ

+
∫

ΓN\∂Ωε
f

ε2Duε∇zu2 · nφ dσ. (3.3.18)
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Noticing that F (u0 + g) = Φ1α(u0 + g)
β + u0 + g

, we can use the Taylor expansion of F (·) in a
neighborhood of u0 + g, and we conclude that

|F (uε + g)− F (u0 + g)|≤ ε|F ′(u0 + g)|. (3.3.19)

Using (3.3.19), we can conclude that

‖gε‖L2(Ωε
s)≤ εC, (3.3.20)

with C independent of ε. Indeed, we notice that using (3.3.5), (3.3.6) and (3.3.11), we
are able to express (3.3.38) in terms of

• the derivatives of u0 up to the fourth order, which are in L∞(Ωs);

• χk1 and γk`1 , that are in H1(Ys), k, l ∈ {1, 2}.

Let us define
Nε := |Ω|

|εY |
≈ ε−2 |Ω|

|Y |
,

we have
(∫

Σε

|Duε∇zu2 · n|2 dσz
)1/2
≤

C 2∑
k,`=1

∫
Σε

∣∣∣∣γk`1

(
x

ε

)∣∣∣∣2 dσz
1/2

=
Cε 2∑

k,`=1

Nε∑
i=1

∫
Σ

∣∣∣γk`1 (y)
∣∣∣2 dσy

1/2

≈

Cε−1 |Ω|
|Y |

2∑
k,`=1

∫
Σ

∣∣∣γk`1 (y)
∣∣∣2 dσy

1/2

= C̃ε−1/2,

(3.3.21)

where we used the periodicity of γk`1 .

From (3.3.20) we obtain ∣∣∣∣∣
∫

Ωε
s

gεφ dz

∣∣∣∣∣ ≤ Cε‖φ‖H1
`r

(Ωε
s) (3.3.22)

while from (3.3.21) we obtain∣∣∣∣∫
Σε
ε2Duε∇zu2 · nφ dσ

∣∣∣∣ ≤ Cε3/2‖φ‖L2(Σε)≤ Cε‖φ‖H1
`r

(Ωε
s), (3.3.23)

where we used (2.2.1). Recalling Proposition 2.2.1, and using again (2.2.1) and the
regularity of u0 and v0, we get∣∣∣∣∣

∫
Σε
−εΦ3

Φ2
σ̃(uε − u0 −H(vε − v0))φ dσ

∣∣∣∣∣ ≤ Cε‖φ‖L2(Σε)≤ Cε1/2‖φ‖H1
`r

(Ωε
s). (3.3.24)

Recalling Lemma 2.2.1, we get∣∣∣∣∣
∫

ΓN\∂Ωε
f

ε2Duε∇zu2 · nφ dσ
∣∣∣∣∣ ≤ Cε2‖φ‖L2(ΓN\∂Ωε

f
)≤ Cε2‖φ‖H1

`r
(Ωε

s). (3.3.25)
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Combining (3.3.22), (3.3.23), (3.3.24) and (3.3.25) we get∣∣∣∣∣
∫

Ωε
s

Duε∇zφε∇zφ dz

∣∣∣∣∣ ≤ Cε2‖φ‖H1
`r

(Ωε
s)+Cε‖φ‖H1

`r
(Ωε

s)+Cε1/2‖φ‖H1
`r

(Ωε
s)≤ Cε1/2‖φ‖H1

`r
(Ωε

s).

(3.3.26)

We observe that the following upper bound holds:∣∣∣∣∣
∫

Ωε
s

Duε∇z((1−muε)(εu1 + ε2u2))∇zφ dz

∣∣∣∣∣
≤ C‖∇z((1−muε)(εu1 + ε2u2))‖L2(Ωε

s)‖φ‖H1
`r

(Ωε
s). (3.3.27)

and

‖∇z((1−muε)(εu1 + ε2u2))‖L2(Ωε
s)

≤ Cε‖∇z((1−muε)‖L2(Ωε
s)‖(1−muε)∇z(εu1 + ε2u2))‖L2(Ωε

s), (3.3.28)

where we used the regularity of u1 and u2. Recalling again the properties of muε, we have

‖∇z((1−muε)‖2
L2(Ωε

s)≤
∫

Ωε
s∩{z|dist(z,∂Ωε

s)≤2ε}
|∇zmuε|2 dz

≤ 1
ε2 |Ω

ε
s ∩ {z|dist(z, ∂Ωε

s) ≤ 2ε}| ≤ Cε

ε2 = Cε−1. (3.3.29)

Similiarly,

‖(1−muε)∇z(εu1 + ε2u2))‖2
L2(Ωε

s)

≤
[∫

Ωε
s

|∇z(εu1 + ε2u2)|2 dz
] [∫

Ωε
s

(1−muε)2 dz

]

≤ Cε2
∫

Ωε
s∩{z|dist(z,∂Ωε

s)≤2ε}
(1−muε)2 dz

≤ Cε2 |Ωε
s ∩ {z|dist(z, ∂Ωε

s) ≤ 2ε}| ≤ Cε3. (3.3.30)

Using (3.3.28), (3.3.29), (3.3.30) we obtain

‖∇z((1−muε)(εu1 + ε2u2))‖L2(Ωε
s)≤ Cε1/2 + Cε3/2 ≤ Cε1/2,

so that (3.3.27) becomes∣∣∣∣∣
∫

Ωε
s

Duε∇z((1−muε)(εu1 + ε2u2))∇zφ dz

∣∣∣∣∣ ≤ Cε1/2‖φ‖H1
`r

(Ωε
s). (3.3.31)

Using (3.3.26) and (3.3.31), we obtain∣∣∣∣∣
∫

Ωε
s

Duε∇zΦuε∇zφ dz

∣∣∣∣∣ ≤ Cε1/2‖φ‖H1
`r

(Ωε
s). (3.3.32)

Since Φuε ∈ H1
`r(Ωε

s), we can choose φ = Φuε and, using the uniform ellipticity of Duε we
obtain

‖Φuε‖H1
`r

(Ωε
s)≤ Cε1/2.
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We now have to find an estimate for the function

Φvε := vε − v0 −mvε(εv1 + ε2v2) = ϕε + (1−mvε)(εv1 + ε2v2),

where ϕε := vε − (v0 + εv1 + ε2v2).

We introduce the following operators:

V0 = −∇y · (Dv(y)∇y) ,
V1 = −∇z · (Dv(y)∇y)−∇y · (Dv(y)∇z) , (3.3.33)
V2 = −∇z · (Dv(y)∇z) .

Equating the coefficients corresponding to the powers ε−2, ε−1 and ε0 in (3.2.12) and
the ones corresponding to the powers ε−1, ε0 and ε1 in (3.2.14), respectively, we obtain:


V0v0 = 0 in Yf ,
∂v0

∂νV0

= 0 on ∂Yf ,

v0(z, ·) is Yf − periodic for each given z ∈ Ωf ,

(3.3.34)


V0v1 = −V1v0 in Yf ,
∂v1

∂νV0

= −Dv(y)∇zv0 · n(y) +B(y)v0 · n(y) on ∂Yf ,

v1(z, ·) is Yf − periodic for each given z ∈ Ωf ,

(3.3.35)


V0v2 = −V1v1 − V2v0 −B(y)(∇zv0 +∇yv1) in Yf ,
∂v2

∂νV0

= −Φ3σ̃(u0 + g −Hv0)−Dv(y)∇zv1 · n(y) +B(y)v1 on ∂Yf ,

v2(z, ·) is Yf − periodic for each given z ∈ Ωf .

(3.3.36)

We have that on Ωε
f , the function ϕε satisfies

−∇z · (Dvε∇zϕε) = [(ε−2V0 + ε−1V1 + V2)φ]
(
z,
z

ε

)
= −∇z · (Dvε∇zvε)− ε2V0v0 − ε−1(V0v1 + V1v0)
− (V0v2 + V1v1 + V2v0)− ε(V1v2 + V2v1)− ε2V2v2

= −B
(
z

ε

)
∇zvε +B(y)(∇zv0 +∇yv1)− ε(V1v2 + V2v1)− ε2V2v2,

where we used (3.3.34), (3.3.35), (3.3.36), and (1.3.1). Similarly, using (1.3.4), (3.2.14),
we obtain that on Σε, ϕε satisfies

Dvε∇zϕε·n =
(
B
(
z

ε

)
vε −B(y)v0

)
·n−εΦ3σ̃(uε−u0−H(vε−v0))−εB(y)v1·n−ε2Dvε∇zv2.
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Therefore, ϕε satisfies the following system:
−∇z · (Dvε∇zϕε) = hε in Ωε

f ,

Dvε∇zϕε · n = (Bεvε −B(y)v0) · n
−εΦ3σ̃(uε − u0 −H(vε − v0))− εB(y)v1 · n− ε2Dvε∇zv2 on Σε,

Dvε∇zϕε · n = [Bεvε −B(y)(v0 + εv1 + ε2v2)] · n on Γ ∩ ∂Ωε
f ,

(3.3.37)

where

hε := −Bε∇zvε +B(y)(∇zv0 +∇yv1)− ε(V1v2 + V2v1)− ε2V2v2. (3.3.38)

Let ϕ ∈ H1(Ωε
f ), we have∫

Ωε
f

Dvε∇zϕε∇zϕdz =
∫

Ωε
f

hεϕdz

+
∫

Σε
(−(Bεvε −B(y)v0) · n

+ εΦ3σ̃(uε − u0 −H(vε − v0)) + εB(y)v1 · n+ ε2Dvε∇zv2)ϕdσ

+
∫

Γ∩∂Ωε
f

(−Bεvε +B(y)(v0 + εv1 + ε2v2)) · nϕdσ. (3.3.39)

We notice that

|Bεvε −B(y)v0|= |(Bε −B(y))v0 + εBεv1 + ε2Bεv2 + h.o.t.| (3.3.40)

and

|Bε∇zvε −B(y)(∇zv0 +∇yv1)|
= |(Bε −B(y))(∇zv0 +∇yv1) + ε(∇zv1 +∇yv2) + ε2∇zv2 + h.o.t.|. (3.3.41)

Using (3.3.9), (3.3.40), (3.3.41) and the same arguments we mentioned in the first
part of this proof, we obtain∣∣∣∣∣

∫
Ωε

s

Dvε∇zϕε∇zϕdz

∣∣∣∣∣ ≤ Cεγ‖φ‖H1
`r

(Ωε
s). (3.3.42)

When it comes to the term (1−mvε)(εv1 + ε2v2), the discussion is analogous. Therefore,
we obtain ∣∣∣∣∣

∫
Ωε

f

Dvε∇zΦvε∇zϕdz

∣∣∣∣∣ ≤ Cεγ‖φ‖H1(Ωε
f

). (3.3.43)

Since Φvε ∈ H1(Ωε
f ), we can choose ϕ = Φvε and, using the uniform ellipticity of Dvε we

obtain
‖Φvε‖H1(Ωε

f
)≤ Cεγ.

2

Corollary 3.3.1. Under the same assumptions of Theorem 3.3.1, the following estimate
holds:

‖uε − u0‖H1
`r

(Ωε
s)+‖vε − v0‖H1(Ωε

f
)≤ c1ε

1/2 + c2ε
γ, (3.3.44)

where c1 and c2 are constants independent of ε.
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3.4 Summary of homogenization results

Starting from the microscopic ε-dependent problem (1.3.1)-(1.3.8), we were able to
apply homogenization and two-scale convergence results in order to obtain the following
final strong form of the two-scale limit problem:



−∑2
i,k=1

[
Dik
v ∂

2
zizk

v0 −Bi∂zi
v0
]

= −Φ3σ̃|Σ||Yf |(u0 + g −Hv0) in Ωf ,

−∑2
i,k=1

[
Dik
u ∂

2
zizk

u0
]

= |Ys|
(

Φ3

Φ2
σ̃|Σ|(u0 + g −Hv0)− Φ1F (u0 + g)

)
in Ωs,

(−Du∇zu0) · n = 0 on ΓN \ ∂Ωf

(−Dv∇zv0 + Bv0) · n = 0 on Γ ∩ ∂Ωf

u0(z) = 0 z ∈ ΓD`
u0(z) = 0 z ∈ ΓDr .

where
Dik
v :=

2∑
j=1

∫
Yf

(
Dik
v −Dij

v ∂yj
ŵk
)
dy,

Bi =
∫
Yf

Bi(y) dy,

Dik
u :=

2∑
j=1

∫
Ys

(
Dik
u −Dij

u ∂yj
wk
)
dy.

Namely, we were able to determine a system of macroscopic partial differential equations
with constant coefficients. On the homogenization point of view, the matrices Dv and
Du are the averaged matrices and they are defined in terms of the oscillating matrices
Dv and Du. This gives our final problem a simpler and nicer structure than the one of
the microscopic problem (1.3.1)-(1.3.8), where we are dealing with the micro-oscillation
of both solution and diffusion matrices. Once the macroscopic two-scale limit system is
determined, we prove the following corrector estimate:

‖uε − u0‖H1
`r

(Ωε
s)+‖vε − v0‖H1(Ωε

f
)≤ c1ε

1/2 + c2ε
γ.

The latter is the most important result of this work, since we are able to understand the
quantity of information we loose via averaging, in term of powers of ε. We want to stress
the fact that the hypothesis (3.3.9) is determinant to let the corrector estimate work. It
is indeed curious how the drift vector B(·) needs to be controlled in order to let the whole
discussion work. The smaller γ is, the better our estimate is.
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Chapter 4

Conclusion and outlook

In this work, we were able to formulate a mathematical model describing the flux
of oxygen from the blood vessels to the tissues. Using homogenization techniques, we
studied the well-posedness of the problem and finally we obtained the corrector estimate
in section 3.3. Corollary 3.3.1 is the most important result of this work, because it closes
the whole circle, showing how the solution (uε, vε) of the microscopic problem and (u0, v0)
of the strong two-scale limit problem are linked to each other. It is worth pointing out
that (uε, vε) ∈ H1

`r(Ωε
s) ×H1(Ωε

f ) and (u0, v0) ∈ H1
`r(Ωs) ×H1(Ωf ). Therefore, when we

write (3.3.44), we are implicitely saying that we consider u0 and v0 to be projected in the
spaces H1

`r(Ωε
s) and H1(Ωε

f ), respectively. It would have also been possible to consider
the norms H1

`r(Ωs) and H1(Ωf ), in this case we would have considered the extensions of
uε and vε considered in section 3.1. Another aspect that needs to be highlighted is the
importance of the drift vector B(y) (or equivalently Bε(z) for the microscopic model) and
the constant σ̃. Indeed, in order to prove the well-posedness of the problem, we had to
control both ‖B‖L∞ and σ̃. When it comes to the physical interpretation of the problem,
it makes sense that ‖B‖L∞ needs to be arbitrarily small, since the drift vector B controls
the flux of the oxygen in the blood vessels. Having no control on B means having no
control of the oxygen flow in Ωf . Similarly, σ̃ is correlated to the Robin-type boundary
condition (1.1.29). Physically, the latter regulates the difference of the concentration of
oxygen from blood vessels to tissues on the interface, therefore we also need to control it.

For what concerns the mathematical prospective, the discussion we have done in this
master thesis could be expanded. For instance, one could ask to consider the sequences
{ukε}k and {vkε}k defined as in Definition 2.2.1 and try to find an ε and k-dependent bound
of the following quantity:

‖ukε − u0‖H1
`r

(Ωε
s)+‖vkε − v0‖H1(Ωε

f
). (4.0.1)

Finding such a bound would lead to ad interesting discussion, since we have already
determined (3.3.44) and (2.2.18). Notice that, to determine (4.0.1), one could implement
a FEniCS code using finite element methods [21]. In this way, we would be able to move
the oxygen problem to a numerical analysis prospective. Indeed, using FEniCS we are
able to solve PDEs on a python environment and, when it comes to the formulation of
the microscopic problem, FEniCS allows us to define perforated domains with relatively
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simple commands. It would be interesting to choose different values of ε and k and
compute (4.0.1) to check how the error changes. Still from the computational perspective,
we could actually check how different values of σ̃ and ‖B(·)‖L∞ affect the well-posedness of
the problem. Moreover, we could try to determine critical values of those two parameters.
Another mathematical question that may arise is the following:

What happens if |Yf | goes to zero?

Indeed, it makes sense to imagine a situation in which we just consider Ωs as domain,
since the tissues occupies a volume that is way bigger than the blood vessels. We refer
the reader to [6] for a similar setting.
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Appendix

Function spaces In this section we clarify the notation used for the function spaces.

Let Ω ⊂ RN open subset, with N ∈ N. Let Y be a periodic cell, in the sense of section
3.1.

• Cn(Ω), n ∈ N space of continuous functions defined on Ω which derivatives are
continuous up to the n-th order;

• D(Ω) space of test function defined on Ω, i.e. set of C∞0 (Ω) functions with compact
support in Ω;

• Lp(Ω) := {u measurable on Ω and
∫

Ω|u|p dx <∞}, p ∈ [1,+∞);

• L∞(Ω) := {u measurable on Ω and there exists C such that |u(x)|≤ C a.e. on Ω};

• W k,p(Ω), k ∈ N, p ∈ [1,+∞], space of functions u : Ω→ R locally integrable such
that for all α multindex, with |α|≤ k, there exists the weak derivative Dαu ∈ Lp(Ω).
In particular, we have W k,p(Ω) := Hk(Ω);

• C#(Y ) space of continuous functions that are Y -periodic.
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[8] C. L. Bris. Systémes multiéchelles: modélisation et simulation, volume 47.
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[19] T. Korhonen, J. H. Lagerlöf, and A. Muntean. Computational study of the effect of
hypoxia on cancer response to radiation treatment. bioRxiv, 2020.

[20] A. E. Kovtanyuk, A. Y. Chebotarev, A. A. Dekalchuk, N. D. Botkin, and R. Lampe.
Analysis of a mathematical model of oxygen transport in brain. 2018 Days on
Diffraction (DD), pages 187–191, 2018.

[21] H. P. Langtangen and A. Logg. Solving PDEs in Python – The FEniCS Tutorial,
volume 1. Springer, 2017.

[22] R. E. Luna. Mathematical modelling and simulation for tumour growth and angio-
genesis. Master’s thesis, 2021.

[23] K. G. Lyabakh. Mathematical modeling of oxygen transport to skeletal muscle during
exercise. Oxygen Transport to Tissue XXI, 471:187–191, 1999.

[24] A. Marciniak-Czochra and M. Ptashnyk. Derivation of a macroscopic receptor-based
model using homogenization techniques. SIAM J. Math. Anal., 40(1):215–237, 2008.

[25] B. J. McGuire and T. W. Secomb. A theoretical model for oxygen transport in skele-
tal muscle under conditions of high oxygen demand. Journal of Applied Physiology,
91(5):2255–2265, 2001.

[26] A. Muntean. Continuum Modeling: An Approach Through Practical Examples.
Springer, 2015.

[27] A. Muntean and V. Chalupecky. Homogenization method and multiscale modeling.
Lecture notes at the Institute for Mathematics and Industry, Kyushu University,
Japan, 2011.

48



[28] M. Neuss-Radu. Some extensions of two-scale convergence. C. R. Acad. Sci. Paris
Ser. I Math 332, pages 899–904, 1996.

[29] I. S. Pop. Homogenization: An introduction based on reactive porous media flow
models. TU Eindhoven, NL, 2011.

[30] M. Sabir, A. Shah, W. Muhammad, I. Ali, and P. Bastian. A mathematical model
of tumor hypoxia targeting in cancer treatment and its numerical simulation. Com-
puters & Mathematics with Applications, 74(12):3250–3259, 2017.

[31] X. Sun, G. He, H. Qing, W. Zhou, F. Dobie, F. Cai, M. Staufenbiel, L. E. Huang,
and W. Song. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating
bace1 gene expression. National Library of Medicine, 103(49):18727–18732, 2006.

[32] C. Timofte. On the Michaelis-Menten enzyme mechanism. Romanian Reports in
Physics, 57(3):296–305, 2005.

[33] J. C. Walsh, A. Lebedev, E. Aten, K. Madsen, L. Marciano, and H. C. Kolb. The
clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to
prognosis and therapeutic opportunities. Antioxid Redox Signal, 21(10):1516–1554,
2014.

49



50



List of Figures

1.1.1 Description of the geometry of the problem . . . . . . . . . . . . . . . . . 3

1.2.1 Periodic Cell Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

51



52



Acknowledgements

Come to this point, it feels natural to spend few words of gratitude to the people who
helped me through the last two years and the conclusion of this work as well. First of all,
I need to thank Adrian Muntean for being such a good supervisor and mathematician.
I learned most of the mathematical tools I applied on this work from him and I was
given the opportunity to fully express my mathematical skills on a modelling problem,
which has been both very challenging and exciting. When it comes to the mathematical
support, it is worth mentioning Vishnu Raveendran, Phd student in Karlstad. Since we
are working on similiar problems, we have been sharing a lot of ideas and thoughts that
helped me to conclude this master’s thesis. I also want to thank Bruno Rubino, Matteo
Colangeli and the whole Staff InterMaths, that made this experience in Sweden possible
in the first place.

I am very greatful to my parents, that helped me and supported me in every way they
could. All of this would have not been possible without your help. A special thanks goes
to Tania, my sister, who has been always there for me, even though we are phisically far
away from each other. Another Italian friend that needs to be mentioned is Enrico. I met
you as a personal trainer, but you perfectly know you are way more than that. Thank
you for helping me becoming stronger, we are going to see each other again real soon.

Furthermore, I have to express my gratitude to Mario and Luna for being the best
math mates. We have been constantly supporting each other when it comes to studying
and we have shared all the difficulties and university-related issues together. Thank you
also for reminding me to respect the deadlines for the graduation process, if I were alone,
I would have surely messed something up.

Moreover, I want to thank Tom, Elodie and Sarah for all the coffee breaks, gym
sessions and fun we had together in the last year. It’s been such a ride here in Karlstad,
and I’m greatful that I spent most of my time with you guys.

Finally, I would love to thank Quentin, Viktor, Elena, Alvaro, Nerea, Marta, Tala,
Killian, Mikahil and Aldin. You guys will always be my second family. Thank you for all
the fra-moments, Duett 5 dinners, trips, Spanish lessons and quality time spent together
(I cannot go too much in details here, I hope you guys will understand).

53


	Introduction
	Modelling
	From a parabolic problem to the elliptic problem
	Formulation of the microscopic problem
	Summary of equations of the microscopic model

	Well posedness of the microscopic model
	Weak formulation
	Statement of the main results concerning the microscopic model
	Proofs of the main results concerning the microscopic model

	Passage to the homogenization limit
	The concept of two-scale convergence
	Homogenization of the microscopic problem
	Corrector Estimates
	Summary of homogenization results

	Conclusion and outlook
	Appendix
	References

	List of Figures
	Acknowledgements

