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Abstract

Reinforcement learning has proven itself very useful in certain areas, such as games.
However, the approach has been seen as quite limited. Reinforcement­based learning
has for instance not been commonly used for classification tasks as it is receiving
feedback on how well it did for an action performed on a specific input. This slows the
performance convergence rate as compared to other classification approaches which
has the input and the corresponding output to train on. Nevertheless, this thesis aims
to investigate whether reinforcement­based learning could successfully be employed
on a classification task. Moreover, as sensor fusion is an expanding field which can
for instance assist autonomous vehicles in understanding its surroundings, it is also
interesting to see how sensor fusion, i.e., fusion between lidar and RGB images, could
increase the performance in a classification task.

In this thesis, a reinforcement­based learning approach is compared to a semi­classical
approach. As an example of a reinforcement learning model, a deep Q­learning
network was chosen, and a support vector machine classifier built on top of a deep
neural network, was chosen as an example of a semi­classical model. In this work,
these frameworks are compared with and without sensor fusion to see whether fusion
improves their performance.

Experiments show that the evaluated reinforcement­based learning approach
underperforms in terms of metrics but mainly due to its slow learning process,
in comparison to the semi­classical approach. However, on the other hand using
reinforcement­based learning to carry out a classification task could still in some cases
be advantageous, as it still performs fairly well in terms of themetrics presented in this
work, e.g. F1­score, or for instance imbalanced datasets. As for the impact of sensor
fusion, a notable improvement can be seen, e.g. when training the deep Q­learning
model for 50 episodes, the F1­score increased with 0.1329; especially, when taking
into account that the most of the lidar data used in the fusion is lost since this work
projects the 3D lidar data onto the same 2D plane as the RGB images.

Keywords
machine learning, reinforcement learning, deepQ­learning network, classical learning,
supervised learning, support vectormachine, deep neural network, sensor fusion
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Sammanfattning

Förstärkningsinlärning (reinforcement learning) har visat sig vara användbart
i vissa områden som exempelvis spel, men tyvärr anses metoden ha vissa
begränsningar. Förstärkningsbaserad inlärning har till exempel inte vanligtvis
använts för klassificeringsuppgifter eftersom den får feedback beroende på hur
bra en viss handling går på en viss typ av input. Detta saktar ner takten
för modellen att hitta konvergensen för sin prestationsförmåga till skillnad från
andra tillvägagångssätt för klassificering där dessa metoder både har input samt
motsvarande utmatning för att träna på. Hur som helst, denna studie har som mål
att undersöka om förstärkningsbaserad inlärning kan framgångsrikt appliceras på
en klassificeringsuppgift. Utöver detta, eftersom sensorfusion är ett expanderande
område vilket exempelvis kan hjälpa autonoma fordon att förstå sin omgivning, är det
dessutom intressant att om sensorfusion, det vill säga fusionmed lidar ochRGB­bilder,
kan öka prestandan för en klassificeringsuppgift.

I detta arbete jämförs ett förstärkningsbaserat tillvägagångssätt med en semiklassisk
(semi­classical) metod. Som ett exempel för en förstärkningsinlärande metod, valdes
ett djupt Q­inlärningsnätverk (deep Q­learning network) och en stödvektormaskin
(support vector machine) byggd ovanpå ett djupt neuralt nätverk (deep neural
network) som ett exempel på en semiklassisk metod. Dessa tillvägagångssätt jämförs
med och utan sensorfusion för att i sin tur se om fusion förbättrar prestandan.

Experiment visar att den utvärderade förstärkningsbaserade metoden underpresterar
med avseende på mätvärden men främst på grund av dess långsamma inlärnings­
process, i jämförelse med den semiklassiska metoden. Å andra sidan kan det
dock i vissa fall vara fördelaktigt att applicera förstärkningsbaserad inlärning på
en klassificeringsuppgift, eftersom modellen presterar dugligt med avseende på
mätvärden, exempelvis F1­score; eller till exempel för applicering på obalanserade
dataset. Av det som angår hur sensorfusion påverkar resultatet, en tydlig förbättring
kan observeras, exempelvis när det djupa Q­inlärningsnätverket tränades för 50
episoder, upptäcktes en ökning på 0.1329 av F1­score. Att ha i åtanke är att det mesta
av lidardatan som används i fusionen går förlorad eftersom detta arbete projicerar 3D
lidar datan på samma 2D­plan som RGB­bilderna.

Nyckelord
maskinlärning, förstärkningsinlärning, djupt Q­inlärningsnätverk, klassisk inlärning,
vägledd inlärning, stödvektormaskin, djupa neurala nätverk, sensorfusion
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Chapter 1

Introduction

TietoEVRY is a consulting company with around 24,000 employees in more than 90
countries. At TietoEVRY, telecommunications is one of the fields where they provide
solutions for its customers, in whichmachine learning is an aspect of great interest due
to its possibilities in telecommunications. In view of this, TietoEVRY wants to develop
knowledge within this field as well as investigate its potential. Therefore, TietoEVRY
offered during the Spring of 2021 amaster thesis work, where they wanted a student to
do a comparison study of reinforcement learning and semi­classical learning. As a part
of the study, TietoEVRY wanted to investigate sensor fusion and its viability in areas
pertinent to telecommunications.

1.1 Problem Description
Reinforcement­based learning is not commonly used for classification tasks, and this
is mainly due to the fact that it is receiving feedback depending how well it did from an
action performed on a specific input, which slows down the performance convergence.
In other words, reinforcement learning does not need the desired outputs to specific
inputs as the case with other typical typical classification algorithms [54]. Therefore,
the performance of reinforcement learning for classification would be interesting
to investigate. Moreover, in the automotive industry, there is currently a growing
interest in sensor fusion as it could increase accuracy which in turn could lead to safer
driving [32]; and this is only one application, sensor fusion can be used in numerous
of other fields. As a part of this thesis, sensor fusion will be investigated to determine
its possibilities on a specific classification task: Classification of fused data from RGB
images and lidar. In particular, this paper tries to answer the following questions:

• In a classification task, how reinforcement learning performs in comparison to a
semi­classical approach?

• Is reinforcement learning viable for classification tasks?

• Does fusion of RGB images and lidar assist in classification tasks?
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CHAPTER 1. INTRODUCTION

To the author’s best knowledge, there is no paper doing classification with
reinforcement learning in sensor fusion.

1.2 Thesis Objective
The objective of this thesis is to compare the use of reinforcement­based learning as
compared to a semi­classical approach for the classification of fused data from RGB
images and lidar. Additionally, as a side objective, this work will result in deliverables
as a proof­of­concept, as well as models which can be built upon. The aim in this paper
is not necessarily trying to obtain the best performance from the models built but to
do a high­level comparison.

1.3 Ethics and Sustainability
This thesis work only considers classification which only constitutes a tiny portion of
machine learning’s actual potential. In turn, machine learning is just a sub­field of
Artificial Intelligence (AI). AI is currently receiving a significant interest in numerous
fields; which has both pros and cons in regards of sustainability. In for instance a paper
by van Wynsberghe [57], he argues and wants to raise awareness that AI actually has
costs on the environment. For instance, the energy that is needed to train an AI model
will leave a significant carbon footprint. On the other hand, AI can also be used to
reduce carbon footprint. For instance, Google has developed an AI that was applied to
their data centers and managed to reduce the amount of energy they use for cooling by
up to 40 percent [7]. In terms of ethics, AI in autonomous vehicles is believed to lead to
safer driving. However, this leads to various ethical issues. Consider a situation where
an autonomous vehicle has to prioritize the safety of other users on the road; should
the autonomous vehicle choose over the death of car occupants, bicyclists, pedestrians,
et cetera?

1.4 Methodology
In this thesis, a comparison of reinforcement learning and a semi­classical approach
is conducted. A Deep Q­learning network (DQN) [29] is chosen as an example of
reinforcement learning framework. As for the semi­classical approach, a Support
Vector Machine (SVM) [47] classifier is built on top of Convolutional Neural Network
(CNN) [3]. Additionally, sensor fusion is investigated and how it combined with the
different models can increase the performance. These networks are built with the
Keras API [1]. This results in four different networks: a DQN with and without sensor
fusion as well as the SVM with and without sensor fusion. As for the sensor fusion
networks, RGB images and 2D­dense depth maps from lidar are used, in the networks
without sensor fusion, only RGB images are used. From the RGB images and 2D­dense
depth maps, proposed boxes with objects are returned and used to train the network
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CHAPTER 1. INTRODUCTION

with. This results in different models which can be tested and evaluated against each
other.

1.5 Related Work
This work cover mainly two areas; deep reinforcement learning for classification and
sensor fusion, hence work around these are introduced.

1.5.1 Deep Reinforcement Learning for Classification

Deep reinforcement learning has earlier shown great performance when applied to
Atari games such as Breakout, Enduro and Pong where the model actually defeated
expert human players [35], but its applications has been seen as limited. However,
deep reinforcement learning has gotten attention in imbalanced data learning as it is
possible to configure the reward function to pay more attention to the minority class
by for instance penalizing the model when it has misclassified the minority class, or by
giving a higher reward when it has correctly classified the minority class. The work by
Lin et al. [29] propose a deep reinforcement learning model and study its performance
through experiments and compare it with other methods for imbalanced classification.
Lin et al. formulates the imbalanced classification problem as a sequential decision­
making process where samples of data are fed into the model at each time step
and rewarding the model for each sample depending on how well it did; this work
formulates the classification problem in the same way. The dataset in this work is
somewhat imbalanced and could optimize the reward function in the same way as the
work by Lin et al., however due to time constraints this could not be covered and is
instead encouraged as an avenue for future work.

1.5.2 Sensor Fusion

Sensor fusion has recently become a widely studied and growing field, where for
instance lidar and RGB images has become common in autonomous driving. Sensor
fusion can be done in several ways and can for instance be done in different stages,
e.g., early fusion and late fusion. In turn, these concepts can be implemented with
different methods. In the work by Wang et al. [51], they investigate the robustness
of different sensor fusion methods when adversarial attacks are done to one or more
sensors. In their work, the late fusion refers to the fusion taking place after all the
convolutional layers and this work implements late fusion in the sameway. But, unlike
the work by Wang el al., where they feed lidar points along with RGB images into the
models for feature extraction; this work constructs a dense depth map from the lidar
and guidance of the RGB images which is then fed into the models along with the RGB
images, as it is known that the lidar measurements are sparse and insufficient for real
world applications [46].

3



CHAPTER 1. INTRODUCTION

1.6 Stakeholders
This work is done in collaboration with TietoEVRY. TietoEVRY has a growing interest
in machine learning/artificial intelligence as it can help the company build solutions
in for instance data communication. For instance, more than half of internet service
providers expected to have implemented artificial intelligence within their network
by the end of 2020. Additionally, internet service providers see the potential in
maximizing the returns on networks investments, where 70% of internet service
providers see the highest potential with implementation of artificial intelligence in
network planning whilst 64% intend to maximize their returns by directing their
efforts on network performance management [12]. Hence, TietoEVRY wants to build
competence within these areas among their employees.

1.7 Delimitations
TietoEvry is primarily interested in machine learning as a way to reduce operational­
and capital expenditures as well as to optimize network performance. The best
approach would be to use data from one of TietoEVRY’s business areas, but as this
is in most cases sensitive data in regards for its customers this was not possible for this
thesis. Visual recognition tasks on the other hand is a huge field; there are lots of open
established datasets of images and suites for visual recognition tasks, as well as lots of
related work within the area, hence images was used as it is more accessible.

1.8 Outline
This thesis is structured as follows, a review of the theory is given in Chapter 2,
the DQN ­ and the semi­classical frameworks with and without sensor fusion are
described in Chapter 3, the results including a quantitative evaluation with the models
in comparison are shown inChapter 4, and the conclusions aswell as avenues for future
work are presented in Chapter 5.
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Chapter 2

Theory

2.1 Machine Learning

Machine Learning (ML) is considered a subfield of Artificial Intelligence which
currently much effort is directed towards [47]. The intent with ML is to develop
methods so that a system can learn from its experience. ML is appropriate whenever
enough data is available and the task in question is too difficult to do by hand [10]. ML
can be categorized into three different categories, which is essentially three different
ways an algorithm interacts in order to learn the task at hand. These categories are
supervised learning, unsupervised learning, and reinforcement learning. Supervised
learning uses both input and the corresponding output to learn. Unsupervised
learning has the advantage of learning without having available output to specific
inputs, in other words being able to learn without a ’teacher’. The reinforcement
learning approach learns through trial­and­error combined with a reward system [53].
Examples of ML­learning tasks are computer vision, speech recognition, and medical
diagnosis.

A common task in computer vision is classification, which essentially entails being able
to recognize objects and divide them into different classes. Classification together with
localization is part of a concept called detection. Localization is the task of locating an
object in an image and combined with classification it is possible to detect an object
through localizing objects and in turn classifying them [36]. When evaluating the
classification performance, a critical role in achieving an optimal model is the use of
relevant metrics. Some of these are accuracy, recall, precision, and the so­called F1­
score. All of these are good metrics but have different aims. Recall, precision and
F1­score are class independent and focuses on the classes individually which makes
a better reflection of performance on an imbalanced dataset. Accuracy on the other
handmight lead to thewrong inferences beingmade on an imbalanced dataset because
the results mostly reflect the performance of the majority class [52], i.e., a class that
constitutes a large part of a dataset. Accuracy can be interpreted as the probability
that the model is correct. The definition of the metrics for two classes are shown in
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CHAPTER 2. THEORY

Equations 2.1, 2.2, 2.3 through 2.4:

Accuracy(A) :
TP + TN

TP + TN + FP + FN
=

Number of correct predictions
Number of predictions

(2.1)

Recall(R) :
TP

TP + FN
(2.2)

Precision(P ) :
TP

TP + FP
(2.3)

F1 :
2× P ×R

P +R
(2.4)

where there is a positive and a negative class. The different outcomes are described
below:

• TP denotes a true positive, that is when the model predicts a positive and the
class is indeed positive.

• FP denotes a false positive, that is where the model predicts a positive but the
class is actually negative.

• FN denotes a false negative, that is where the model predicts a negative but the
class is actually positive.

• TN denotes a true negative, that is where the model predicts a negative and the
class is indeed negative.

When more classes are added, and the problem becomes a multi­class problem, all
classes have to be considered in the metrics. There are several ways to do this. For
example, one way of doing this is to calculate an overall mean of the metrics for every
individual class as well as to reformulate TP, FP, FN and TN. This is called a macro
average. Withmacro average, the classes have the same weight in the calculation of
the average, thus making no distinction between classes. Consider a problem where
there is a minority and a majority class, i.e., there are two classes where one of the
classes are much larger than the other one. As for macro average, poor performance
on a minority class is reflected in the metric just as much as poor performance on
a majority class. The rationale behind accuracy is still valid, and can still be seen
as the number of correct predictions out of the total number of predictions. The
concepts for the other metrics, when more than two classes are involved, are shown
in Equations 2.5, 2.6 and 2.7 [18, 30]:

RMacro :

∑K
k=1Rk

K
(2.5)

PMacro :

∑K
k=1 Pk

K
(2.6)

6



CHAPTER 2. THEORY

F1Macro :

∑K
k=1 F1k
K

(2.7)

where k is a generic class. Asmentioned, when calculating thesemetrics for every class
individually; TP, FP, FN and TN are reformulated. Next, lets consider more than two
classes. For the reformulations below, consider one class and all other classes except
that one, i.e., let one class be relative at the time.

• TP is the event when the predicted class is the actual class in question.

• FP is the event when the other classes are predicted to be the class in question.

• FN is the event when the class in question is predicted to be another class.

• TN is every other event, i.e., when a correct prediction of another class is made.

This concept is visualized in Figure 2.1.1 where class b is the reference class.

Figure 2.1.1: Confusion matrix where class b is the reference class.

2.1.1 Support Vector Machine
Support Vector Machine (SVM) [34, 47] is a collection of supervised learning models
used for classification and regression analysis. This collection belongs to the family
of generalized linear classifiers. Supervised learning is a sub­category of classical
learning. The SVM finds the highest predictive accuracy as well as automatically
avoids overfitting data. Moreover, unlike other classical approaches, it is proven to
be effective in cases that involve high­dimensional spaces. The goal is to separate the
data with a hyperplane, but also maximizing the distance from the closest data point
on each side. In other words, find the best possible line that separates classes in an
arbitrary problem.

7



CHAPTER 2. THEORY

The three major concepts in an SVM are: hyperplane, support vectors, and margin.
The concepts are described below:

• The hyperplane is basically a line that separates different classes.

• Support vectors are the data points which are closest to the hyperplane, the
hyperplane is defined from these points. These support vectors is the reason of
the name support vector machine.

• The margin is the distance to the closest data points in the different classes.

A demonstration of a simple classification problem with two classes as well as the
concepts is shown in Figure 2.1.2.

Figure 2.1.2: Demonstration of an SVM with samples from two classes.

To explain further, SVM is a kernel method [21]. Kernel transforms input data
into the required space. Kernel methods use something called a Kernel trick which
takes the original input space and computes a dot product operation between all
datapoints of a higher dimensional space without actually transforming the data into
that high dimensional space, this avoids the computational cost to compute every
new coordinate in the new higher dimension [27]. Consider a problem which is not
separable in its original space, the kernel in that case transforms the data in a higher
dimension where the data is actually separable.

There are different kinds of kernels; what kind of kernel to use depends on the dataset
and how its best transformed into a separable space. An example of a kernel is the
polynomial kernel, which is shown in Equation 2.8. The details of how an SVM works
is quite complex and is out of the scope of this work, the reader is encouraged to read

8



CHAPTER 2. THEORY

the book by Koutroumbas and Theodoridis for more details [27].

k(x, x′) = ⟨x, x′⟩d (2.8)

Where ⟨x, x′⟩ denotes the dot product, d is degree of polynomial, and x and x′ are two
vectors.

A simple classification problem in 1D which is transformed into 2D space using a
polynomial kernel with d equal to 2 is shown in Figure 2.1.3. In Figure 2.1.3, it is seen
that data is separable in a higher dimension.

Figure 2.1.3: A 1D classification problem transformed into 2D in order to make the
data separable.

2.1.2 Deep Q­learning Network
A Deep Q­learning network (DQN) [14, 29, 35] is one of the most representative
reinforcement learning algorithms which uses a deep neural network to learn different
tasks. A deep neural network is an efficient network to solve complex ML tasks as well
as handle large amounts of data; more details on a deep neural network is found in
Section 2.2. The deep neural network in a DQN can be seen as an agent in a DQN. In
reinforcement learning, the agent observes a state s, at a discrete time t, and performs
an action a; from that action, in that specific state, a reward r is returned. As a
reinforcement learning interacts through an environment, new states occur which the
agent performs an action on, every transition to a new state is called an episode. Similar

9



CHAPTER 2. THEORY

to a regular reinforcement learning algorithm, the goal is to maximize future rewards
by trying to find the optimal policy π in an unknown environment, which is considered
to be a greedy optimal policy. Greedy in this context means that the agent will always
take the action that result in themaximumcurrent reward, whichmight not necessarily
be the best action in the long run [19]. How the reward should be defined is up to the
user, and depends on the task at hand. For instance in a classification task, a correct
classification of a class could result in reward equal to +1, and a misclassification of
that class could receive a reward of ­1. Again, this is only an example. The policy π

denotes the action that the agent performs in a specific state.

In reinforcement learning, there is a state­action value function called the Q­function,
Qπ(s,a), which is the maximum expected return from taking the action a in a state;
this maximum expected return is denoted as Eπ. For every new step in time, it is
assumed that the future rewards are discounted by a factor of γ, γ can be interpreted as
a balance of the future reward. The denotation γ is called the discount factor and is a
value between zero and one. The Q­function follows an important equation called the
Bellman equation [35]. With regards to the Q­function, the Bellman equation can be
described as follows: If the optimal valueQπ(st+1, at+1) is known for all possible actions
in the next state, then according to the Bellman equation, the optimal strategy for the
next state is to select the action thatmaximizes the expected value of rt+γQπ(st+1, at+1).
If the Bellman equation [35] is incorporated into this equation, the Q­function can be
expressed as shown in Equation 2.9.

Qπ(s,a) = Eπ[rt + γQπ(st+1,at+1)|st = s,at = a] (2.9)

The agent will find the maximized future rewards by solving Equation 2.9 and the
greedy optimal policy. One way of setting this greedy optimal policy is to use an ϵ­
greedy policy. The ϵ­optimal policy is shown in Equation 2.10.

π(a|s) =

{
a = arg maxa Q(s, a), with probability 1­ϵ

random a, with probability ϵ
(2.10)

To find the optimal Q­function, Equation 2.10 can be substituted into Equation 2.9,
which results in Equation 2.11.

Qπ(s,a) = Eπ[rt + γ maxa Q(st+1,at+1)|st = s,at = a] (2.11)

ϵ in Equation 2.10 is a value between zero and one, which essentially is the probability
of taking a random action or 1­ϵ, the action that results in the current maximum
reward. For Equation 2.10, the first condition can be seen as exploitation and the
second one exploration, a big challenge is the trade­off between these. Exploration
is in this case a random action that might lead to the agent learning new things about
the environment but not necessarily the maximized reward, which is the primary goal
for the agent. Exploitation, entails performing an action based on past experience,
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i.e., taking the action that results in the current maximum reward. Nevertheless, too
much exploitationmight lead to the agent not exploring the environment enough, thus
possibly leading to the agent missing out on the optimal solution [31].

Unlike Q­learning where the Q­functions are recorded by a table, DQN uses a deep
neural network to record its Q­functions. Moreover, DQN uses an experience replay
memory, which is basically a buffer in which the data gathered from Equation 2.11 is
stored. The data stored is the current state (s), the action (a) taken from that state,
the reward (r) from that action in that specific state as well as the next state (s′), i.e.,
(s, a, r, s′).

Apart from the Q­function, DQN uses a so­called loss function which should be
minimized and which determines the quality of the prediction. One way to define the
loss function is shown in Equation 2.12 [6], which is equal to a general mean square
error­loss function, i.e., L(y, y′) = 1

n

∑n
i=0(y − y′i)

2 [33], where y and y′ are two values
and n the total number of terms for which the error is calculated. The agent selects a
number of samples from the experience replay memory called a mini­batch. With the
mini­batch, the agent minimizes the loss function by performing a so­called gradient
descent step [41] on the deep neural network according to the loss function previously
mentioned. Gradient descent is one of the most popular algorithms for optimization,
and the most common way to optimize neural networks [41].

L(θ) =
1

n

∑
(s,a,r,s′)∈B

(y −Q(s, a; θ))2 (2.12)

Where B denotes the mini­batch of samples that was selected from the experience
replay memory, n denotes the number of samples in the mini­batch, θ denotes the
weights of the deep neural network, and y, which is a target estimate of the Q­function
in Equation 2.11. The target estimate can be expressed as shown in Equation 2.13.

y =

{
r, terminal = True

r + γ maxa′ Q(s′, a′; θ−), terminal = False
(2.13)

The boolean variable terminal in Equation 2.13 is a flag that signals that the agent
has finished the task. The definition of a finished task varies and depends on the
task itself. A finished task could for instance be a classification task where the agent
has gone through the entire dataset. θ− denotes the weights of the target network,
these weights are kept fixed. Additionally, a′ is the action that is performed in state
s′. Consequently, by minimizing the loss function in Equation 2.12, and performing
the greedy optimal policy in Equation 2.10, the agent will be able to find the optimal
Q­function in Equation 2.11 which maximizes future rewards.
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2.2 Deep Neural Network
Deep Neural Networks (DNNs) [3, 42] are a growing field within ML which has shown
to be very effective in solving complex ML tasks such as object detection and speech
recognition, it is also able to handle large amounts of data . DNNs consist of a number
of simulated neurons in layers which are meant to model the human brain. Every
neuron is viewed as a node, and between every node there is a link. Every link has
a weight that determines the influence on another node. A large weight corresponds to
a strong influence while a small weight corresponds to weak influence [55]. The DNN
is not transparent, and the reason why the DNNmakes a certain decision is difficult to
understand. One of themost popular DNNs is Convolutional Neural Networks (CNNs),
CNN is highly effective for tasks involving images. A CNN consists of three types of
layers: convolutional layers, pooling layers, and fully connected layers. A typical setup,
is blocks of these convolutional andpooling layerswhich lastly feed into fully connected
layer; a visualization of this structure is shown in Figure 2.2.1.

Figure 2.2.1: A mock­up CNN where blocks of convolutional and pooling layers are
built in blocks which lastly feeds into fully connected layers.

In a convolutional layer, a kernel, i.e., a filter matrix, is applied over the input. An
element­by­element product operation is performed between the input and the kernel,
the result is then returned as the output from the convolutional layer. The goal is
to find the kernel which works best for a specific task. In turn, the output is passed
through a non­linear activation function, the most common one is the Rectified Linear
Unit (ReLU) [58]. The ReLU activation function is simple and behaves as an identity
function provided its input value is above zero; when the input value is less than zero,
the function return zero, see Equation 2.14.

ReLU(x) =

{
x, ifx > 0

0, otherwise
(2.14)

The pooling layer helps reducing the complexity of subsequent layers by down­
sampling the input. The most commonly employed type of pooling layer is the so­
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called max­pooling layer. In max­pooling, the input is divided into smaller sections.
From those smaller sections, the maximum value is returned in a reduced dimension
as output. Themost common settings formax pooling is a kernel size of 2×2 and stride
of size 2. Stride is the step size the kernel takes when moving the kernel. This concept
is visualized in Figure 2.2.2, in which a kernel size of 2× 2 and a stride 2 is used.

Figure 2.2.2: Visualization of a max­pooling with a kernel size 2 × 2 and stride a size
of 2 is used.

Consequently, the output of a convolutional layer or a pooling layer, is commonly
flattened which basically means transforming the input to a 1D array. The flattened
output will in turn be fed to the fully connected layer, also called a dense layer,
which connects every output from the flattened layer to the number of outputs. For
example, in a classification task, the number of outputs are typically equivalent to the
number of classes to classify. Every fully connected layer is typically followed by a non­
linear function, for instance ReLU. As for the last fully connected layer, a so­called
softmax function can be applied to the output. A softmax function is an activation
function which normalizes the output values from the last fully connected layer to
probabilities. In a classification problem this means the probability of belonging to
a certain class.

A common problem with ML algorithms is overfitting. This basically means that a
model performs good on training data but not so well on test data. Twoways to prevent
this in a CNN is with dropout and batch normalization [15]. Dropout does this by
randomly removing nodes from the network, and batch normalization by normalizing
the output from a specific layer before it is fed into another one.

2.2.1 Keras
Keras is a deep learning API, written in Python and built on top of the open­source ML
library, TensorFlow [1]. The CNN can be built with the Model class in the Keras API
[24]. The model can be compiled with the compilemethod [22] and in turn be trained
with the fit method [23] and evaluated with the predict method [25] in the Keras API.
In the compile method, out of many other arguments, an optimizer, for instance the
Adam algorithm [2], and a loss function can be configured. In the optimizer, a learning
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rate can be configured. The learning rate defines the amount with which the weights
in the CNN are changed at each time the CNN is updated. A large learning rate will
cause the agent to learn fast, but if it set too high it might lead to the agent taking
too large steps causing the agent to jump past a optimum and thus lead to the agent
never learning. An agent with a small learning rate will not act like this, but will on the
other hand learn slower. Hence, a balance has to be found between a not too small but
neither a not too high learning rate, in order to find a good learning rate for a specific
task [38]; this problem is visualized in Figure 2.2.3.

Figure 2.2.3: Balance of learning rate visualized. a) Shows a too low learning rate
causing the agent to learn very slow. b) Shows a too high learning rate causing the
agent to jump past the optimum.

Examples of loss functions which can be configured in the compile method are mean
square error and hinge loss. The mean square error equals the loss function used
in DQN [14]. The hinge loss can together with a random Fourier features layer be
approximated to a SVM[39]. The ideawith randomFourier features is to transform the
original space to a fixed dimensional space which is of a lower dimension, but with the
resulting dot product which approximates to the kernel k(x, x′), where x and x′ are two
vectors. For more details on random Fourier features, see paper by Li et al. [28].

In the fit method there is an argument called epochs, which denotes the number
of iterations which the model goes over the entire dataset to train the model [23].
Keras also provides a method which instantiates a VGG16 model [50]. VGG16 is
a CNN structure proposed by Simonyan and Zisserman [44], which is proven to
be very effective in visual recognition tasks. In the ”ImageNet large scale visual
recognition Challenge” in 2014 it won the 1st place in object localization and 2nd place
in classification [49]. The network consists of 13 convolutional layers and 3 fully­
connected layers, and is the reason for the suffix 16 in the name of the model. The
VGG16 is the most common used network from the networks that was introduced in
the paper by Simonyan and Zisserman [20].
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2.3 Region Proposal Network
A part of image detection is as mentioned in Section 2.1 to localize where objects
actually are before classifying them. This is where a Region Proposal Network (RPN)
comes in. An RPN is a network that extract boxes from images where it is likely to be
an object in, these are called RPN boxes. A simple way to this is to have a window slide
over the images and have an another network check if the box in question actually has
an object in that box. Through research it has been shown that it is better to do this
through a neural network [20].

2.4 Detectron2
Detectron2 [56] is the next­generation library of Facebook AI Researchwhich provides
algorithms for recognition tasks such as object detection. Detectron2 also provides a
collection of baseline results as well as openly accessible, trained models. The results
from this collection are ranked on the basis of the mean average precision (mAP) to
determine the performance of the models. Detectron2 uses COCO’s metrics [9], which
is another suite for recognition tasks [5]. COCOmakes no distinction between AP and
mAP, hence the AP value in the baseline results inDetectron2 are actuallymAP.Details
of the definition of mAP can be found in the paper by Everingham et al. [13] as well as
the specific settings COCO uses [8]. Note, this metric is not calculated by taking the
average of the precision values.

2.5 Sensor Fusion
Sensor fusion is a concept where data from several information sources are used in
combination in order tomake a decision about a specific task or situation [11]. It can be
used in autonomous driving to, e.g., combine lidar, RGB camera images, and 3D radar
data. Lidar and 3D radar are techniques to obtain information about an environment
and can for instance be used to map landscapes and buildings. Lidar uses light to
obtain such informationwhile 3D radar uses radiowaves [4]. The result of doing sensor
fusion estimates a better understanding of a state compared to using different sensors
individually. In turn, sensor fusion may result in improved reliability, improved
accuracy, improved availability and higher safety for a specific framework [32]. There
are numerous ways to do sensor fusion and much effort is put into developing tools
to carry out sensor fusion. A common way to implement sensor fusion is with neural
networks. One way to this is through late fusion, which also has several methods. Late
fusion can for instance be done after all the convolutional layers, another way in object
detection is fusion after boxes has been proposed from the RPN [51].
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2.6 KITTI
KITTI [16] is a benchmark suite for tasks such as 3D­object detection in autonomous
driving. KITTI provides data from high resolution video cameras, Velodyne laser
scanners (lidar) and a state­of­the­art localization systems. KITTI also provides
benchmarks as well as evaluationmetrics for them1, e.g., it provides a benchmark suite
to increase density from sparse point clouds from a lidar, i.e., producing dense depth
maps from sparse lidar data with guidance from RGB images. This is desired as the
sparse data is insufficient for real world applications [48].

1 The benchmarks are available atwww.cvlibs.net/datasets/kitti
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Methodology

Two main frameworks are set up: one reinforcement learning and one semi­classical
framework. DQN is chosen as an example of a reinforcement­learning framework. As
for the semi­classical approach, an SVM classifier is built on top of a CNN. In fact, the
CNN is essential for both frameworks. This is where the sensor fusion and the feature
extraction are done. Both frameworks are fed with images, with the intent of being
able to classify them.

3.1 Environment
The environment is a series of boxes of different objects gathered from images of
different traffic scenarios. One traffic scenario might have several objects such as
persons and cars leading to one traffic scenario having several boxes. The different
traffic scenarios provide RGB images and raw lidar scans. However, these lidar scans
can only obtain sparse measurements of the environment regardless of the quality of
the lidar equipment. These sparse scans are insufficient for real world applications
[46]. Therefore, estimating a dense perception of the environment is needed to
produce good results for classification. This dense perception is called a dense depth
map. The data in question is gathered from the KITTI dataset [16]. KITTI claims
that there are up to 30 pedestrians and 15 cars visible per image, meaning that 45
different boxes could possibly be gathered from one scenario. KITTI also provides
a benchmark suite with different machine learning vision challenges, one of them is
depth completion. Depth completion is used to get the dense depth map needed for
the classification. For simplicity, results from the best scoring algorithm are used.
The results from these algorithms are 2D­dense depth maps. In this case, as for the
KITTI completion evaluation, the Non­Local Spatial Propagation Network (NLSPN)
is chosen. The results for NLPSN are the best scoring as for the metrics that KITTI
benchmark suite evaluates but who also has results that are openly accessible. See
KITTI completion evaluation page [26] and the page for the NLSPN network for more
details [37]. In total, with the results from the NLPSN algorithm leads to 1000 RGB
images and 2D­dense depthmapswhich can be used for classification. Once again, one
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image can contain several objects to classify.

To get the boxes, an algorithm from the Detectron2 [56] library is used. Detectron2
provides a large set of baseline results and pre­trained models, open to download and
to try out. Basically, the algorithmwith the best score for boxes is used (see Section 2.4
for details). This happened to be X101­FPN under the COCO instance segmentation
baselines results with the Mask R­CNN method [56]. The algorithm is in turn run on
the RGB images from the different traffic scenarios. With the results from the X101­
FPN, boxes and corresponding labels could be gathered. To get as clear images of
objects as possible, the threshold of the predictions from the X101­FPN is set to be
0.95. In other words, only objects where the algorithm provided an accuracy of more
than 95% in its predictions will be returned to the SVM or the DQN model. Finally,
coordinates for the boxes that are returned from X101­FPN is used to cut out the
corresponding box from the depth map. When sensor fusion is implemented, this
lead to the model being fed with boxes from RGB­ and 2D­dense depth maps images.
The 2D­dense depth maps are actually grayscale but are read as RGB. The different
classes that are classified are: cars, persons, trucks, and bicycles. Hence, the returned
boxes are also from these classes. The 1000 RGB images and 2D­dense depth maps
are divided into 80% for the model train on and 20% for testing. The distribution of
the different classes can be seen in Table 3.1.1. From Table 3.1.1, it can be derived that
the dataset is fairly imbalanced.

Table 3.1.1: Table representing the distribution of objects in the dataset.

Cars Persons Trucks Bicycles

Train 2230 406 59 89

Testing 507 127 11 21

Total 2737 533 70 110

3.2 Convolutional Neural Network
The CNNs look different depending on their ultimate objective. The networks are built
as similar as possible but are different depending on whether sensor fusion should be
employed, and depending on the unique top layers for the SVM and the DQN models,
which results in four different structures for the CNNs. The different CNN structures
are essentially built on a reduced VGG16 network with a number of layers built on
top of it: a flattening layer, a fully connected layer, a batch normalization layer, a
ReLU activation layer and a dropout layer. Henceforth, let us call these layers the
”top structure”. As for all networks, a dense layer is used on the top to combine the
outputs of the neurons with the number of available classes. For instance, if the task
is to classify cars and persons, the very last dense layer has two outputs. The VGG16
networks are regular VGG16 networks, except that the four top layers are excluded,
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i.e., a reduced VGG16 network. Also the weights are set to random, i.e., the VGG16
networks are not pre­trained. The input shape of the images are (50,50,3), in other
words 50x50 RGB images. The reason for a specific structure and settings in a network
is to a certain extent empirical, for instance the number of neurons in a layer. Therefore,
the final versions of these networks might not be the optimal ones. In this thesis, the
Model class from the Keras API is used to build the CNN networks. The fit and predict
method in the Keras API are used to train and test the model (see Section 2.2.1 for
details). At a fundamental level, for a network with sensor fusion, two reduced VGG16
networks are used as inputs, one for RGB images and one for 2D­dense depth maps.
As for a network without sensor fusion, only one reduced VGG16 network is used for
the input of RGB images.

3.2.1 DQN­specific Settings

Without sensor fusion, the structure of the DQN is essentially a reduced VGG16 with
a ”top structure” on top of it as well as the dense layer with a softmax activation. The
CNN for the DQN, when sensor fusion is employed, is roughly the same except that two
reduced VGG16 networks are used, these are in turn concatenated. The two reduced
VGG16 networks create two input channels where the RGB images and the 2D­dense
depth maps can be fed respectively. On top of the concatenation, the ”top structure”
is built as well as the dense layer with the softmax activation layer on top of it. While
building the CNN for the DQN, without this softmax activation layer, the agent could
not continuously learn. The hypothesis is that the learning could be too fast causing
the agent to jump out of an optimum, similar to a learning rate. Since the softmax
activation layer normalizes the output between zero and one, causing the network to
learn slower butmore stable. However, this is not proven, it is in fact only a hypothesis,
and the proof goes beyond the scope of this thesis. An Adam optimizer is used to
optimize the parameters in the CNN as well as a mean square error loss function as
shown in Equation 2.12. The learning rate for the Adam optimizer is set to 1E­6. The
batch size is 64. Figure A.0.1 illustrates a CNN with sensor fusion and Figure A.0.2 a
CNN without sensor fusion.

3.2.2 SVM­specific Settings

As for the SVM, the structure is essentially the same as the DQN network except the
top of the network as well as the loss function. On top of the ”top structure”, a random
Fourier features layer and a regular dense layer are placed. The loss function is a
hinge loss with the Adam optimizer set to a learning rate of 1E­6. The batch size is 64
samples. Similar to the DQN, the difference between a network with sensor fusion and
one without sensor fusion is the number of VGG16 networks (channels for the number
of sensors) as well as the concatenation of them. Figure A.0.3 illustrates a CNN with
sensor fusion and Figure A.0.4 a CNN without sensor fusion.
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3.3 Deep Q­learning Network
How the DQN is set up and the reason for its design is influenced by Lin et al. and their
paper [29] . As for the code and structuring of it, is done with help of a tutorial [17].
The states of the environment are determined by the training samples. A box with an
object corresponds to the state st which the model is in at a specific time, t. Every new
box is considered to be a step in time, i.e., st →st+1 is a step in time where the model
goes fromone box to another. An episode endswhen themodelmisclassifies aminority
class, or when themodel has gone through the entire training data. Amisclassification
can be done by randomly choosing the wrong class or using the predict method from
the Keras API, i.e, when the model predicts an incorrect class. A minority class is
either a ”person, a ”truck”, or a ”bicycle”. Therefore when more classes are added to
the model for classification, the episodes are in general shorter since there are more
minority classes. When an episode ends, the order of the training samples is shuffled.
The hypothesis is that this will avoid that themodel is learning a pattern in the ordering
instead of actually learning features about different classes.

As for specific settings: The reward function is simply assigned a value of +1 for a
correct classification and a ­1 for an incorrect classification, regardless of the class.
Initially, a reward function similar to the one employed by the paper by Lin et al. [29]
was implemented, but the metrics studied in this work did not improve for the dataset
that was used, and thus, ending up with the simple reward function just mentioned.
However, in hindsight, the reward function should have been optimized further. In
this thesis, the ϵ is set to one with an ϵ­decay of 0.9999. That is, after every state,
ϵ is decreased by 0.0001%. This causes the agent to make a lot of exploration of
the environment initially and more exploration as the ϵ decreases. As mentioned, an
episode ends when the model misclassifies a minority class. Hence, as ϵ decreases and
more exploitation is done, the episodes will become longer over time. See Section 2.1.2
and Equation 2.10 for details regarding this concept. Before a training run is started,
the model initializes the experience replay memory to a minimum number of samples.
This minimum is set to 1000 samples where the max length of the experience replay
memory is 2000 samples. In Figure 3.3.1, a simplified visualization of the DQN
network when using sensor fusion is shown. The network is similar when not using
sensor fusion except that the network does not take the 2D­dense depth maps into
account. Hence, only RGB images are fed into the agent and consists only of one
channel throughout the entire CNN. When the the framework was being built, a graph
similar to Figure B.0.1 was used to debug and determine if the algorithm was actually
working.
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Figure 3.3.1: A conceptual visualisation of a DQN network when sensor fusion is
employed.

3.4 Semi­classical Approach
The semi­classical approach is essentially a CNN network with an SVM approximation
on top of it. The CNN works as a feature extractor and the SVM approximation as
the classifier. The composition of a random Fourier feature layer combined with a
hinge­loss function are what essentially builds the SVM. The combination of these
approximates to an SVM [39]. By building the SVM on top of the CNN the network
is able to train end­to­end. In general, the SVM model works as a regular supervised
model. All the training data is fed into Keras fit method with corresponding labels to
train against. The argument epochs is used to train the semi­classical approach over a
number of epochs. For evaluation, the model is fed with testing data using the predict
method, which in turn is checked against the actual labels for results. Throughout this
paper, this model will be referred to as the SVMmodel.
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Evaluation and Result

The main objective is to compare reinforcement­based learning, against a semi­
classical approach which uses a CNN feature extractor and an SVM as a classifier.
Moreover, to explore whether reinforcement learning is a viable option for
classification of objects. Additionally, as a part of this work, investigate whether
sensor fusion could assist the classification in the studied models. This thesis is not
necessarily trying to obtain the highest result, instead it aims to conduct a comparison
and investigate the viability for the different concepts. In this thesis, a DQN network
is chosen as a reinforcement­learning model.

The metrics considered includes accuracy, precision, recall, and F1­score. The reason
for the latter three metrics is due to the imbalance that is present in the considered
dataset (see Table 3.1.1). Moreover, these metrics are also an average over all classes,
thus penalize the result in those cases the model scores worse on a minority class. The
rationale behind these metrics is to be able to tell if the models have flaws classifying
these minority classes. Once again, since the dataset is imbalanced; precision, recall,
and F1­score will be the most interesting metrics. Accuracy is included as it still might
be interesting, to for instance disregard that the dataset is imbalanced and see the
overall probability that themodel predicts the correct class. Keep inmind that F1­score
gives equal weight to precision and recall. In this paper, the attention will be put on F1­
score to give a quick high­level comparison. When actually studying the performance
of a run from a specific model, the reader is encouraged to look at precision and recall
separately. Throughout this section, themetrics presented in the tables are all averages
over the metric in question. The averages are gathered from the scikit­learn API using
the classification_report method [45]. Scikit­learn is an API which provides tools for
predictive data analysis [43].
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In summary, the SVM is generally faster, with less training, in achieving higher results
in terms of the studied metrics, in comparison to the DQN model. On the other hand,
the best performing DQN is very close to the performance of the best performing SVM
and the difference is likely within the margin of error. To make a fair comparison
against the results that are presented in this thesis, the versions and architecture of
the system are shown in Table 4.0.1.

Table 4.0.1: Evaluation platform.

GPU CUDA Toolkit cuDNN PyTorch TensorFlow Detectron2

GeForce GTX
1060 3GB v11.1.1 v8.1.1 v1.8.1 v2.4.1 v0.4

4.1 DQN vs SVM
Four different models are evaluated: DQN with and without sensor fusion as well
as SVM with and without sensor fusion. Every model is evaluated in three different
use cases, with the number of studied classes ranging between 2­ 4 classes. The
tables in the remainder of this chapter are shown with the corresponding amount of
epochs and episodes. To get a relatively high spread of epochs/episodes; the models
are evaluated for 50­3200 epochs/episodes, which increases with a multiplication of
two, i.e., 50,100,200,400... and so on up to 3200 epochs/episodes. However, with
an exception of the DQN frameworks, those models are not run for more than 1600
episodes. This seems to also be an adequate number of epochs for the SVM as the
performance has more or less converged at that time. Still, it should be emphasized
that this does not prove that an actual convergence has actually been found.

4.1.1 Using Sensor Fusion
When sensor fusion is used, it can be concluded that the SVM model outperforms
the DQN model in most cases. The SVM model scores generally a higher F1­score
and a higher score for accuracy, recall and precision. Additionally, the DQN model
is significantly slower to train than the SVMmodel.

Table 4.1.1, shows the results from the experiments where cars and persons are
classified. It follows that the highest F1­score in the two­class experiments are obtained
after 400 episodes or ∼1.62 hours for the DQN and 100 epochs or ∼0.22 hours for
the SVM. Although DQN scored higher in its best run, the DQN takes more time to
train. Next, lets consider the three­class experiments, i.e., the experiments where cars,
persons, and trucks are classified. It follows from Table 4.1.2 that the run with highest
F1­score is obtained after 1600 episodes or∼56.20 hours for DQN and 3200 epochs or
∼7.47 hours for the SVM. In regards of F1­score, the SVM scores higher with 0.0065
compared to the DQN even though it is trained for significantly shorter time.
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Table 4.1.1: The two different methods using sensor fusion, for n number of
epochs/episodes; 2 classes.

PPPPPPPPPModel
n

50 100 200 400 800 1600 3200

DQN

Accuracy 0.9842 0.9905 0.9905 0.9984 0.9905 x x

Precision 0.9657 0.9825 0.9852 0.9990 0.9852 x x

Recall 0.9872 0.9882 0.9852 0.9961 0.9852 x x

F1­score 0.9759 0.9853 0.9852 0.9975 0.9852 x x

SVM

Accuracy 0.9890 0.9968 0.9953 0.9937 0.9953 0.9953 0.9937

Precision 0.9788 0.9951 0.9912 0.9902 0.9912 0.9971 0.9847

Recall 0.9872 0.9951 0.9941 0.9902 0.9941 0.9882 0.9961

F1­score 0.9829 0.9951 0.9926 0.9902 0.9926 0.9925 0.9903

Table 4.1.2: The two different methods using sensor fusion, for n number of
epochs/episodes; 3 classes.

PPPPPPPPPModel
n

50 100 200 400 800 1600 3200

DQN

Accuracy 0.8899 0.9457 0.9752 0.9767 0.9907 0.9891 x

Precision 0.6412 0.7742 0.8825 0.9823 0.9614 0.9877 x

Recall 0.7656 0.7102 0.8077 0.8024 0.9309 0.9618 x

F1­score 0.6806 0.7151 0.8353 0.8583 0.9455 0.9740 x

SVM

Accuracy 0.9752 0.9845 0.9891 0.9907 0.9922 0.9876 0.9953

Precision 0.9782 0.9858 0.9915 0.9903 0.9909 0.9890 0.9942

Recall 0.7484 0.8432 0.8748 0.9348 0.9651 0.8742 0.9684

F1­score 0.7939 0.8922 0.9197 0.9595 0.9773 0.9181 0.9805

Finally, lets consider the four­class experiments, i.e., the experiments that includes all
class of objects, cars, persons, trucks, and bicycles. The results are seen in Table 4.1.3.
The best results, i.e., the experimentswith the highest F1­score, are obtained after 1600
episodes or ∼35.33 hours for the DQN and 3200 epochs or ∼6.74 hours for the SVM.
Once again, as for the highest F1­score, SVM scores higher; additionally it takes less
time to train.
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Table 4.1.3: The two different methods using sensor fusion, for n number of
epochs/episodes; 4 classes.

PPPPPPPPPModel
n

50 100 200 400 800 1600 3200

DQN

Accuracy 0.7958 0.9219 0.9459 0.9625 0.9820 0.9865 x

Precision 0.4704 0.7274 0.8788 0.8661 0.9639 0.9884 x

Recall 0.5374 0.6830 0.7204 0.8580 0.9145 0.9476 x

F1­score 0.4823 0.6843 0.7728 0.8615 0.9336 0.9668 x

SVM

Accuracy 0.9565 0.9805 0.9850 0.9895 0.9880 0.9895 0.9925

Precision 0.8500 0.9472 0.9908 0.9808 0.9904 0.9908 0.9933

Recall 0.6413 0.8467 0.8596 0.9377 0.9065 0.9392 0.9525

F1­score 0.6957 0.8801 0.9079 0.9570 0.9424 0.9626 0.9717

4.1.2 Without Sensor Fusion
Also without sensor fusion, the SVM model does better than DQN model in general.
And this holds both in terms of the F1­score as well as for the time the time taken for
the models to train. However, for the best performing models for 3 and 4 classes, the
DQN outperforms the SVM in terms of the F1­score; although a conclusion cannot be
drawn, this could show tendency that the DQN performs better with an imbalanced
dataset which for instance the paper by Lin et al. mentions is an advantage with
reinforcement learning in imbalanced data learning [29], this work does not disprove
this. Additionally, comparing the best performing models when sensor fusion is
employed and when its not, the DQN show a tendency of having issues with the
fusion of the data, however this conclusion cannot be drawn as there are such small
differences.

As seen in Table 4.1.4, the best results in the two­class experiments are achieved after
400 episodes or ∼0.87 hours for the DQN and 100 epochs or ∼0.11 hours for the
SVM model. The DQN resulted in a F1­score of 0.9902 and the SVM in a F1­score of
0.9926, i.e., a better performance of the SVM for these runs. In the same way for three
classes, Table 4.1.5 can be studied and derive that the best result are obtained after
1600 episodes or ∼35.67 hours for the DQN and 1600 epochs or ∼1.66 hours for the
SVMmodel. From studying the best runs for the three­class experiment in Table 4.1.5,
it is seen that the DQN actually outperforms the SVM in terms of F1­score, however,
once again, the DQN take significantly more time to train.
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Table 4.1.4: The two different methods without sensor fusion, for n number of
epochs/episodes; 2 classes.

PPPPPPPPPModel
n

50 100 200 400 800 1600 3200

DQN

Accuracy 0.9637 0.9874 0.9874 0.9937 0.9937 x x

Precision 0.9290 0.9860 0.9777 0.9874 0.9901 x x

Recall 0.9655 0.9744 0.9833 0.9931 0.9901 x x

F1­score 0.9457 0.9801 0.9804 0.9902 0.9901 x x

SVM

Accuracy 0.9858 0.9953 0.9953 0.9937 0.9905 0.9937 0.9921

Precision 0.9739 0.9912 0.9912 0.9961 0.9881 0.9874 0.9811

Recall 0.9823 0.9941 0.9941 0.9845 0.9823 0.9931 0.9951

F1­score 0.9780 0.9926 0.9926 0.9900 0.9851 0.9902 0.9879

Table 4.1.5: The two different methods without sensor fusion, for n number of
epochs/episodes; 3 classes.

PPPPPPPPPModel
n

50 100 200 400 800 1600 3200

DQN

Accuracy 0.8326 0.9550 0.9659 0.9705 0.9907 0.9876 x

Precision 0.5307 0.8833 0.9640 0.8436 0.9597 0.9656 x

Recall 0.5911 0.7695 0.7721 0.8333 0.9012 0.9810 x

F1­score 0.5477 0.7979 0.8182 0.8380 0.9277 0.9725 x

SVM

Accuracy 0.9659 0.9767 0.9876 0.9891 0.9829 0.9907 0.9876

Precision 0.9675 0.9769 0.9889 0.9570 0.9831 0.9903 0.9525

Recall 0.6851 0.8360 0.9019 0.9006 0.8979 0.9348 0.9019

F1­score 0.6997 0.8841 0.9382 0.9261 0.9333 0.9595 0.9245

Finally, Table 4.1.6 presents the results from the four­class experiments. As follows,
the highest F1­score comes from running the DQN for 1600 episodes or ∼25.75 hours
and the SVM for 3200 epochs or ∼3.41 hours. Once again, the best performing DQN
model outperforms the best performing SVM model in terms of F1­score. For these
runs, this is due to the low recall score of the SVM in comparison to the DQN, i.e.,
0.8802 for the SVM compared to 0.9253 of the DQN.
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Table 4.1.6: The two different methods without sensor fusion, for n number of
epochs/episodes; 4 classes.

PPPPPPPPPModel
n

50 100 200 400 800 1600 3200

DQN

Accuracy 0.7402 0.8168 0.9114 0.9640 0.9730 0.9865 x

Precision 0.5793 0.4533 0.6835 0.8527 0.8961 0.9667 x

Recall 0.7065 0.5357 0.5958 0.8921 0.8515 0.9253 x

F1­score 0.5462 0.4632 0.6008 0.8696 0.8722 0.9449 x

SVM

Accuracy 0.9339 0.9429 0.9745 0.9865 0.9835 0.9805 0.9835

Precision 0.7077 0.7586 0.9146 0.9696 0.9495 0.9472 0.9903

Recall 0.5209 0.6830 0.8655 0.8911 0.9109 0.9005 0.8802

F1­score 0.5335 0.7054 0.8876 0.9258 0.9257 0.9220 0.9270

Asmentioned earlier, the DQNmodel performed generally worse than the SVMmodel.
Note that the F1­score equally weighs in precision and recall and thus not always reflect
the best run. For example, if precision is deemed more important than recall, then
the reader is encouraged to look at that metric, and vice­versa if precision is deemed
more important. A general higher score for the accuracy of the SVM is also found but
too much weight should not be put on this since an imbalanced dataset is used which
accuracy is as mentioned not suitable for.

On the other hand, the DQN outperforms the SVM in some cases as for themetrics, but
keep in mind, as regards to time, an epoch does not equal an episode. For those runs
where the DQN outperforms the SVM, it can be argued that the SVM could have been
trained longer but nevertheless, the SVM could have also found a convergence already
but this as mentioned is not proven with these experiments. It can also be argued
that the models could have run longer in general to achieve better metrics. However,
as mentioned in the beginning of this chapter, this thesis is not trying to find out the
model that provides the highest F1­score, but rather check the viability for the different
concepts. In addition, this could not also been done due to time constraints.

Despite the fact that the SVM is in general performing better in terms of the metrics,
the best performing DQN is fairly close to the performance of the best performing
SVM, and, as mentioned, the DQN even outperforms the SVM in some cases; but
as mentioned, the training for the DQN is significantly longer. To conclude, the
DQN model is not viewed as a viable model for classification mainly due to the slow
learning process but should not be negligible as it performs fairly well in terms of the
metrics presented. Additionally, the DQNmodel could as mentioned in Section 3.3 be
optimized even further in the reward function to improve the performance. The slow
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learning process for a DQN is likely the reason for why it is not commonly applied in
classification. However, the fact that reinforcement based learning approach is slow is
known. According to the paper by Botvinick et al. [40], this is due to the incremental
parameter adjustment and weak inductive bias.

Moreover, by comparing the results with and without sensor fusion, a noticeable
improvement can be seen in the metrics studied in this work. Both using the SVM
and the DQN model. However, the improvement varies a lot, in some cases it differs
only a few thousandths and sometimes up to 0.1329. For instance classifying 3 classes
with the DQNmodel trained for 50 episodes, the F1­score with sensor fusion is 0.6806
whereas without is 0.5477. Keep in mind that the NLSPN network that outputs the
dense depth map uses data that is transposed onto a 2D plane, hence a lot of the lidar
data is actually lost, arguably most of it. In other words, the 3D structure of an object
and surroundings. By keeping the lidar data in 3D as well as doing a sensor fusion
with the RGB images, the results are expected to be even better. Furthermore, the
NLSPN network might also not have been the optimal solution. As for the results with
both inputs coming in as a 2D shape, a well­considered decision has to be made since
there is in fact an improvement but maybe not enough to outweigh the cost of lidar
equipment.

28



Chapter 5

Conclusions and Future Work

This thesis seeks to answer the viability of using a reinforcement­learning approach to
solve a classification task, more specifically a Deep Q­learning network, and compare
this approach to a semi­classical one which uses a CNN feature extractor and SVM
as a classifier. Furthermore, to investigate whether sensor fusion would assist the
DQN and/or the semi­classical approach in the classification of objects. To make an
evaluation, models of these approaches were built which were then compared. The
results show that theDQNapproach is not a goodoption, not least since it takes a longer
time to train, and, in general, obtains a worse score (in terms of accuracy, precision,
recall, and F1­score) as compared to the evaluated semi­classical approach. However,
the DQN should not be negligible as it still performs fairly well, and even outperforms
the semi­classical approach in some cases. As for classification tasks, reinforcement
learning might still be a viable option on imbalanced text data sets and extremely
imbalanced data and this is something that concurs with the findings of Lin et al.

On the other hand, the employment of sensor fusion shows a notable improvement;
especially, when taking into account that most of the lidar data is lost when the data
is transformed from 3D into 2D. Hence, a considerable improvement is expected to
be seen when the lidar data is kept in 3D. Additionally, the dataset used in this paper
does not include cases where the scene is dark, for example, in use cases taking place
at night. In such cases, the employment of a lidar combined with an RGB camera is
also expected tomake a big improvement since unlike RGB camera, lidar works equally
well in light as in dark environments. Avenues for future work includes an evaluation
of sensor fusion with lidar in dark­scene scenarios; investigate the adaptability of the
models, for instance between an indoor and outdoor environment; to keep the lidar
data in 3D space, and investigate howmuch the entire lidar data actually improves the
performance; to optimize the reward function in the DQN further in order to improve
the performance; to train the SVM models even longer to prove the performance
convergence as this work could not to this due to time constraints; and, to expand the
reinforcement learning model to also be able to detect objects with the use of sensor
fusion.
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APPENDIX A. CNN NETWORKS

Figure A.0.1: A visualisation of the CNN for the DQN when sensor fusion is employed.
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Figure A.0.2: A visualisation of the CNN for the DQN without sensor fusion.
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Figure A.0.3: A visualisation of the CNN for the SVMwhen sensor fusion is employed.
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Figure A.0.4: A visualisation of the CNN for the SVM without sensor fusion.
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APPENDIX B. DQN GRAPH

Figure B.0.1: Accuracy, loss, epsilon and reward graph of the DQN algorithm for four
classes, 400 episodes when sensor fusion is employed.
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