
Administrative management
system

Complementing an existing system with new functionality and
increased efficiency

Christoffer Björk
George Newbury

Faculty of Health, Science and Technology

Computer Science

Bachelor's thesis 15hp

Supervisor: Martin Blom

Examiner: Kerstin Andersson

Date: 20210601

Preface

We would like to thank Ninetech and our client supervisor Roger Hemström, who

dedicated a lot of his time and patience to help us with this project. We would also like

to thank our University supervisor Martin Blom for sharing his all knowing knowledge

of all things academia.

i

ii PREFACE

Abstract

This thesis is about how we delivered a product that eases maintenance and support

of the client Ninetech’s system ServeIT. The product provides a website which has the

purpose of providing an easy way to perform actions and show relevant information in

a meaningful way. The functionalities that the product provides is showing all opticians

within the different organizations in ServeIT and rebuilding search indexes when a

product is added or removed by a supplier or optician.

The specified requirements imposed by Ninetech were all implemented, and the final

product is today used within their production environment. The project was purpose-

fully made scalable, such that further development could be made by Ninetech once the

project came to an end.

iii

iv ABSTRACT

Contents

Preface i

Abstract iii

Figures ix

Listings xii

1 Introduction 1

1.1 The Project . 1

1.2 Problem Description . 2

1.2.1 Show Members . 2

1.2.2 Trigger Elastic Search . 2

1.2.3 Authentication & Authorization 2

1.3 Purpose & Goals . 3

1.4 Method . 3

1.5 Client . 4

1.6 Distribution of Work . 4

1.7 Ethics & Society . 5

1.8 Limitations . 5

1.9 Disposition . 6

v

vi CONTENTS

2 Background 7

2.1 ServeIT Architecture . 7

2.2 ServeIT Source Code . 9

2.2.1 WebAPI . 9

2.2.2 Business . 9

2.2.3 DataContract . 9

2.2.4 DataAccess . 10

2.2.5 Modules Working Together 10

2.3 Techniques . 11

2.3.1 ASP.NET Core . 11

2.3.2 Dependency Injection . 12

2.3.3 Options Pattern . 12

2.3.4 RestSharp . 13

2.3.5 Bootstrap . 13

2.3.6 JSON . 13

2.3.7 JWT . 13

2.3.8 Active Directory . 14

2.4 Tools . 15

2.5 Summary . 15

3 Design 17

3.1 Architecture . 17

3.2 Solution Blueprint . 18

3.3 Dataflow . 20

3.4 Website . 21

3.5 Authentication & Authorization . 22

3.6 Summary . 23

CONTENTS vii

4 Implementation 25

4.1 General Implementation . 25

4.1.1 Dependency Injection . 25

4.1.2 BaseApiClient . 26

4.1.3 Appsettings . 27

4.1.4 Frontend . 28

4.2 Requirement 1 - Show Members . 29

4.2.1 Frontend . 30

4.2.2 DataContract . 32

4.2.3 WebAPI . 33

4.2.4 Business . 34

4.2.5 DataAccess . 35

4.2.6 Summary . 36

4.3 Requirement 2 - Trigger Elastic Search 36

4.3.1 Frontend . 37

4.3.2 WebAPI . 40

4.3.3 DataContract . 41

4.3.4 Business . 42

4.3.5 DataAccess . 43

4.3.6 Summary . 45

4.4 Requirement 3 - Authentication & Authorization 45

4.4.1 MVC & WebAPI . 46

4.4.2 Refreshing Cookie Sessions 47

4.4.3 Authorization . 48

4.4.4 Tokens & Settings . 50

4.4.5 TokenGenerator . 51

4.4.6 UserService . 51

viii CONTENTS

4.4.7 User Repository . 52

4.4.8 Summary . 54

5 Results 57

5.1 Background & Design . 57

5.2 Implementation . 58

5.3 Summary . 59

6 Conclusions 61

6.1 Project Evaluation . 61

6.2 Further Work . 62

6.3 Final Remarks . 63

Bibliography 64

List of Figures

2.1 Diagram depicting ServeIT architecture. 8

2.2 Depiction of data communication between modules 10

3.1 The architecture of ServeIT with our implementation 18

3.2 The blueprint for structuring our solution 19

3.3 How data flows through the application 20

3.4 The underlying design for website . 21

3.5 The flow of different authentication objects 23

4.1 Member page on website . 30

4.2 Example of dataflow . 36

4.3 Page for elastic search on the website 37

4.4 Dataflow for elastic search page . 38

4.5 Drop-down list of organizations . 38

4.6 Successful submit on the MemberPersons card 40

4.7 Class diagram of the publish request classes 42

4.8 Login form asking for username and password 46

4.9 What a user sees with only SyncMemberArticles role 50

ix

x LIST OF FIGURES

Listings

4.1 ServiceCollectionExtensions class . 26

4.2 ExecuteAsync method, with generic data types 26

4.3 Organization configuration from appsettings.json 27

4.4 API configuration for the elastic page 28

4.5 How a view is loaded into layout with @RenderBody() 29

4.6 Javascript of datatable . 31

4.7 MemberItem class with a few of its properties 33

4.8 MembersController constructor and Get endpoint 33

4.9 Functions for converting to and from DTOs 34

4.10 GetAllMembers function from MemberRepositoryApi 35

4.11 Combining organization key and the GetMembers path to an URL . . . 39

4.12 SuppliersController GET endpoint with a key parameter 41

4.13 SuppliersService GetByKey function 43

4.14 PublishByKey function for the MemberPerson chain 43

4.15 How key is used to search through OrganizationConfiguration 44

4.16 Publish request for MemberPerson repository 44

4.17 TokenWithClaimsPrincipal class with all attributes 46

4.18 Roles class with static values . 48

4.19 MembersController get action with authorization 49

4.20 HTML elements filtered by role . 49

xi

xii LISTINGS

4.22 Permission setting exposing the relation between groups and roles . . . 52

4.23 UserDao class with all attributes . 52

4.24 The Bind call to authenticate a user . 53

4.25 Stored strings for AD queries . 54

4.26 GetUserAttribute method . 54

Chapter 1

Introduction

In this project, an internally used website is to be created and integrated to an existing

system and its infrastructure. The purpose of the website is to provide admin level

functionalities and information for our client Ninetech. The system that is to be inte-

grated with, ServeIT, is both facilitated and has its infrastructure managed by Ninetech.

ServeIT is a central business system used by independent opticians in Sweden and

Norway, which is separated into two isolated sub systems. The goal is to simplify

and automate administrative actions that today are done manually by Ninetech. The

integration with both sub systems should provide the same functionality on the website.

1.1 The Project

The project should allow employees of Ninetech to search for opticians’ shops, which

are defined as members. The project should also provide relevant data in order to per-

form actions to rebuild the search index when data is added or removed from ServeIT’s

database. The product of this project will be used in their production environment and

entails aspects of web development, APIs and .Net Core. Development of the project is

done in short iterations and carried out at Ninetech’s office and from home.

1

2 CHAPTER 1. INTRODUCTION

1.2 Problem Description

In this thesis, we aim to answer the question "How can we produce a final product that

the customer is satisfied with, within the given time frame, requirements, and constraints

set by the customer". For this project there are several constraints defining choice of

language, platform, and different techniques for an expected end product. The product

should have a fully separable frontend and backend, where the connection between

them is handled through clearly defined and abstract interfaces. The functionality of the

project can be defined in three major requirements which we list below.

1.2.1 Show Members

Functionality that allows a user to find information of members within ServeIT. All

members should be presented in a table, where the user is able to search for members

based on their attributes.

1.2.2 Trigger Elastic Search

A user should be able to choose an identifying record and rebuild a search index database

for all records related to the identifier. Identifiers and records can be of different types.

The identifiers should be presented in a searchable list. When submitted, all records of

a specific type will be reloaded in the search index.

1.2.3 Authentication & Authorization

Together with the previously defined requirements, all externally exposed parts of our

project should be protected. This protection comes from providing authentication by

integrating with an existing directory server and using its user data. The roles from the

directory server should be usable within our project.

1.3. PURPOSE & GOALS 3

1.3 Purpose & Goals

The purpose of the project is to get a better understanding of the software development

field and apply our theoretical knowledge from our education to a practical real-world

problem. Work is done with realistic constraints, adapting to existing technology and

design choices.

The goal of our project is to create a web application that can be used for mainte-

nance and support of ServeIT. This application should fulfill agreed upon requirements,

and be developed in a way such that Ninetech at a later stage could further implement

functionalities to the end product.

1.4 Method

The methodology used in this thesis has been inspired by some of the elements used in

Scrum, which is a framework of agile methodology used in software development. It

uses an approach that focuses on self-organizing teams and adaptive solutions, and is

therefore good at handling unexpected events such as the customer changing their mind

about what they want or need. Scrum provides various techniques for creating an agile

workflow and different techniques might be used for different types of organizations

[1, 2]. For our project we made use of product backlog, sprint backlog, and working in

sprints followed by a demo.

The product backlog was defined at an early stage with the client supervisor, and

the backlog contained all requirements that the client expected us to finish. We worked

in weekly iterations with our client supervisor at Ninetech. Before each iteration we

defined a sprint backlog in which we specified requirements and wishes that were to be

implemented during the following sprint. Within each iteration there are three phases in

which the client supervisor is present within each one. The first phase is technical

design, in which an architectural design is agreed upon with the client supervisor.

4 CHAPTER 1. INTRODUCTION

After approval of the design, the implementation is carried out, and daily questions

are handled ad-hoc with the supervisor again. At the end of each sprint, a demo is held

for the client supervisor, and should the results be accepted we would start planning for

the next sprint. The sprint would always start and end on a Friday, although the length

of an iteration could vary. The goal was to always carry out a design in conjunction with

a demo as to keep the iterations back to back. The main reasons for using Scrum is the

scale of our project, and to gain coordinating abilities combined with a short feedback

loop.

1.5 Client

Ninetech is a company located in Karlstad, and is part of the CombinedX group. They

are mainly focused on products related to Microsoft, Episerver, and InRiver. Ninetech

prides themselves in developing tailor made technical platforms for client, sales, and

market processes [3, 4]. Ninetech has had an ambition to implement a solution that eases

administration and support of ServeIT. Due to lack of economical compensation from

their client and time constraints, they have not been able to implement this themselves.

As a result they have provided us with the task to create a product that automates

processes that today are being carried out manually by the client’s employees.

1.6 Distribution of Work

The workload within the thesis and implementation of the project has largely been

based on the architecture chosen to be implemented. Meaning that from a project

viewpoint, George Newbury had the primary responsibility of the website together with

the web endpoints providing the web interface and retrieving data. Christoffer Björk has

been mainly responsible for implementing the business and data access layers. These

1.7. ETHICS & SOCIETY 5

responsibilities have been to a large extent reflected when working on the thesis as well,

although it’s also important to note that this has been a cooperation where both authors

have contributed to research and development of all parts in the project and thesis.

1.7 Ethics & Society

ServeIT is intended to help opticians with their daily work in the form of booking,

journal handling, purchasing, and selling products. From our standpoint there are no

ethical issues in how ServeIT works or is used. Since access to our project will be

limited to Ninetech internally, and because our project only works with existing data,

we see no reason how it could have an ethical or societal impact.

1.8 Limitations

Due to the general requirements from Ninetech, many of the major decisions that could

have been made, had already been made. Thus any limitations are more on a problem

solving level. For example, we have been asked to follow the coding standards used

within Ninetech as much as possible. The structure of this project and its implemen-

tation have been formed in such a way that we have worked with one requirement

at a time. Based on the requirements and decisions made by Ninetech many of the

limitations had already been set.

6 CHAPTER 1. INTRODUCTION

1.9 Disposition

This thesis is structured in the following way. Chapter 2 presents different techniques

and tools used within the project, combined with an analysis of the system ServeIT

in regards to both program architecture and infrastructure. In Chapter 3, we present

how our project is to fit the structure of, and work together with ServeIT. Combined

with how to integrate with ServeIT, a design is presented, that defines the structure and

architecture of our project. Furthermore, Chapter 4 explains the general implementa-

tions that affect every part of the project, followed by a detailed presentation of how

each requirement was implemented. With focus on the technical aspects of our project,

Chapter 5 discusses what results were produced and the impact from our development

choices. Lastly, Chapter 6 evaluates the project and development process, further work

on the end product and what we would have done differently.

Chapter 2

Background

This chapter presents ServeIT from an infrastructure standpoint, giving the base of how

to integrate with the existing environment. Furthermore, an analysis of the source code

of ServeIT has been done, where certain design choices and features are presented as

they will be implemented in our project. Lastly, a number of frameworks, techniques,

and tools that are used in the project are presented.

2.1 ServeIT Architecture

ServeIT is used by opticians in Sweden and Norway, and is separated into two isolated

sub systems that share the same basic functionality. The system has a web frontend

where users can for example, book meetings with patients, and keep track of their

journals. ServeIT also contains data for articles sold by these opticians. The data can be

viewed in a web browser, but is also provided to a third party that supplies the physical

cash registers used in the optician’s shops.

The API gateway is the external facing component of the system, and can be seen

in Figure 2.1. Its purpose is to provide connections between different clients and the

application servers, depicted as appserver. The API gateway also provides services like

7

8 CHAPTER 2. BACKGROUND

Figure 2.1: Diagram depicting ServeIT architecture.

IP-filtering and load balancing. The appservers can generally be seen as a number of

externally exposed APIs that can be routed to from the API gateway.

It is these APIs that provide data to clients, by accessing either the Elastic Search

engine or the database directly. The appserver is also concerned with making sure that

the data in the database is correctly replicated in Elastic Search. In contrast with an

SQL database, Elastic Search is a search engine that is used to minimize queries to the

database, and provides faster queries based on full text [5]. Rabbit MQ is a message-

broker software, which connects multiple softwares to a single place where messages

are queued and propagated to all subscribers [6].

2.2. SERVEIT SOURCE CODE 9

2.2 ServeIT Source Code

In order to analyse and comply with the design and architectural choices made by

Ninetech, a sample of ServeIT’s source code was provided. The sample is a sub-

component of the whole system, and is represented by a single Visual Studio solution

containing four individual projects. These projects, or modules, will be described below.

2.2.1 WebAPI

Is the gateway in which external clients send and retrieve data from the persistent

storage. This module mainly consists of one type of class which handles the requests

and depends on the Business module in order to send and retrieve data.

2.2.2 Business

Contains the business logic between the WebAPI and DataAccess modules. This mod-

ule contains two types of classes: services and mappers. The services are responsible

for supplying the read and write actions from the lower levels to the externally facing

WebAPI module. By implementing the functions found in the mapper classes, a service

is able to convert higher level DataContract objects to lower level DataAccess objects

and vice versa. Together with supplying these actions, the service classes also take

business logic into account before passing requests further up or down in the hierarchy.

2.2.3 DataContract

A Data Contract Object (DCO) can be seen as a template defining what data are to

be passed between the Business, WebAPI modules and external clients consuming the

WebAPI. It is a contract of how data should look, and what attributes it should have. It

is these objects that Data Access Objects (DAO) will be converted to and from.

10 CHAPTER 2. BACKGROUND

2.2.4 DataAccess

The DataAccess module provides a way to access persistent data stored in a database.

All the logic where the Business module needs to in some way interact with the database,

is provided from the repository classes. The module also contains a factory class, whose

purpose is to establish a connection between application and database. When sending

data to and from the database, the repository uses the DAO objects that mimic the

attributes of a database table and the provided connection from the factory.

2.2.5 Modules Working Together

As Figure 2.2 shows there is a logical relation between the three main modules: We-

bAPI, Business, DataAccess. Furthermore, the two external components, HTTP clients

and database, are connected as well.

Figure 2.2: Depiction of data communication between modules

Requests from the external HTTP client goes to the WebAPI, which handles the

request and appoints the correct service from the Business module. The Business

module then handles the requests and forwards them to the DataAccess module which

handles read and writes to the actual persistent storage. If data is to be written or read,

the flow is the same, and the only thing that changes is if data is passed to or from the

persistent storage. Also noteworthy is that there are two types of data objects within this

pattern. DCOs are passed between the WebAPI and the Business module, while DAOs

are passed between Business and DataAccess.

2.3. TECHNIQUES 11

2.3 Techniques

In this chapter we explain various techniques used within the project and the develop-

ment process.

2.3.1 ASP.NET Core

ASP.NET Core is a platform specifically built for extending the base .NET Core frame-

work provided by Microsoft. This extension provides tools and libraries for building

web applications. Among these tools and libraries ASP.NET Core provides means for

creating websites with the MVC design pattern, a base framework for processing web

requests, and a system for authentication, which is able to handle login and authorization

with different sources for authentication. This solution allows for server rendered pages,

meaning that HTML pages can contain C# code that is rendered on the server before it

is sent to a requesting client [7, 8].

MVC is a design pattern used in software development in order to separate the ap-

plication into different logical components, thus adhering to the separation of concerns

design principle. These three components are the Model, View and Controller. The

Model manages the data, business logic, and rules of the application, while the View is

responsible for displaying information to the user and giving the user ways to interact

with the application. The two main objectives of the Controller is to choose what view

to show the user with information given from the Model, and delivering queries to the

Model for fetching information that the user wants [9].

ASP.NET Core has built in support for handling authentication and authorization.

The former mentioned handles identities and the latter what resources an authenticated

resource is allowed to access. By adding an authentication middleware to an ASP.NET

project, all incoming requests will be routed through the middleware, in this case for the

sake of authentication or authorization. In order for a middleware to function it requires

12 CHAPTER 2. BACKGROUND

at least one scheme, but several can be added. Examples of these schemes are JwtBearer

and cookie, which define how requests should be formulated and how they should be

authenticated. In order to implement authorization in a project, one could specify that

whole controller classes or specific methods within a controller should be authorized.

Furthermore, with server rendering, certain elements of a web page can be removed

with authorization by choosing what to render [10, 11].

2.3.2 Dependency Injection

Applying Dependency Injection (DI) to an implementation means that classes within

the solution should depend on abstractions rather than concrete implementations. By

depending on abstract interfaces, which only consists of declarations rather than imple-

mentations, the dependency is inverted instead, leading to loosely coupled classes that

are easily interchanged without having to rewrite any code that depends on the abstract

interfaces [12].

2.3.3 Options Pattern

Implementing the options pattern for ASP.NET Core projects gives developers the abil-

ity to provide strongly typed classes with settings, instead of having to parse a whole

settings file every time a setting needs to be accessed. Furthermore, an implementation

following the options pattern will lead to encapsulation and separation of concerns

between modules, since dependence is only on the specific settings within a typed class

and not the whole settings file [13].

2.3. TECHNIQUES 13

2.3.4 RestSharp

Restsharp is a library for HTTP Client activity for .NET solutions. The library provides

functionality to build and send custom HTTP requests with features such as built in

JSON serialization and deserialization, and also to send JSON data within the HTTP

request body [14].

2.3.5 Bootstrap

Bootstrap is an open source framework for creating and designing websites. Since 2013,

all Visual Studio templates have been using Bootstrap in their web project templates per

default. Bootstrap provides means for easily creating visually appealing sites with small

effort, and has due to this been embraced by developers who do not mainly work with

frontend/graphical user interface design. In the Bootstrap community/ecosystem there

is a plethora of free and commercial components, tools and most importantly templates

that can be imported into projects [15]. SB Admin 2 is used as a template, which

provides a theme and code structure to build the website upon [16].

2.3.6 JSON

JavaScript Object Notation (JSON) is a data format that is both easy for humans to

read and write, but also for machines to parse and generate. The JSON data format

supports both name and value pairs or lists of values. Since the data format is language

independent, it is ideal for data exchange [17].

2.3.7 JWT

JSON Web Tokens (JWT) is a standard that is used to securely transmit information

between parties in JSON format. The token is signed using algorithms or public/private

keys, which allows the token to be verified and trusted between the parties. The token is

14 CHAPTER 2. BACKGROUND

structured into three parts: header, payload, and signature, all encoded separately using

Base64.

The header of the token holds information about what type of token is sent and in-

formation specifying which algorithm was used to sign the token. The payload contains

various claims. These claims contain information related to the specific holder of the

token defined by the issuer. In order to validate a token, a signature is set. This signature

contains an encrypted secret that can be validated.

Tokens can be used for different purposes. An access token can be provided to the

client by a server, the token is short lived and has the purpose of allowing the client

to access various endpoints. Once an access token expires, the user is required to login

again in order to receive a new access token. A solution to avoid forcing the user to login

once the access token expires is to also provide the user with a refresh token which has

a longer expiry time. This token can then be used in order to refresh the access token

without requiring any action from the user [18].

2.3.8 Active Directory

Active Directory (AD) is a piece of software with a hierarchical structure of objects.

These objects and their information can be shared over a network and can consist of

resources such as servers, printers, users or computer accounts. AD provides query and

indexing mechanisms, so that these objects may be easily found by other resources on

the same network. For these different objects, there are a number of shared and unique

attributes of which can be found by queries. Examples of these attributes are mem-

berOf that describes an object’s group membership, samAccountName that describes

the username of an account, and givenName that describes the first name of an object

[19, 20, 21].

The Lightweight Directory Access Protocol (LDAP), is a protocol used to communi-

cate with directory services such as AD over the network. When using LDAP towards a

2.4. TOOLS 15

directory service, operations such as searching and modifying objects are made possible

via a command line interface, or programmatically in a program [22].

The Novell Directory Ldap is a library that makes LDAP communication from

.NET based applications simpler by providing a number of methods and data types used

for LDAP communication. Examples of actions is to authenticate a domain user with

username and password and/or retrieve object related attributes and their values [23].

2.4 Tools

While implementing our project, a number of tools will be used in order to write,

share, store code, but also to test and deploy it. Visual Studio (VS) is an Integrated

Development Environment used for software development. VS has built-in support for

debugging, version control and developing ASP.NET applications with C# [24, 25, 26].

The version control used during implementation is called GIT, with a locally hosted

server. GIT is a free, distributed system that supports branching and merging different

versions of code [27]. Also existing in the environment of ServeIT is a continuous

integration chain where a system called TeamCity listens to certain branches in GIT, and

then attempts to build the new version of a repository [28]. When a build is successful,

it will be picked up by Octopus Deploy which attempts to deploy the built software

according to its configuration [29].

2.5 Summary

As one of the requirements from our client supervisor is that our implementation should

look like the existing system to the utmost, a number of design choices from ServeIT

will be added to our implementation. In a general sense, the same modular design

and separation of concerns will be used in our design. All ASP.NET modules will

16 CHAPTER 2. BACKGROUND

be using the ASP.NET Core framework, while remaining modules uses .NET standard

framework. Dependency Injection (DI) is important in order to achieve a loose coupling

between the different modules. We will implement DI for concrete classes, but also fol-

low the Options pattern, where settings in the ASP.NET Core module can be converted

to typed .NET classes and be injected in different modules/classes within the solution.

Together with following design choices and patterns, we have been asked to log events

within our implementation in the same way as Ninetech does in ServeIT, they did not

specify a requirement of exactly what should be logged.

Chapter 3

Design

After analysing the source code of ServeIT and receiving requirements from Ninetech,

a base design had been made. The main points of our design choices are to be able

to extend existing functionality in ServeIT and make our implementation extendable

with new functionality. The implementation should most likely be able to follow the

templates presented below.

3.1 Architecture

As seen in Figure 3.1, the original architecture of ServeIT is presented again, but this

time with our implementation, depicted as ServeIT Tools. All requests going to and

from external VPN clients are routed via an API gateway from outside the network,

meaning that the Tools implementation will be reached by the same solution as the

original system.

Furthermore, the VPN connection gives clients an internal IP-address. The dotted

line in the middle of Figure 3.1 shows a distinction between which servers are reachable

from an external IP or not. As our implementation is an internal tool, it should only be

accessed by clients with an internal IP, provided by the VPN for example.

17

18 CHAPTER 3. DESIGN

Figure 3.1: The architecture of ServeIT with our implementation

The same can be said regarding the Database, Rabbit MQ, and Elastic Search servers

which only accept queries from internal addresses, such as the appservers. Lastly, an ex-

isting Active Directory (AD) is to be used for authentication and authorization purposes.

Communication to AD is intended to be done directly between our implementation and

the AD server, as ServeIT uses another solution for identity management.

3.2 Solution Blueprint

In Figure 3.2 the broad picture of our project is described with a solution blueprint. This

solution contains MVC, WebAPI, Business, DataAccess, and DataContract modules.

Although both MVC and WebAPI, pictured as MVC + WebAPI, are contained within

the same solution, they hold different responsibilities and functionalities.

The MVC module’s main functionality is to provide views to be used on the web

page, while the WebAPI provides raw data. Both modules have distinct controller

classes for each data object provided by the API or page structure in our implementation.

While the DataContract module specifies the formal agreement of data objects that are

provided by the WebAPI module to external clients.

3.2. SOLUTION BLUEPRINT 19

Figure 3.2: The blueprint for structuring our solution

The Business module holds all the business logic, it includes folders such as Map-

pers which maps data to and from Data Contract Objects (DCO) and Data Access

Objects (DAO). The Service class which actually implements the business logic. The

Generic folder contains ServiceCollectionExtension, which allows for easy configura-

tion of DI, and defines what collection of interfaces, and implementations of classes are

to be used.

Lastly, the DataAccess module provide procedures to read and write from persistent

storage accessed within our Repository class. The Data folder stores the different Data

Transfer Objects (DTO) which are used to access the persistent storage. The API

folder contains all generic classes used for API requests. Just like the business module,

DataAccess has a ServiceCollectionExtension class as well.

To summarize, the folder structure and naming conventions within the whole solu-

tion, is strictly based upon the standards used in ServeIT. We use this since there is a

big focus on DI making all the sub components loosely coupled, this is also a reason

for why almost each class has its own interface. We moved the creation of dependent

objects outside of the class itself to the interfaces instead, which is then provided to

other classes.

20 CHAPTER 3. DESIGN

3.3 Dataflow

In Figure 3.3 the different modules, together with their respective classes and data

types are described in a typical flow for the application. A composition of the modules

WebAPI, Business, and DataAccess can be considered as a chain, since there is a strict

relation between them that have been defined in the solution blueprint. Clients in the

figure are portrayed as various web clients consuming the web application provided by

the MVC module. As such, the main purpose of the Controller within the MVC module

is to provide different views to clients. The Model within the MVC will only be used

for logic/data that is exclusive for the views.

Figure 3.3: How data flows through the application

Any real data required from persistent data storage or API from external sources is

to be provided by the WebAPI module. This module’s API will be consumed by various

clients, with the main target being the web clients mentioned in the previous paragraph.

Since the WebAPI’s only purpose is to receive and deliver data, it relies on the Business

module to provide these services.

The Business module will contain the logic required in order to provide data or

3.4. WEBSITE 21

execute commands to and from different sources. Combined with the business logic,

this module provides the actual services required, such as accessing persistent storage

via the DataAccess module and also performing data mapping as needed. Furthermore,

the business module can also handle sending trigger actions externally, which would be

handled by the module itself.

The DataAccess module represents an interface for the Business module for all types

of persistent storage. Figure 3.3 has been pictured with a generic type of persistent stor-

age. This could be an external API for example. For each storage source, a repository

represents the interface for the business module where the purpose of the DAO is to

mimic the data structure of an object represented in the persistent storage.

3.4 Website

The design of the website came to fruition through requirements from, and discussion

with the client supervisor. In Figure 3.4 our general design of the website is shown

which aligns with the provided default structure from ASP.NET Core.

Figure 3.4: The underlying design for website

With the use of a shared layout for the whole site, three sections are consistent on

all pages, while the content section in Figure 3.4 is what contains unique views which

22 CHAPTER 3. DESIGN

are loaded depending on the current page. Relevant user information is shown within

the header section. The footer section is used to provide extra information that needs to

be provided to the user. The menu section is where the user navigates between different

pages within the website. Lastly, the content section which is where the actual content

of a page is shown. We chose to use SB Admin 2 since it aligned with our design

decisions and it allowed us to implement cohesive, maintainable, and modern design

with already existing functionalities.

3.5 Authentication & Authorization

From a general standpoint, the authentication in our implementation should be applied

by using JSON Web Tokens (JWT). Although this is possible to implement in order to

protect our API endpoints, it is not as easy to protect web pages and resources. The

main reasoning being that there is no easy built-in method for web pages to store and

manage the web token. In our design, we instead use two paths, ergo two authentication

schemes, in order to handle this.

For the API endpoints a raw JWT token is handled, see yellow lines in Figure 3.5.

For the clients consuming the web page of our implementation, cookies will be used

instead, see red lines in Figure 3.5. Since the API endpoints still require a JWT for

authentication, both methods of authentication are actually required when accessing our

implementation from the website. The solution to this is to pass a JWT together with

the cookie for all web clients and rendering the token on the web page before sending

it, so that it can be used on the client side when sending API requests.

The green arrows in Figure 3.5 define that the general logic. The same rules are

applied independently of what type of authentication is to be provided. The generic

object from the Authentication module can be transformed to either a raw JWT or cookie

containing JWT.

3.6. SUMMARY 23

Figure 3.5: The flow of different authentication objects

In our implementation we also provide functionalities to provide authorization and

authentication with the client’s Active Directory. The purpose of this being to add

another level of security to our application but also provide a way for further imple-

mentation to be done by the client in the form of allowing certain users more or less

access based on their role. The application secures whole web pages, elements of pages

and endpoints within itself.

3.6 Summary

Our project is to be implemented within the internal structure of ServeIT, and com-

munication between our implementation and other internal tools is made through the

API gateway. Other internal resources we access are services such as the Active Direc-

tory and APIs. The implementation contains five modules MVC, WebAPI, Business,

DataAccess, and DataContract. Each module is structured in a way that is strictly based

upon ServeIT. The implementation is also to be loosely coupled between the frontend

24 CHAPTER 3. DESIGN

and backend, providing two different flows of information. The MVC provides different

views to the client while the API provides and receives data. The website consists of a

shared layout which is responsible for loading partial views, depending on which page

the user navigates to. The implementation is mainly authorized and authenticated with

the use of JWT. There are two different schemes, JWT and cookie, used within the

implementation to protect the API endpoints, web pages, and resources.

Chapter 4

Implementation

The following chapter explains the implementation of general functionalities that are

applicable and relevant throughout the whole project in the first section, followed by

a detailed implementation for each of the requirements, show members, trigger elastic

search, and authenticate authorize users.

4.1 General Implementation

Implementations that are not unique to a single requirement or wish are still necessary

for the specific requirements to be fulfilled. This section presents generic classes, main

design features, and how Dependency Injection (DI) is obtained in our implementation.

4.1.1 Dependency Injection

The WebAPI module is responsible for initiating all DI in our implementation. By

doing so, our Business module provides a public function, AddBussinessServices in a

static class called ServiceCollectionExtensions (SCE) seen in Listing 4.1, that can be

used in the startup configuration for our system.

25

26 CHAPTER 4. IMPLEMENTATION

1 public static class ServiceCollectionExtensions {

2 public static IServiceCollection AddBusinessServices (this

IServiceCollection services){

3 return services

4 .AddScoped < IMemberService , MemberService >()

5 . AddSingleton < IMemberItemMapper , MemberItemMapper >()

6 . AddDataAccessServices () ;}}

Listing 4.1: ServiceCollectionExtensions class

As can be noted from the last row in Listing 4.1, our DataAccess module also con-

tains an SCE function named AddDataAccessServices, but it is the Business module’s

responsibility to provide it to the startup. The motivation behind this is that the WebAPI

only should rely on the business module. For these SCE functions to actually be used,

our startup for WebAPI simply adds a reference to the business module and calls the

function services.AddBusinessServices.

4.1.2 BaseApiClient

A BaseApiClient class has been implemented in such a way that all methods it provides

are generic, where its intended purpose is to be inherited by all API bound repository

classes. It provides a nested class, RequestBuilder, which has the responsibility of

building and sending a HTTP request, and to return any data requested. The generic

properties of the BaseApiClient comes from two design choices. The first choice is to

use generic data types, where the real data type will be determined by the consumer

which can be seen in Listing 4.2.

1 public async Task <T> ExecuteAsync <T >(){

2 var response = await _httpClient . ExecuteAsync <T >(_httpRequest);

3 if (response . IsSuccessful) return response .Data;

4 throw new Exception (message : " Execute failed with following error : " +

response . ErrorMessage);}

Listing 4.2: ExecuteAsync method, with generic data types

4.1. GENERAL IMPLEMENTATION 27

The second choice of implementing a builder like methodology, where a chain of

commands can be called in order to create and send a HTTP request. This methodology

is based on that the functions to create and also to call a RequestBuilder will always

return the instantiated RequestBuilder object. Each of these called functions only alter

the settings of the two objects contained within the RequestBuilder, RestClient, and

RestRequest.

4.1.3 Appsettings

The information regarding the endpoints consumed by our repository API classes are

stored within an appsettings file, specifically the section OrganizationConfiguration in

Listing 4.3.

1 " OrganizationConfiguration ": {

2 "ks": {

3 "Name": " Klarsynt ",

4 " BaseUrl ": " https :// klarsynt - systest . serveit . online /api/"

5 },

6 "co": {

7 "Name": " Coptikk ",

8 " BaseUrl ": " https :// coptikk - systest . serveit . online /api/"}}

Listing 4.3: Organization configuration from appsettings.json

These values are passed to each class consuming them via DI, by declaring an in

parameter such as IOptions<OrganizationConfiguration>. This specific structure serves

two purposes. For each organization a key is used as an identifier, for finding a specific

organization. The whole structure should also be contained within a list so that it may

be iterated through when needed.

Furthermore, our frontend will also consume settings from our appsettings file, more

specifically which API endpoints it should consume from its backend. For each view

supplied by the frontend, a unique API configuration is added to appsettings. In Listing

4.4, an example of this configuration can be seen for the page named "Elastic".

28 CHAPTER 4. IMPLEMENTATION

These configurations will always contain a BaseUrl and at least one resource, where

each resource points to a specific endpoint within our backend.

1 " ClientApiConfiguration ": {

2 " ElasticApiConfiguration ": {

3 " BaseUrl ": " https :// developertools - systest . serveit . online /api/",

4 " Resources ": {

5 " GetSuppliers ": " Suppliers /",

6 " GetMembers ": " Members /",

7 " GetOrganizations ": " Organizations /",

8 }}}

Listing 4.4: API configuration for the elastic page

4.1.4 Frontend

The website consists of a number of web pages, and a shared layout which provides the

website with a consistent header, menu, footer, and content section where the body of

the views are loaded.

The implementation of the design for the shared layout was heavily influenced by SB

Admin 2, but in order for us to get the design structure we wanted, we had to restructure

some of the provided code in order to fit our design goals. SB Admin 2 does not take

in account the usage of a shared layout. The template that SB Admin 2 provides is

structured in a way that it expects every view of the website to implement all of the

shared layout such as footer, header, menu and content into every view. This approach

however causes a lot of repeated code within every view.

What we had to do in order for the template and our design goals to match was

to implement all of the shared sections such as header, menu and footer within the

shared layout. Within the content section of the layout @RenderBody lets us load our

views into the layout seen in Listing 4.5. All of the code within each of the views then

only had to contain the specific information that is unique for each view. Additionally

the @RenderSection function allows a view’s scripts to be separately loaded. With the

4.2. REQUIREMENT 1 - SHOW MEMBERS 29

required attribute we can specify that all of the views do not need to have a script section

in order for the view to load. In our case we set this to false since some of our views do

not have any scripts.

1 <div class ="container - fluid ">

2 @RenderBody ()

3 @RenderSection (" scripts ", required : false)

4 </div >

Listing 4.5: How a view is loaded into layout with @RenderBody()

Pages that interact with the WebAPI in some way will be provided a connection

string through the MVC controller. From the configuration an URL and resource will be

provided to the specific endpoint of the WebAPI that the page will use. The controller

retrieves the connection string through use of IOptions<ClientApiConfiguration> ser-

vice, which is an interface used to retrieve configured ClientApiConfiguration instances.

The configuration is then passed to the view as a parameter upon returning the page, by

serializing the provided configuration in the page into a JSON object which then can be

used by JavaScript files of the page.

4.2 Requirement 1 - Show Members

The motivation for this requirement is that our client wants a quick and easy way to

find relevant information of all the members in the system, which is defined as a shop

in ServeIT. These members should be presented and searchable on the web page in our

implementation. The information deemed as relevant includes what services a member

is subscribed to, and contact information. This is achieved with API requests from our

MVC client/view to our WebAPI. The data should cover members from all organizations

specified in the organization configuration.

30 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Member page on website

For the sake of presentation, we have divided our implementation into frontend and

backend. The backend’s only focus is to provide and receive data. It is an essential

part for the frontend, as all data from ServeIT that should be viewed on the web page is

supplied by the backend of our implementation.

4.2.1 Frontend

The Member page consists of a table where the user can search for members, as can

be seen in Figure 4.1. Once the Member page is loaded, a function for retrieval of

members is automatically executed, as seen in Listing 4.6. The path from which we are

to retrieve members is created by combining the BaseUrl and resources.GetAllMembers

from memberconnections.

4.2. REQUIREMENT 1 - SHOW MEMBERS 31

1 $(function () {

2 var path = memberConnections . baseUrl + memberConnections . resources .

GetAllMembers ;

3 jQuery . getJSON (path , function (json) {

4 var table = $(’#dataTable ’). DataTable ({

5 data: json ,

6 "sDom": ’frti ’,

7 paging : false ,

8 columns : [{

Listing 4.6: Javascript of datatable

The path variable is passed as an argument to the jQuery function getJSON , speci-

fying where the HTTP GET request is to be sent. Upon successful request, the returned

JSON data is stored within the json variable. By using the Datatable plugin, several

configuration parameters are set that define how the table should look.

The json data that was successfully retrieved is now assigned to the DataTables data

variable. The search input box is moved to the top left of the datatable by overwriting

the default position setting. Furthermore, paging is disabled as all data should be viewed

on a single page.

The columns within the datatable are of three different configurations. The first

column of our datatable shows a flag depending on the countryCode value received from

JSON, through usage of third-party library world-flags-sprite to retrieve the pictures for

the specific codes.

1 className : ’f32 ’,

2 data: " countryCode ",

3 },

Listing 4.6: Javascript of datatable with flags (continued)

32 CHAPTER 4. IMPLEMENTATION

The next four columns have a simpler presentation, where the direct values from the

returned JSON data are added to the columns defined by the variable names described

in the listing for standard columns.

1 { data: " memberId " },

2 { data: " memberNo " },

3 { data: " companyName " },

4 { data: "city"},

5 {

6 " className ": ’details -control ’,

7 " orderable ": false ,

8 "data": null ,

9 " defaultContent ": ’’,

10 " render ": function () {

11 return ’<i class ="fa fa -plus - square " aria - hidden ="true" ></i>’;

12 },

13 width : "15 px"

14 }

Listing 4.6: Javascript of datatable with standard columns (continued)

Lastly, a "details control" column is added, containing a button with an onClick

event listener that allows the user to further extend the specific row and show extra

information such as email, phone, and properties information in a child row.

4.2.2 DataContract

The DataContract module provides the model of the Member and Property structure

within ServeIT. A raw Member object contains 32 attributes, mainly revolving around

contact, postal, and shipping information, while a raw property object contains only

five attributes. Even though many of these attributes are not required to fulfill the

requirement it should not be the backend’s job to decide what information is relevant,

only to hide details that might compromise security, like passwords. Likewise, a raw

Property object contains a number of attributes of which the most important is the name

of the specific property.

4.2. REQUIREMENT 1 - SHOW MEMBERS 33

1 public class MemberItem {

2 public int MemberId { get; set; }

3 public int MemberNo { get; set; }

4 public string CompanyName { get; set; }

5 public string City { get; set; }

6 public string CountryCode { get; set; }

7 public List < PropertyItem > Properties { get; set; } }

8 public class PropertyItem {

9 public int PropertyId { get; set; }

10 public string Name { get; set; } }

Listing 4.7: MemberItem class with a few of its properties

Members and Properties are considered two different objects within ServeIT, but for

this implementation we design them as one object where a MemberItem contains a list

of its PropertyItems that can be viewed in Listing 4.7.

4.2.3 WebAPI

Within the WebAPI module, the MembersController in Listing 4.8 was created to handle

requests regarding Members. As our design is based on a client based request model,

filtering and searching is handled within the client, and the WebAPI will only provide

a complete list of all Members. This controller will listen for HTTP GET requests that

are sent to the following route <base url>/api/Members.

1 public MembersController (

2 IMemberService memberService ,

3 ILogger < MembersController > logger){

4 _memberService = memberService ;

5 _logger = logger ;

6 }

7 [HttpGet]

8 public async Task < IActionResult > Get (){

9 return Ok(await _memberService . GetAllMembers ());}

Listing 4.8: MembersController constructor and Get endpoint

34 CHAPTER 4. IMPLEMENTATION

The MembersController gets access to the MemberService by injecting an IMem-

berService in its constructor, thus implementing Dependency Injection. It is with the

help of the IMemberService the controller retrieves data in the Get function. The HTTP

response will always be 200 OK since no parameters from the client have to be validated.

The data sent back will be a List of MemberItems, previously defined in DataContracts,

that is implicitly converted to a JSON file.

4.2.4 Business

The Business module in regards to this requirement will be quite simple, acting as a

bridge to the lower DataAccess module and mapping the same attributes from a DTO

object to an item object. Since data is only supposed to be read from the persistent

storage, a one way conversion from DTO to item is only required. As such, a mapper

with its corresponding interface has been created. Supporting one public and one private

function as seen in Listing 4.9.

1 public MemberItem FromDto (MemberDto member)

2 private PropertyItem FromDto (PropertyDto property)

Listing 4.9: Functions for converting to and from DTOs

The service here, supplies a list of MemberItems that it has mapped from Mem-

berDtos that will have been provided by the Dependency Injected IMemberRepository.

The conversion is done by projecting the MemberItemMapper’s FromDto function onto

each DTO object with the Select command. Since no specific business logic is to be

applied for this requirement, nothing else is done. Lastly, the structure of remapping

objects is maintained only to follow the projects’ Solution Blueprint and if any changes

should occur in the future.

4.2. REQUIREMENT 1 - SHOW MEMBERS 35

4.2.5 DataAccess

The main challenge of the DataAccess module is to retrieve data from two different

API endpoints and return these as one collection of objects. An interface named IMem-

berRepository, and a concrete class MemberRepositoryApi were implemented. The

interface defines a single public function GetAllMembers, where the MemberReposito-

ryApi’s implementation can be seen in Listing 4.10.

1 public async Task < IEnumerable <MemberDto >> GetAllMembers (){

2 var memberList = new List <MemberDto >();

3 string resource = " internal / members ";

4 foreach (var org in _configuration . Value){

5 memberList = memberList . Concat (await Get(org. Value .BaseUrl , resource).

ExecuteAsync <List <MemberDto > >()). ToList ();

6 }

7 return memberList ;

8 }

Listing 4.10: GetAllMembers function from MemberRepositoryApi

Furthermore, the MemberRepositoryApi inherits the BaseApiClient class, which

provides the concrete implementation of sending HTTP requests and mapping the data

to a specified object. By iterating through the organizations within OrganizationConfig-

uration, which is dependency injected via IOptions, GetAllMembers retrieves members

by passing the BaseUrl of each organization and the resource defined in Listing 4.10.

The BaseUrl and resource are passed to the inherited Get function, and then Exe-

cuteAsync is sequentially called while also defining the return type as a List<MemberDto>.

Data returned from the ExecuteAsync is concatenated to the memberList before return-

ing the list to the caller.

36 CHAPTER 4. IMPLEMENTATION

4.2.6 Summary

The first requirement is to show relevant information of all members from different

organizations on a web page. An API endpoint Get was added within the WebAPI for

the retrieval of all members as a list of MemberItem, as seen in Figure 4.2.

Figure 4.2: Example of dataflow

The list of MemberItems returned from the WebAPI are passed from MemberSer-

vice in the Business layer where a mapper is responsible for mapping every MemberDto

into a MemberItem. The MemberDto object is retrieved from MembersRepository in

the DataAccess layer, where the actual retrieval of data is made. In this case, the actual

retrieval is done via an external API request. The website consumes the WebAPI in

order to retrieve members. Once the data is returned to the website it is presented within

the table with the usage of datatable plugin.

4.3 Requirement 2 - Trigger Elastic Search

The purpose of this requirement is to provide functionality to rebuild the Elastic Search

index for different data objects, MemberArticle, MemberPerson, and Articles. These

data types should be rebuilt by defining different identifiers for what subset of data to

rebuild, in contrast to rebuilding the whole data set.

4.3. REQUIREMENT 2 - TRIGGER ELASTIC SEARCH 37

Figure 4.3: Page for elastic search on the website

Furthermore, since this data is unique per organization, all functions should be

provided for both organizations, but not at the same time. This also means there needs

to be a clear separation of how to handle organizations all the way through our imple-

mentation.

4.3.1 Frontend

The ElasticSearch page consist of three cards that can be seen in Figure 4.3. Although

the cards provide the same set of functionalities there are some differences between each

one, they are different in what data is to be sent and where. In this chapter we will cover

each design component within the page and what functionalities they provide.

Figure 4.4 illustrates each card’s endpoint to which connections are made to the

WebAPI. The clouds on the left-hand side of the cards show all of the endpoints in

which we are to retrieve some data, which are represented by a number of controllers in

our WebAPI. As seen in Figure 4.4, the OrganizationController provides the organiza-

tions within our implementation, that is used by all cards. Furthermore, members and

suppliers are provided by their respective controllers. To the right of the cards all of the

endpoints to which we are to send data are shown. The data is visualized as rectangles

38 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Dataflow for elastic search page

with JSON formatted data and to what endpoint in which data is sent MembersArti-

cleController, MemberPersonsController, and ArticleController. As mentioned before

the connection variable holds all of the endpoints provided through the MVC controller.

When the page is loaded, the list of organizations are retrieved through the WebAPI

and populate each card’s organization drop-down list as seen in Figure 4.5. Retrieved

Figure 4.5: Drop-down list of organizations

JSON data is mapped against a single row within the drop-down list of organizations.

The JSON object contains three values for each organization, a key-value, name of

organization, and baseUrl. All of these values within the JSON are bound to a row in

4.3. REQUIREMENT 2 - TRIGGER ELASTIC SEARCH 39

the drop-down, although for visual presentation only the name of the organization is

shown.

When the organization drop-down list for a specific card is populated, the next step

is to populate the drop-down list containing members with the member number, name,

and city. The list updates depending on the current value on the organization drop-down,

since every organization have different member.

In order to retrieve suppliers or members, a path is created by appending a baseUrl,

a resource depending on the card, and the key-value of the organization that is currently

selected. In Listing 4.11, an example is provided of the MemberPersons card. The first

row shows the retrieval of the currently selected organizations key, which is then stored

in the organization variable. The second row shows the creation of the full path in which

the endpoint lies within the WebAPI.

1 var organization = $(’#shops - memberpersons -org -dropdown ’).find(": selected ").

data(" value ");

2 var path = connections . baseUrl + connections . resources . GetMembers +

organization + "/";

Listing 4.11: Combining organization key and the GetMembers path to an URL

The MemberPersons card has an extra checkbox which is not present on the other

cards. The reasoning behind this being that the JSON data we are to POST from this card

contains a boolean value in which the client supervisor wished for an option to set to true

or false. Every card contains a section identifying the currently selected shop/supplier.

In this case we display only the id for each one since this was wished by our client

supervisor. This value is updated every time the user changes the shop/supplier from

the drop-down list. Within the MemberPerson card there are three things that are to be

sent, the key-value of the currently selected organization, the current id shown on the

card and lastly the value from the checkbox. A path is then built by using the baseUrl

and PublishMemberPersons values from the connections variable combined with the

organization key from the drop-down list of organizations.

40 CHAPTER 4. IMPLEMENTATION

Figure 4.6: Successful submit on the MemberPersons card

The Submit button on each card starts the HTTP post for that specific card, as each

card sends different data. In Figure 4.6 a successful submit from the MemberPersons

card is pictured, together with the confirmation of a published id. If a request were to

fail or timeout, an error message would be shown instead.

4.3.2 WebAPI

In order to provide the frontend with the organizations handled within our solution, the

OrganizationController was added. This controller uses IOptions, specifically the class

OrganizationConfiguration, and has a single Get function which returns the whole list

containing all organizations. The purpose of this list is that any hosts can know what

organizations are currently available. It is also noteworthy that this controller has no

chain of modules, since data is simply retrieved from IOptions.

Furthermore, since all actions related to the Elastic Search page are to be carried out

per organization, the existing chain for members had to be extended with a new func-

tionality that allows retrieval of these objects per organization key. With the addition of

a new chain to be able to present suppliers within ServeIT with a similar configuration

as Members. By providing a new endpoint for GET requests where an organization

key is passed in the header of the request, suppliers or members can be supplied by

4.3. REQUIREMENT 2 - TRIGGER ELASTIC SEARCH 41

our backend. Listing 4.12 shows an example of how the input parameters look for the

SuppliersController’s Get function.

1 [HttpGet ("{key}")]

2 public async Task < ActionResult <List < SupplierItem >>> Get(string key){

3 if(ModelState . IsValid){

4 return Ok(await _supplierService . GetByKey (key));}

5 return BadRequest () ;}

Listing 4.12: SuppliersController GET endpoint with a key parameter

Based on the response from the lower level modules, this function can return a

BadRequest, e.g. when the key does not exist within the OrganizationConfiguration.

Lastly, three new controllers have been added for each respective publish function.

The motivation for creating three separate controllers is that they are related to the object

or persistent storage they read or write to. For the sake of this requirement, these are:

• MemberPersonController

• MemberArticleController

• ArticleController

Each controller is named after the data object they handle, and is composed of a

single POST function. This function reads a JSON object from the HTTP body and

maps it to its corresponding Publish object that have been defined in the DataContract

chapter. Should the JSON match the required DataContract object, the corresponding

service for each chain is called, and depending on the result it can return either OK or

BadRequest combined with the original request as confirmation.

4.3.3 DataContract

A set of classes have been created for each of the chains supplying a publish function-

ality for input data. In all cases, these concrete classes directly reflect their counterpart

42 CHAPTER 4. IMPLEMENTATION

from ServeIT. The difference with our implementation is that every publish request

also requires an organization key to be specified. All three implementations inherit this

property key from the class PublishRequestBase according to Figure 4.7.

Figure 4.7: Class diagram of the publish request classes

For the SuppliersController, a new set of items have been added to the implemen-

tation, whose functionality is similar to that of MembersController, SupplierItem, and

SupplierCategoryItem, where the category item is contained within the supplier item.

As no attributes are to be withheld from our API this class reflects the real SupplierItem

from ServeIT. Although there are more than 30 attributes for these items, the most

relevant for now is ArticleID from SupplierItem.

4.3.4 Business

In order to provide members based on their organization, the MemberService class has

been extended with another function where it takes a string representing the organization

key as an input parameter. Just like the original function that gets all members, the

extended function also maps the returned DTO objects from MemberRepository to item

4.3. REQUIREMENT 2 - TRIGGER ELASTIC SEARCH 43

objects before returning to its caller. As depicted in Listing 4.13, a similar function

exists for the SupplierService although mapping supplierDto objects to SupplierItems

instead.

1 public async Task < IEnumerable < SupplierItem >> GetByKey (string key){

2 var result = await _supplierRepository . GetSuppliersByKey (key);

3 return result . Select (_supplierMapper . FromDto);}

Listing 4.13: SuppliersService GetByKey function

For the MemberArticle, MemberPerson, and Article chains all implement one func-

tion PublishByKey, as can be seen in Listing 4.14, taking their corresponding PublishRe-

quest class as an input parameter. The key from the base of each PublishRequest class is

extracted as a parameter, while the request class is mapped to a similar publish request,

defined by the data contract of ServeIT. Both the request and the publish request object

are passed to its corresponding repository function PublishByKey.

1 public async Task <bool > PublishByKey (PublishMemberPersonRequest request){

2 return await _memberPersonRepository . PublishByKey (request .Key ,

_memberPersonMapper . ToPublishRequest (request));}

Listing 4.14: PublishByKey function for the MemberPerson chain

4.3.5 DataAccess

As stated in previous chapters, the members chain has been extended with new function-

ality to provide members for only one organization. This is achieved by first dependency

injecting the IOptions<OrganizationConfiguration>, and when the function GetByKey

in Listing 4.15 is called, the input parameter key is used to search through the list

of organizations. Should the organization exist, a list of Members is returned, and if

the organization is not found an empty list will be returned instead. For the newly

added SuppliersController, the process is very much the same, although the resource

44 CHAPTER 4. IMPLEMENTATION

specifying the API endpoint and datatype returned corresponds to supplier related values

instead.

1 public async Task < IEnumerable < SupplierDto >> GetByKey (string key){

2 OrganizationConfigurationItem config ;

3 string resource = " internal / warehouse / suppliers ";

4 if (_configuration . Value . TryGetValue (key , out config))

Listing 4.15: How key is used to search through OrganizationConfiguration

As organization keys are required for the MemberPerson, MemberArticle, and Ar-

ticle publish chains, they use the same logic in order to search for organizations as

the member and supplier chains. Another requirement for the publish chains function

PublishByKey in Listing 4.16 is that they are passed their corresponding PublishRequest

object as well. Furthermore, should the organization not exist the function will return

false.

1 public async Task <bool > PublishByKey (string key , PublishMemberPersons

publishRequest){

2 OrganizationConfigurationItem config ;

3 string resource = " internal / persons / memberpersons / publish ";

4 if (_configuration . Value . TryGetValue (key , out config)){

5 try{

6 await Post(config .BaseUrl , resource). WithJsonBody (publishRequest).

ExecuteAsync ();

7 return true;

8 }

9 catch (Exception e){}

10 }

11 return false ; // Error

12 }

Listing 4.16: Publish request for MemberPerson repository

The HTTP request is built by calling Post with the BaseUrl and specific resource,

converting the publish request to JSON and adding it to the body with the call to

WithJsonBody and then sent by calling ExecuteAsync. It is also noteworthy that the

4.4. REQUIREMENT 3 - AUTHENTICATION & AUTHORIZATION 45

execute function does not return any data, as none is expected. Since there is not much

feedback given from the publish functions provided by ServeIT, some error handling is

still added. Should the HTTP request fail for any reason, by throwing an exception for

example, PublishByKey will return false.

4.3.6 Summary

In order to fulfill the requirement regarding Elastic Search, there are many components

and actions that look similar but are still different enough to warrant their own chain

through our implementation. Every card in the view warrants for their own controls

as the choices made by a user when submitting can trigger different actions and in

turn send data to different endpoints in our repository. Thus, requiring a clear and

understandable interface, and defined chains throughout all modules together with a

reasonable foundation of organization defined paths, actions, and data.

4.4 Requirement 3 - Authentication & Authorization

In order to fulfill the requirement to handle both authentication and authorization, a

number of requirements had to be implemented. All API endpoints should be protected

by using JWT bearer token authentication. The website should be protected in a similar

manner, using cookies instead to support sessions for logged in users. For authenticating

accounts an existing Active Directory (AD) implementation is to be used and provide

both accounts and permissions. API endpoints, pages, and their elements should be able

to require different roles defined by AD.

46 CHAPTER 4. IMPLEMENTATION

4.4.1 MVC & WebAPI

Two different schemes have been utilized to handle authentication and authorization.

These schemes are used for different ways of accessing our implementation.

For the API related endpoints, a JWtBearerToken scheme is used, in this thesis

defined as a Bearer scheme, while all requests to be handled by the MVC endpoints

with its views rendered in a web page utilizes a cookie scheme.

When a user tries to access the website via the cookie scheme a login page is shown

in Figure 4.8, where the user enters username and password. This information is sent

to the AccountController endpoint Login, and if the given user credentials are success-

fully authenticated via the TokenGenerator, a TokenWithClaimsPrincipal (TWCP) is

processed to create a cookie.

Figure 4.8: Login form asking for username and password

For both the MVC and API authentication flows, there is a dependency on the

JwtTokenGenerator class, because it supplies a TWCP object should the authentication

succeed. The attributes of a TWCP can be seen in Listing 4.17.

1 public class TokenWithClaimsPrincipal {

2 public string AccessToken { get; set; }

3 public string RefreshToken { get; set; }

4 public List <Claim > Claims { get; set; }

5 public AuthenticationProperties AuthenticationProperties { get; set; }}

Listing 4.17: TokenWithClaimsPrincipal class with all attributes

4.4. REQUIREMENT 3 - AUTHENTICATION & AUTHORIZATION 47

The claims within TWCP are to be added to the cookie, and are used for defining

roles on the website. Furthermore, both the access- and refresh-tokens are added as

specific claims on the cookie as well. Lastly, the cookie is configured according to the

AuthenticationProperties and added to the response, and the request is redirected to the

index page of the website.

However if our implementation is to be used without the MVC, and instead only

depend on the Bearer scheme, a user authenticates by sending a post request containing

username and password to the AuthenticationController login endpoint. As for the

MVC, upon successful authentication TWCP is returned from the TokenGenerator, but

in this case the access- and refresh-tokens are extracted and returned in their raw string

format. Thus, without being given a cookie, access is only possible via the Bearer

scheme.

4.4.2 Refreshing Cookie Sessions

Considering that the tokens and cookies generated by our implementation have a limited

lifetime, a type of silent refresh is required for clients logged in on the website using the

cookie scheme. This is needed because a user might be logged in and using the tool for

longer than the expiration time configured in appsettings.

For our implementation, this issue was solved by adding a custom middleware to the

web application. The purpose of this middleware is to intercept incoming web requests

before they are actually authenticated and handled by our MVC controllers endpoints.

Should the incoming request be eligible for a refresh according to a set of rules defined

in the TokenGenerator class, a new cookie will be added to the HTTP response and the

receiving client will automatically replace the old cookie.

This flow is quite similar to that of explicitly refreshing an access token using

the Bearer scheme, the only difference being that this is done automatically by our

implementation instead. When explicitly requesting for a refresh, a call has to be made,

48 CHAPTER 4. IMPLEMENTATION

but the same rules and methods in the TokenGenerator decide if the request is eligible

for refresh. Similarly to as when an authentication is carried out, both the access and

refresh tokens are returned to the requesting client.

4.4.3 Authorization

Authorization is possible given that a user has claims specifying the user’s roles. There

are various parts in our implementation where authorization is needed, such as the API

endpoints, pages, and their elements. In Listing 4.18, a number of static values have

been defined for the number of roles that have been implemented. For example, the

ViewMembers role is intended to protect resources and actions revolving around the

Members page. Furthermore, the other static values with names starting with Sync are

intended for use regarding the Elastic Search page.

1 public static class Roles

2 {

3 public const string ViewMembers = " ViewMembers ";

4 public const string SyncArticles = " SyncArticles ";

5 public const string SyncMemberArticles = " SyncMemberArticles ";

6 public const string SyncMemberPersons = " SyncMemberPersons ";

7 }

Listing 4.18: Roles class with static values

A client using the Bearer scheme will make a login request against the Authoriza-

tionController’s login endpoint and receive role claims upon successful authentication.

If the user were to send a get request to the MembersController to retrieve all members,

the user will be authorized access if the ViewMembers role is assigned. The role for the

given user is retrieved from the incoming bearer tokens claims and is programmatically

protected, as can be seen with the Authorize tag in Listing 4.19.

4.4. REQUIREMENT 3 - AUTHENTICATION & AUTHORIZATION 49

1 [HttpGet]

2 [Authorize (Roles = Roles . ViewMembers)]

3 public async Task < IActionResult > Get (){

4 return Ok(await _memberService . GetAllMembers ());}

Listing 4.19: MembersController get action with authorization

If the client uses the cookie scheme, access to an API endpoint works in the same

way as mentioned above, however within the GUI there are whole pages and their

elements that should be hidden from a user that is not allowed to access them. If the

user were not to have the ViewMembers permission, they would not be able to see the

Members button on the navigation menu. In Listing 4.20, the button to access the Mem-

bers page is only rendered on the page when a user has the permission ViewMembers.

The user would also be denied access if they were to enter the Members view with an

URL to the specific page.

1 @if (User. IsInRole (Roles . ViewMembers)){

2 <li class ="nav -item">

3 <a class ="nav -link" asp -area="" asp - controller ="Home" asp - action ="

Members ">

4 <i class ="fas fa -fw fa - table " ></i>

5 Members </ span >

6

7 }

Listing 4.20: HTML elements filtered by role

Shown in Figure 4.9 is an example where a user does not have the roles ViewMem-

bers, SyncMemberPersons and SyncArticles and thus the elements related to the specific

roles are disabled. In this case the button for Members on the navigation menu and the

submit buttons on the cards MemberPersons and Articles are removed.

50 CHAPTER 4. IMPLEMENTATION

Figure 4.9: What a user sees with only SyncMemberArticles role

4.4.4 Tokens & Settings

Within our implementation two JSON Web Tokens (JWT) are used, access- and refresh-

tokens. The tokens are used to make it possible for the server to authenticate the user

and refresh a session. Listing 4.21 shows the creation of a JWT token.

5 var accessToken = new JwtSecurityToken (issuer : _configuration . Value .Issuer ,

6 audience : _configuration . Value .Audience ,

7 claims : claims ,

8 notBefore : DateTime .UtcNow ,

9 expires : DateTime . UtcNow .Add(expirationInMinutes),

10 signingCredentials : new SigningCredentials (

11 new SymmetricSecurityKey (Encoding . ASCII . GetBytes (_configuration .

Value . RawSigningKey)),

12 SecurityAlgorithms . HmacSha256));

Listing 4.21: JWT Token generation

The issuer, audience, expiration date, and symmetric key value are all retrieved from

appsettings. The token’s signature is encrypted by converting it to a byte array and then

encrypting it with the HmacSha256 algorithm. The access and refresh token contain

claims which are issued within the TokenGenerator during the creation of the tokens.

4.4. REQUIREMENT 3 - AUTHENTICATION & AUTHORIZATION 51

4.4.5 TokenGenerator

The TokenGenerator is responsible for the creation of all tokens used in the application.

Tokens can be generated in two ways, either with a username and a password, or by

providing a refresh token that has been previously generated by the token generator.

In order for our system of tokens to work with the Bearer and cookie schemes, a

single class encompasses all attributes needed for both schemes. This encompassing

class, TokenWithClaimsPrincipal (TWCP), is returned from all public methods and is

presented in Listing 4.17.

In order for the TWCP to be generated, a dependency upon a IUserService is in-

jected, which provides a method to authenticate users with username and password.

Furthermore, any specific claims related to the user will be returned from UserService.

Should the authentication be successful, a more generic private method called Gener-

ateTokenWithClaims is called. This method is accountable for creating both an access

and refresh token and combining these with the provided claims and Authentication-

Properties to a TokenWithClaimsObject. When instead refreshing an existing token,

the injected user service is not required. Instead the token is validated, its claims are

extracted, and used to create a completely new TWCP object.

4.4.6 UserService

The purpose of the UserService is twofold. Firstly, it is the only implementation that

can reach the user repository, providing access to a database of users. The second

responsibility is to map any properties of a UserDao to Claims. After a user has been

successfully logged in and a UserDao has been returned from the repository, for each

property that the repository has provided, the UserService will cross-validate these

with the settings contained within PermissionConfiguration from appsettings, as seen

in Listing 4.22.

52 CHAPTER 4. IMPLEMENTATION

1 " PermissionConfiguration ": {

2 " ViewMembers ": {

3 " PolicyName ": " ViewMembers ",

4 " PolicyKey ": "A",

5 " AllowedGroups ": [

6 " Developers ",

7 " DevOps ",

8 " Infrastructure Admins "}

Listing 4.22: Permission setting exposing the relation between groups and roles

This list contains all hard coded groups within AD and is related to each role defined

within our implementation. Should there be a relation between an AD group and

a role, the role will be added as a Role Claim and returned within an object called

UserAuthenticationItem. This object contains two different lists of Claims, one for

access and another for Claims required in order to refresh an authentication. It is

important to note that only the claims are returned from UserService.

4.4.7 User Repository

Unlike the other repository modules within our implementation, the UserRepository

does not send HTTP requests to a web API. Instead, requests are sent using the Lightweight

Directory Access Protocol (LDAP) to AD. The repository has a single public method,

whose purpose is partly to authenticate a login request but also to gather user infor-

mation should the authentication succeed. This information is stored in a class named

UserDao, that can be seen in Listing 4.23.

1 public class UserDao {

2 public string Username { get; set; }

3 public string Password { get; set; }

4 public string Name { get; set; }

5 public List <string > Properties { get; set; }}

Listing 4.23: UserDao class with all attributes

4.4. REQUIREMENT 3 - AUTHENTICATION & AUTHORIZATION 53

In order to authenticate a user towards AD the Novell Ldap Library is used. By passing

the username and password to a function called Bind, the request is passed to AD,

as shown in Listing 4.24. Should the authentication be successful, a connection is

established, using the passed user credentials. By using this connection, our imple-

mentation can get access to all information that the user can access within AD. For our

implementation we retrieve the attribute givenName, and store this in the Name attribute

of a UserDao. Furthermore, all group memberships are gathered as string values and

stored in the List called Properties.

1 connection .Bind(usernameWithDomain , password);

2 if(connection . Bound){

3 var userGivenName = GetUserAttribute (connection , username , " givenName ");

4 var userGroups = GetUserAttributes (connection , username , " memberOf ");

5 return new UserDao {

6 Username = username ,

7 Password = password ,

8 Name = userGivenName ?? "",

9 Properties = userGroups };

Listing 4.24: The Bind call to authenticate a user

The gathering of the user’s name and group memberships are done by two calls to

similar functions, the only difference being that one returns a single value, and the

other several string values. In order to build and send a query to AD, several inputs are

required. These inputs are mainly stored in the appsettings as they are static for all our

queries, and can be seen in Listing 4.25. A searchfilter defines what to look for, while a

searchBase defines where to look in AD. In our case we have set a timeout limit of 1500

milliseconds for every query. The timeout limit of 1500 milliseconds was motivated by

that an internal application should not need longer time for a response. This decision

was confirmed by testing and never having a failed response.

54 CHAPTER 4. IMPLEMENTATION

1 " UserSearchOptions ": {

2 " SearchBase ": "OU =*** , DC =*** , DC =***",

3 " SearchFilter ": "(&(objectclass =User)(sAMAccountName ={0}))",

4 " SearchTimeLimitMiliSeconds ": 1500}

Listing 4.25: Stored strings for AD queries

The static searchFilter allows for an input, sAMAccountName, which is passed first at

run time, depending who the current user is. By passing this as an input parameter, we

make sure that all queries are only related to the logged in user. Furthermore, our query

functions allow for one input string, allowing us to reuse code when looking for different

attributes in AD. As depicted in Listing 4.26, the variable attribute is used for this

purpose. Furthermore, the input parameter username is formatted with the searchFilter

string. Any information gathered, defined by the public Authentication method, will

then be passed back to the UserSerivce.

1 private string GetUserAttribute (LdapConnection connection , string username ,

string attribute){

2 string searchFilter = string . Format (_configuration . Value . UserSearchOptions

. SearchFilter , username);

3 string searchBase = _configuration . Value . UserSearchOptions . SearchBase ;

4 var constraints = new LdapSearchConstraints { TimeLimit = _configuration .

Value . UserSearchOptions . SearchTimeLimitMiliSeconds };

5 var searchResults = connection . Search (searchBase , LdapConnection .ScopeSub ,

searchFilter , null , false , constraints);

Listing 4.26: GetUserAttribute method

4.4.8 Summary

In many aspects the user chain presented above is very similar compared to other chains

where data or actions are to be retrieved or sent through our modules. The main

differences can been seen at each end of the chain. For example, between our endpoints

and the business layer, an authorization layer was added, with the motivation that it

4.4. REQUIREMENT 3 - AUTHENTICATION & AUTHORIZATION 55

did not quite fit in the business layer. Instead of consuming existing API endpoints

in our user repository, a domain service is consumed by using the LDAP protocol.

Although the expected result is much the same as it would be with an API endpoint.

Furthermore, with the use of built-in role handling we can choose to protect whole

controllers, controller actions, or specific elements in the web page.

56 CHAPTER 4. IMPLEMENTATION

Chapter 5

Results

In this chapter we discuss technical aspects of our project, what results they had, and

how that impacted our choices and the project as a whole. These aspects include issues

such as our level of knowledge regarding the frameworks, tools, and techniques in

the beginning of the project. Furthermore, other aspects included larger architectural

decisions together with aspects from the background and design chapters.

5.1 Background & Design

The first objective of the project was about understanding what we were to produce for

our client Ninetech, and also how our solution were to adapt to the already existing

structure of ServeIT. Although this work was hard and took a lot of time, the positive

effects of this can been seen throughout the project. Furthermore, our structure mimics

ServeIT in many ways, and as a result is easier for Ninetech to maintain and develop.

With the help of our understanding and the documentation of ServeIT, we were

able to start designing our own implementation. But one of the architectural choices

that where difficult to make, was whether the calls for data to populate the website

would be sent from the client or rendered server side. The choice we finally choose was

57

58 CHAPTER 5. RESULTS

to reflect ServeIT, combined with the opinion of our client supervisor, in that all data

retrieval should be handled from the client. This further separated our frontend from our

backend, and provided two clear paths in our implementation for requesting web pages

and requesting data.

For the design of the website we chose to use a layout page which is responsible

for loading views, where each view contains requirement specific content. This made it

easier to implement new requirements in the frontend as there was already a structure

to base the new implementation on. The layout and graphics of the design was imple-

mented using the bootstrap template SB Admin 2, which saved us time but still required

knowledge of web programming.

5.2 Implementation

One of the early issues we found was that we initially planned that all data retrieval

to ServeIT should be directly via its SQL databases. Due to the architectural structure

of ServeIT, this was not possible. More troubling was that this was discovered after

finishing the first requirement to show members. But due to us already having a good

structure where each module has a specific responsibility, the work needed to change to

an API-based data retrieval was minimal.

A design error we noticed when starting to implement the second requirement re-

garding elastic search, was that we had defined different data objects whose country

was defined by what system they came from, when in reality both Klarsynt and Coptikk

could have opticians in several countries. If this would not be changed, our implementa-

tion would not be able to keep track of what object is related to which system, meaning

that a more suitable definition was the object’s originating organization. This required

us to set up a local configuration for existing organizations, an API point to gather this

data, and finally implement the logic to differentiate between organizations.

5.3. SUMMARY 59

When implementing the third and last requirement, authentication and authoriza-

tion, this was without doubt the requirement that took the most time for us to solve.

The biggest issue was that our implementation had to handle two different types of

authentication schemes, JWT and cookies, to handle both stateless and sessioned con-

nections. Although there is a lot of built in functionality in ASP.Net for this, it gets

very complicated when using two schemes. This, combined with that we used a generic

authentication layer that can be consumed by both schemes, made things more com-

plicated. After a lot of trial and error we finally had a working solution that our client

supervisor was happy with.

There are still aspects that are unanswered in terms of how secure our implementa-

tion really is. Security was however not our primary focus, considering the application

is deployed in a protected network.

One issue that is prevalent in the whole implementation of the project is the lack

of experience with web programming, with techniques such as JavaScript, jQuery, and

Datatables plug-in. This issue caused all of the requirements to take longer time than

expected, since time had to be spent learning the language before using it. Despite the

lack of experience we still managed to make the website responsive and modern looking

with the use of Bootstrap, which gave us a prebuilt structure to build upon.

5.3 Summary

Many of the issues and choices discussed in the previous chapters are in some way

bound or based on our technical knowledge. As such, how to actually implement some-

thing has required research and testing in order to produce a functional output. Lastly,

much thought was put behind each decision, combined with the stated requirements

from Ninetech, and the abstract plans generated from our decisions more often than not

worked as intended.

60 CHAPTER 5. RESULTS

Chapter 6

Conclusions

To conclude this thesis, the project and development process is evaluated. We bring light

to the further work that Ninetech possibly might add, and reflect upon the decisions we

made and what we would have done different.

6.1 Project Evaluation

In summary we managed to create an end product for the client which successfully

fulfilled the specified requirements. One big factor for achieving the end result was

working in smaller iterations with small feedback loops with the client supervisor. This

made it possible for us to always make sure we were making the right thing during

the development process and less time spent at the end refactoring code that was not

acceptable. Furthermore, the small iterations and the fundamental architecture we built

our project on, made it easy for us to adapt to changes made by the client supervisor.

Troubleshooting was also less of a struggle with a program code that is cohesive and

has a clear separation of concerns between different classes.

The structured work in our project reflected itself upon the report as well since we

worked on one requirement at a time. We would implement a requirement and then get

61

62 CHAPTER 6. CONCLUSIONS

it validated by the client supervisor. Following approval of the requirement, we would

write about it in the report before going into the next requirement.

In terms of our working environment, we had access to Ninetech’s office, but due

to the current pandemic most of the work has been done from home. Time at the office

was limited as much as possible, which had some effect on the work internally in the

project. Due to the tools provided by Ninetech in form of communication channels,

VPN and development environments it did not impact the project to an extent. Using a

VPN made it possible to access the development environment from home as well.

The project has been very educative as we have gotten the opportunity to work with

a real product and see how it is developed in a real life environment. As well as having

experienced each level of the implementation layers from the retrieval of data from the

API through our implementation and showing it on an actively running website. Not to

forget the structure in the layers between that have given us insight on how clean code

is written and maintained.

6.2 Further Work

The required functionalities specified by Ninetech were all met. If any further work

were to be done by Ninetech in form of implementing additional functionalities, we have

made our implementation open for extension. Since we followed the already preexisting

architecture our code is understandable by the employees who are to implement further

functionalities. Another feature that our client supervisor wished to see implemented

was a dashboard which gives information regarding the whole environment, where

details such as which servers are currently used in production, and the load on these

servers can be viewed in real time. Due to time constraints this wish was never discussed

as an actual implementation.

We are satisfied with most of the functionality implemented in this project, although

6.3. FINAL REMARKS 63

there are certain details of how functionalities have been implemented that can be

improved. Regarding the Authentication & Authorization requirement we would like

to find a way to remove cookies and fully depend on JWT only. This would make the

implementation simpler to understand and easier to maintain as well. Another more

extreme solution would be to extract the authentication process from our implemen-

tation completely. Letting all verification and authentication be handled by another

solution that our implementation depends on instead. Another argument for extracting

the identity management is that we can then depend on out of the box solutions, instead

of implementing our own solution that could have obvious security flaws.

6.3 Final Remarks

We are proud of the product that we have developed during this project. It has been

really fun to see what can be achieved as a team, working close with a client expressing

real requirements and needs. We have learnt a lot regarding the software development

process, from planning and gathering information, all the way to presenting a finished

product. From a technical standpoint we have been exposed to relevant and interesting

topics such as web development, network communication and authentication handling.

We appreciate that this product will actually be used in production and hope that

this tool will bring value to Ninetech for a long time. This tool has made it possible for

employees at Ninetech to access data and execute admin actions in a uniform way that

was not possible before.

This thesis has been educational and brought wisdom that will be kept for future

work. We are thankful for Ninetech for giving us the opportunity to work with them and

mentoring us in our work.

64 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Scrum. WHAT IS SCRUM? https://www.scrum.org/resources/what-is-

scrum [2021-01-21].

[2] Stacia Viscardi. The professional scrummaster’s handbook : A collection of tips,

tricks, and war stories to help the professional scrummaster break the chains of

traditional organization and management, 4 2013.

[3] Ninetech. Vi digitaliserar framtidens branchsledare. https://www.ninetech.

com/expertis [2021-05-07].

[4] Ninetech. Om Ninetech. https://www.ninetech.com/om-ninetech [2021-05-

07].

[5] Elastic. The Elastic Stack. https://www.elastic.co/elastic-stack [2021-

05-12].

[6] RabbitMq. What can RabbitMQ do for you? https://www.rabbitmq.com/

features.html [2021-05-12].

[7] Microsoft. What is ASP.NET? https://dotnet.microsoft.com/learn/

aspnet/what-is-aspnet [2021-01-20].

[8] Microsoft. What is ASP.NET Core? https://dotnet.microsoft.com/learn/

aspnet/what-is-aspnet-core [2021-01-20].

65

https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://www.ninetech.com/expertis
https://www.ninetech.com/expertis
https://www.ninetech.com/om-ninetech
https://www.elastic.co/elastic-stack
https://www.rabbitmq.com/features.html
https://www.rabbitmq.com/features.html
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core

66 BIBLIOGRAPHY

[9] Microsoft. Overview of ASP.NET Core MVC. https://docs.microsoft.com/

en-us/aspnet/core/mvc/overview?view=aspnetcore-5.0 [2021-01-21].

[10] Microsoft. Overview of ASP.NET Core authentication. https:

//docs.microsoft.com/en-us/aspnet/core/security/authentication/

?view=aspnetcore-5.0 [2021-04-22].

[11] Microsoft. Authorize with a specific scheme in ASP.NET Core. https:

//docs.microsoft.com/en-us/aspnet/core/security/authorization/

limitingidentitybyscheme?view=aspnetcore-5.0 [2021-04-22].

[12] Microsoft. Architectural principles. https://docs.microsoft.com/en-

us/dotnet/architecture/modern-web-apps-azure/architectural-

principles#dependency-inversion [2021-02-08].

[13] Microsoft. Options pattern in ASP.NET Core. https://docs.microsoft.

com/en-us/aspnet/core/fundamentals/configuration/options?view=

aspnetcore-5.0 [2021-02-08].

[14] Restsharp. Documentation. https://restsharp.dev/ [2021-03-03].

[15] Pieter van der Westhuizen. Bootstrap for asp.net mvc, 8 2014.

[16] Start Bootstrap. SB Admin 2. https://startbootstrap.com/theme/sb-

admin-2 [2021-01-25].

[17] Json.Org. Introducing JSON. https://www.json.org/json-en.html [2021-

03-03].

[18] Auth0. Refresh Tokens: When to Use Them and How They Interact with

JWTs. https://auth0.com/blog/refresh-tokens-what-are-they-and-

when-to-use-them/ [2021-04-15].

https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/limitingidentitybyscheme?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/limitingidentitybyscheme?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/limitingidentitybyscheme?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles#dependency-inversion
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles#dependency-inversion
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles#dependency-inversion
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-5.0
https://restsharp.dev/
https://startbootstrap.com/theme/sb-admin-2
https://startbootstrap.com/theme/sb-admin-2
https://www.json.org/json-en.html
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/

BIBLIOGRAPHY 67

[19] Microsoft. Active Directory Domain Services Overview. https:

//docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-

started/virtual-dc/active-directory-domain-services-overview

[2021-04-21].

[20] Microsoft. User Security Attributes. https://docs.microsoft.com/en-us/

windows/win32/ad/security-properties [2021-04-22].

[21] Microsoft. SAM-Account-Name attribute. https://docs.microsoft.com/en-

us/windows/win32/adschema/a-samaccountname [2021-04-22].

[22] Microsoft. Lightweight Directory Access Protocol. https://docs.microsoft.

com/en-us/previous-versions/windows/desktop/ldap/lightweight-

directory-access-protocol-ldap-api [2021-04-23].

[23] dsbenghe. Novell.Directory.Ldap.NETStandard. https://github.com/

dsbenghe/Novell.Directory.Ldap.NETStandard [2021-04-23].

[24] Microsoft. Visual Studio. https://visualstudio.microsoft.com/ [2021-04-

30].

[25] Microsoft. Visual Studio 2019. https://visualstudio.microsoft.com/vs/

[2021-04-30].

[26] Microsoft. ASP.NET. "https://dotnet.microsoft.com/apps/aspnet"

[2021-04-30].

[27] Git. About Git. https://git-scm.com/about [2021-04-30].

[28] Jetbrains. TeamCity. https://www.jetbrains.com/teamcity/ [2021-04-30].

[29] Octopus. Octopus Deploy. https://octopus.com/features/ [2021-04-30].

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows/win32/ad/security-properties
https://docs.microsoft.com/en-us/windows/win32/ad/security-properties
https://docs.microsoft.com/en-us/windows/win32/adschema/a-samaccountname
https://docs.microsoft.com/en-us/windows/win32/adschema/a-samaccountname
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ldap/lightweight-directory-access-protocol-ldap-api
https://github.com/dsbenghe/Novell.Directory.Ldap.NETStandard
https://github.com/dsbenghe/Novell.Directory.Ldap.NETStandard
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/vs/
"https://dotnet.microsoft.com/apps/aspnet"
https://git-scm.com/about
https://www.jetbrains.com/teamcity/
https://octopus.com/features/

	Preface
	Abstract
	Figures
	Listings
	Introduction
	The Project
	Problem Description
	Show Members
	Trigger Elastic Search
	Authentication & Authorization

	Purpose & Goals
	Method
	Client
	Distribution of Work
	Ethics & Society
	Limitations
	Disposition

	Background
	ServeIT Architecture
	ServeIT Source Code
	WebAPI
	Business
	DataContract
	DataAccess
	Modules Working Together

	Techniques
	ASP.NET Core
	Dependency Injection
	Options Pattern
	RestSharp
	Bootstrap
	JSON
	JWT
	Active Directory

	Tools
	Summary

	Design
	Architecture
	Solution Blueprint
	Dataflow
	Website
	Authentication & Authorization
	Summary

	Implementation
	General Implementation
	Dependency Injection
	BaseApiClient
	Appsettings
	Frontend

	Requirement 1 - Show Members
	Frontend
	DataContract
	WebAPI
	Business
	DataAccess
	Summary

	Requirement 2 - Trigger Elastic Search
	Frontend
	WebAPI
	DataContract
	Business
	DataAccess
	Summary

	Requirement 3 - Authentication & Authorization
	MVC & WebAPI
	Refreshing Cookie Sessions
	Authorization
	Tokens & Settings
	TokenGenerator
	UserService
	User Repository
	Summary

	Results
	Background & Design
	Implementation
	Summary

	Conclusions
	Project Evaluation
	Further Work
	Final Remarks

	Bibliography

