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Abstract

Consider the steady Boltzmann equation with slab symmetry for a monatomic,
hard sphere gas in a half space. At the boundary of the half space, it is assumed
that the gas is in contact with its condensed phase. The present paper discusses the
existence and uniqueness of a uniformly decaying boundary layer type solution of
the Boltzmann equation in this situation, in the vicinity of the Maxwellian equilib-
rium with zero bulk velocity, with the same temperature as that of the condensed
phase, and whose pressure is the saturating vapor pressure at the temperature of
the interface. This problem has been extensively studied, first by Sone, Aoki and
their collaborators, by means of careful numerical simulations. See section 2 of
(Bardos et al. in J Stat Phys 124:275–300, 2006) for a very detailed presentation
of these works. More recently, Liu and Yu (Arch Ration Mech Anal 209:869–997,
2013) proposed an extensive mathematical strategy to handle the problems studied
numerically by Sone, Aoki and their group. The present paper offers an alternative,
possibly simpler proof of one of the results discussed in Liu and Yu (2013).

1. Introduction

The half-space problem for the steady Boltzmann equation is to find solutions
F ≡ F(x, v) to the Boltzmann equation in the half-space with slab symmetry—
meaning that F depends on one space variable only, henceforth denoted by x > 0,
and on three velocity variables v = (v1, v2, v3)—converging to some Maxwellian
equilibrium as x → +∞. Physically, F(x, v) represents the velocity distribution
function of the molecules of a monatomic gas located at the distance x of some
given plane surface, with velocity v ∈ R3.

Assuming for instance that v1 is the coordinate of the velocity v in the x direc-
tion, this half-space problem is put in the form{

v1∂x F(x, v) = B(F, F)(x, v) , v ∈ R3 , x > 0 ,

F(x, v) → M1,u,1(v) , as x → +∞ .
(1)
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The Boltzmann collision integral is defined as

B(F, F)(x, v):=
∫∫

R3×S2
(F(x, v′)F(x, v′∗)−F(x, v)F(x, v∗))|(v−v∗) · ω|dωdv∗,

where v′ and v′∗ are given in terms of v, v∗ and ω by the formulas

v′:= v − ((v − v∗) · ω)ω ,

v′∗:= v∗ + ((v − v∗) · ω)ω .

For the moment, we assume that F is, say, continuous in x and rapidly decaying
in v as |v| → +∞, so that the collision integral—and all its variants considered
below—make sense.

The quadratic collision integral above is polarized so as to define a symmetric
bilinear operator as follows:

B(F,G):= 1
2 (B(F + G, F + G) − B(F, F) − B(G,G)) .

An important property of the Boltzmann collision integral is that it satisfies the
conservation of mass, momentum and energy, i.e. the identities

∫
R3

⎛
⎜⎜⎜⎜⎝

1
v1
v2
v3
|v|2

⎞
⎟⎟⎟⎟⎠B(F,G)(v)dv = 0, (2)

for all rapidly decaying, continuous functions F,G defined on R3—see §3.1 in [9].
The notation for Maxwellian equilibrium densities is as follows:

Mρ,u,θ (v):= ρ

(2πθ)3/2
e−((v1−u)2+v22+v23)/2θ .

In the sequel, a special role is played by the centered, reduced Gaussian density
M1,0,1, henceforth abbreviated as

M :=M1,0,1 .

Werecall that theBoltzmanncollision integral vanishes identically onMaxwellian
distributions—see §3.2 in [9]:

B(Mρ,u,θ ,Mρ,u,θ ) = 0 for all ρ, θ > 0 and u ∈ R .

With the substitution

ξ = v − (u, 0, 0) , (3)

on account of the identity B(M, M) = 0, the problem (1) is put in the form⎧⎨
⎩

(ξ1 + u)∂x f (x, ξ) + L f (x, ξ) = Q( f, f )(x, ξ) , ξ ∈ R3 , x > 0 ,

f (x, ξ) → 0 , as x → +∞ ,

(4)
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where f ≡ f (x, ξ) is defined by the identity

F(x, v) = M1,u,1(v)(1 + f (x, v − (u, 0, 0)))
= M(v − (u, 0, 0))(1 + f (x, v − (u, 0, 0))) ,

while

L f := − 2M−1B(M, M f ) , Q( f, f ) = M−1B(M f, M f ) . (5)

As a consequence of (2),

∫
R3

⎛
⎜⎜⎜⎜⎝

1
ξ1
ξ2
ξ3

|ξ |2

⎞
⎟⎟⎟⎟⎠L f (ξ)Mdξ =

∫
R3

⎛
⎜⎜⎜⎜⎝

1
ξ1
ξ2
ξ3

|ξ |2

⎞
⎟⎟⎟⎟⎠Q( f, f )(ξ)Mdξ = 0

for all rapidly decaying, continuous functions f defined on R3.
Now, for each R ∈ O3(R) (the group of orthogonal matrices with 3 rows and

columns), one has

B(F ◦ R,G ◦ R) = B(F,G) ◦ R ,

so that

L( f ◦ R) = (L f ) ◦ R , Q( f ◦ R, f ◦ R) = Q( f, f ) ◦ R (6)

for all continuous on R3, rapidly decaying functions F,G, f . (See §2.2.3 in [6] for
a quick proof of these invariance results.)

Assume that the problem (4) with boundary condition

f (0, ξ) = fb(ξ) , ξ1 + u > 0 (7)

has a unique solution f in some class of functions that is invariant under the action
of O3(R) on the velocity variable ξ (such as, for instance, the Lebesgue space
L∞(R+ × R3; Mdξdx)). If

fb(ξ1, ξ2, ξ3) = fb(ξ1,−ξ2,−ξ3) for all ξ2, ξ3 ∈ R and all ξ1 > −u ,

then (x, ξ) 	→ f (x,Rξ) is also a solution of (4)–(7), where

R:=
⎛
⎝ 1 0 0
0 −1 0
0 0 −1

⎞
⎠ , (8)

so that, by uniqueness, f (x,Rξ) = f (x, ξ) a.e. in ξ ∈ R3, for all x > 0. Hence-
forth, we restrict our attention to solutions of (4) that are even in (ξ2, ξ3), and
define

H:={φ ∈ L2(Mdv) | φ ◦ R = φ} , where R is defined in (8).
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We recall that L is an unbounded, nonnegative self-adjoint Fredholm operator
on L2(R3; Mdξ) with domain

Dom(L):={φ ∈ L2(R3; Mdξ) | νφ ∈ L2(R3; Mdξ)} ,

(see Theorem 7.2.1 in [9]), where ν is the collision frequency defined as

ν(|ξ |):=
∫∫

R3×S2
|(ξ − ξ∗) · ω|M(ξ∗)dξ∗dω .

The collision frequency satisfies the inequalities

ν−(1 + |ξ |) ≤ ν(|ξ |) ≤ ν+(1 + |ξ |) for all ξ ∈ R3 , (9)

where ν+ > 1 > ν− > 0 designate appropriate constants—see formula (2.13) in
chapter 7 of [9]. More specifically, the linearized collision operatorL is of the form

Lφ(ξ) = ν(|ξ |)φ(ξ) − Kφ(ξ) , φ ∈ DomL , (10)

whereK is an integral operator, whose properties are summarized in the proposition
below.

Proposition 1. The linear integral operator K is compact on L2(R3; Mdξ) and
satisfies the identity K(φ ◦ R) = (Kφ) ◦ R, where R is defined in (8). With the
notation

L∞,s(R3):={φ ∈ L∞(R3) | (1 + |ξ |)sφ ∈ L∞(R3)} ,

the linear operator

M1/2KM−1/2 : φ 	→ √
MK(φ/

√
M)

is bounded from L2(R3; dv) to L∞,1/2(R3), and, for each s ≥ 0, from L∞,s(R3)

to L∞,s+1(R3).

These results are stated as Theorem 7.2.4 in [9], to which we refer for a
proof. That K is compact in L2(R3; Mdξ) was proved by Hilbert in 1912; that
the twisted operator M1/2KM−1/2 is bounded from L2(R3; dξ) to L∞(R3) and
from L∞,s(R3) to L∞,s+1(R3) was proved by Grad in 1962.

Henceforth, we denote

〈φ〉:=
∫

R3
φ(ξ)M(ξ)dξ .

An important consequence of Proposition 1 is the following weighted relative
spectral gap estimate due toBardos–Caflisch–Nicolaenko forL (see equation (2.14)
in [3]): there exists κ0 > 0 such that

〈 f L f 〉 ≥ κ0〈ν( f − Π f )2〉 for each f ∈ H ∩ DomL , (11)

where Π is the L2(R3; Mdξ)-orthogonal projection on KerL.
In fact Proposition 1 is a consequence of the following lemma, which will be

needed later.
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Lemma 1. The linear integral operator K can be decomposed as

K = K1 + K2 − K3 ,

where

K1φ(ξ):=
∫∫

R3×S2
φ(ξ ′)M(ξ∗)|(ξ − ξ∗) · ω|dξ∗dω ,

K2φ(ξ):=
∫∫

R3×S2
φ(ξ ′∗)M(ξ∗)|(ξ − ξ∗) · ω|dξ∗dω ,

K3φ(ξ):=
∫∫

R3×S2
φ(ξ∗)M(ξ∗)|(ξ − ξ∗) · ω|dξ∗dω .

For j = 1, 2, 3, the operator K j is compact on L2(R3; Mdξ) and satisfies the
identity

K j (φ ◦ R) = (K jφ) ◦ R ,

where R is defined in (8). Moreover the linear operators

M1/2K j M
−1/2 : φ 	→ √

MK j (φ/
√
M)

are bounded from L2(R3; dξ) to L∞, 12 (R3), and from L∞,s(R3) to L∞,s+1(R3)

for each s ≥ 0, and for all j = 1, 2, 3.

Furthermore,

KerL = Span{X+, X0, X−, ξ2, ξ3}
(see Theorem 7.2.1 in [9]) where,

X±:= 1√
30

(|ξ |2 ± √
15 ξ1) , X0:= 1√

10
(|ξ |2 − 5) .

The family (X+, X0, X−, ξ2, ξ3) is orthonormal in L2(R3; Mdξ), and orthogonal
for the bilinear form ( f, g) 	→ 〈ξ1 f g〉—see [10] , with

〈ξ1X2±〉 = ±c , 〈ξ1X2
0〉 = 〈ξ1ξ22 〉 = 〈ξ1ξ23 〉 = 0 .

Here c is the speed of sound associated to the Maxwellian distribution M , i.e.

c:=
√

5
3 .

In view of (6), the unbounded operator L on L2(Mdv) induces an unbounded,
self-adjoint Fredholm operator on H still denoted L, with domain H ∩ DomL and
nullspace H ∩ KerL = Span{X+, X0, X−}.
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Fig. 1. The curveC and the surface S in the space of parameters−u/c, p∞/pw and T∞/Tw

near the transition from evaporation to condensation. Here as in the sequel ρ∞ = T∞ = 1
without loss of generality

2. Main Result

Y. Sone and his collaborators have arrived at the following result by formal
asymptotics or numerical experiments [1,2,18,19,22,25,26]. Consider the steady
Boltzmann equation in (1) with boundary conditions

F(0, v) = Mρw,0,Tw(v) for all v1 > 0 ,

F(x, v) → Mρ∞,u,T∞ as x → +∞ .
(12)

This boundary condition is relevant in the context of a phase transition in the kinetic
theory of gases. In this case, the plane of equation x = 0 represents the interface
separating the liquid phase (confined in the domain x < 0) from the gaseous phase
(in the domain x > 0). The parameter Tw is the temperature of the liquid phase at the
interface, and ρw is the density such that pw:=ρwTw is the saturation vapor pressure
for the gas at the temperature Tw, while T∞ and p∞ = ρ∞T∞ are respectively the
temperature and pressure far away from the interface, and u is the normal bulk
velocity in the gas far away from the interface.

Near u = 0, the set of parameters T∞/Tw, p∞/pw, and u for which this
problem has a solution is as represented in Fig. 1. It is a surface for u < 0 and
a curve for u > 0. The solution F converges exponentially fast as x → +∞;
however, the exponential speed of convergence is not uniform on the surface S as
u → 0−, except on the extension of the curve C on the surface S. See Sect. 2 of [4],
or chapter 7 of [21] for a comprehensive review of these numerical results. The role
of slowly varying solutions—i.e. solutions whose exponential decay as x → +∞
is not uniform as u → 0−—in this problem is explained in detail on pp. 280–282 in
[4]. The original papers by Y. Sone and his group, on this problem, can be found in
the bibliography of [4,20,21]. Other parts of the set of parameters T∞/Tw, p∞/pw

and u for which the half-space problem has a solution than the neighborhood of
(1, 0, 1) represented above have been analyzed in detail in [5,23,27].

Henceforth, we assume without loss of generality that ρ∞ = T∞ = 1.
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In the limit case u = 0, it is known that the only solution is the constant
F = M = M1,0,1 corresponding to the point (1/Tw,−u/c, 1/pw) = (1, 0, 1) on
the figure—see [4] Sect. 5 for a proof.

In the present paper, we prove the existence of the curve C corresponding to
solutions of (1)–(12) in some neighborhood of the point (1, 0, 1) converging as
x → +∞ with exponential speed uniformly in u.

2.1. Statement of the Main Theorem

Consider the nonlinear half-space problem for the Boltzmann equation written
in terms of the relative fluctuation of distribution function about the normalized
Maxwellian M

⎧⎨
⎩

(ξ1 + u)∂x fu + L fu = Q( fu, fu) , ξ ∈ R3 , x > 0 ,

fu(0, ξ) = fb(ξ) , ξ1 + u > 0 .

(13)

Theorem 1. There exist ε > 0, E > 0, R > 0 and γ > 0 — defined in (75),
(77), (52) and (78) respectively—such that, for each boundary data fb ≡ fb(ξ)

satisfying

fb ◦ R = fb and ‖(1 + |ξ |)3√M fb‖L∞(R3) ≤ ε ,

(with R defined in (8)), and for each u satisfying 0 < |u| ≤ R, the problem (13)
has a unique solution fu satisfying the symmetry

fu(x,Rξ) = fu(x, ξ) for a.e. (x, ξ) ∈ R+ × R3 ,

and the uniform decay estimate

ess sup
ξ∈R3

(1 + |ξ |)3√M(ξ)| fu(x, ξ)| ≤ Ee−γ x , x > 0 (14)

for all γ such that 0 < γ < γ if and only if the boundary data fb satisfies the two
additional conditions,

〈(ξ1 + u)Y1[u]Ru[ fb]〉 = 〈(ξ1 + u)Y2[u]Ru[ fb]〉 = 0 . (15)

The functions Y1[u] ≡ Y1[u](ξ) and Y2[u] ≡ Y2[u](ξ) are defined in Lemma 4,
while the (nonlinear) operator Ru is defined in (76).

Several remarks are in order before starting with the proof of Theorem 1.
First observe that Sone’s original problem falls in the range of application of

Theorem 1. Indeed, the boundary condition (12) translates into

fb(ξ) = Mρw,−u,Tw(ξ) − M(ξ)

M(ξ)
, (16)
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which is obviously even in (ξ2, ξ3). Since dM1,0,1 · (ρw − 1,−(u, 0, 0), Tw − 1)
is the real-valued function1 of ξ ∈ R3 defined by the formula

(dM1,0,1 · (ρw − 1,−(u, 0, 0), Tw − 1))(ξ)

M1,0,1(ξ)

= ρw − 1 − uξ1 + (Tw − 1) 12 (|ξ |2 − 3) ,

one has

|ρw − 1| + |u| + |Tw − 1| � 1 ⇒ ‖(1 + |ξ |)3√M fb‖L∞(R3) � 1 .

The two conditions (15) are expected to define a “submanifold of codimension
2” in the set of boundary data fb. When specialized to the three dimensional sub-
manifold of Sone’s data (16), this “submanifold of codimension 2” is expected to
be the curve described by the equations

p∞/pw = h1(u/
√
5/3) , T∞/Tw = h2(u/

√
5/3) ,

referred to as equations (2.3) in [4], and defining the set of parameters for which
a solution of the half-space problem exists in the evaporation case. As explained
above, this curve is expected to extend smoothly in the condensation region if slowly
decaying solutions are discarded.Unfortunately, we have not been able to check that
the two equations (15) above, even when restricted to the 3 dimensional manifold
of Sone’s boundary data (16), are smooth (at least C1) and locally independent (by
the implicit function theorem). We obviously expect this to be true, but this seems
to involve some rather delicate properties of half-space problems for the linearized
Boltzmann equation.

An a priori estimate to be found in Sect. 5 of [4] shows that the only solution
of (13)–(16) with u = 0 is fu ≡ 0, so that ρw = Tw = 1. One can differentiate
formally about this point both sides of the Boltzmann equation at u = 0 along the
curve u 	→ (ρw(u), Tw(u)) defined for 0 < u <

√
5/3 by the equations (2.3) of [4]

recalled above. Denoting ḟ0(x, ξ):=(∂ fu/∂u)(x, ξ)|u=0, one finds that ḟ0 should
satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ1∂x ḟ0 + L ḟ0 = 0 , ξ ∈ R3 , x > 0 ,

ḟ0(0, ξ) = ρ′
w(0+) + T ′

w(0+) 12 (|ξ |2 − 3) − ξ1 , ξ1 > 0 ,

ḟ0(x, ξ) → 0 as x → +∞ ,

1 If Φ : Ω � (y1, . . . , yn) 	→ Φ(y1, . . . , yn) ∈ E is a differentiable function from
the domain Ω ⊂ Rn with values in the Banach space E , the notation dΦ(ȳ1, . . . , ȳn) ·
(δy1, . . . , δyn) ∈ E designates the differential ofΦ at the point (ȳ1, . . . , ȳn) ∈ Ω evaluated
on the “tangent vector (δy1, . . . , δyn) to the domain Ω at the point (ȳ1, . . . , ȳn)”, i.e. on the
vector (δy1, . . . , δyn) of increments of the variables y1, . . . , yn starting from ȳ1, . . . , ȳn .
Here (ρ, u, T ) 	→ Mρ,u,T maps Ω:={(ρ, u, T ) ∈ R × R3 × R s.t. ρ > 0 and T > 0} to
the space Cb(R3) of bounded continuous functions of the variable ξ ∈ R3, equipped with
the L∞ norm.
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where ρ′
w(0+) and T ′

w(0+) are the right derivatives of ρw and Tw at u = 0 along the
evaporation curve. The Bardos–Caflisch–Nicolaenko [3] theory of the half-space
problem for the linearizedBoltzmann equation implies that there exists a unique pair
of real numbers (ρ′

w(0+), T ′
w(0+)) for which a solution ḟ0 exists. This is obviously

a very interesting piece of information as it provides a tangent vector at the origin
to the “curve” defined by the two conditions (15) of Theorem 1 specialized to
boundary data of the form (16). Unfortunately, whether fu is differentiable in u at
u �= 0 is rather unclear, and we shall not discuss this issue any further.

2.2. Outline of the Paper

Our strategy for proving Theorem 1 is as follows: first we isolate the slowly
varying mode near ρw = Tw = 1 and u = 0 on the condensation side. This
leads to a generalized eigenvalue problem of the kind considered by Nicolaenko
in [14,15] (see also [8,16]) in his construction of a weak shock profile for the
nonlinear Boltzmann equation. Next we remove this slowly varying mode from the
linearization of (13) by a combination of the Lyapunov–Schmidt procedure used
in [8,14,15] to establish the existence of the shock profile as a bifurcation from
the constant sonic Maxwellian, and of the penalization method of [28] for studying
weakly nonlinear half-space problems. Theorem 1 is obtained by a simple fixed
point argument about the solution of some conveniently selected linear problem, in
whose definition both the Lyapunov–Schmidt method of [14] and the penalization
method of [28] play a key role. In some sense, the paper [11] can be regarded as
a precursor to this one; it extends the very clever penalization method of [28] to
the case u = 0, but does not consider the transition from u > 0 (evaporation) to
u < 0 (condensation). We also refer the interested reader to the beginning of Sect.
4, where we explain one (subtle) difference between the results obtained on weakly
nonlinear half-space problems for the Boltzmann equation in [28] and the problem
analyzed in the present work.

Theoutline of the rest of this paper is as follows: Sect. 3 provides a self-contained
constructionof the solution to theNicolaenko-Thurber generalized eigenvalue prob-
lem near u = 0. Section 4 introduces the penalization method, and formulates the
problem to be solved by a fixed point argument. Section 5 treats the linearized
penalized problem, while Sect. 6 treats the (weakly) nonlinear penalized problem
by a fixed point argument. Theorem 1 is obtained by removing the penalization.
The main ideas used in the proof of Theorem 1 are to be found in Sects. 3–4; by
contrast, Sects. 5 and 6 are mostly of a technical nature.

A detailed sketch of the proof of Theorem 1 based on the ideas and results
obtained in Sects. 3 and 4 can be found in Sect. 4.3. We hope that it will help the
reader to orient himself in the technical intricacies of the argument.

Before starting with the proof of Theorem 1, we should say that Theorem 1
above is not completely new or original, in the following sense. A general study of
the Sone half-space problem with condensation and evaporation for the Boltzmann
equation has been recently proposed by T.-P. Liu and S.-H. Yu in a remarkable
paper [13]. Our Theorem 1 corresponds to cases 2 and 4 in Theorem 28 on p.
984 of [13]. Given the considerable range of cases considered in [13], the proof of
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Theorem 28 is just sketched. The analysis in [13] appeals to a rather formidable
technical apparatus, especially to the definition and structure of the Green func-
tion for the linearized Boltzmann equation (see Sect. 2.2 of [13], referring to an
earlier detailed study of these functions, cited as ref. 21 in [13]). Our goal in The-
orem 1 is much more modest: to provide a completely self-contained proof for
one key item in the Sone diagram, namely the evaporation and its extension to the
condensation regime obtained by discarding slowly decaying solutions. We also
achieve much less: for instance we do not know whether the solution M(1 + fu)
of the steady Boltzmann equation obtained in Theorem 1 satisfies M(1+ fu) ≥ 0.
This is known to be a shortcoming of the method of constructing solutions to the
steady Boltzmann equation by some kind of fixed point argument about a uniform
Maxwellian. At variance, all the results in [13] are based on an invariant manifold
approach based on the large time behavior of the Green function for the linearized
Boltzmann equation. (Incidentally, the numerical results obtained by Sone and his
collaborators were also based on time-marching algorithms in the long time limit.)
Since the Boltzmann equation propagates the positivity of its initial data, one way
of constructing nonnegative steady solutions of the Boltzmann equation is to obtain
them as the long time limit of some conveniently chosen time-dependent solutions.
For this reason alone, the strategy adopted in [13] has in principle more potential
than ours. On the other hand, our proof uses only elementary techniques, and we
hope that the present paper could serve as an introduction to the remarkable series
of works by Sone and his collaborators quoted above, and to the deep mathematical
analysis in [13].

3. The Nicolaenko–Thurber Generalized Eigenvalue Problem

The generalized eigenvalue problem considered here is to find τu ∈ R and a
generalized eigenfunction φu ∈ H ∩ DomL satisfying

⎧⎨
⎩

Lφu = τu(ξ1 + u)φu,

〈(ξ1 + u)φ2
u〉 = −u

(17)

for each u ∈ R near 0.
This problem was considered by Nicolaenko and Thurber in [16] for u near

c—see Corollary 3.10 in [16].2 It is the key to the construction of a weak shock
profile for the Boltzmann equation [14,15]. (An approximate variant of (17) for u
near c is considered in [8] for molecular interactions softer than hard spheres.)

Proposition 2. There exists r > 0, a real-analytic function

(−r, r) � u 	→ τu ∈ R ,

2 The possibility of extending Corollary 3.10 of [16] to the case where |u| � 1 was
mentioned to the second author by B. Nicolaenko in 1999.
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and a real-analytic map

(−r, r) � u 	→ φu ∈ H ∩ DomL

that is a solution to (17) for each u ∈ (−r, r) and satisfies

uτu < 0 for 0 < |u| < r .

In other words,

τ0 = 0 , φ0 = X0 , and τu = uτ̇0 + O(u2) as u → 0 ,

with

τ̇0 < 0 .

Furthermore, there exists a positive constantCs for each s ≥ 0 such thatφu satisfies

‖(1 + |ξ |)s√Mφu‖L∞ ≤ Cs

for all s ≥ 0, uniformly in u ∈ (−r, r).

The following observation is one of the key ingredients in the present paper:
the function (x, ξ) 	→ e−τu xφu(ξ) is a solution of the steady linearized Boltzmann
equation, i.e.

fu(x, ξ)=e−τu xφu(ξ) ⇒ (ξ1+u)∂x fu(x, ξ)+L fu(x, ξ)=0 . (18)

Since τu � uτ̇0 as u → 0 with τ̇0 < 0, one has

‖ fu(x, ·)‖H ∼ e|τ̇0|ux‖φu‖H as x → +∞ . (19)

In other words, fu grows exponentially fast as x → +∞ if u > 0 (evaporation) and
decays exponentially fast to 0 as x → +∞ for u < 0 (condensation). In the latter
case, the exponential speed of convergence of fu is |τ̇0||u|, which is not uniform
as u → 0−. The transition from the curve C to the surface S when crossing the
plane u = 0 on Figure 1—which represents the transition from evaporation to
condensation—corresponds to the presence of an additional degree of freedom in
the set of solutions. At the level of the linearized equation, this additional degree
of freedom comes from the mode fu(x, ξ), which decays to 0 as x → +∞, albeit
not uniformly as u → 0−, if and only if u < 0. The extension of the curve C on
the surface S is defined by the fact that solutions to the boundary layer equation (4)
decaying exponentially fast as x → +∞ uniformly in u → 0− do not contain the
fu mode.

One can arrive at the statement of Proposition 2 by adapting the arguments in
[16]—especially Theorems 3.7 and 3.9, and Corollaries 3.8 and 3.10, together with
Appendices B and D there. Their discussion is based on a careful analysis of the
zeros of a certain Fredholm determinant—in fact, of the perturbation of the identity
by a certain finite rank operator—that can be seen as the dispersion relation for
the linearized Boltzmann equation. For the sake of being self-contained, we give a
(perhaps?) more direct, complete proof of Proposition 2 below.
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Proof. Consider for each z ∈ C the family T (z) = L−zξ1 of unbounded operators
on H. In view of (9), T (z) is a holomorphic family of unbounded operators with
domain DomT (z) = H ∩ DomL whenever |z| < ν−, in the sense of the definition
on p. 366 in [12]. (Defining the operator U : f 	→ 1

1+|ξ | f , we see that U is a
one-to-one mapping ofH toH∩DomL and that z 	→ T (z)U is a holomorphic map
defined for all z such that |z| < ν− with values in the algebra of bounded operators
on H.)

The family T (z) is self-adjoint on H in the sense of the definition on p. 386 in
[12], since L is self-adjoint on H and

T (z) = L − zξ1 = T (z)∗ whenever |z| < ν− .

In addition, λ = 0 is an isolated 3-fold eigenvalue of T (0) = L, corresponding to
the 3-dimensional nullspace H ∩ KerL (see Theorem 7.2.5 in [9]). As explained
on p. 386 in [12], there exist 3 real-analytic functions z 	→ λ+(z), λ0(z), λ−(z)
defined for z real near 0 and 3 real-analytic maps z 	→ φ+

z , φ0
z , φ

−
z defined for z

real near 0 with values in H ∩ DomL such that, for each real z near 0,

λ+(z) (resp. λ0(z), λ−(z)) is an eigenvalue of T (z)

and

(φ+
z , φ0

z , φ
−
z ) is an orthonormal system of eigenfunctions of T (z) in H

for the eigenvalues λ+(z), λ0(z), λ−(z) respectively,

while

λ±(0) = 0 , λ0(0) = 0 .

For z = 0, one has

T (0)φ±
0 = T (0)φ0

0 = 0 , so that φ±
0 , φ0

0 ∈ H ∩ KerL .

Next we differentiate twice in z the identities

T (z)φ±
z = λ±(z)φ±

z and T (z)φ0
z = λ0(z)φ

0
z .

Denoting by ˙ the derivation with respect to z and dropping the ± or 0 indices (or
exponents) for simplicity, we obtain successively

Lφ̇z − zξ1φ̇z − ξ1φz = λ(z)φ̇z + λ̇(z)φz , (20)

and

Lφ̈z − zξ1φ̈z − 2ξ1φ̇z = λ(z)φ̈z + 2λ̇(z)φ̇z + λ̈(z)φz . (21)

Setting z = 0 in (20) leads to

Lφ̇0 = (ξ1 + λ̇(0))φ0 .

Since φ0 ∈ H ∩ KerL and (ξ1 + λ̇(0))φ0 ⊥ H ∩ KerL, we conclude that

λ̇(0) ∈ {+c, 0,−c} .
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(Indeed, in the basis {X+, X0, X−}, the matrix of the quadratic form defined on
H ∩ KerL by φ 	→ 〈(ξ1 + u)φ2〉 is⎛

⎝ u + c 0 0
0 u 0
0 0 u − c

⎞
⎠ ;

this matrix is degenerate if and only if there exists φ ∈ H ∩ KerL \ {0} such that
(ξ1 + u)φ ⊥ H ∩ KerL, which happens only if u = ±c or u = 0: see [10].)

Furthermore ⎧⎨
⎩

λ̇(0) = +c ⇒ φ0 ∈ RX+ ,

λ̇(0) = 0 ⇒ φ0 ∈ RX0 ,

λ̇(0) = −c ⇒ φ0 ∈ RX− ,

and since (φ+
0 , φ0

0 , φ
−
0 ) is an orthonormal system in H, each one of the three cases

above occurs for exactly one of the branches λ+(z), λ0(z), λ−(z).
Henceforth, we label these eigenvalues so that λ̇±(0) = ±c and λ̇0(0) = 0 and

concentrate on the branch λ0(z). In particular, up to a change in orientation, one
has φ0

0 = X0 and

Lφ̇0
0 = ξ1φ

0
0 . (22)

This being done, setting z = 0 in (21), we arrive at the identity

Lφ̈0
0 − 2ξ1φ̇

0
0 = λ̈0(0)φ

0
0 .

Taking the inner product of both sides of this identity with φ0
0 , we see that

〈φ0
0Lφ̈0

0〉 − 2〈ξ1φ̇0
0φ

0
0〉 = λ̈0(0)〈(φ0

0)
2〉 = λ̈0(0) .

Since φ0
0 = X0 ∈ KerL and L is self-adjoint

〈φ0
0Lφ̈0

0〉 = 0 .

In view of (22), one has

〈ξ1φ̇0
0φ

0
0〉 = 〈φ̇0

0Lφ̇0
0〉 > 0 ,

since φ̇0
0 /∈ KerL—otherwise Lφ̇0

0 = ξ1φ
0
0 = ξ1X0 = 0 which is obviously

impossible. Therefore

λ̈0(0) = −2〈φ̇0
0Lφ̇0

0〉 < 0 . (23)

To summarize, we have obtained real-analytic maps z 	→ λ0(z) and z 	→ φ0
z

such that

λ0(0) = λ̇0(0) = 0 , λ̈0(0) < 0 , and φ0
0 = X0 ,

while

Lφ0
z = zξ1φ

0
z + λ0(z)φ

0
z (24)
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for all z real near 0.
Set u(z):=λ0(z)/z; since λ0(0) = λ̇0(0) = 0 while λ̈0(0) < 0, the function u

is real-analytic near 0 and satisfies

u(0) = λ̇0(0) = 0 , and u̇(0) = 1

2
λ̈0(0) < 0 .

By the open mapping theorem (see Rudin [17], Theorem 10.32), z 	→ u(z) extends
into a biholomorphic map between two open neighborhoods of the origin that
preserves the real axis. Denoting by u 	→ z(u) its inverse, one hasλ0(z(u)) = uz(u)

and we recast (24) in the form

Lφ0
z(u) = z(u)ξ1φ

0
z(u) + uz(u)φ0

z(u) .

For u real sufficiently near 0, one has

ν(|ξ |) − z(u)(ξ1 + u) ≥ 1

2
ν−(1 + |ξ |) > 0 for all ξ ∈ R3 .

Then, returning to Hilbert’s decomposition (10) of the linearized operator L, we
see that

φ0
z(u) = 1

ν − z(u)(ξ1 + u)
Kφ0

z(u)

for all u near 0. By definition, ‖φ0
z(u)‖H = 1; since K is a bounded operator on H,

the identity above implies that3

‖(1 + |ξ |)φ0
z(u)‖H ≤ 2

ν−
‖K‖B(H) , for all u near 0 .

By Proposition 1, we improve this result and arrive at the bound of the form

‖√Mφ0
z(u)‖L∞,s (R3) ≤ Cs

for all s ≥ 0, uniformly in u near 0.
Furthermore

〈(ξ1 + u)(φ0
z(u))

2〉 = u〈(φ0
0)

2〉 + 2z(u)〈ξ1φ̇0
0φ

0
0〉 + O(u2)

= u + 2z(u)〈φ̇0
0Lφ̇0

0〉 + O(u2) = u − z(u)λ̈0(0) .

Since z(u) = 2u/λ̈0(0) + O(u2), we conclude that u 	→ 〈(ξ1 + u)(φ0
z(u))

2〉 is a
real-analytic function defined near u = 0, satisfying

〈(ξ1 + u)(φ0
z(u))

2〉 = −u + O(u2) .

Finally, setting τu :=z(u) and

φu :=
φ0
z(u)√

−〈(ξ1 + u)(φ0
z(u))

2〉/u
, so that φ0 = X0 ,

we arrive at the statement of Proposition 2. ��

3 We denote by B(X, Y ) the space of bounded linear operators from the Banach space X
to the Banach space Y , and set B(X):=B(X, X).
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Remarks. (1) The analogue of Proposition 2 in the case where λ̇(0) = c is pre-
cisely what is discussed in Corollary 3.10 of [16]. The idea of reducing the
generalized eigenvalue problem (17) to a standard eigenvalue problem for the
self-adjoint family T (z), i.e. of considering uτu as a function of τu near the
origin, is somewhat reminiscent of the identity (20) in [16].

(2) For inverse power law, cutoff potentials softer than hard spheres, one has

ν−(1 + |ξ |)α ≤ ν(|ξ |) ≤ ν+(1 + |ξ |)α for some α < 1 .

In that case, the operator T (z) = L − zξ1 is not a holomorphic family on H,
since

DomT (z) = 1

(1 + |ξ |)α(1 + |ξ1|)1−α
H for z �= 0 ,

while

DomT (0) = 1

(1 + |ξ |)α H .

The argument used in the proof of Proposition 2 fails for such potentials, which
is the reason why Caflisch and Nicolaenko [8] consider an approximate variant
of the generalized eigenvalue problem instead of (17).

4. The Penalized Problem

Our strategy for solving the nonlinear half-space problem (4) near u = 0—i.e.
near the transition from evaporation to condensation at the interface x = 0—is as
follows:

Considered the nonhomogeneous, linear half-space problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ξ1 + u)∂x f (x, ξ) + L f (x, ξ) = Q , ξ ∈ R3 , x > 0 ,

f (0, ξ) = fb(ξ) , ξ1 + u > 0 ,

f (x, ξ) → 0 , as x → +∞ ,

(25)

where⎧⎨
⎩

Q(x, ·) ⊥ KerL for each x > 0 ,

Q(x, ξ1, ξ2, ξ3) = Q(x, ξ1,−ξ2,−ξ3) , for each x > 0 , ξ ∈ R3 ,

and Q(x, ξ) → 0 as x → +∞ .

(26)

All solutions f to this problem considered below are assumed to be even in (ξ2, ξ3):

f (x, ξ1, ξ2, ξ3) = f (x, ξ1,−ξ2,−ξ3) , for each x > 0 , ξ ∈ R3 . (27)

Assume for now that we can prove existence and uniqueness of a solution f =
Fu[ fb, Q] to (25) provided that fb and Q satisfy some compatibility conditions,
which we denote symbolically as Cu[ fb, Q] = 0. An obvious strategy is to seek
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the solution f of (4) with boundary condition (7) as a fixed point of the map
f 	→ Fu[ fb,Q( f, f )] in some neighborhood of f = 0.

There are two main difficulties in this approach. First, the nonlinear solution f
should satisfy the compatibility conditions Cu[ fb,Q( f, f )] = 0; these compatibil-
ity conditions are not explicit since they involve Q( f, f ), and yet satisfying these
compatibility conditions is necessary in order to be able to define Fu[ fb,Q( f, f )]
in the first place.

A second difficulty lies with the solution of the linearized problem (25) itself.
Since Q is a quadratic operator, one can indeed expect that the nonlinear opera-
tor f 	→ Fu[ fb,Q( f, f )] will be a strict contraction in a closed ball centered at
the origin with small enough positive radius Ru , say in some space of the type
M−1/2L∞(R+; L∞,s(R3)) for large enough s. In other words, solving the lin-
earized problem (25) in some appropriate setting is the key step. Once this is done,
handling the nonlinearity should not involve intractable, additional difficulties.

In fact, the work of Ukai–Yang–Yu [28] solves precisely both these difficulties.
Unfortunately, their result is not enough for the purpose of studying the transition
from evaporation to condensation, for the following reason.

Indeed, one faces the following problem: the radius Ru of the closed ball cen-
tered at the origin on which one can apply the fixed point theorem to the nonlinear
operator f 	→ Fu[ fb,Q( f, f )] might be so small that

fb(ξ) = Mρ,−u,T − M

M
/∈ B(0, Ru) .

In other words,

‖(Mρ,−u,T − M1,0,1)/
√
M1,0,1‖L∞ � |u|‖ |ξ |M1,0,1‖L∞

as u → 0, and it might happen that Ru < |u|‖ |ξ |M1,0,1‖L∞ for all u �= 0.
The main ingredient needed to understand the transition from evaporation to

condensation in the context of the half-space problem (1) is therefore to obtain for
the operatorFu—and for the radius Ru—an estimate that is uniform in u as u → 0.

With the generalized eigenfunction φu constructed in the previous section, we
have constructed a special solution (18) of the linearized steady Boltzmann equa-
tion, and this solution is a slowly varying function of x for |u| � 1 (slowly ex-
ponentially increasing for 0 < u � 1 and slowly exponentially decaying for
0 < −u � 1), according to (19). Solutions of this type must be discarded in order
to obtain the desired uniform bounds as u crosses the value 0 (i.e. the transition
between evaporation and condensation).

Discarding slowly varying modes in solutions to the steady linearized Boltz-
mann equation (25) is achieved by a procedure similar to the Lyapunov–Schmidt
reduction used in the context of bifurcation theory.

4.1. The Lyapunov–Schmidt Method

We denote by Π+ the H-orthogonal projection on RX+, i.e.

Π+g = 〈gX+〉X+ , (28)
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and likewise, by Π the H-orthogonal projection on Span{X+, X0, X−}, i.e.
Πg = 〈gX+〉X+ + 〈gX0〉X0 + 〈gX−〉X− . (29)

Moreover, we introduce, for all u ∈ (−r, 0) ∪ (0, r) as in Proposition 2, the
operators pu and Pu defined by

pug = −〈(ξ1 + u)ψug〉φu , Pug = −〈ψug〉(ξ1 + u)φu , (30)

where

ψu :=φu − φ0

u
, 0 < |u| < r . (31)

Since u 	→ τu and u 	→ φu are real-analytic on (−r, r) with τ0 = 0, and since
ψu :=(φu −φ0)/u, the function u 	→ ψu is also real-analytic on (−r, r)with values
in DomL.

Lemma 2. The linear operators pu and Pu are rank-1 projections defined on H,
satisfying

Pu((ξ1 + u) f ) = (ξ1 + u)pu f , f ∈ H ,

and

Pu(L f ) = L(pu f ) , f ∈ H ∩ DomL such that (ξ1 + u) f ⊥ X0 .

Besides

(ξ1 + u)φu ⊥ KerL , and therefore ImPu ⊂ KerL⊥ .

Proof. The first property follows from a straightforward computation.
For each f ∈ DomL, one has

Pu(L f ) = −(ξ1 + u)φu〈ψuL f 〉 = −(ξ1 + u)φu〈 f Lψu〉
= −(ξ1 + u)φu

1

u
〈 f L(φ0 + uψu)〉 = −(ξ1 + u)φu

1

u
〈 f L(φu)〉

= −(ξ1 + u)φu
1

u
τu〈(ξ1 + u)φu f 〉 = −1

u
〈(ξ1 + u)(φ0 + uψu) f 〉Lφu

= −〈(ξ1 + u)ψu f 〉Lφu = L(pu f ),

where the penultimate equality follows from assuming that 〈(ξ1 + u) f X0〉 = 0,
since φ0 = X0.

Since τu �= 0 whenever 0 < |u| < r , one has

(ξ1 + u)φu = 1

τu
Lφu ∈ ImL = (KerL)⊥ ,

and this obviously entails the last property.
Finally, we check that pu and Pu are projections:

p2
u( f ) = 〈(ξ1 + u)ψuφu〉〈(ξ1 + u)ψu f 〉φu = −〈(ξ1 + u)ψuφu〉pu( f ) ,
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P2
u( f ) = 〈(ξ1 + u)φuψu f 〉〈ψu f 〉(ξ1 + u)φu = −〈(ξ1 + u)ψuφu〉Pu( f ) ,

and we conclude since

〈(ξ1 + u)ψuφu〉 = 1

u
(〈(ξ1 + u)φ2

u〉 − 〈(ξ1 + u)φ0φu〉) = −1 .

Indeed,

〈(ξ1 + u)φ2
u〉 = −u , and 〈(ξ1 + u)φuφ0〉 = 0 ,

in view of the third property in the proposition, since φ0 ∈ KerL. ��
The projection pu is a deformation of the projection p used in [11] to study the

half-space problem (1) in the case u = 0. The role of pu and Pu is reminiscent of
the Lyapunov–Schmidt method used by Nicolaenko–Thurber [16] to analyze the
shock profile problem for the Boltzmann equation.

The observations that follow explain the origin of the penalization method used
in the construction of the solution to (4).

Lemma 3. Assume that 0 < |u| < r . Let Q satisfy (26) and f be a solution to (25)
such that (27) holds. Assume that the source term satisfies

eγ x Q ∈ L∞(R+;H) for some γ > max(τu, 0) ,

and that

eγ x f ∈ L∞(R+;H) . (32)

Then

(a) the function f satisfies

〈(ξ1 + u) f X+〉 = 〈(ξ1 + u) f X0〉 = 〈(ξ1 + u) f X−〉 = 0 , x ≥ 0 ;
(b) one has

(ξ1 + u)pu f (x, ξ) = −
∫ ∞

0
eτu zPuQ(x + z, ξ)dz , x ≥ 0 .

In particular

〈(ξ1 + u)ψu f 〉(0) +
∫ ∞

0
eτu y〈ψuQ〉(y)dy = 0 . (33)

The content of Lemma 3 can be understood as follows: the exponential decay
condition (32) is uniform as |u| → 0. In particular, imposing γ > max(τu, 0) elim-
inates the slowly varying solution (18) in view of (19). In other words, the uniform
exponential decay condition (32) implies the additional equality (33). While (33)
is satisfied automatically for 0 < u � 1 (i.e. in the evaporation case), it is used to
eliminate a slowly varying component of the solution of the form

−
(

〈(ξ1 + u)ψu f 〉(0) +
∫ ∞

0
eτu y〈ψuQ〉(y)dy

)
e−τu xφu(ξ) . (34)

This observation is at the heart of our analysis.
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Proof. Any solution of (25) satisfies

∂x 〈(ξ1 + u)X± f 〉 = −〈X±L f 〉 + 〈X±Q〉 = 0 ,

∂x 〈(ξ1 + u)X0 f 〉 = −〈X0L f 〉 + 〈X0Q〉 = 0 .

Besides,

〈(ξ1 + u)X± f 〉 → 0 as x → +∞,

〈(ξ1 + u)X0 f 〉 → 0 as x → +∞,

so that statement (a) holds.
Now for (b). For 0 < |u| < r , applying the first and second identities in

Lemma 2 shows that

(ξ1 + u)∂xpu f + L(pu f ) = ∂xPu((ξ1 + u) f ) + PuL f = PuQ ,

since (ξ1 + u) f ⊥ KerL. Besides

L(pu f ) = −〈(ξ1 + u)ψu f 〉Lφu

= −〈(ξ1 + u)ψu f 〉τu(ξ1 + u)φu = τu(ξ1 + u)pu f ,

so that

(ξ1 + u)(∂xpu f + τupu f ) = PuQ ,

or, equivalently

∂x 〈(ξ1 + u)ψu f 〉 + τu〈(ξ1 + u)ψu f 〉 = 〈ψuQ〉 .

For u small enough, one has τu < γ , so that

∂x
(
eτu x 〈(ξ1 + u)ψu f 〉

) = eτu x 〈ψuQ〉 = O(e(τu−γ )x ) .

At this point, we study separately the cases u > 0 and u < 0.
Step 1. If 0 < u < r , then τu < 0, so that

eτu x 〈(ξ1 + u)ψu f 〉(x) = −
∫ ∞

x
eτu y〈ψuQ〉(y)dy

= −
∫ ∞

0
eτu(x+z)〈ψuQ〉(x + z)dz

i.e.

〈(ξ1 + u)ψu f 〉(x) = −
∫ ∞

0
eτu z〈ψuQ〉(x + z)dz .

Then ∣∣∣∣
∫ ∞

0
eτu z〈ψuQ〉(x + z, ·)dz

∣∣∣∣ ≤ ‖ψu‖H
∫ ∞

0
eτu z‖Q(x + z)‖Hdz

≤ ‖ψu‖H sup
y>0

(
eγ y‖Q(y, ·)‖H

) ∫ ∞

0
eτu ze−γ (x+z)dz,
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so that

|〈(ξ1 + u)ψu f 〉(x)| ≤ ‖ψu‖H sup
y>0

(
eγ y‖Q(y, ·)‖H

) e−γ x

γ − τu
.

Step 2. If −r < u < 0, then τu > 0, so that

〈(ξ1 + u)ψu f 〉(x) = e−τu x 〈(ξ1 + u)ψu f 〉(0) +
∫ x

0
e−τu(x−y)〈ψuQ〉(y)dy

= e−τu x
(

〈(ξ1 + u)ψu f 〉(0) +
∫ ∞

0
eτu y〈ψuQ〉(y)dy

)

−eτu x
∫ ∞

x
eτu y〈ψuQ〉(y)dy.

Since

e−τu x
∣∣∣∣
∫ ∞

x
eτu y〈ψuQ〉(y)dy

∣∣∣∣ =
∣∣∣∣
∫ ∞

0
eτu z〈ψuQ〉(x + z)dz

∣∣∣∣
≤ ‖ψu‖H sup

y>0
(eγ y‖Q(y, ·)‖H)

∫ ∞

0
eτu ze−γ (x+z)dz,

one has∣∣∣∣〈(ξ1 + u)ψu f 〉(x) − e−τu x
(

〈(ξ1 + u)ψu f 〉(0) +
∫ ∞

0
eτu y〈ψuQ〉(y)dy

)∣∣∣∣
≤ ‖ψu‖H sup

y>0
(eγ y‖Q(y, ·)‖H)

e−γ x

γ − τu
.

Therefore, if −r < u < 0, in general

〈(ξ1 + u)ψu f 〉(x) = O(e−τu x ) .

Since τu ∼ τ̇0u as u → 0, this exponential decay is not uniform in u near u = 0,
unless

〈(ξ1 + u)ψu f 〉(0) +
∫ ∞

0
eτu y〈ψuQ〉(y)dy = 0 ,

in which case

〈(ξ1 + u)ψu f 〉(x) = O(e−γ x ) ,

and this is precisely statement (b) in Lemma 3. ��
Thus we seek solutions f of (25) in the form

f = g − hφu , (35)

where g satisfies⎧⎨
⎩

(ξ1 + u)∂x g + Lg = (I − Pu)Q , x > 0 , ξ ∈ R3 ,

〈(ξ1 + u)ψug〉(x) = 0 , x > 0 ,

g(x, ·) → 0 in H , as x → +∞ ,

(36)
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while

h(x) = −
∫ ∞

0
eτu z〈ψuQ〉(x + z)dz . (37)

Observe that the condition 〈(ξ1+u)ψug〉 = 0 is equivalent to the fact that pug = 0,
so that

g(x, ξ) = (I − pu) f (x, ξ) while − h(x)φu(ξ) = pu f (x, ξ) .

Notice also that

〈(ξ1 + u)ψu f 〉(0) +
∫ ∞

0
eτu y〈ψuQ〉(y)dy

= 〈(ξ1 + u)ψug〉(0) − h(0)〈(ξ1 + u)ψuφu〉 +
∫ ∞

0
eτu y〈ψuQ〉(y)dy = 0 ,

since 〈(ξ1 + u)ψug〉(0) = 0 and

〈(ξ1 + u)ψuφu〉 =
〈
(ξ1 + u)

(
1

u
X0 + ψu

)
φu

〉
= 1

u
〈(ξ1 + u)φ2

u〉 = −1 .

In other words, the function f defined as in (35) satisfies indeed the uniform expo-
nential decay condition (33).

4.2. The Ukai–Yang–Yu Penalization Method

The formulation (36) is precisely the one forwhichweuse a penalizationmethod
to set up the fixed point argument described at the beginning of the present section.
Indeed, any solution g ∈ L∞(R+;H ∩ DomL) to (36) satisfies

∂xΠ((ξ1 + u)g) = Π(I − Pu)Q = ΠQ = 0 , since ImL + ImPu ⊂ (KerΠ)⊥ .

Since we have assumed that g(x, ·) → 0 in H as x → +∞, one has

Π((ξ1 + u)g) = 0 , and in particular Π+((ξ1 + u)g) = 0 .

Likewise,

pug = 0 , since 〈(ξ1 + u)ψug〉 = 0 .

Therefore, if g is a solutionof (36) such that x 	→ eγ x g(x, ·)belongs to L∞(R+;H),
then

gγ (x, ξ):=eγ x g(x, ξ) (38)

is a solution of the penalized problem
{

(ξ1 + u)∂x gu,γ + Lp
u gu,γ = eγ x (I − Pu)Q , x > 0 , ξ ∈ R3 ,

gu,γ ∈ L∞(R+;H ∩ DomL) ,
(39)
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where the penalized linearized collision operator is defined by

Lp
u g:=Lg + αΠ+((ξ1 + u)g) + βpug − γ (ξ1 + u)g , (40)

for all α, β > 0.
Conversely, we should seek underwhich condition(s) a solution of the penalized

problem (39) with appropriately chosen α, β defines a solution of the original
problem (36) via (38). This is explained in the next lemma.

Lemma 4. For 0 < |u| < r , let

Au =
⎛
⎝ α 0 −uβ〈ψu X+〉

0 0 −β〈φu X0〉
α〈ψu X+〉 1

u τu τu − β〈ψuφu〉

⎞
⎠ .

There exists 0 < r ′ ≤ r such that, whenever 0 < |u| < r ′, the matrix Au has 3
distinct eigenvalues

λ1(u) > λ2(u) > 0 > λ3(u) ,

such that

inf
0<|u|<r ′ λ2(u) > 0 > sup

0<|u|<r ′
λ3(u) .

Let (l1(u), l2(u), l3(u)) be a real-analytic basis of left eigenvectors of Au defined
for 0 < |u| < r ′, such that

l j (u)Au = λ j (u)l j (u) , 0 < |u| < r , j = 1, 2, 3 .

Set

Y1[u](ξ):= (X+(ξ), X0(ξ), ψu(ξ)) · l1(u) ,

Y2[u](ξ):= (X+(ξ), X0(ξ), ψu(ξ)) · l2(u) .

Then, if gu,γ satisfies (39) with

0 < γ < inf
0<|u|<r ′ λ2(u) ,

one has

〈(ξ1 + u)X+gu,γ 〉 = 〈(ξ1 + u)ψugu,γ 〉 = 0

⇐⇒
⎧⎨
⎩

〈(ξ1 + u)Y1[u]gu,γ 〉∣∣x=0 = 0 ,

〈(ξ1 + u)Y2[u]gu,γ 〉∣∣x=0 = 0 .



On the Boundary Layer Equations with Phase Transition... 73

Proof. A straightforward computation shows that

∂x 〈(ξ1 + u)X+gu,γ 〉+(α − γ )〈(ξ1 + u)X+gu,γ 〉
−uβ〈ψu X+〉〈(ξ1 + u)ψugu,γ 〉 = 0 ,

∂x 〈(ξ1 + u)X0gu,γ 〉 − γ 〈(ξ1 + u)X0gu,γ 〉 − β〈φu X0〉〈(ξ1 + u)ψugu,γ 〉 = 0 ,

∂x 〈(ξ1 + u)ψugu,γ 〉 + 1

u
τu〈(ξ1 + u)X0gu,γ 〉 + τu〈(ξ1 + u)ψugu,γ 〉

+α〈ψu X+〉〈(ξ1 + u)X+gu,γ 〉 − (γ + β〈ψuφu〉)〈(ξ1 + u)ψugu,γ 〉 = 0 .

Setting

A+ = 〈(ξ1 + u)X+gu,γ 〉 , A0 = 〈(ξ1 + u)X0gu,γ 〉 , B = 〈(ξ1 + u)ψugu,γ 〉 ,

we see that

d

dx

⎛
⎝ A+

A0
B

⎞
⎠ + (Au − γ I )

⎛
⎝ A+

A0
B

⎞
⎠ = 0 . (41)

Since the function u 	→ ψu is real-analytic on (−r, r) with values in H ∩ DomL,
the matrix field u 	→ Au is real-analytic on (−r, r). Besides

A0 =
⎛
⎝ α 0 0

0 0 −β

α〈ψ0X+〉 τ̇0 −β〈ψ0X0〉

⎞
⎠ ,

with characteristic polynomial (α −λ)(λ2 −β〈ψ0X0〉λ+ τ̇0β). Since β > 0 while
τ̇0 < 0, the matrix A0 has 3 simple eigenvalues, two of which, including α, are
positive, while one is negative.

By a standard analytic perturbation argument, we therefore obtain 3 eigenvalues
λ1(u), λ2(u), λ3(u) for Au that are real-analytic functions of u defined on some
neighborhood of the origin, and satisfy the inequalities mentioned in the statement
of the lemma. The existence of left eigenvectors l1(u), l2(u), l3(u) of Au that are
real-analytic functions of u defined in some neighborhood of 0 follows from the
same argument—see for instance chapter II, §1 in [12].

Choose γ such that

0 < γ < inf
0<|u|<r ′ λ2(u) .

Taking the inner product of each side of (41) with l1(u), l2(u) and l3(u), we see
that

(A+, A0, B)(x) · l j (u)e(λ j (u)−γ )x = Const.

Since

λ3(u) − γ < 0 and we have assumed that gγ ∈ L∞(R+;H ∩ DomL) ,
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we conclude that x 	→ (A+, A0, B)(x) · l3(u) is bounded on R+, which implies
that

(A+, A0, B)(0) · l3(u) = (A+, A0, B)(x) · l3(u)e(λ3(u)−γ )x = 0 , for all x ∈ R+ .

Therefore

Π+((ξ1 + u)gu,γ ) = 0 and pugu,γ = 0 ⇐⇒
{

(A+, A0, B) · l1(u) = 0 ,

(A+, A0, B) · l2(u) = 0 ,

⇐⇒
{

(A+, A0, B)
∣∣
x=0 · l1(u) = 0 ,

(A+, A0, B)
∣∣
x=0 · l2(u) = 0 ,

in which case g(x, ξ) = e−γ x gu,γ (x, ξ) is a solution of the original half-space
problem (36). Obviously, these conditions can be recast as in the statement of the
lemma. ��

4.3. Outline of the Proof of Theorem 1

Weconcludewith a summary ofwhat has been achieved in sections 3 and 4 , and
an outline of what remains to be done in the proof of Theorem 1. This subsection
should be used as a roadmap to the proof of Theorem 1. Consider the problem

⎧⎨
⎩

(ξ1 + u)∂x f (x, ξ) + L f (x, ξ) = Q( f, f )(x, ξ) , ξ ∈ R3 , x > 0 ,

f (x, ξ) → 0 , as x → +∞ ,

(42)

with the boundary condition

f (0, ξ) = fb(ξ) , ξ1 + u > 0 . (43)

For simplicity, we assume that fb is even in (ξ2, ξ3) and look for solutions f to
(42) which are also even in (ξ2, ξ3).

4.3.1. Step 1: eliminating the slowly varying mode Assume that the function
u 	→ fu ≡ fu(x, ξ) is a family of solutions to (42) defined for 0 < |u| � 1,
satisfying the uniform bound (32) with γ > max(τu, 0). The function φu ≡ φu(ξ)

is the solution of the Nicolaenko-Thurber generalized eigenvalue problem (17)
constructed in Proposition 2, and τu is the corresponding generalized eigenvalue.

According to Lemma 3, treating Q:=Q( fu, fu) as a source termwhich satisfies
(26), we conclude that fu must satisfy all the conditions in statements (a)–(b) of that
lemma. Thus, we isolate the component of the solution fu proportional to φu(ξ) by
means of the Lyapunov–Schmidt projections pu and Pu constructed in Lemma 2.
In other words, we seek fu in the form

fu(x, ξ)=gu(x, ξ) − hu(x)φu(ξ) ,

gu :=(I − pu) fu and hu :=〈(ξ1 + u)ψu fu〉 , (44)
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where gu satisfies⎧⎨
⎩

(ξ1 + u)∂x gu + Lgu = (I − Pu)Q , x > 0 , ξ ∈ R3 ,

〈(ξ1 + u)ψugu〉(x) = 0 , x > 0 ,

g(x, ·) → 0 in H , as x → +∞ ,

(45)

while

hu(x) = −
∫ ∞

0
eτu z〈ψuQ〉(x + z)dz , (46)

with

Q(x, ξ) = Q(gu(x, ξ) − hu(x)φu(ξ), gu(x, ξ) − hu(x)φu(ξ)) . (47)

Thus, we have transformed the original problem (42) into (44)–(45)–(46), for which
the uniform exponential decay condition (32) with γ > |τu | for all 0 < |u| � 1 is
automatically satisfied. This procedure automatically discards the slowly varying
component (34) in the solution fu . Notice that this part of the argument bears on
the qualitative asymptotic properties of the solution fu and is therefore common to
all mathematical methods by which this solution is constructed.

4.3.2. Step 2: the penalization and fixed point methods Next, we forget about
the original problem (42), and seek to solve the coupled system (45)–(46) by a fixed
point argument, iterating on the source term (47) in an asymptotic regime where
both |gu | � 1 and |hu | � 1 in some appropriate sense. The key point is obviously
to prove that the size of the (small) ball centered at the origin of the function space
on which the fixed point theorem is applied is independent of |u| � 1.

Thus, we are left with the task of “inverting” the operator

g 	→ (ξ1 + u)∂x g + Lg . (48)

With the absorbing boundary condition g(0, ξ) = 0 for ξ1 + u > 0, the advection
operator (ξ1 + u)∂x is L2(Mdξdx)-dissipative, but only the linearized operator L
contributes to the spectral gap of this operator, according to (11). Unfortunately,
the Bardos–Caflisch–Nicolaenko weighted inequality (11) provides a spectral gap
only relatively to KerL, and this is not sufficient to invert the operator (48).

One way to get around this is to apply the Ukai–Yang–Yu penalization method.
The key idea in this method is to replace the linearized collision integral L with its
penalized variant

Lp
u g:=Lg + αΠ+((ξ1 + u)g) + βpug − γ (ξ1 + u)g . (49)

One can prove that, for 0 < α, β, γ � 1, the operatorLp
u satisfies a full spectral

gap inequality, and that this spectral gap is independent of u: see Proposition 3
below.

This spectral gap estimate provides in turn a uniform in |u| � 1 bound for
the norm of the inverse of g 	→ (ξ1 + u)∂x g + Lp

u g, first on L2(R+;H) (see
Proposition 4 below), then in L2(Mdξ ; L∞(R+)), and finally in theweighted space
(1 + |ξ |)−3M(ξ)−1/2L∞(R+ × R3) (see Proposition 5 below). Improving the
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Lebesgue exponent from 2 to +∞ in both the x and ξ variables is done first by
using the integral equation formulation of the inverse of the linear operator

g 	→ (ξ1 + u)∂x g + Lp
u g

which implies the pointwise inequality (65), and then by using Grad’s inequalities
reported in Proposition 1.

At this point, the stage is set for a straightforward application of the fixed point
theorem leading to Proposition 6, which provides the existence and uniqueness of
a solution (gu,γ , hu,γ ) to the nonlinear penalized problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ξ1 + u)∂x gu,γ + Lp
u gu,γ = e−γ x (I − Pu)Q(gu,γ − hu,γ φu, gu,γ − hu,γ φu) ,

gu,γ (0, ξ) = fb(ξ) + hu,γ (0)φu(ξ) , ξ1 + u > 0 ,

hu,γ (x)=−e−γ x
∫ ∞

0
e(τu−2γ )z〈ψuQ(gu,γ −hu,γ φu, gu,γ −hu,γ φu)〉(x+z)dz,

(50)

for all boundary data fb ≡ fb(ξ) even in ξ2, ξ3 such that
√
M fb is small enough

in L∞,3(R3).

4.3.3. Step 3: conclusion However, the equation (50) does not coincide ex-
actly with the original problem to be solved, i.e. (45)–(46)–(47). The difference is
twofold: first, if (gu,γ , hu,γ ) is a solution to (50), then gu(x, ξ) = e−γ x gu,γ (x, ξ)

and hu(x) = e−γ xhu,γ (x) satisfy a system of equations analogous to (45)–(46),
but with the linearized collision integral L replaced by

L̃g:=Lg + αΠ+((ξ1 + u)g) + βpug .

Another important difference is that existence and uniqueness of (gu,γ , hu,γ ) holds
for an open set of boundary conditions fb ≡ fb(ξ) even in ξ2, ξ3. No compatibility
condition such as (15) appears at this stage.

One concludes by observing that the functions gu(x, ξ) = e−γ x gu,γ (x, ξ) and
hu(x) = e−γ xhu,γ (x) solve the original problem (45)–(46) provided that the extra
terms αΠ+((ξ1 + u)gu) and βpugu entering the definition of L̃ vanish identically.
By uniqueness in Proposition 6, imposing that

αΠ+((ξ1 + u)gu) = βpugu = 0

results in two constraints on the boundary data fb, which are exactly the conditions
(15) in Theorem 1: see Lemma 4 and section 6.2. With this last observation, the
proof of Theorem 1 is complete.
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5. Resolution of the Penalized Linear Problem

5.1. The Penalized Linearized Collision Integral

Proposition 3. There exists R > 0 defined in (52), ν∗ > 0 defined in (54), and Γ

defined in (57), such that

〈 f Lp
u f 〉 ≥ γ

24ν∗ 〈ν f 2〉 , for all f ∈ H ∩ DomL ,

for each u such that |u| ≤ R, provided that

α = β = 2γ and 0 < γ ≤ Γ . (51)

The penalized linearized collision integral Lp
u is an important feature of our

analysis. In addition to the penalization idea coming from [28], it finds its ori-
gin in the Caflisch-Nicolaenko analysis of weak shock profiles for the Boltzmann
equation; see for instance the operator M appearing in Proposition 3.3 (i) in [8].4

Proof. An important tool in the proof is the weighted relative spectral gap estimate
(11) for L, due to Bardos–Caflisch–Nicolaenko [3]. Write

w:= f − Π f , q:=Π f .

Then

〈 f (αΠ+((ξ1 + u) f ) + βpu f − γ (ξ1 + u) f )〉
= α〈qX+〉〈(ξ1 + u)X+q〉 − β〈qφu〉〈(ξ1 + u)ψuq〉

+α〈qX+〉〈(ξ1 + u)X+w〉 − β〈qφu〉〈(ξ1 + u)ψuw〉
−β〈wφu〉〈(ξ1 + u)ψuq〉 − β〈wφu〉〈(ξ1 + u)ψuw〉
−γ 〈(ξ1 + u)q2〉 − 2γ 〈(ξ1 + u)qw〉 − γ 〈(ξ1 + u)w2〉 .

Since (ξ1 + u)φu and ξ1X0 ∈ ImL = (KerL)⊥, one has

〈(ξ1 + u)ψuq〉 = 1
u (〈(ξ1 + u)φuq〉 − 〈(ξ1 + u)X0q〉)

= − 1
u 〈(ξ1 + u)X0q〉 = −〈X0q〉 .

Hence

〈 f (αΠ+((ξ1 + u) f ) + βpu f − γ (ξ1 + u) f )〉 = S1[q] + S2[q, w] + S3[w] ,

with

S1[q] := α〈qX+〉〈(ξ1 + u)X+q〉 + β〈X0q〉〈qφu〉 − γ 〈(ξ1 + u)q2〉 ,

S2[q, w] := α〈qX+〉〈(ξ1 + u)X+w〉 + β〈X0q〉〈wφu〉
−β〈(ξ1 + u)ψuw〉〈qφu〉 − 2γ 〈(ξ1 + u)qw〉 ,

S3[w] := − β〈(ξ1 + u)ψuw〉〈wφu〉 − γ 〈(ξ1 + u)w2〉 .

4 We are grateful to C. Schmeiser for this remark.
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Note that

〈(ξ1 + u)qw〉2 ≤ 〈|ξ1 + u|q2〉〈|ξ1 + u|w2〉 ≤ 1

ν2−
〈νq2〉〈νw2〉 .

Observe that

S1[q] ≥ (α − γ )(c + u)q2+ + (β − uγ )q20 + γ (c − u)q2−

− β|u|‖ψu‖L2 |q0|
√
q2+ + q20 + q2−

≥ ((α − γ )(c + u) − β|u|‖ψu‖L2)q2+

+ (β − uγ − β|u|‖ψu‖L2)q20

+ (γ (c − u) − β|u|‖ψu‖L2)q2− ,

with

q±:=〈 f X±〉 , q0:=〈 f X0〉 .

In particular

S1[q] ≥ (
min((α − γ )(c + u), (β − uγ ), γ (c − u)) − β|u|‖ψu‖L2

)
×(q2+ + q20 + q2−) .

Assume that

|u| ≤ R:=min

⎛
⎝1

2
r ′, c − 1,

1

4

(
sup

|u|≤min(r/2,1)
‖ψu‖L2

)−1
⎞
⎠ , (52)

with r ′ chosen as in Lemma 4, and pick

α = β = 2γ > 0 . (53)

Then

S1[q] ≥ (
min(γ (c − |u|), γ (2 − |u|)) − β|u|‖ψu‖L2

)
(q2+ + q20 + q2−)

≥ (
γ − β|u|‖ψu‖L2

)
(q2+ + q20 + q2−)

≥ 1
2γ (q2+ + q20 + q2−) ≥ γ

6ν∗ 〈νq2〉

since 0 < c − 1 =
√

5
3 − 1 < 1, where

ν∗:=max(〈νX2+〉, 〈νX2
0〉, 〈νX2−〉) . (54)

On the other hand,

|S3[w]| ≤ β〈νψ2
u 〉1/2〈φ2

u/ν〉1/2 + γ

ν−
〈νw2〉 ,
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so that, provided that u satisfies (52) while α, β, γ satisfy (53), one has

|S3[w]| ≤ 1

2
κ0〈νw2〉 ,

if

0 < γ < κ0ν−
/ (

2 + 4 sup
|u|≤R

√
〈νψ2

u 〉〈φ2
u/ν〉

)
. (55)

Finally

|S2[q, w]| ≤ 2(〈νX2+〉 + sup|u|≤R 〈νφ2
u〉1/2(〈νX2

0〉1/2 + 〈νψ2
u 〉1/2) + 1)

ν2−
×γ 〈νq2〉1/2〈νw2〉1/2.

Thus, if u satisfies (52), and α, β, γ are chosen as in (53), (55) and if

γ < κ0ν
4−
/
48ν∗(〈νX2+〉 + sup

|u|≤R
〈νφ2

u〉1/2(〈νX2
0〉1/2 + 〈νψ2

u 〉1/2) + 1)2 (56)

one has

〈 f (L f + αΠ+((ξ1 + u) f ) + βpu f − γ (ξ1 + u) f )〉 ≥ κ0

4
〈νw2〉 + γ

12ν∗ 〈νq2〉 .

Therefore, the inequality in the proposition follows from the following choice of
Γ :

Γ :=min(3ν∗κ0, Γ1, Γ2) , with Γ1:= κ0ν−
2 + 4 sup|u|≤R

√〈νψ2
u 〉〈φ2

u/ν〉 ,

Γ2:= κ0ν
4−

48ν∗(〈νX2+〉 + sup|u|≤R 〈νφ2
u〉1/2(〈νX2

0〉1/2 + 〈νψ2
u 〉1/2) + 1)2

,

(57)

where κ0 is the Bardos–Caflisch–Nicolaenko spectral gap in (11). Obviously

sup
|u|≤R

(‖νφu‖H + ‖νψu‖H) < ∞ ,

since the map u 	→ ψu is real-analytic on (−r, r) with values in H ∩ DomL. ��

5.2. The L2 Theory

Consider the unbounded operator defined on the Hilbert spaceH = L2(R+;H)

by{
Tu f = (ξ1 + u)∂x f + Lp

u f ,

DomTu ={φ ∈ H | (ξ1+u)∂xφ and νφ ∈ H while φ(0, ξ)=0 for ξ1>−u} ,

whose adjoint is⎧⎨
⎩

T ∗
u g = −(ξ1 + u)∂x g + L f + α(ξ1 + u)Π+g + βp∗

ug − γ (ξ1 + u)g ,

DomT ∗
u ={ψ ∈ H | (ξ1+u)∂xψ and νψ ∈ H while ψ(0, ξ)=0 for ξ1<−u} ,
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where

p∗
ug = −(ξ1 + u)ψu〈φug〉 .

Following the same argument as in the proof of Lemma 3.1 in [11], we arrive
at the following statements.

Lemma 5. Let R > 0 be defined by (52), and let α = β = 2γ > 0 satisfy

0 < γ ≤ min(Γ, 1
2ν−)

with Γ defined in (57). Then there exists κ ≡ κ(R, ν−, γ ) > 0 such that

κ‖νφ‖H ≤ ‖Tuφ‖H , for each φ ∈ DomTu ,

κ‖νψ‖H ≤ ‖T ∗
u ψ‖H , for each ψ ∈ DomT ∗

u .

uniformly in |u| ≤ R. In particularKerTu = {0} and ImTu = Hwhenever |u| ≤ R.

Proof. We briefly recall the proof of Lemma 3.1 in [11] for the sake of complete-
ness.

If g ∈ DomTu , one has in particular

νg ∈ L2(Mdξdx) and 〈(ξ1 + u)g2〉 ∈ C(R+) ,

so that there exists Ln → ∞ such that 〈(ξ1 + u)g2〉(Ln) → 0 as n → ∞. Thus
∫ Ln

0
〈gTug〉dx = 1

2 〈(ξ1 + u)g2〉(Ln) − 1
2 〈(ξ1 + u)g2〉(0) +

∫ Ln

0
〈gLp

u g〉dx ,

and letting n → ∞, one arrives at

‖g‖H‖Tug‖H ≥
∫ ∞

0
〈gTug〉dx = − 1

2 〈(ξ1 + u)g2〉(0) +
∫ ∞

0
〈gLp

u g〉dx

≥
∫ ∞

0
〈gLp

u g〉dx ≥ γ

24ν∗ ‖√νg‖2H .

Notice that

− 1
2 〈(ξ1 + u)g2〉(0) ≥ 0

for g ∈ DomTu because of the boundary condition at x = 0 included in the
definition of the domain DomTu . Hence

‖Tug‖H ≥ γ ν
1/2
−

24ν∗ ‖g‖H .

Next

‖Tug‖H = ‖(ξ1 + u)∂x g + (ν − γ (ξ1 + u))g‖H
−‖Kg‖H − α‖Π+((ξ1 + u)g)‖H − β‖pug‖H

≥ ‖(ξ1 + u)∂x g + (ν − γ (ξ1 + u))g‖H
−(α〈(ξ1 + u)2X2+〉1/2 + β〈(ξ1 + u)2ψ2

u 〉1/2〈φ2
u〉1/2 + ‖K‖)‖g‖H ,
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so that

‖(ξ1 + u)∂x g + (ν − γ (ξ1 + u))g‖H ≤ C‖Tug‖H , (58)

with

C :=1+ 24ν∗

γ ν
1/2
−

sup
|u|≤R

(
α

√
〈(ξ1+u)2X2+〉+β

√
〈(ξ1+u)2ψ2

u 〉〈φ2
u〉+‖K‖

)
. (59)

Given S ∈ H, solve for h ∈ DomTu the equation

(ξ1 + u)∂xh + (ν − γ (ξ1 + u))h = S , x > 0 .

Since h ∈ DomTu it satisfies the boundary condition h(0, ξ) = 0 for ξ1 > −u, so
that

h(x, ξ) =
∫ x

0
exp

(
−

(
ν

ξ1 + u
− γ

)
(x − y)

)
S(y, ξ)

ξ1 + u
dy , ξ1 + u > 0 ,

and hence

|h(x, ξ)| ≤
∫ x

0
exp

(
−

(
ν

ξ1 + u
− γ

)
(x − y)

) |S(y, ξ)|
|ξ1 + u| dy , ξ1 + u > 0 .

On the other hand, since h ∈ H, there exists a sequence xn → ∞ such that
〈h(xn, ·)2〉 → 0, so that

h(x, ξ) =
∫ ∞

x
exp

(
−

(
ν

|ξ1 + u| + γ

)
(y − x)

)
S(y, ξ)

|ξ1 + u|dy , ξ1 + u < 0 ,

and hence

|h(x, ξ)| ≤
∫ ∞

x
exp

(
−

(
ν

|ξ1 + u| + γ

)
(y − x)

) |S(y, ξ)|
|ξ1 + u| dy

≤
∫ ∞

x
exp

(
−

(
ν

|ξ1 + u| − γ

)
(y − x)

) |S(y, ξ)|
|ξ1 + u| dy , ξ1 + u < 0 .

Therefore

|h(·, ξ)| ≤ G(·, ξ) � (|S(·, ξ)|1R+)

with

G(z, ξ) = 1z(ξ1+u)>0

|ξ1 + u| exp

(
−

(
ν

|ξ1 + u| − γ

)
|z|

)
. (60)

For future use, we compute, for all p ≥ 1,

‖G(·, ξ)‖L p ≤ 1

|ξ1 + u|
1

(p( ν
|ξ1+u| − γ ))1/p

= 1

p1/p|ξ1 + u|1−1/p(ν − γ |ξ1 + u|)1/p .

(61)
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Then we conclude from Young’s convolution inequality and (61) with p = 1
that

‖h(·, ξ)‖L2(R+) ≤ ‖G(·, ξ)‖L1‖S(·, ξ)‖L2

≤ ‖S(·, ξ)‖L2

ν − γ |ξ1 + u| ≤ ‖S(·, ξ)‖L2

(1 − γ
ν− )ν(ξ)

,

for |u| ≤ R, and hence

(1 − γ

ν−
)‖νh‖H ≤ ‖S‖H .

Applying this to

S:=(ξ1 + u)∂x g + (ν(ξ) − γ (ξ1 + u))g ,

and using the bound (58) shows that(
1 − γ

ν−

)
‖νg‖H ≤ C‖Tug‖H .

This obviously implies the first inequality in the lemma with

κ:=ν− − γ

Cν−
with C defined in (59). (62)

The analogous inequality for the adjoint operator T ∗
u is obtained similarly.

Now the first inequality obviously implies that

KerTu = {0} for |u| ≤ R .

The second inequality implies that ImTu = H, according to Theorem 2.20 in [7].
��

Astraightforward applicationofLemma5 is the following existence andunique-
ness result.

Proposition 4. Let R > 0 be defined by (52), set α = β = 2γ > 0 assuming
0 < γ ≤ min(Γ, 1

2ν−), where Γ is defined in (57), and let κ ≡ κ(R, ν−, γ ) > 0
be given by (62).

Let Q satisfy eγ x Q ∈ H, while νgb ∈ H. Then, for each |u| < R, there exists
a unique solution gu,γ ∈ DomTu of the linearized penalized problem⎧⎨

⎩
(ξ1 + u)∂x gu,γ + Lp

u gu,γ = eγ x (I − Pu)Q , x > 0 , ξ ∈ R3 ,

gu,γ (0, ξ) = gb(ξ) , ξ1 + u > 0 .

(63)

Moreover, this solution satisfies the estimate

κ‖νgu,γ ‖H ≤
(
1 + sup

|u|≤R

√
〈ψ2

u 〉〈(ξ1 + u)2φ2
u〉

)
‖eγ x Q‖H

+
(√

2γ

ν−
+ ‖L‖B(DomL,H)

ν−
√
2γ

+ 2γ + 2γ

ν−
sup

|u|≤R

√
〈ψ2

u 〉〈φ2
u〉

)
‖νgb‖H

(64)

uniformly in |u| ≤ R.
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Proof. Set

h(x, ξ) = g(x, ξ) − gb(ξ)1ξ1+u>0e
−γ x , x > 0 .

Then h ∈ DomTu if and only if

(ξ1 + u)∂x g ∈ H and νg ∈ H , and g(0, ξ) = gb(ξ) for ξ1 + u > 0 ,

in which case

Tuh(x, ξ) =Tug(x, ξ) + γ e−γ x (ξ1 + u)+gb(ξ) − e−γ xLp
u (gb1ξ1+u>0)(ξ)

= eγ x (I−Pu)Q(x, ξ)+γ e−γ x (ξ1+u)+gb(ξ)−e−γ xLp
u (gb1ξ1+u>0)(ξ)

= : S(x, ξ)

if and only if g is a solution to the problem (63). (We use systematically the classical
notation z+ = max(z, 0).) The right hand side is recast as

S(x, ξ) = eγ x (I − Pu)Q(x, ξ)+2γ e−γ x (ξ1 + u)+gb(ξ)−e−γ xL(gb1ξ1+u>0)(ξ)

−αe−γ xΠ+((ξ1 + u)+gb)(ξ) − βe−γ xpu
(
gb1ξ1+u>0

)
(ξ) ,

and estimated as follows:

‖S‖H ≤ (1 + sup|u|≤R

√〈ψ2
u 〉〈(ξ1 + u)2φ2

u〉)‖eγ x Q‖H
+

(√
2γ

ν−
+ ‖L‖B(DomL,H)

ν−
√
2γ

+ α√
2γ

+ β

ν−
√
2γ

sup
|u|≤R

√
〈ψ2

u 〉〈φ2
u〉

)
‖νgb‖H .

One concludes with the first inequality in Lemma 5. ��

5.3. The L∞ Theory

5.3.1. From H to L2(Mdξ ; L∞(R+)) We recall that the linearized collision
operator L is split as L = ν − K, where K is compact on L2(R3; Mdξ) (Hilbert’s
decomposition). With the notation

Q̃:=eγ x (I − Pu)Q ,

the solution of (63) in H satisfies

gu,γ (x, ξ) = exp

(
−

(
ν

ξ1 + u
− γ

)
x

)
gb(ξ)

+
∫ x

0
exp

(
−

(
ν

ξ1 + u
− γ

)
(x − y)

)
(Kp

u gu,γ + Q̃)(y, ξ)

ξ1 + u
dy ,

ξ1 > −u ,

gu,γ (x, ξ) =
∫ ∞

x
exp

(
−

(
ν

|ξ1 + u| + γ

)
(y − x)

)
(Kp

u gu,γ + Q̃)(y, ξ)

|ξ1 + u| dy ,

ξ1 < −u ,
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where Kp
u = ν − Lp

u . In particular

|gu,γ (x, ξ)|≤ |gb(ξ)| +
∫ x

0
exp

(
−

(
ν

|ξ1+u| −γ
)

|x−y|)
) |Kp

u gu,γ + Q̃|(y, ξ)

|ξ1 + u| dy ,

ξ1 > −u ,

|gu,γ (x, ξ)| ≤
∫ ∞

x
exp

(
−

(
ν

|ξ1 + u| − γ

)
|x − y|

) |Kp
u gu,γ + Q̃|(y, ξ)

|ξ1 + u| dy ,

ξ1 < −u .

Hence

|gu,γ (·, ξ)| ≤ |gb(ξ)| + G � |Kp
u gu,γ |(·, ξ) + G � |Q̃|(·, ξ) , (65)

where the function G has been defined in (60).

Lemma 6. One has

‖G(·, ξ) � φ(·, ξ)‖L∞(R+) ≤ ‖φ(·, ξ)‖L∞(R+)

ν(ξ) − γ |ξ1 + u| ,

‖1|ξ1+u|≥1G � φ(·, ξ)‖L∞(R+) ≤ ‖φ(·, ξ)‖L2(R+)√
2ν(ξ) − 2γ |ξ1 + u| .

Moreover, for each ε > 0, one has

‖1|ξ1+u|<1G � φ(·, ξ)‖L∞(R+) ≤ ε1/41|ξ1+u|<1‖φ(·, ξ)‖L∞(R+)

(4/3)3/4|ξ1 + u|1/4(ν(ξ) − γ |ξ1 + u|)3/4
+ 1

2
√
eε

1|ξ1+u|<1‖φ(·, ξ)‖L2(R+)√
2(ν(ξ) − γ |ξ1 + u|) .

Proof. The two first inequalities follow from Young’s convolution inequality and
the computation of the L p norms of G in (61) with p = 1 and p = 2.

For each ε > 0, write

G � h(·, ξ) = G1,ε � h(·, ξ) + G2,ε � h(·, ξ) ,

where

G1,ε(z, ξ) = G(z, ξ)1|z|<ε and G2,ε(z, ξ) = G(z, ξ)1|z|≥ε .

Then

‖G1,ε � φ(·, ξ)‖L∞(R+) ≤ ‖1[0,ε]G(·, ξ)‖L1(R+)‖φ(·, ξ)‖L∞(R+)

≤ ‖1[0,ε]‖L4(R+)‖G(·, ξ)‖L4/3(R+)‖φ(·, ξ)‖L∞(R+)

= ε1/4‖φ(·, ξ)‖L∞(R+)

(4/3)3/4|ξ1 + u|1/4(ν − γ |ξ1 + u|)3/4 ,
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while

‖G2,ε � φ(·, ξ)‖L∞(R+) ≤ ‖1[ε,∞)G(·, ξ)‖L2(R+)‖φ(·, ξ)‖L2(R+)

≤
exp

(
−

(
ν

|ξ1+u| − γ
)

ε
)

‖φ(·, ξ)‖L2(R+)√
2|ξ1 + u|1/2(ν − γ |ξ1 + u|)1/2

≤
√

ν
|ξ1+u| −γ exp

(
−

(
ν

|ξ1+u| −γ
)

ε
) ‖φ(·, ξ)‖L2(R+)√

2(ν−γ |ξ1 + u|)
≤ 1√

2eε

‖φ(·, ξ)‖L2(R+)√
2(ν − γ |ξ1 + u|) = ‖φ(·, ξ)‖L2(R+)

2
√
eε(ν − γ |ξ1 + u|) .

��

Therefore, we deduce from (65) and Lemma 6 that

‖gu,γ (·, ξ)‖L∞(R+) ≤ |gb(ξ)| + ‖Q̃(·, ξ)‖L∞(R+)

ν(ξ) − γ |ξ1 + u|
+ ‖Kp

u gu,γ (·, ξ)‖L2(R+)√
2ν(ξ) − 2γ |ξ1 + u| +

1√
2eε

‖Kp
u gu,γ (·, ξ)‖L2(R+)√

2(ν(ξ) − γ |ξ1 + u|)
+ ε1/41|ξ1+u|≤1‖Kp

u gu,γ (·, ξ)‖L∞(R+)

(4/3)3/4|ξ1 + u|1/4(ν(ξ) − γ |ξ1 + u|)3/4 .

Denote by k j the integral kernel of the operator K j in Lemma 1 for all j =
1, 2, 3, and set

k̃(ξ, ζ )= k1(ξ, ζ ) + k2(ξ, ζ ) + k3(ξ, ζ ) ≥ 0 ,

k̃ pu (ξ, ζ )= k̃(ξ, ζ )+α|ζ1+u||X+(ξ)||X+(ζ )|M(ζ )+β|ζ1+u||φu(ξ)||ψu(ζ )|M(ζ ).

Denote by K̃ and K̃p
u the integral operator with kernels k̃ and k̃ pu :

K̃φ(ξ) =
∫

R3
k̃(ξ, ζ )φ(ζ )dζ , K̃p

u φ(ξ) =
∫

R3
k̃ pu (ξ, ζ )φ(ζ )dζ ,

and set

Gu,γ (ξ):=‖gu,γ (·, ξ)‖L∞(R+) .

Then, for each ξ ∈ R3, one has

|Kp
u gu,γ (x, ξ)| ≤

∫
R3

k̃ pu (ξ, ζ )‖gu,γ (·, ζ )‖L∞dζ for a.e. x ≥ 0 ,

so that

‖Kp
u gu,γ (·, ξ)‖L∞ ≤

∫
R3

|k̃ pu (ξ, ζ )|‖gu,γ (·, ζ )‖L∞dζ = K̃p
uGu,γ (ξ) .
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Hence, Lemma 6 and (65) imply that

Gu,γ (ξ) ≤ |gb(ξ)| + ‖Q̃(·, ξ)‖L∞

ν(ξ) − γ |ξ1 + u|
+ ‖Kp

u gu,γ (·, ξ)‖L2(R+)√
2ν(ξ) − 2γ |ξ1 + u| + 1√

2eε

‖Kp
u gu,γ (·, ξ)‖L2(R+)√

2(ν(ξ) − γ |ξ1 + u|)
+ ε1/41|ξ1+u|≤1K̃p

uGu,γ (ξ)

(4/3)3/4|ξ1 + u|1/4(ν(ξ) − γ |ξ1 + u|)3/4 .

(66)

At this point, we use the following lemma.

Lemma 7. For all α, β ∈ R there exists K∗[α, β] > 0, and for each s ≥ 0, there
exists Ks ≡ Ks[α, β] > 0 such that

sup
|u|≤min(1,r/2)

‖K̃p
u ‖B(H) ≤ K∗[α, β] ,

together with

sup
|u|≤min(1,r/2)

‖M1/2K̃p
u ‖B(H,L∞,1/2(R3)) ≤ K1/2[α, β] ,

and

sup
|u|≤min(1,r/2)

‖M1/2K̃p
u M

−1/2‖B(L∞,s (R3),L∞,s+1(R3)) ≤ Ks+1[α, β] .

Proof. Since

K̃ f − K̃p
u f = α〈|ξ1 + u||X+| f 〉|X+| + β〈|ξ1 + u||ψu | f 〉|φu | ,

one has

sup
|u|≤min(1,r/2)

‖(K̃ f − K̃p
u f )‖H

≤ α

ν−
‖νX+‖H‖ f ‖H+ β

ν−
sup

|u|≤min(1,r/2)
‖νψu‖H‖φu‖H‖ f ‖H ,

and

sup
|u|≤min(1,r/2)

‖(1 + |ξ |)s√M(K̃ f − K̃p
u f )(ξ)‖L∞(R3)

≤ α

ν−
‖νX+‖H‖(1 + |ξ |)s√MX+‖L∞(R3)‖ f ‖H

+ β

ν−
sup

|u|≤min(1,r/2)
‖νψu‖H‖(1+|ξ |)s√Mφu‖L∞(R3)‖ f ‖H .

Observe that

sup
|u|≤min(1,r/2)

‖νψu‖H < ∞ ,
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since the map u 	→ ψu is real-analytic on (−r, r) with values in DomL. One
concludes with Propositions 1 and 2 , using especially the bound

sup
|u|≤min(1,r/2)

|(1 + |ξ |)s√Mφu‖L∞(R3) ≤ Cs < ∞

established in Proposition 1. ��
Hence

∥∥∥∥∥
1|ξ1+u|≤1K̃p

uGu,γ

|ξ1 + u|1/4(1 + |ξ |)3/4
∥∥∥∥∥
2

H

≤
∫

|ξ1+u|≤1

‖(1+|ζ |)1/2M1/2K̃p
uGu,γ ‖2

L∞(R3)

|ξ1 + u|1/2(1 + |ξ |)5/2 dξ

≤ J 2K1/2[α, β]2‖Gu,γ ‖2H ,

with

J :=
(∫ 1

0

2dζ1√
ζ1

∫
R2

dξ ′

(1 + |ξ ′|)5/2
)1/2

< ∞ .

Henceforth, it will be convenient to use the notation

Id,s :=
∫

Rd

dζ

(1 + |ζ |)s . (67)

Thus

J 2 = 4I2,5/2 .

Thus, Lemma 7 and (66) imply that

‖Gu,γ ‖H ≤ ‖gb‖H + ‖Q̃‖L2(Mdξ ;L∞(R+))

ν−−γ

+‖Kp
u ‖B(H)‖gu,γ ‖H√

2(ν−−γ )
+ 1√

2eε

‖Kp
u ‖B(H)‖gu,γ ‖H√

2(ν−−γ )

+ ε1/4 J K1/2[α,β]
(4/3)3/4(ν−−γ )3/4

‖Gu,γ ‖H .

Choosing

1

2ε1/4
= J K1/2[α, β]

(4/3)3/4(ν− − γ )3/4

leads to the inequality

1
2‖gu,γ ‖L2(Mdξ ;L∞(R+)) ≤ ‖gb‖L2(Mdξ) + ‖Q̃‖L2(Mdξ ;L∞(R+))

ν− − γ

+ K∗[α, β]√
2(ν−−γ )

(
1+ 3

√
3√
2e

I2,5/2K1/2[α, β]2
(ν−−γ )2

)
‖gu,γ ‖H .

(68)
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5.3.2. From L2(Mdξ ; L∞(R+)) to L∞(R+×R3) We next return to the inequal-
ity (65). Obviously

‖Kp
u gu,γ (·, ξ)‖L∞(R3) ≤ K̃p

uGu,γ (ξ) , ξ ∈ R3 .

Then, the first inequality in Lemma 6 implies that

Gu,γ (ξ) ≤ |gb(ξ)| + K̃p
uGu,γ (ξ)

ν(ξ) − γ |ξ1 + u| + ‖Q̃(·, ξ)‖L∞(R3)

ν(ξ) − γ |ξ1 + u| .

By the second inequality in Lemma 7, one has

‖(1 + |ξ |)3/2√MGu,γ ‖L∞(R3) ≤ ‖(1 + |ξ |)3/2√Mgb‖L∞(R3)

+‖(1 + |ξ |)1/2√MQ̃‖L∞(R+×R3)

ν− − γ

+‖(1 + |ξ |)1/2√MK̃p
uGu,γ ‖L∞(R3)

ν− − γ

≤ ‖(1 + |ξ |)3/2√Mgb‖L∞(R3)

+‖(1 + |ξ |)1/2√MQ̃‖L∞(R+×R3)

ν− − γ

+K1/2[α, β]‖Gu,γ ‖H
ν− − γ

.

(69)

On the other hand, the third inequality in Lemma 7 implies that

‖(1 + |ξ |)s√MGu,γ ‖L∞(R3) ≤ ‖(1 + |ξ |)s√Mgb‖L∞(R3)

+‖(1 + |ξ |)s−1
√
MQ̃‖L∞(R+×R3)

ν− − γ

+‖(1 + |ξ |)s−1
√
MK̃p

uGu,γ ‖L∞(R3)

ν− − γ

≤ ‖(1 + |ξ |)s√Mgb‖L∞(R3)

+‖(1 + |ξ |)s−1
√
MQ̃‖L∞(R+×R3)

ν− − γ

+Ks−1[α, β]‖(1 + |ξ |)s−2
√
MGu,γ ‖L∞(R3)

ν− − γ

(70)

for each s ≥ 1.
Applying this inequality with s = 3 and the previous inequality leads to the

following statement, which summarizes our treatment of the penalized, linearized
half-space problem. From the technical point of view, the proposition below is the
core of our analysis.

Proposition 5. Let R > 0 be given by (52), and α = β = 2γ with

0 < γ ≤ min(Γ, 1
2ν−)

and Γ defined by (57). Let Q ∈ H and gb ∈ H satisfy

(1 + |ξ |)3√Mgb ∈ L∞(R3) , and e(γ+δ)x (1 + |ξ |)2√MQ ∈ L∞(R+ × R3) ,
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with δ > 0, and

Q(x, ·) ⊥ KerL for a.e. x ≥ 0 .

Then the solution gu,γ of (63) (whose existence and uniqueness is established in
Proposition 4) satisfies the estimate

‖(1 + |ξ |)3√Mgu,γ ‖L∞(R+×R3)

≤ L
(
‖(1 + |ξ |)3√Mgb‖L∞(R3) + ‖e(γ+δ)x (1 + |ξ |)2√MQ‖L∞(R+×R3)

)

uniformly in |u| ≤ R, for some constant

L ≡ L[γ, ν±, δ, R, K∗[2γ, 2γ ], K1/2[2γ, 2γ ], K2[2γ, 2γ ]] > 0 .

Proof. Recall that

Q̃(x, ξ) = eγ x (I − Pu)Q(x, ξ)

= eγ x Q(x, ξ) + eγ x 〈Q(x, ·)ψu〉(ξ1 + u)φu(ξ).

Hence

‖(1 + |ξ |)2√MQ̃‖L∞(R+×R3) ≤ ‖eγ x (1 + |ξ |)2√MQ‖L∞(R+×R3)

+‖(1+|ξ |)√Mφu‖L∞(R3)‖eγ x (1+|ξ |)2√MQ‖L∞(R+×R3)

∫
R3

|ψu(ξ)|M1/2dξ

(1+|ξ |)2
≤ ‖eγ x (1 + |ξ |)2√MQ‖L∞(R+×R3)

(
1 + C1I1/2

3,4 sup|u|≤R ‖ν1/2ψu‖H
)

.

By (69) and (70)

‖(1 + |ξ |)3√Mgu,γ ‖L∞
x,ξ

≤
(
1 + K2[α, β]

ν− − γ

) (
‖(1 + |ξ |)3√Mgb‖L∞

ξ
+

‖(1 + |ξ |)2√MQ̃‖L∞
x,ξ

ν− − γ

)

+K2[α, β]K1/2[α, β]
(ν− − γ )2

‖gu,γ ‖L2(Mdξ ;L∞
x ) .

With (68), this inequality becomes

‖(1 + |ξ |)3√Mgu,γ ‖L∞
x,ξ

≤
(
1+ K2[α,β]

ν−−γ
+ 2I1/2

3,4 K2[α,β]K1/2[α,β]
(ν−−γ )2

)

×
(

‖(1+|ξ |)3√Mgb‖L∞
ξ

+
‖(1+|ξ |)2√MQ̃‖L∞

x,ξ
ν−−γ

)

+
√
2K2[α,β]K1/2[α,β]K∗[α,β]

(ν−−γ )5/2

(
1 + 3

√
3√
2e

I2,5/2K1/2[α,β]2
(ν−−γ )2

)
‖gu,γ ‖H .

Next we inject in the right hand side of this inequality the bound on ‖gu,γ ‖H
obtained in (64), together with the bound for Q̃ obtained above. Since we have
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chosen α = β = 2γ , one finds that

‖(1 + |ξ |)3√Mgu,γ ‖L∞
x,ξ

≤
(
1+ K2[2γ,2γ ]

ν−−γ
+ 2I1/2

3,4 K2[2γ,2γ ]K1/2[2γ,2γ ]
(ν−−γ )2

)

×
(

‖(1+|ξ |)3√Mgb‖L∞
ξ

+ 1+C1I1/2
3,4 ‖ν1/2ψu‖H
ν−−γ

‖eγ x (1 + |ξ |)2√MQ‖L∞
x,ξ

)

+
√
2K2[2γ,2γ ]K1/2[2γ,2γ ]K∗[2γ,2γ ]

(ν−−γ )5/2

(
1 + 3

√
3√
2e

I2,5/2K1/2[2γ,2γ ]2
(ν−−γ )2

)

×
(

1+√〈ψ2
u 〉〈(ξ1+u)2φ2

u 〉
κν−

√
I3,4
2δ ‖e(γ+δ)x (1 + |ξ |)2√MQ‖L∞

x,ξ

+
(√

2γ
κν2−

+ ‖L‖B(DomL,H)

κν2−
√
2γ

+ 2γ (ν−+√〈ψ2
u 〉〈φ2

u 〉)
κν2−

)
ν+I1/2

3,4 ‖(1+|ξ |)3√Mgb‖L∞
ξ

)
,

where κ is given by (62). This implies the announced estimate with L given by

L:= sup|u|≤R max

((
1+ K2[2γ,2γ ]

ν−−γ
+ 2I1/2

3,4 K2[2γ,2γ ]K1/2[2γ,2γ ]
(ν−−γ )2

)

+
√
2K2[2γ,2γ ]K1/2[2γ,2γ ]K∗[2γ,2γ ]

(ν−−γ )5/2

(
1 + 3

√
3√
2e

I2,5/2K1/2[2γ,2γ ]2
(ν−−γ )2

)

×
(√

2γ
κν2−

+ ‖L‖B(DomL,H)

κν2−
√
2γ

+ 2γ (ν−+√〈ψ2
u 〉〈φ2

u 〉)
κν2−

)
ν+I1/2

3,4 ,(
1+ K2[2γ,2γ ]

ν−−γ
+ 2I1/2

3,4 K2[2γ,2γ ]K1/2[2γ,2γ ]
(ν−−γ )2

)
1+C1I1/2

3,4 ‖ν1/2ψu‖H
ν−−γ

+
√
2K2[2γ,2γ ]K1/2[2γ,2γ ]‖K∗[2γ,2γ ]

(ν−−γ )5/2

(
1 + 3

√
3√
2e

I2,5/2K1/2[2γ,2γ ]2
(ν−−γ )2

)

× 1+√〈ψ2
u 〉〈(ξ1+u)2φ2

u 〉
κν−

√
I3,4
2δ

)
.

(71)

��

6. Solving the Nonlinear Problem

6.1. The Penalized Nonlinear Problem

Given a boundary data fb ≡ fb(ξ) satisfying the condition
√
M fb ∈ L∞,3(R3) , fb ◦ R = fb ,

consider the following penalized, nonlinear half-space problem⎧⎪⎪⎨
⎪⎪⎩

(ξ1 + u)∂x gu,γ + Lp
u gu,γ = e−γ x (I − Pu)Q(gu,γ − hu,γ φu, gu,γ − hu,γ φu) ,

gu,γ (0, ξ) = fb(ξ) + hu,γ (0)φu(ξ) , ξ1 + u > 0 ,

hu,γ (x)=−e−γ x
∫ ∞

0
e(τu−2γ )z〈ψuQ(gu,γ −hu,γ φu, gu,γ −hu,γ φu)〉(x+z)dz.

(72)

In this section,we seek to solve the problem (72) by afixed point argument assuming
that the boundary data fb is small in L∞,3(R3). Throughout this section, we assume
that R > 0 is given by (52), and that α = β = 2γ with

0 < γ ≤ min(Γ, 1
2ν−)

and Γ defined by (57).
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Proposition 6. There exists ε > 0 defined in (75) such that, for each boundary data
fb ≡ fb(ξ) satisfying

fb ◦ R = fb and ‖(1 + |ξ |)3√M fb‖L∞(R3) ≤ ε

(with R defined in (8)), the problem (72) has a unique solution (gu,γ , hu,γ ) satis-
fying the symmetry

gu,γ (x,Rξ) = gu,γ (x, ξ) for a.e. (x, ξ) ∈ R+ × R3 ,

and the estimate

‖(1 + |ξ |)3√Mgu,γ ‖L∞(R+×R3) + ‖hu,γ ‖L∞(R+) ≤ 2Lε

where L is given by (71).

We first recall a classical result on the twisted collision integral Q.

Proposition 7. For each s ≥ 1, there exists Qs > 0 such that

‖(1 + |ξ |)s−1
√
MQ( f, g)‖L∞(R3)

≤ Qs‖(1 + |ξ |)s√M f ‖L∞(R3)‖(1 + |ξ |)s√Mg‖L∞(R3)

for all f, g ∈ L∞,s(R3).

This inequality is due to Grad; see Lemma 7.2.6 in [9] for a proof.

Proof. (of Proposition 6) Set

X :={(g, h) s.t. (1 + |ξ |)3√Mg ∈ L∞(R+ × R3) , h ∈ L∞(R+)

and g(x,Rξ) = g(x, ξ) for a.e. (x, ξ) ∈ R+ × R3} ,

which is a Banach space for the norm

‖(g, h)‖X :=‖(1 + |ξ |)3√Mg‖L∞(R+×R3) + ‖h‖L∞(R+) .

Given (gu,γ , hu,γ ) ∈ X , solve for (g̃u,γ , h̃u,γ ) the half-space problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ξ1 + u)∂x g̃u,γ + Lp
u g̃u,γ = e−γ x (I − Pu)Q(gu,γ − hu,γ φu, gu,γ − hu,γ φu) ,

h̃u,γ (x)=−e−γ x
∫ ∞

0
e(τu−2γ )z〈ψuQ(gu,γ −hu,γ φu, gu,γ −hu,γ φu)〉(x+z)dz,

g̃u,γ (0, ξ) = fb(ξ) + h̃u,γ (0)φu(ξ) , ξ1 + u > 0 ,

and call

Su,γ : X � (gu,γ , hu,γ ) 	→ (g̃u,γ , h̃u,γ ) ∈ X

the solution map so defined.
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Applying Proposition 7 shows that

‖(1 + |ξ |)2√MQ(gu,γ − hu,γ φu, gu,γ − hu,γ φu)‖L∞(R3)

≤ Q3(‖(1 + |ξ |)3√Mgu,γ ‖L∞(R+×R3)

+‖hu,γ ‖L∞(R+)‖(1 + |ξ |)3√Mφu‖L∞(R3))
2

≤ Q3(‖(1 + |ξ |)3√Mgu,γ ‖L∞(R+×R3) + C3‖hu,γ ‖L∞(R+))
2

≤ Q3 max(1,C2
3 )‖(gu,γ , hu,γ )‖2X .

Hence

‖h̃u,γ ‖L∞(R+)

≤ I1/2
3,4 ‖ψu‖H
2γ − τu

‖(1 + |ξ |)2√MQ(gu,γ − hu,γ φu, gu,γ − hu,γ φu)‖L∞(R3)

≤ I1/2
3,4 ‖ψu‖H
2γ − τu

Q3 max(1,C2
3 )‖(gu,γ , hu,γ )‖2X . (73)

On the other hand, we apply Proposition 5 with δ = γ and

gb:= fb + h̃u,γ (0)φu , Q:=e−2γ xQ(gγ − hγ φu, gγ − hγ φu) .

Then

‖(1 + |ξ |)3√Mgb‖L∞(R3) ≤ ‖(1 + |ξ |)3√M fb‖L∞(R3)

+I1/2
3,4 ‖ψu‖H
2γ − τu

Q3 max(1,C2
3 )C3‖(gu,γ , hu,γ )‖2X ,

while

‖e(γ+δ)x (1 + |ξ |)2√MQ‖L∞(R+×R3)

= ‖(1 + |ξ |)2√MQ(gu,γ − hu,γ φu, gu,γ − hu,γ φu)‖L∞(R+×R3)

≤ Q3 max(1,C2
3 )‖(gu,γ , hu,γ )‖2X .

The bound on the solution to the penalized linearized problem in Proposition 5,
together with the estimate (73) for ‖hu,γ ‖L∞(R+), implies that

‖(g̃u,γ , h̃u,γ )‖X ≤ L‖(1 + |ξ |)3√M fb‖L∞(R3)

+L
I1/2
3,4 ‖ψu‖H
2γ − τu

Q3 max(1,C2
3 )C3‖(gu,γ , hu,γ )‖2X

+LQ3 max(1,C2
3 )‖(gu,γ , hu,γ )‖2X

+I1/2
3,4 ‖ψu‖H
2γ − τu

Q3 max(1,C2
3 )‖(gu,γ , hu,γ )‖2X ,
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which we put in the form

‖(g̃u,γ , h̃u,γ )‖X ≤ L‖(1 + |ξ |)3√M fb‖L∞(R3) + Λ‖(gu,γ , hu,γ )‖2X ,

with

Λ:=Q3 max(1,C2
3 )

(
I1/2
3,4 ‖ψu‖H
2γ − τu

(1 + LC3) + L

)
. (74)

Pick ε > 0 small enough so that

0 < ε < 1/4ΛL (75)

and assume that

‖(1 + |ξ |)3√M fb‖L∞(R3) < ε .

If ‖(gu,γ , hu,γ )‖X ≤ 2Lε, one has

‖(g̃u,γ , h̃u,γ )‖X ≤ Lε + Λ(2Lε)2 = Lε + 4ΛL2ε2 ≤ 2Lε ,

so that the solution map Su,γ satisfies

Su,γ (BX (0, 2Lε)) ⊂ BX (0, 2Lε) .

Let (gu,γ , hu,γ ) and (g′
u,γ , h′

u,γ ) ∈ BX (0, 2Lε). We seek to bound

‖(1 + |ξ |)3√M(Su,γ (gu,γ , hu,γ ) − Su,γ (g′
u,γ , h′

u,γ ))‖X
in terms of

‖(1 + |ξ |)3√M(gu,γ − g′
u,γ , hu,γ − h′

u,γ )‖X .

One has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ1 + u)∂x (gu,γ − g′
u,γ ) + Lp

u (gu,γ − g′
u,γ ) = e−γ x (I−Pu)Σ ,

Σ = Q((gu,γ −g′
u,γ )−(hu,γ −h′

u,γ )φu, (gu,γ +g′
u,γ )−(hu,γ +h′

u,γ )φu) ,

(h̃u,γ − h̃′
u,γ )(x) = −e−γ x

∫ ∞

0
e(τu−2γ )z〈ψuΣ〉(x + z)dz ,

(g̃u,γ − g̃′
u,γ )(0, ξ) = (h̃u,γ − h̃′

u,γ )(0)φu(ξ) , ξ1 + u > 0 .

First, we deduce from Proposition 7 that

‖(1 + |ξ |)2√MΣ‖L∞(R3)

≤Q3(‖(1+|ξ |)3√M(gu,γ −g′
u,γ )‖L∞(R+×R3)+C3‖hu,γ −h′

u,γ ‖L∞(R+×R3))

×(‖(1 + |ξ |)3√M(gu,γ + g′
u,γ )‖L∞(R+×R3) + C3‖hu,γ + h′

u,γ ‖L∞(R+))

≤ Q3 max(1,C2
3 )‖(gu,γ − g′

u,γ , hu,γ − h′
u,γ )‖X ‖(gu,γ + g′

u,γ , hu,γ + h′
u,γ )‖X
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≤ 4LεQ3 max(1,C2
3 )‖(gu,γ − g′

u,γ , hu,γ − h′
u,γ )‖X .

With this estimate, we bound h̃u,γ − h̃u,γ as follows:

‖h̃u,γ − h̃u,γ ‖L∞(R+) ≤ I1/2
3,4 ‖ψu‖H
2γ − τu

‖(1 + |ξ |)2√MΣ‖L∞(R3)

≤ 4LεQ3 max(1,C2
3 )
I1/2
3,4 ‖ψu‖H
2γ − τu

‖(gu,γ − g′
u,γ , hu,γ − h′

u,γ )‖X .

Finally, we apply Proposition 5 with δ = γ and

gb:=(h̃u,γ − h̃′
u,γ )(0)φu , Q:=e−2γ xΣ .

Thus

‖(1 + |ξ |)3√Mgb‖L∞(R3)

≤ 4Lε
I1/2
3,4 ‖ψu‖H
2γ − τu

Q3 max(1,C2
3 )C3‖(gu,γ − g′

u,γ , hu,γ − h′
u,γ )‖X ,

while

‖e(γ+δ)x (1 + |ξ |)2√MQ‖L∞(R+×R3) = ‖(1 + |ξ |)2√MΣ‖L∞(R+×R3)

≤ 4LεQ3 max(1,C2
3 )‖(gu,γ − g′

u,γ , hu,γ − h′
u,γ )‖X .

Hence, the bound in Proposition 5 implies that

‖(g̃u,γ − g̃′
u,γ , h̃u,γ − h̃′

u,γ )‖X

≤ 4L2ε
I1/2
3,4 ‖ψu‖H
2γ − τu

Q3 max(1,C2
3 )C3‖(gu,γ − g′

u,γ , hu,γ − h′
u,γ )‖X

+4L2εQ3 max(1,C2
3 )‖(gu,γ − g′

u,γ , hu,γ − h′
u,γ )‖X

+4Lε
I1/2
3,4 ‖ψu‖H
2γ − τu

Q3 max(1,C2
3 )‖(gu,γ − g′

u,γ , hu,γ − h′
u,γ )‖X

≤4LεQ3 max(1,C2
3 )

(
L+ I1/2

3,4 ‖ψu‖H
2γ −τu

(1+LC3)

)
‖(gu,γ −g′

u,γ , hu,γ −h′
u,γ )‖X

= 4LεΛ‖(gu,γ − g′
u,γ , hu,γ − h′

u,γ )‖X .

The inequality above implies that the solution map Su,γ satisfies

‖Su,γ (g̃u,γ , h̃u,γ ) − Su,γ (g̃′
u,γ , h̃′

u,γ )‖X ≤ 4LεΛ‖(gu,γ − g′
u,γ , hu,γ − h′

u,γ )‖X
for all (gu,γ , hu,γ ) and (g′

u,γ , h′
u,γ ) ∈ BX (0, 2Lε). Since 0 < ε < 1/4LΛ, this

implies that Su,γ is a strict contraction on BX (0, 2Lε), which is a complete metric
space (as a closed subset of the Banach space X ). By the fixed point theorem, we
conclude that there exists a unique (gu,γ , hu,γ ) ∈ BX (0, 2Lε) such that

Su,γ (gu,γ , hu,γ ) = (gu,γ , hu,γ ) .

In other words, there exists a unique (gu,γ , hu,γ )which is a solution of the problem
(72) in BX (0, 2Lε). ��
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6.2. Removing the Penalization

Let fb ≡ fb(ξ) satisfy

fb ◦ R = fb and ‖(1 + |ξ |)3√M fb‖L∞(R3) ≤ ε

(with R as in (8)), and let (gu,γ , hu,γ ) be the unique solution to (72) given by
Proposition 6. Define

Ru[ fb](ξ):=gu,γ (0, ξ) , ξ ∈ R3 . (76)

By Lemma 4,

〈(ξ1 + u)Y1[u]Ru[ fb]〉 = 〈(ξ1 + u)Y2[u]Ru[ fb]〉 = 0

⇐⇒ 〈(ξ1 + u)X+gu,γ 〉 = 〈(ξ1 + u)ψugu,γ 〉 = 0

⇒ Lp
u gu,γ = Lgu,γ − γ (ξ1 + u)gu,γ .

In that case, denoting

gu(x, ξ):=e−γ x gu,γ (x, ξ) , hu(x):=e−γ xhu,γ (x) ,

and

fu(x, ξ):=gu(x, ξ) − hu(x)φu(ξ) ,

we see that

(ξ1 + u)∂x gu + Lgu = (I − Pu)Q( fu, fu) and gu = (I − pu) fu ,

while

hu(x) = −
∫ ∞

0
eτu z〈ψuQ( fu, fu)〉(x + z)dz and hu(x)φu(ξ) = −pu fu(x, ξ) .

In other words, fu satisfies (13) together with the bound (14) with

E :=2Lεmax(1,C3) . (77)

(Notice that gu,γ (0, ξ) = gu(0, ξ), so that the operator Ru in (76) is indeed inde-
pendent of γ .)

This estimate holds for all u satisfying |u| ≤ R where R is defined in (52), and
all γ ∈ (0, γ ), where

γ :=min

(
inf|u|<R

λ2(u), Γ, 1
2ν−

)
, (78)

where Γ is defined in (57), while λ2(u) is defined in Lemma 4. The constants L
and ε are defined in (71) and (75) respectively.

Conversely, if fu is a solution to the nonlinear half-space problem satisfying
the uniform exponential decay condition (14) for all u satisfying |u| ≤ R and all
γ ∈ (0, γ ), we deduce fromLemma 3 that gu :=(I−pu) fu and hu :=〈(ξ1+u)ψu fu〉
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satisfy (36) and (37) respectively, with Q = Q( f, f ), while (gu,γ , hu,γ ) defined
by the formulas

gu,γ (x, ξ) = eγ x gu(x, ξ) = eγ x (I − pu) fu(x, ξ)

hu,γ = eγ xhu(x) = eγ x 〈(ξ1 + u)ψu fu〉(x) (79)

must satisfy the penalized nonlinear half-space problem (72).
And since (gu,γ , hu,γ ) is a solution of (72) of the form (79) with fu(x, ξ) → 0

in H as x → ∞, one has

〈(ξ1 + u)X+gu,γ 〉(x) = eγ x 〈(ξ1 + u)X+gu〉(x) = 0

(because 〈(ξ1 + u)X+gu〉 is constant and gu(x, ·) → 0 in H as x → +∞), and

〈(ξ1 + u)ψugu,γ 〉(x) = eγ x 〈(ξ1 + u)ψugu〉(x) = 0

(because gu,γ (x, ξ) = eγ x (I − pu) fu(x, ξ)). Applying Lemma 4 shows that gu,γ

must therefore satisfy the conditions

〈(ξ1 + u)Y1[u]gu,γ 〉(0) = 〈(ξ1 + u)Y2[u]gu,γ 〉(0) = 0 ,

or in other words,

〈(ξ1 + u)Y1[u]Ru[ fb]〉 = 〈(ξ1 + u)Y2[u]Ru[ fb]〉 = 0 .

This completes the proof of Theorem 1.
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