

Uncertainity in Renewable Energy
Time Series Prediction using Neural
Networks

Phil Aupke

Faculty of Health, Science and Technology

Computer Science Department

Master Thesis: 30 ECTS

Supervisor: Dr. Andreas Kassler

Examiner: Dr. Johan Garcia

Karlstad, 26th January 2021

I Table of Contents

 Page II

I Table of Contents

1 Introduction.. 2
1.1 Description of the Thesis .. 2
1.2 Objectives of the Thesis .. 2
1.3 Research Question .. 3
1.4 Ethics and Sustainability ... 3
1.5 Structure of the Thesis .. 3

 State of the Art ... 5
2.1 General Research .. 5
2.2 Time Series and Machine Learning Techniques .. 6
2.3 Feature Preparation ... 8
2.4 Feature Extraction .. 10
2.5 Conclusion .. 12

 Methodology ...14
3.1 Structure of the Data .. 14
3.2 Data Preparation .. 15

3.2.1 Outliers .. 15
3.2.2 Formation of the Dataset .. 18
3.2.3 Normalization .. 18

3.3 Feature Extraction .. 19
3.3.1 Pearson Correlation ... 19
3.3.2 Spearman Correlation .. 20
3.3.3 Principal Component Analysis ... 20
3.3.4 Random Forest .. 22

3.3.4.1 ID 3 ... 22
3.3.4.2 ID 4.5 .. 24
3.3.4.3 Classification and Regression Trees ... 24

3.3.5 Wrapper Feature Selection .. 25
3.3.5.1 Sequential Forward Selection .. 25
3.3.5.2 Sequential Backwards Selection .. 26
3.3.5.3 Exhaustive Feature Selection ... 27
3.3.5.4 Bi-Directional Elimination .. 27

3.4 Machine Learning Model .. 28
3.4.1 LSTM .. 29
3.4.2 Facebook Prophet .. 31

3.5 Performance Metrics .. 34

 Implementation ...35
4.1 Development Environment ... 35
4.2 Data Downloader ... 36
4.3 Data Preparation .. 41

4.3.1 Combining Datasets ... 41
4.3.2 Data Cleaning ... 43
4.3.3 Feature Extraction ... 45

4.3.3.1 Pearson Correlation ... 45
4.3.3.2 Spearman Correlation .. 47
4.3.3.3 Random Forest ... 48
4.3.3.4 Principal Component Analysis .. 50
4.3.3.5 Wrapper Feature Selection .. 51
4.3.3.6 Conclusion .. 54

I Table of Contents

 Page III

4.4 Machine Learning Model .. 57
4.4.1 Random Forest .. 57
4.4.2 Facebook Prophet .. 60
4.4.3 LSTM .. 64

 Evaluation ..70
5.1 Window Size Analysis ... 70
5.2 Walk-Forward Cross Validation .. 71
5.3 Ex-Ante Forecasting Performance .. 72

5.3.1 Evaluation of the Residuals ... 73
5.3.2 Evaluation of Forecasting Performance... 75
5.3.3 Effects of Seasonality ... 78

 Discussion ..80
6.1 Forecasting Performance ... 80
6.2 Objectives and Scope fulfilment ... 81

 Conclusion ...84
7.1 Future Work .. 84

II List of Figures

 Page IV

II List of Figures
FIGURE 1 – DIVISION OF PV SUPPLY PREDICTION ... 6
FIGURE 2 – PRESENTATION OF OUTLIERS WITHIN RAW DATASETS [@COU20] ... 8
FIGURE 3 – DATA CLEANING METHODOLOGIES ... 9
FIGURE 4 – DATA PREPARATION, DATA TRANSFORMATION .. 10
FIGURE 5 – FEATURE SELECTION METHODS [BRO20] ... 11
FIGURE 6 – METHODOLOGY OF WRAPPER SELECTION METHODS .. 12
FIGURE 7 – INTERQUARTILE RANGE [@SLA16] ... 16
FIGURE 8 – WINSORIZATION EXAMPLE [WIC17] ... 17
FIGURE 9 – GRAPH TO PRESENT THE DIFFERENT VARIANCES OF THE PCAS [TMP02] ... 21
FIGURE 10 – REPEATING MODULE IN NORMAL RNN [@COL15] ... 29
FIGURE 11 – LSTM ARCHITECTURE [@COL15] .. 30
FIGURE 12 – JUPYTER NOTEBOOK CELL... 36
FIGURE 13 – METRUM SOFTWARE .. 36
FIGURE 14 – GLAVA SENSOR INFORMATION .. 38
FIGURE 15 – GLAVA WEATHER FEATURES .. 39
FIGURE 16 – WINSORIZATION ON TEMPERATURE (LEFT: CLEARED, RIGHT: WITHOUT) ... 44
FIGURE 17 – PEARSON CORRELATION HEATMAP ... 47
FIGURE 18 – RANDOM FOREST RESULTS (LEFT: GLAVA DATASET, RIGHT: INTERPOLATED DATASET) 50
FIGURE 19 – PCA RESULTS (LEFT: GLAVA DATASET, RIGHT: INTERPOLATED DATASET) 51
FIGURE 20 – SFS WRAPPER SELECTION ON GLAVA DATASET (LEFT: SEVEN FEATURES, RIGHT: SIX FEATURES) 53
FIGURE 21 – SFS WRAPPER SELECTION ON INTERPOLATED DATASET (LEFT: FOUR FEATURES, RIGHT: FIVE

FEATURES) .. 54
FIGURE 22 – LEFT: CLOUDY DAY, RIGHT: SUNNY DAY [IK18] ... 56
FIGURE 23 – FACEBOOK PROPHET CROSS-VALIDATION [@PRO20] ... 62
FIGURE 24 – TRAINING DATASET ANALYSIS .. 70
FIGURE 25 – WALK-FORWARD CROSS VALIDATION [HA18] ... 71
FIGURE 26 – WALK-FORWARD CROSS VALIDATION .. 72
FIGURE 27 – RESIDUAL DISTRIBUTION (LEFT: FACEBOOK PROPHET, RIGHT: LSTM) ... 73
FIGURE 28 – FACEBOOK PROPHET EX-ANTE FORECASTING PERFORMANCE .. 74
FIGURE 29 – BI-DIRECTIONAL LSTM FORECASTING PERFORMANCE .. 74
FIGURE 30 – RANDOM FOREST – PERFORMANCE RESULTS .. 76
FIGURE 31 – FACEBOOK PROPHET PERFORMANCE RESULTS .. 77
FIGURE 32 – LSTM PERFORMANCE RESULTS .. 77
FIGURE 33 – SEASONALITY COMPARISON .. 79

III List of Tables

 Page V

III List of Tables
TABLE 1 – PERFORMANCE OVERVIEW [TK18] ... 7
TABLE 2 – NWP FROM METEOMATICS [IC18] ... 11
TABLE 3 – WEATHER INFORMATION .. 14
TABLE 4 – PV SYSTEM INFORMATION .. 15
TABLE 5 – SPEARMAN CORRELATION RESULTS ... 48
TABLE 6 – WRAPPER SELECTION RESULTS, GLAVA DATASET ... 52
TABLE 7 – WRAPPER SELECTION RESULTS, INTERPOLATED DATASET ... 53
TABLE 8 – FEATURE CORRELATION [ASM20] ... 55
TABLE 9 – SPEARMAN CORRELATION, YEARLY AND MONTHLY DATASETS .. 55
TABLE 10 – MACHINE LEARNING MODEL .. 57
TABLE 11 – HYPERPARAMETER TUNING RESULTS RANDOM FOREST... 59
TABLE 12 – HYPERPARAMETER TUNING FACEBOOK PROPHET RESULTS ... 64
TABLE 13 – HYPERPARAMETER TUNING LSTM RESULTS .. 69
TABLE 14 – COMBINATIONS OF INPUT AND OUTPUT FEATURES ... 75
TABLE 15 – PERFORMANCE COMPARISON BETWEEN ACTUAL AND INTERPOLATED DATA 80

IV Table of Listings

 Page VI

IV Table of Listings
LISTING 1 – JSON STRUCTURE GLAVA 37
LISTING 2 – GLAVA DOWNLOADER 39
LISTING 3 – METEOSTAT CLOSEST STATIONS 40
LISTING 4 – METEOSTAT, DOWNLOAD HOURLY DATA 40
LISTING 5 – COMBINING THE GLAVA DATASETS 42
LISTING 6 – COMBINING INTERPOLATED DATASETS 42
LISTING 7 – CORRECTION OF OUTLIERS 43
LISTING 8 – CHECKING DATASET FOR NAN OR NULL VALUES 44
LISTING 9 – PEARSON CORRELATION 45
LISTING 10 – CALCULATION OF THE SPEARMAN CORRELATION 48
LISTING 11 – RANDOM FOREST IMPLEMENTATION 49
LISTING 12 – IMPLEMENTATION OF PCA 50
LISTING 13 – WRAPPER FEATURE SELECTION IMPLEMENTATION 52
LISTING 14 – RANDOM FOREST REGRESSION IMPLEMENTATION 58
LISTING 15 – HYPERPARAMETER TUNING RANDOM FOREST 59
LISTING 16 – FACEBOOK PROPHET DATA STRUCTURE 60
LISTING 17 – FACEBOOK PROPHET FITTING THE MODEL 61
LISTING 18 – FACEBOOK PROPHET CREATING THE MODEL 61
LISTING 19 – FACEBOOK PROPHET MULTIVARIATE PREDICTION 62
LISTING 20 – HYPERPARAMETER TUNING FACEBOOK PROPHET 63
LISTING 21 – LSTM DATA PREPARATION 65
LISTING 22 – LSTM MODEL DEFINITION 66
LISTING 23 – LSTM MODEL FITTING 67
LISTING 24 – LSTM MODEL HYPERPARAMETER TUNING HYPERMODEL 68
LISTING 25 – LSTM MODEL HYPERPARAMETER TUNING TUNER 68

V List of Abbreviations

 Page VII

V List of Abbreviations

AnEn Analog Ensemble

ANN Artificial Neural Network

ARIMA Autoregressive Integrated Moving Average

FFNN Feed Forward Neural Network

GBR Gradient Boosting Regression

GBRT Gradient Boosted Regression Trees

ICT Information and Communications Technology

IQR Interquartile Range

JSON JavaScript Object Notation

LSTMN Long Short-Term Memory Network

MLP Multilayer Perceptron

NaN Not a Number

NWP Numerical Weather Prediction

PCA Principal Components Analysis

PV Photovoltaics

RE Renewable Energy

RFE Recursive Feature Elimination

RQ Rolling Quantile

RT Regression Trees

SSL Secure Sockets Layer

SVM Support Vector Machines

TDNN Time Delayed Neural Network

Introduction

 Page 1

Abstract

With the increasing demand for solar energy, the forecast of the PV station energy production

has to be as precisely as possible. To make the prediction more robust, also correlated infor-

mation about the weather can be added to the previous energy production of the PV station.

This thesis is part of a project, which has the goal to build an energy marketplace for a smart

energy grid between households. To make the decisions of the prosumer more accurate, a

forecast for the PV station energy production has to be as accurate as possible. Because not

every household or even some smart grids will contain a weather station, also interpolated

weather information has to be considered. The objective of this work is the evaluation of the

accuracy difference between precise weather information, located directly at the PV station

and interpolated weather data.

The errors of the data were recorded due to misfunctions in the sensors and were cleared with

the usage of winsorization. The unnecessary weather features have been detected with several

feature selection methods. For the forecast of the energy production three established machine

learning algorithms were used: Random Forest, LSTM and Facebook Prophet. For the com-

parison of the performance different performance metrics were used. The validation of the

three models was carried out by a walk-forward cross validation with unseen data. Further-

more, for each of the two datasets one of the three machine learning model were trained. For

the performance measurement i.e., the LSTM model trained on precise weather information

also received the interpolated data as an input for the prediction and vice versa. As a conclu-

sion, the Random Forest model performed better than the other two model types, with an av-

erage normalized error of 0.15. Whereas the LSTM model received an error of 0.37 and the

Prophet model 0.58. For the difference between interpolated and actual weather information

the results prove, that the uncertainity in those variables also affects the prediction of the PV

station energy outcome. The LSTM model MSE increased by 14 percent and the Random

Forest results with an increasement of 16 percent. The end of the thesis includes a discussion

about the results and possible tasks for future work takes place.

Introduction

 Page 2

1 Introduction

Due to the increasing usage of renewable energy sources around the globe, the development

of photovoltaic panels (PV) has intensified significantly over the last few years. Because of

the increased development the costs of the PV systems dropped as well. This is presented in

the IRENA report of 2017 which concludes, that the levelized cost of large-scale PV systems

dropped by 73% from the years 2010 – 2017 [IR18]. Because of the increasing usage of PV

systems, it is also necessary to predict the upcoming energy outcome of them as precise as

possible. But due to the fact, that the PV systems are depending on the weather which has

different random parameter, like: irradiance, relative humidity and ambient temperature which

can affect the power outcome of the PV.

To predict the weather and even the corresponding power outcome of the PV stations there

are two approaches, the deterministic or probabilistic concept or by using machine learning

for time series data. Both concepts have their positive and negative characteristics for this

kind of usage.

1.1 Description of the Thesis

This thesis is going to be an introductory work for an upcoming project which is going to in-

tegrate renewable energy (RE) into power grids and also use the advancements of information

and communication technologies (ICT) like the cloud or edge computing. Those technologies

have high potential in the development of smart energy grids. In those smart energy grids, a

customer has the overview of all steps like the production, consumption and also the storage

capacities. In this system the prosumer has an active role in the reduction of CO2 for this

smart energy grid. Furthermore, multiple machine learning techniques will be evaluated,

which will optimize the energy management as well as give the prosumer future predictions

of the weather and also the estimated PV system energy outcome. Those techniques will help

the prosumer to make decisions for the energy usage of himself and also the distribution of his

surplus energy to another prosumer.

1.2 Objectives of the Thesis

One of the objectives of this work is the evaluation of different machine learning methodolo-

gies like LSTM, Random Forest and the Facebook Prophet Library for the two use-cases of

weather forecasting and also the corresponding PV system energy outcome. In Addition to

that, an evaluation of the accuracy comparison between the usage of interpolated and precise

Introduction

 Page 3

weather information takes place. This evaluation will indicate how much better a machine

learning model can perform, if the different weather information are interpolated or received

from the same location as the PV system itself.

1.3 Research Question

• RQ1 How can the PV system energy outcome be proactively determined using ma-

chine learning model and weather information?

• RQ2 Do interpolated weather information affect the future prediction of PV energy

outcome?

1.4 Ethics and Sustainability

In regard to the scope of this thesis, there are no ethical concerns. With reference to any eco-

nomic sustainability the results of this work will contribute to a project, which aims toward a

more sustainable energy exchange between prosumer within a smart energy grid. The goal of

smart energy grids is a smarter energy exchange between different households which uses

renewable energy productions within the grid, so they do not need that much energy from the

main grid, which produces only some parts with renewable energy. For Sweden the amount of

renewable energy produced for the main grid is 54 percent and for some other countries even

less. [@Swe20]

1.5 Structure of the Thesis

This thesis is divided in seven subareas. The second chapter describes the state of the art of

current research in the field of weather forecasting as well as predicting the PV system power

outcome. Furthermore, this chapter presents current techniques for weather and PV energy

outcome. One method is to use different machine learning model for the prediction and the

other one is the usage of numerical weather forecasting, which uses deterministic or probabil-

istic methodologies.

Afterwards in the third chapter all used methodologies are going to be explained in detail.

This includes the data preparation, feature selection and the actual ML-Model which were

used. The fourth chapter describes the implementation of the different stages of the machine

learning pipeline, which includes the data preparation, feature selection and the training and

hyperparameter tuning of each model type.

The fifth chapter concludes the evaluations of the machine learning model in the different

use-cases. These use-cases involve the comparison between model trained with interpolated

Introduction

 Page 4

and actual data. The last chapter describes a discussion about the collected results from the

previous chapter.

State of the Art

 Page 5

 State of the Art

The field of predicting time series data with machine learning is a field of research in which

many contributors work on. Furthermore, the need for predicting the weather and the corre-

sponding supply of renewable energy with it, is crucial. This chapter concludes the research in

the field of predicting the energy outcome of PV Systems and the handling of time series data

in general.

2.1 General Research

The paper [KP11] concludes a summary of techniques for the prediction of PV power out-

come and also states, that there should be an industrial standard for this kind of technology.

Furthermore, the authors and some other studies found out, that the use of NWP can help the

long-term prediction of weather forecasting and accompanying the prediction of PV power

outcome. In addition to that the thesis states, that the predictions can be improved when the

machine learning model is trained with local weather situations and not simultaneously with

different situations around the globe. This scheme can also be applied to different weather

situations over the year. The model performs better if it is just trained for one specific season.

The conclusion from [KP11] is, that both techniques, the classic time series techniques and

also the machine learning models have been widely used for weather forecast and also the

prediction of the PV power outcome. For this thesis only the machine learning model is going

to be examine in depth. But for the overall view of the current research on weather and PV

system output forecast also the traditional time series techniques are going to be presented.

Besides weather forecasting, the prediction of time series data is also useful in many other

applications like the financial sector [K03] or even for the event detection [GS99]. There are

many other use cases for this kind of prediction.

To conclude how the prediction of the PV System outcome works in general, there are two

different steps which are presented in Figure 1. The first step is the analysis of current or past

weather situations by specific variables. Those variables are collected by different sources like

satellite images, sky images or sensors. The prediction of the weather can then be conducted

by two different ways, by time series techniques or with machine learning. Afterwards the PV

power outcome can be predicted with the help of the formerly created weather forecast. With

those two steps it is possible to create i.e., a day-ahead PV production forecast.

State of the Art

 Page 6

Figure 1 – Division of PV supply prediction

2.2 Time Series and Machine Learning Techniques

This can either be done by deterministic or probabilistic predictions or even by more ad-

vanced time series methods like Autoregressive integrated moving average (ARIMA)

[@Eur17]. All of those mentioned methods to predict time series data do not use machine

learning for the computation of the predictions. Because those models need detailed infor-

mation about the PV systems and also about the weather to predict it precisely, they are not

suitable for every use case. More in detail the input data of those models could be numerical

weather prediction (NWP) [W95].

For the forecast of the weather the period in which the prediction takes place is also an im-

portant question. In general, there are two kinds of periods, the short-time and long-time pre-

dictions. The short-time prediction only includes a short period, like a few seconds to an hour.

For the long-time prediction, the period could increase up to a month, which may influence

the accuracy of the forecast.

In [R09] short-time weather predictions like ARIMA were tested against machine learning

models. According to those examinations the normal time series method outperformed the

machine learning ones. The paper states, that the reason behind it could be that those time

series methods are better in capturing the transitions in irradiance of the sun over a 24-hour

period. Furthermore, it is unlikely that the weather will change dramatically over a short peri-

od of time. And because of that, ARIMA perform really good under those conditions.

But due to the fact, that the data received from the sensors and the PV stations may contain

missing or corrupted data, the paper [TK18, MS18] states, that there is some other methodol-

ogy needed to comprehend those flaws. Because of those results and the previous mentioned

possible problems with the raw data, the usage of machine learning is appropriate. Further-

State of the Art

 Page 7

more, the paper [TK18] states, that machine learning models are gaining even more attention

in the field of time series data. That is because of the ability of machine learning methods to

predict relationships between the inputs and outputs without knowing the physical parameters.

The paper [TK18] also made some experiments with well-known machine learning techniques

which are predicting the output of PV systems:

• Artificial Neural Network (ANN), especially a Feed Forward Neural Network (FFNN)

• Support Vector Machines (SVM)

• Regression Trees (RT)

Those techniques just had the information about the output of the PV Systems, without any

information about the NWP. As Table 1 states, the FFNN (in the Table 1 presented as ANN)

performed the best, with the lowest MAPE and nRMSE score. The other two methodologies

performed similarly.

Table 1 – Performance Overview [TK18]

The Study [PC12] did the same comparison with five different forecasting techniques, namely

the Persistent model, ARIMA, kNNs, ANNs, and ANNs optimized with Genetic Algorithms

(GAs/ANN). For those tests the machine learning tests were more successful than the time

series models, because they need more information about the physical parameters like NWP.

But it should be mentioned that the testing of those models was only used for the prediction of

the power output of PV Systems and not for the weather forecast. [PC12] concludes the same

observation about the better performance of machine learning techniques on local areas rather

than different locations as [KP11].

In other research like [AB17, DA16] techniques like the Principal Component Analysis

(PCA) and feature engineering with RT were used. In addition to that the NWP data were

smoothed with various approaches and the authors used a grid of NWP data around the PV

System and took the spatial average of those collected data. One of the main conclusions of

the experiments were, that aspects as the feature engineering and also the usage of PCA con-

State of the Art

 Page 8

cludes to better results for the weather forecast. In [DA16] PCA was combines with an ANN

and Analog Ensemble (AnEn) to predict solar irradiance. In this experiment the PCA was also

used for the feature selection. Furthermore, it was compared, if the model would give better

results without the usage of PCA within the model. But the results prove, that they give better

outcomes with it.

For long-term predictions [CD11] used an ANN as the prediction method and NWP as an

input data. The model was sensitive to prediction errors within the NWP data and also showed

deterioration while forecasting on rainy days. During cloudy or sunny days, the model pro-

duced results with MAPE at around 8%. [SL12] on the other site proposed a day-ahead

weather classification, which is using SVM to forecast the PV system power output on a 15-

minute interval. For that, it divides the weather information in different classes, like: clear

sky, cloudy day, foggy day and rainy day. The reason behind the classification is the analysis

of local weather forecast and the PV system energy outcome. For each categorization a sepa-

rate SVM model was created. This experiment shows how to use SVM model for training

models on specific climatic conditions.

2.3 Feature Preparation

Most machine learning algorithms need a specific way of data inputs for the training and also

later for the prediction. Those are called structured or tabled data. Thus, it is not possible to

use this raw data for machine learning. Another citation for using unqualified data for the

training of machine learning is garbage in, garbage out. Which means, that if the machine

learning model is fed with unstructured or not useful datasets it also produces a model which

does not fit for the prediction at the end. [BRO20]

Furthermore, the raw data may also include outliers within the datasets. Outliers are data-

points within the raw data, which are not representative for the structure of the other data-

points within the data. This behaviour is represented in Figure 2. To detect those outliers and

treat them correctly there are several techniques available. [CC10]

Figure 2 – Presentation of outliers within raw datasets [@Cou20]

State of the Art

 Page 9

In general, it is not possible to use a general framework to detect and treat those outliers for

every scenario, because every observation contains different underlaying datasets which has

to be treated differently. For example, in the use-case of using the observations of blood-

pressure sometimes the outliers can tell the machine learning algorithm, that something is

wrong with the blood sample [CC10]. In the paper [TSB07, BRO20] there is a comparison

between raw-data which is prepared which outliers detection and just using the raw-data. It is

shown that the adaption of the outliers to the corresponding neighbours have a positive impact

on the machine learning algorithm which is used afterwards.

After the cleaning of outliers within the dataset the data may seem well-fitted enough for the

task, but there may also be some noise within the data which can lead to not useful prediction

results in the end.

Figure 3 – Data Cleaning Methodologies

To prevent this behaviour of the machine learning model, it is necessary to use one of the, in

Figure 3 presented, techniques. Beforehand the handling of outliers was already discussed.

But maybe there are also missing values of some kind in the dataset. This can happen if i.e.,

the sensor, which accumulates the data, had a power loss or failed completely for some time.

For this there are two options to treat those missing values. The first one is the deletion of the

whole period within the dataset, which will decrease the number of observations within the

dataset and could lead to a worse machine learning algorithm in the end. The other solution

would be to simply take the average of the neighbour numbers of the observation and take

those values as the missing number. This technique can only be applied, if the number of se-

quentially missing values are not that great. [BRO20]

Sometimes the observations are not in the desired data format. Figure 4 describes that there

are two examples of data types which are desired for the usage within machine learning mod-

el. For the usage of i.e., regression type ML-Algorithms numerical figures are necessary.

State of the Art

 Page 10

Those can be represented as an integer or float value. In comparison there can also be categor-

ical ML-Model which can be divided in nominal, ordinal or Boolean values. The nominal and

ordinal values describe some kind of label for the end-state of the ML-Model. [BRO20]

Figure 4 – Data preparation, data transformation

2.4 Feature Extraction

As states in the previous sub-chapter and also in [AB17] the usage of different NWP data as

features helps the prediction of the PV system energy output significantly. For this reason, it

is necessary find the relevant ones and sort out redundant information within them. Further-

more, it is necessary to normalize those data to stabilize them.

State of the Art

 Page 11

Table 2 – NWP from Meteomatics [IC18]

Table 2 shows some example data from a weather station nearby some PV systems. As stated

in [IC18, AB17] it is useful to eliminate the information which are not useful for this task.

Here the Gradient Boosting Regression Trees (GBRT) are used to search for variables which

do affect the cost function mostly and rank them on that behave. This methodology is proven

to be effective by different sources like [PC09]. There are also some other techniques to

choose the most effective features like Relief feature selection (ReliefF) and Correlation fea-

ture selection (CFS) [KC19].

Figure 5 – Feature selection methods [Bro20]

State of the Art

 Page 12

Figure 5 also presents a distinction between the different methodologies of feature selection.

The first one is the usage Trees, which is also used in the paper [IC18]. This method uses the

intrinsic information of the features to present correlations between them. Furthermore, wrap-

per methods are introduced in the graph. One of the techniques is called recursive feature

elimination (RFE). [BRO20]

Figure 6 – Methodology of wrapper selection methods

Figure 6 presents how the wrapper selection for a set of features work. In the first step all

available features are taken and will be split up into a train and test dataset. Afterwards those

selected features will be used in an actual learning algorithm. After the measurement of the

performance of the subset of features a new subset of the features will be randomly generated

and evaluated. After all possible combinations of the features are used, the ones with the best

performance at the end will be chosen. [@KAU16]

There are different techniques to use those wrapper selection methods:

1. Forward selection

2. Backward elimination

3. Recursive feature elimination

The forward selection starts with only one feature (the most important one) in the beginning

and keeps adding more features iteratively, until the performance does not improve anymore.

In comparison to that, the backward elimination does the complete opposite. It starts with all

features in the subset und removes one after another until the performance does not increase

anymore. In addition to that the RFE creates a new ML-Model after each iteration and

measures the performance. Afterwards the worst feature gets eliminated. [@KAU16]

2.5 Conclusion

One of the important conclusions which could be taken from almost every study is the im-

portance of using NWP data as inputs for the different model to increase the accuracy. In Ad-

State of the Art

 Page 13

dition to the importance of NWP data is the sensitivity to NWP data errors. One way to over-

come those errors is to collect the data from several sources. Furthermore, the usage of data

preparation is presented, which cleans the data and also handles the occurrence of possible

outliers and noise within the dataset

Also, it is important to only choose the most important weather attributes for the prediction.

For this reason, several techniques were presented to identify those attributes.

Furthermore, there are many different machine learning techniques presented in those studies,

especially the optimizations of the different algorithms have a positive impact on those

ANNs. But in the scope of this thesis there is going to be a general overview of different ma-

chine learning techniques, as stated in chapter one.

Methodology

 Page 14

 Methodology

The scope of the thesis requires to predict the forecast of the PV system energy outcome with

past energy measurements, which are augmented by observational weather-related parame-

ters. For this several data pre-processing and ML-Model methodologies were used. In this

section of the thesis all the used techniques are explained in detail.

3.1 Structure of the Data

For the evaluation of the interpolated and precise weather information two different kind of

datasets were created. The first one describes the Glava dataset and it consists of several

weather parameters, as well as information about the energy production of the PV system. In

this dataset the weather station is co-located with the PV station and contains fine granular

samples. The second dataset consists of interpolated weather parameters. One part of those

information will be gathered with MeteoStat (https://meteostat.net/en) and the global radiation

with SMHI (https://www.smhi.se/). The separation of the radiation and the other weather in-

formation is due to the fact, that the radiation is not available at MeteoStat. The interpolated

radiation information from SMHI has an error of accuracy of 30 percent for the global radia-

tion and 60 percent for the direct radiation. For the interpolated weather information of Mete-

oStat, there were no official information about the accuracy loss.

For the structure of the data, it consists of six years of observations for the month July in Gla-

va, Sweden. That information consists of hourly measurement points and have the following

features for the weather:

Table 3 – Weather information

Variable name Unit

Temperature C

Wind Direction Gradient

Wind Speed m/s

Humidity %

Precipitation L/m²

Barometric Pressure mBar

Global Radiation W/m²

40 Degrees Radiation W/m²

30 Degrees Radiation W/m²

Indirect Radiation W/m²

Methodology

 Page 15

Table 3 represents the available weather information from the corresponding weather stations.

In total there are ten different parameters, which can be used as an input for the prediction.

The only difference between the two datasets is, that the three features 40 Degrees Radiation,

30 Degrees Radiation and the Indirect Radiation from the Glava dataset are not available

from the MeteoStat or SMHI dataset. For the data of the PV systems there are only three dif-

ferent measurements, which are relevant for the prediction:

Table 4 – PV System information

Variable name Unit

Stot kVA

Qtot kVAr

Ptot kW

Ptot describes the amount of power, which is usable for the end-user of the system. This ener-

gy can be directly converted to practical energy for i.e., energy outlets. Qtot describes the

power, which is only available for the system itself and is used to keep the system itself usa-

ble. Stot describes the total power in the system itself. This includes the Qtot and Ptot and can

be calculated as followed:

𝑆𝑡𝑜𝑡 = √(𝑄𝑡𝑜𝑡2 + 𝑃𝑡𝑜𝑡2
) (1)

3.2 Data Preparation

After the explanation of the different parameters of the weather and PV energy observations,

this sub-chapter is going to explain different techniques on how to pre-process the data for the

machine learning algorithms to be developed.

3.2.1 Outliers

As explained in chapter 2.3, outliers are values within the raw data which are not in the nor-

mal deviation of the i.e., sensory data. For the handling of such data points there are several

Methodology

 Page 16

techniques like the interquartile range (IQR) or quantile-based censoring (winsorization)

available. The interquartile range describes the body of a dataset. This means, that the dataset

is split up into three different quartiles. First the median of the dataset has to be found. After-

wards the first quartile (Q1) will be calculated the same way as the median, but with the da-

taset cut in half and only the lower part is considered. That means, that the Q1 now holds the

25 percent below the median. In the same way the upper quartile can be calculated (Q3). But

now only the upper half of the dataset is considered. Now the interquartile range can be com-

puted by the following formula, which is stated at [BA09, p. 123]:

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (2)

Figure 7 illustrates this process using an example. First the general median is calculated,

which is 71. Afterwards the median of the lower half and the upper half is going to be calcu-

lated. In this case it is 64 for the lower boundary and 77 for the upper one. Thus, the inter-

quartile range is 13. [@Sla16]

Figure 7 – Interquartile Range [@Sla16]

Most statistical tests assume, that the data is normal “Gaussian” distributed. This implies, that

the majority of outlier data must lay far away from the majority of the other datapoints. To

find actual outliers within the data points, an additional range to the Q1 and Q3 quartiles has

to be added. This range is described by the value k in (3). As a rule of thumb, the value, repre-

sented by k is set to 1.5. Afterwards this value is added to the third quartile to find any outlier

greater than this and subtract it from the first quartile to find any value lower than this.

[𝑄1 − 𝑘(𝑄3 − 𝑄1), (𝑄3 + 𝑘(𝑄3 − 𝑄1))] (3)

Methodology

 Page 17

The next step is the handling with false datapoints. The easiest solution would be to just de-

lete those from the dataset and continue with the left-over datapoints. But sometimes it is not

the best solution, especially if there is only a limited amount observation available. For this

reason, one approach is to set a median of the i.e., five datapoints before and after the outlier

and set this value to the outlier itself. This technique is called trimmed estimator.

Another technique to further pre-process the data to get an improved dataset is the rolling

quantile (RQ). This works similar to the IQR, but now not the whole of the dataset is consid-

ered, but only a pre-defined window of datapoints. The window size can be determined to any

size the user wants. If for example the data does not consist of sensitive data, which can easily

be changed in a matter of a few datapoints, the window should be made as small as possible,

otherwise the window can also be a few hundred datapoints.

For the winsorization technique the outliers from the dataset will be set to a specific percen-

tile. If for example a 90 percent winsorization was chosen, the data below the five percentile

and the data above 95 percentiles will be chosen as outliers. Figure 8 visualizes how the win-

sorization works. The top graph represents the original dataset, which contains a few outliers

on the positive as well as on the negative axes. After the winsorization was carried out, those

values were taken care of and the dataset was cleaned. This graph also points out another

characteristic of the winsorization, which is the symmetric property of this technique.

Figure 8 – Winsorization example [WIC17]

Methodology

 Page 18

3.2.2 Formation of the Dataset

In some cases, some features of the dataset do not contain numeric values and consist of for

example Strings. This can be mainly observed in the case of the feature wind direction. This

feature is sometimes saved as North, South, West and East. The ML Algorithms used in this

work are not able to handle those information as it only can comprehend numerical values.

For this case that information has to be converted to normal values. With the example of the

wind direction, each of the wind direction is saved as a numerical value with the OrdinalEn-

coder() from Sklearn. This function arranges each individual string to a unique number.

3.2.3 Normalization

Before the now well processed data can be used for the feature extraction or for the actual

machine learning model, there is still a problem with the different ranges of the datapoints.

This can be a problem, if for example the temperature is in the range of –10 to 30 Celsius and

the barometric pressure has a value range between 0 mBar and 1500 mBar. The range of the

barometric pressure includes much higher values than the temperature, for this reason the bar-

ometric pressure has a higher valence than the temperature.

To prevent this to happen a normalization or standardization of the whole dataset must be

accomplished. The difference between on when to use normalization or standardizing is main-

ly on the distribution of the dataset. If the dataset is distributed as a Gaussian distribution the

standardization is the better choice. [BRO20]

The formula of calculating the standardization [SS17] is described as follows:

𝑧 =
𝑋 − 𝜇

𝜎
(4)

Equation (4) describes the formula on how the current value which is going to be standard-

ized. μ is the mean value of the whole dataset for this feature and σ is the standard deviation.

This procedure is going to be accomplished with every datapoint within the raw data.

For the normalization there are several techniques. For the scope of the master thesis, the Min-

Max Scalar is going to be used. This normalization technique converts the datapoints to the

fixed range between 0 and 1 and is described as follows:

Methodology

 Page 19

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(5)

The variables 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 in formula (5) describe the upper and lower range, in which the

value normalize into.

The previous step of sorting out the outliers is important for the usage of normalization, be-

cause this process is sensitive to numbers, which are not in the normal distribution of the da-

taset. If the previous step for detecting the outliers has not been made, there is also a normali-

zation process called Robust Scalar which jointly performs normalization and IQR processing

and is more stable to outliers compared to the Min Max Scalar.

3.3 Feature Extraction

After the cleaning and pre-processing of the raw data to actual usable data for ML the next

step is the feature extraction. Because there are ten weather features in total, it is maybe ad-

visable to clarify which features are the most important ones and which are maybe not that

well fitted for this task. For this reason, there are many techniques to figure out which features

are the strongest ones and will help the performance of the ML-Algorithm in general.

3.3.1 Pearson Correlation

With the Pearson correlation it is possible to find a monotonic correlation between two varia-

bles in a dataset. This relationship between two variables can have one of the following corre-

lations:

• If value A increases, the other observed value B also increases

• If value A increases, the other observed value B decreases

Mathematically the Pearson correlation can be described as following:

𝑟 =
∑(𝑥 − 𝑚𝑥)(𝑦 − 𝑚𝑦)

√∑(𝑥 − 𝑚𝑥)2 ∑(𝑦 − 𝑚𝑦)
2

(7)

𝑟 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
𝑥𝑖 = 𝑉𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒
𝑚𝑥 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝑦𝑖 = 𝑉𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒

Methodology

 Page 20

𝑚𝑦 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

The result of the Pearson correlation (7) ranges in the area between: −1 ≤ 𝑟 ≤ 1. If the corre-

lation is in the negative spectrum of the range, the two observed features influence themselves

in the opposite direction. The same interpretation can be made for the positive spectrum, but

reverse. If the correlation is close to one, the two features have a strong correlation between

each other and if 𝑟 is close to zero, there is no correlation in general.

3.3.2 Spearman Correlation

The Spearman correlation, in comparison to the Pearson correlation assesses monotonic rela-

tionships between two ordinal variables. That means, that the Pearson correlation only con-

siders a perfect correlation (+1) between two variables, if the observing variables increase or

decrease for the same amount each timestep. On the other side, the Spearman correlation also

considers a correlation between two variables perfect, even when they do not increase or de-

crease in the same amount each timestep. The Spearman correlation coefficient can be de-

scribed as follows:

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
(8)

𝜌 = 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

𝑑𝑖 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

3.3.3 Principal Component Analysis

Another well-researched technique to analyse the importance of features in a dataset of sever-

al features is PCA. With this method it is possible to reduce the number of features in a huge

dataset without decreasing the accuracy at best. [Tmp02]

The structure of the PCA methodology is divided into six different steps, which are going to

be explained in detail now:

Methodology

 Page 21

1. Standardization

This step is as important as the standardization for the usage of the IQR, because

this technique is also sensitive to the variance of the initial variables. The calculation of the

standardization is the same as the one previously explained.

2. Covariance Matrix Computation

This matrix consists of the covariance information of each feature to another. That means, that

the dimensions of this matrix are (p x p) with p as the number of features in the dataset. This

is the same computation as for the Pearson Correlation.

3. Compute the Eigenvectors and Eigenvalues of the covariance matrix

With the help of the calculation of the eigenvectors and eigenvalues of the covariance matrix

it is possible to determine the principal components (PC) of the data. The principal compo-

nents are a linear combination of the initial variables. These combinations are so structured,

that they are uncorrelated and most of the information of the initial variables are squeezes into

the first component. In the case of the weather features there also exist ten PC. The PCA algo-

rithm tries to put as much information in the first component and then the maximum of infor-

mation in the second one and so on, until it reaches the last one. These steps of putting the

left-over information into the next PC is presented in the Figure 9.

Figure 9 – Graph to present the different variances of the PCAs [Tmp02]

Methodology

 Page 22

4. Calculation of the PC

For each PC there are as many eigenvectors and eigenvalues as features available. Those ei-

genvectors describe the directions of the axes where there is the most variance, this axis is

called the PC. The eigenvalues, which are corresponding to the eigenvectors present the

amount of variance carried by each PC or eigenvector. Afterwards those PCs are going to be

ranked by the importance from highest to lowest.

5. Calculating the feature vector

The next step is to decide whether to keep all the calculated PC or to discard some of the ir-

relevant ones. This is going to be handled with the feature vectors. The feature vector contains

columns of the eigenvectors of each PC. The first step is the reduction of the dimensionality.

This means, that I.e., out of n dimensions of the PC only p dimensions are left over.

6. Recast the data along the PC axes

Apart from the standardization there were no changes made by the original dataset. But the

input datasets remain in the original axes. Now, to find out, which corresponding feature are

present with each PC the original data must be formed to the axes described by the PCs. This

step can be made by multiplying the transpose of the original data by the transpose of the fea-

ture vector:

𝐹𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑇 ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑇 (9)

3.3.4 Random Forest

One of the most popular ML-Algorithms is the random forest. They are well-established for

the usage of ML-Tasks but are also used for the task of feature selection. Random Forest is

used in many ways, because they are highly accurate, generalize better and are even interpret-

able for humans. [TMP04] For the random forest a user-selected amount of decision

trees is created. For those trees there are several options of trees:

3.3.4.1 ID 3

The ID3 methodology was created in 1986 by Ross Quinlan. This algorithm creates a multi-

way tree which finds for each node the feature with the highest informational gain for the tar-

Methodology

 Page 23

get. Those trees are grown to their maximum size and then get pruned to improve the ability

of the tree to generalise the unseen data.

There are three steps for the creation of an ID3-Decision Tree:

1. Find the feature with the highest amount of information gain

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑
#(𝑆𝑖)

#(𝑆)
∗ 𝐻(𝑆𝑖)

𝑛

𝑖=1

(9)

𝑆 = 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

𝐴 = 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

𝐻(𝑆) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

∑
#(𝑆𝑖)

#(𝑆)
∗ 𝐻(𝑆𝑖)

𝑛
𝑖=1 = 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

For each attribute 𝐴 the information gain over the whole dataset 𝑆 is calculated (9). The in-

formational gain is the difference of the entropy 𝐻(𝑆) of the whole dataset, which is repre-

sented by the formula (10) and the individual entropy weighted entropy 𝐻(𝑆𝑖) of the observed

attribute, which is shown in formula (11).

𝐻(𝑆) = ∑ −𝑝(𝑥)𝑙𝑜𝑔2𝑝(𝑥)

𝑥 𝜖 𝑋

(10)

𝑆 = 𝑇ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

𝑋 = 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑆

𝑝(𝑥) = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑ 𝑝(𝑡)𝐻(𝑡)

𝑡 𝜖 𝑇

(11)

Methodology

 Page 24

𝐻(𝑆) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

𝑇 = 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑏𝑦 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑆 𝑏𝑦 𝑎𝑡𝑡𝑖𝑏𝑢𝑡𝑒 𝐴

𝑝(𝑡) = 𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆

𝐻(𝑇) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝑡

2. Creation of the root node

The attribute with the highest informational gain is the attribute chosen for the root node.

3. Recursive calculation for new root nodes for the sub-branches

3.3.4.2 ID 4.5

This tree is the successor of the ID3 algorithm. The improvements of the ID4.5 decision tree

algorithm are:

• It is possible to handle continuous and discrete attributes

• The ID4.5 algorithm can also handle training data with missing attribute values

• Pruning trees after the creation

3.3.4.3 Classification and Regression Trees

Decision Trees are one of the most commonly used, practical approaches for the task of su-

pervised learning. It can be used to solve both, regression and classification tasks. Within the

trees the class labels are represented by the leaves and the branches denote the conjunctions of

features leading to those class labels. The regression tree is used, when the prediction out-

come is a real number, and the classification trees are used to predict the class to which the

data belongs to. These two categories are collectively called CART.

The Gini Index or Gini Impurity is calculated by subtracting the sum of the squared probabili-

ties of each class from one. It favours mostly the larger partitions and are very simple to im-

plement. The Gini Index ranges between zero and one, where zero represents purity of the

classification and one denotes random distribution of the elements among various classes. The

middle shows that there is an equal distribution of elements across some classes.

Methodology

 Page 25

As a metric or cost function for the regression tree the least square is used. Because the CART

decision tree is used as a regression tree in this thesis, only the least square cost function is

going to be explained:

𝑦 = 𝑎 + 𝑏𝑥 (12)

With this function it is possible to calculate the corresponding y-value with the knowledge of

the x-value. But for this function, it is necessary to previously calculate the a and b value. The

following calculations are used to describe those figures.

𝑎 = 𝑦 − 𝑏𝑥 (13)

 𝑏 =
𝑛 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

𝑛 ∑ 𝑥2 − (∑ 𝑥)2
 (14)

This described cost function is the equivalent to the informational gain of the previous shown

ID3 and ID4.5 decision trees. For the usage of random forest, this methodology is the most

used one.

3.3.5 Wrapper Feature Selection

All those feature selection methods, which were mentioned and explained earlier were filter

methods to classify the features with the most informational input to boost the perfor-

mance and accuracy of the ML-Algorithm afterwards. Another approach is the usage of

wrappers. [TMP05]

There are four different types of wrapper algorithms, which are also explain in the up-coming

sections.

3.3.5.1 Sequential Forward Selection

The SFS starts with a subset of zero features and increases the number of features for each

iteration. The feature which maximises the criterion function is going to be selected each iter-

ation until desired number of features is reached.

Input values: 𝑌 = {𝑦1, 𝑦2, 𝑦3,…….,𝑦𝑑
}

Output values: 𝑋𝑘 = {𝑥𝑗 | 𝑗 = 1,2, … . , 𝑘: 𝑥𝑗𝜖 𝑌} , 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0,1,2,3, … . , 𝑑)

The algorithm takes the whole d-dimensional feature set as an input and returns a subset of

features k, where 𝑘 < 𝑑.

Methodology

 Page 26

Initialization: 𝑋0 = ∅ , 𝑘 = 0

The algorithm is initialized with an empty feature set.

Recursive steps (inclusion):

𝑥+ = arg max 𝐽(𝑋𝑘 + 𝑥) , 𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖 𝑌 − 𝑋𝑘

𝑋𝑘+1 = 𝑋𝑘 + 𝑥+

𝑘 = 𝑘 + 1

In this recursive step each iteration the additional feature 𝑥+ is added to the feature subset 𝑋𝑘.

𝑥+ is the feature which maximizes the criteria function. This recursive step is iterated, until

the amount of desirable feature is reached (𝑘 = 𝑝).

3.3.5.2 Sequential Backwards Selection

The SBS starts with a subset of all available features and decreases the amount each iteration.

The feature which maximises the criterion function is going to be selected each iteration until

the amount corresponds to the desired amount.

Input values: 𝑌 = {𝑦1, 𝑦2, 𝑦3,…….,𝑦𝑑
}

Output values: 𝑋𝑘 = {𝑥𝑗 | 𝑗 = 1,2, … . , 𝑘: 𝑥𝑗𝜖 𝑌} , 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0,1,2,3, … . , 𝑑)

The algorithm takes the whole d-dimensional feature set as an input and returns a subset of

features k, where 𝑘 < 𝑑.

Initialization: 𝑋0 = 𝑌 , 𝑘 = 𝑑

The algorithm is going to be initialized with an empty feature set.

Recursive steps (exclusion):

𝑥− = arg max 𝐽(𝑋𝑘 − 𝑥) , 𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖 𝑌 − 𝑋𝑘

𝑋𝑘−1 = 𝑋𝑘 − 𝑥−

𝑘 = 𝑘 + 1

In this recursive step each iteration the feature 𝑥− is removed to the feature subset 𝑋𝑘. 𝑥− is

the feature which maximizes the criteria function. In this case the criteria function describes

the feature with the least informational input. This recursive step is iterated, until the amount

of previously selected features is reached (𝑘 = 𝑝).

Methodology

 Page 27

3.3.5.3 Exhaustive Feature Selection

The EFS starts with an amount of possible feature subsets and finds the optimal feature subset

at the end of all possibilities. The feature subset, which maximises the criterion function is

selected at each iteration until every possibility was tested.

Input values: Set of features 𝑋 , size of feature set 𝑛 , size of target feature subset 𝑑 , set of

 possible feature subsets 𝐹 of 𝑋 where each subset is the size of 𝑑.

Output values: Optimum feature subset 𝑌𝑜𝑝𝑡 of size 𝑑.

Initialization: 𝑌𝑜𝑝𝑡 = ∅

 𝐺𝑜𝑝𝑡 = −∞

The algorithm is initialized with an empty optimal feature subset and a minus infinite place-

holder optimal feature subset.

Recursive steps:

For all 𝑌𝑖 𝜖 𝐹 = {𝑌0, 𝑌1, … … , 𝑌𝑘} | 𝑘 = (𝑛
𝑑

) do

 𝐺𝑖 = 𝐽(𝑌𝑖)

 If 𝐺𝑖 > 𝐺𝑜𝑝𝑡 then

 𝑌𝑜𝑝𝑡 = 𝑌𝑖

 𝐺𝑜𝑝𝑡 = 𝐺𝑖

 End if

End for

In this recursive step each iteration evaluates with the criteria function whether the current

combination of features performs better than the former 𝐺𝑜𝑝𝑡, the new subset is the optimal

one. This is repeated, until all combinations are used and the optimal one is chosen.

3.3.5.4 Bi-Directional Elimination

The Bi-Directional Elimination (Stepwise Selection) is similar to the SFS, but in each itera-

tion while adding a new feature, it also checks the significance of already added features in

the subset. If one of the already chosen features are not significant enough, it removes this

feature from the subset via SBS. So, this algorithm is a combination of both previous ex-

plained wrapper algorithms. [@Gct18]

Input values: 𝑌 = {𝑦1, 𝑦2, 𝑦3,…….,𝑦𝑑
}

Methodology

 Page 28

Output values: 𝑋𝑘 = {𝑥𝑗 | 𝑗 = 1,2, … . , 𝑘: 𝑥𝑗𝜖 𝑌} , 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0,1,2,3, … . , 𝑑)

The algorithm takes the whole d-dimensional feature set as an input and returns a subset of

features k, where 𝑘 < 𝑑.

Initialization: 𝑋0 = ∅ , 𝑘 = 0

The algorithm is initialized with an empty feature set.

Recursive steps (Bidirectional):

Perform the next step of SFS to select the best feature of the dataset

𝑥+ = arg max 𝐽(𝑋𝑘 + 𝑥) , 𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖 𝑌 − 𝑋𝑘

𝑋𝑘+1 = 𝑋𝑘 + 𝑥+

Perform SBS on the new selected features and remove the ones with the poorest performance

from the dataset.

𝑥− = arg max 𝐽(𝑋𝑘 − 𝑥) , 𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖 𝑌 − 𝑋𝑘

𝑋𝑘−1 = 𝑋𝑘 − 𝑥−

There are some limitations to the algorithm to guarantee, that SFS and SBS are converging to

the same solution:

• Features, which are already selected by SFS are not removed by SBS.

• Features, which are already removed by SBS are not added by SFS anymore.

3.4 Machine Learning Model

As stated in chapter 2.2 there are many different techniques to predict and handle time series

data in general. Mostly they are divided into two main categories: statistical or machine learn-

ing algorithms. For the scope of this master thesis only the machine learning algorithms were

used. In detail the following algorithms in particular:

• LSTM (Long Short-Term Memory)

• Facebook Prophet

• Random Forest

Methodology

 Page 29

In this chapter the LSTM and also the Facebook Prophet algorithms are going to be explained.

The Random Forest was already explained in chapter 3.3.3 and because of that, its omitted in

this chapter.

3.4.1 LSTM

In comparison to normal MLP (Multilayer Perceptron), which consists of many layers with

neurons in it and the input data is propagated through the network itself, the LSTM has recur-

rent connections. This means, that the state of the previous activations is also used as a con-

text for the output. But in comparison to normal RNN the design of the LSTM Network al-

lows to overcome the problem of the vanishing or exploding gradients. This means, that the

weight update procedure changes the weights so fast in one direction or the other, that it is

graduate to zero or infinity. Those phenomena make the neural network useless for longer

sequences. [BRO17a, GLF09]

In general, RNNs are good for the processing of sequential data and for the prediction of

those. But those networks suffer from short-term memory. To overcome this obstacle, LSTM

networks were created, which uses gates to migrate short-term memory to those algorithms.

Primarily gates are neural networks, which regulate the flow of information through a se-

quence chain.

Figure 10 – Repeating Module in normal RNN [@Col15]

The previously mentioned problem of the normal RNN is called the long-term dependency

problem. To overcome this problem, Hochreiter and Schmidhuber introduced the architecture

1997 [HS97] and were refined during the years by many people afterwards. Figure 10 illus-

Methodology

 Page 30

trates the architecture of a single-layer RNN. The single layer consists of a chain of repeating

modules and contains a tanh activation function within them. With this layer it is possible to

squish the incoming values in the range of -1 and 1.

In comparison to that, a LSTM Network also contains a chain structure, but instead of a single

tanh, the repeating module consists of three different gates in general. This structure can be

seen in Figure 11.

In this diagram the yellow boxes represent the different NN-Layer. The red dots are pointwise

operations, like vector addition or multiplication. The arrows represent the copying of the

whole vector from one state to the next one.

The main features of the LSTM Networks are the so-called gates and cell states. With the

gates the flow of information can be regulated. With those operations the network can decide

to keep information or forget them. The cell states act as a transport highway. Those carry the

information from one layer to the next one. In combination of those two features the networks

learns in each layer, which information are relevant or not.

The gates consist of sigmoid activations. Those acts similar to the tanh activation of the nor-

mal RNNs. Except, that in the case of the sigmoid activation, the values are going to be

squished in a range of 0 to 1. With this it is easier to decide which information can be forgot-

ten. Because any value, which is multiplied by 0 results also in a 0. In the following, the three

different gates of a LSTM Network are going to be explained.

Figure 11 – LSTM Architecture [@Col15]

Methodology

 Page 31

Forget Gate

With the help of this gate (represented as a red box in Figure 11), the network decides, what

information is important or can be forgotten. For this, the information of the previous hidden

state (bottom arrow from the previous hidden cell ℎ𝑡−1) and the current input (𝑋𝑡) are merged

and the result is passed through the sigmoid function. The outcome of this results in a value

between 0 and 1 and is called 𝑓𝑡. Afterwards this number is then multiplied with the previous

cell state (𝐶𝑡−1).

Input Gate

The input gate is in charge of updating the cell state. This gate is illustrated as the orange box

in the upper figure. Firstly, the previous hidden state (ℎ𝑡−1) and the current input (𝑋𝑡) are go-

ing through the sigmoid function (𝑖𝑡). Simultaneously those numbers go through the tanh ac-

tivation layer (𝜍𝑡). This value is called the candidate. Afterwards the results of those layer are

multiplied.

Cell State

Now, after the importance of the current input in combination with the previous hidden layer

were calculated, the new cell state is computed. This happens with the following formula:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝜍𝑡 (15)

Output Gate

The last gate in the LSTM Network is called the output gate. This gate decides, what the next

hidden state should be. This gate is visualized as the blue box in Figure 13. First the previous

hidden state (ℎ𝑡−1) and the current input (𝑋𝑡) are going through another sigmoid activation

layer. Simultaneously the new cell state will go through a tanh activation layer. The results of

both computations are multiplied afterwards. This figure represents the new hidden state (ℎ𝑡),

which is passed to the next step.

3.4.2 Facebook Prophet

“Prophet is a procedure for forecasting time series data based on an additive model where

non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It

works best with time series that have strong seasonal effects and several seasons of historical

Methodology

 Page 32

data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers

well.” [TL17]

In other words, with this open-source framework which Facebook created, it is possible to

make a forecast of time series data. It is especially useful for the prediction of data with strong

seasonal effects, which also occurs with the weather and energy data from the project.

For the algorithm Facebook Prophet uses a decomposable time series model. This means, that

the overall machine learning algorithm contains several smaller ones inside. This methodolo-

gy was first introduced in the paper [HP90]. In this paper the model contains a breakdown

into a trend, seasonal and irregular model. In total the formula for the algorithm is composed

of the following components:

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀𝑡 (16)

In this formula, 𝑔(𝑡) describes the trend function. This includes non-periodic changes within

the time series data. 𝑠(𝑡) implies periodic changes, for example weekly, yearly or seasonally

changes within the data. And the third component ℎ(𝑡) contains the effects of holiday seasons

throughout the year. The last component 𝜀𝑡 represents the idiosyncratic changes which cannot

be retrieved by the other components of the model 𝑦(𝑡). For this model it is assumed, that the

error 𝜀𝑡 is normally distributed.

In the following, the three main components of the Facebook Prophet model are going to be

briefly explained:

Trend Model

In general, two different kinds of model were created to (mainly) fit the most applications

Facebook needed. On the one hand a saturating growth model and on the other a piecewise

linear model. The saturating growth model is described as following:

𝑔(𝑡) =
𝐶

1 + exp(−𝑘(𝑡 − 𝑚))
(17)

With 𝐶 as the carrying capacity, 𝑘 as the growth rate, and 𝑚 as an offset parameter. The car-

rying capacity is i.e., the maximum amount of people who have access to internet to use Fa-

cebook. In the case of the PV outcome or weather prediction, this value can be described as

the maximum amount of energy which the system can produce in the end. The second model

which can be used as a trend model is the piecewise linear model:

Methodology

 Page 33

𝑔(𝑡) = (𝑘 + 𝑎(𝑡)𝑇 𝛿)𝑡 + (𝑚 + 𝑎(𝑡)𝑇 𝛾) (18)

This model is beneficial, when the dataset does not show a saturating growth. A piecewise

constant rate of growth also creates a useful model for those cases. In this model 𝑘 also de-

scribes the growth rate while 𝛿 has the rate adjustments. 𝑚 is the offset parameter.

Another question for the trend are the so-called changepoints. Those points in time describe

any underlaying changes in the time series data. For example, a new launch of a phone or any

other product can change the growth rate tremendously. For this reason, at those points it is

allowed for the growth rate to increase or decrease. [@Ch18, TL17]

Seasonality Model

This part of the main model is the most important for time series data, which is infected by

seasonality during a specific range of time. This can be i.e., by vacation times during the year,

which are mostly during the summer or holidays. In the use-case of weather information the

weather during the four seasons are completely different to each other. In the case of Face-

book Prophet, a Fourier series provides a flexible model of periodic effects:

𝑠(𝑡) = ∑(𝑎𝑛 cos (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛 sin (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

(19)

The variable 𝑃 describes the period of time. This can be for example a year (𝑃 = 365.25) or

a week (𝑃 = 7). [@Ch18, TL17]

Holiday Model

This model is relatively complex to describe, because each country has its own holidays. For

example, in the United States, there is thanksgiving, which always falls on the fourth Thurs-

day in November. Many other countries have holidays which follow the lunar calendar. For

this, it is possible to set a list of holidays which, then can be feed in the machine learning al-

gorithm. With this the future holidays are going to be set on the same day as the past ones.

Also, the algorithm knows, that those days have to be treated specially. Otherwise, it is also

possible to set a flag for a specific country with pre-defined holiday information given by Fa-

cebook.

Methodology

 Page 34

3.5 Performance Metrics

Performance Metrics calculates an error or accuracy for two or more observing variables. For

this reason, those metrics are used to measure the performance of machine learning algo-

rithms, where the actual value is compared with the predicted one. For the scope of this mas-

ter thesis various performance metrics were used. In the following equations 𝑌 represents the

actual value and 𝑌̂ the predicted one.

Mean Absolute Percentage Error

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑌𝑡 − 𝑌̂𝑡

𝑌𝑡
|

𝑛

𝑡=1

(20)

Mean Square Error

 𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

(21)

Root Mean Squared Error

 𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖 − 𝑌̂𝑖)
2𝑁

𝑖=1

𝑁
(22)

Mean Absolute Error

𝑀𝐴𝐸 =
∑ |𝑌̂𝑖 − 𝑌𝑖|

𝑁
𝑖=1

𝑁
 (23)

𝑹𝟐

 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

(24)

Implementation

 Page 35

 Implementation

In this section of the master thesis, the implementation of the different methodologies, which

were explained in chapter 3, are going to be described. Furthermore, the development envi-

ronment is going to be explained. The implementation was carried out with Python 3 version

3.8.5 to be precise. Python was used in this project, because it is a wide-spread programming

language in the field of machine learning and inherits many libraries like TensorFlow and

Sklearn.

The implementation is divided in five different sections. The first one describes the retrieval

of the different datasets, such as the Glava, SMHI and Meteostat. The second section outline

the different techniques of the data preparation. After the different datasets are well-prepared

for the next step, the methodologies of the feature selection are explained in the third sub-

chapter. Now, that the datasets are cleaned and the most important features are selected, those

features are used as an input for the different ML-Model, which are explained in the fourth

section. The last sub-chapter explains the methods for the evaluation of the different ML-

Model and the different use-cases.

4.1 Development Environment

For the development of the project Jupyter notebook was used. This development environ-

ment was founded in February of 2015 by Fernando Pérez and Brian Granger. With this envi-

ronment it is possible to use different interactive data science and scientific computing across

all programming languages. Furthermore, Jupyter provides the Jupyter hub, which allows

multiple people to work on one server simultaneously and share the resources of the server,

like GPUs and CPUs. [@Jup20]

Within the datacentre of the University of Karlstad a new server for the Jupyter hub was cre-

ated. For each user it contributes enough computing power to accelerate the training of i.e.,

machine learning model training with a Nvidia RTX 2080.

One of the main advantages of the usage of Jupyter notebook is, that it is accessible through

mostly any web browser. Furthermore, each notebook is structured in different small cells

which contains the code, which is presented in Figure 12.

Implementation

 Page 36

 Figure 12 – Jupyter Notebook Cell

4.2 Data Downloader

In this section the different downloader for the various datasets are explained. In total there

are three data sources, which are used: Glava Energy Center, SMHI and Meteostat. For the

data of the Glava Energy Center there are two different ways to access the data. The first one

is via the virtual desktop and the second one is the web API. In the beginning of the project

the web API was not accessible, so the data was retrieved via the virtual desktop and the

Metrum Software (see Figure 13). The problem with the received data was, that there were

several errors within the downloaded data. The Metrum Software is able to retrieve the correct

data and present it, but the exporter simply adds every value from the previous state, which

makes the outcome useless. Furthermore, it is only possible to retrieve a maximum of six days

with the Metrum Software, because otherwise the output file will be corrupted.

Figure 13 – Metrum Software

With the Web API it is possible to retrieve the necessary data from GLAVA faster and more

stable. For example, the download of a whole month was possible within a few minutes. The

Implementation

 Page 37

received data from the Web API will be stored as a JSON file afterwards. The structure of the

file is presented in Listing 1.

The JSON file consists of three main attributes. The mPoint represents the name of the senso-

ry endpoint. In this case it is the ABB Inverter. The next main attribute is the datatype. This

element contains the information about the type of data within the dataset. Here it represents

the information about the General Inputs. The last relevant information within this JSON file

is the channels attribute. In this object the information about the different sensory pairs are

saved. It contains the date and the corresponding value for each sensor pair.

"mPoint":

 {

 "name": "ABB Inverter",

 "id": 1

 }

}

{

"dataType":

 {

 "name": "General Inputs",

 "id": 3

 }

}

{

"channels":

 {

 "0":

 {

 "name": "GI1"

 "values": [

 {

 "value": 197.216,

 "time": "2015-07-01"

 },

 "...."

]

 }

 }

Listing 1 – JSON Structure GLAVA

As seen in the Listing 1, there are the two attributes mPoint and datatype. The Glava Web

API has 14 different kinds of attributes, which are represented as the datatype and four differ-

ent input sources, which are labelled as mPoint. All the different data inputs and data types

are presented in the Figure 14. The four input sources are: ABB Inverter, ELTEK VALERE

Inverter, Laddstolpe and the HSB ACES. Each of those sources have most of the 14 attrib-

Implementation

 Page 38

utes, which are also presented in the Figure 15. Most of those attributes are about electronic

information from the system and only one is specific for the weather information. This one is

called General Inputs.

For the scope of this thesis and also for the prediction of the weather and the corresponding

PV energy outcome, only a few of those variables are necessary. The two most important at-

tributes are the Energy attribute and the General Inputs attribute. Those two attributes are also

divided in different features. The energy attribute for example consists of three different input

values: Ptot, Stot and Qtot. As described in chapter 3.1. the total amount of energy, which is

produced by the PV station is saved in the value Stot.

Figure 14 – Glava Sensor Information

The other attribute General Inputs inherit the information about the weather. Each of the four

sensors has four different weather information in total. For this reason, the weather infor-

mation has to be gathered separately from those four sensors. In the following Figure 16 the

weather information of each sensor is presented. In general, there are ten different weather

features, which are present in the database of Glava. The ABB Inverter and the HSB ACES

Inverter have two or more endpoints, which are currently not available or not in use. Because

of this, the HSB ACES input source is not used in general for retrieving any weather infor-

mation.

Implementation

 Page 39

Figure 15 – Glava Weather Features

For the download of the Glava weather and energy data the two libraries urllib and json were

used in general. As seen in Listing 2, the first step is to disable the SSL certificate verifica-

tion. Afterwards the needed URL for the download is going to be set together. This is done by

creating a fixed URL and set the needed parameter in the String. The needed parameters are

the sensorID and the typeID. The user of the system can set that information via variables

while calling this function.

Then the URL is going to be opened with the help of the library urllib and the JSON is re-

quested. The call back JSON file is then saved within a folder the user selected.

disable ssl certificate verification

ssl._create_default_https_context = ssl._create_unverified_context

Creating the url

url_fixed ='https://systemet.glavaenergycenter.se:444/MetrumWebapi

 /api/longtimedata?dataTypeId='

final_url = url_fixed + typeID + '&mpointId=' + sensorID + '&from=' +

 begin + '&to=' + end

with urllib.request.urlopen(final_url) as url:

 data = json.loads(url.read().decode())

 print("Successfully Downloaded the Timeseries data from GLAVA")

 with open(filepath + 'GLAVA_Sensor_' + sensorID + '_Type_' + typeID +

 '_From_' + begin + 'To_' + end + '.json','w') as json_file:

 json.dumps(data)

Listing 2 – Glava Downloader

Implementation

 Page 40

For the input source Meteostat there is an official Python library to use. To receive the weath-

er information from the closest weather station, the first step is to find the closest one, which

is available in the database of Meteostat.

02404 Arvika / Högvalta SE S 02404 ESKV 59.6667 12.5833

02418 Karlstad Flygplats SE S 02418 ESSQ 59.3667 13.4667

02416 Nolgård SE S 02416 ESOK 59.3600 13.4700

Listing 3 – Meteostat closest stations

Listing 3 is presenting the three closest stations to the city Glava, where the actual PV stations

are located. The second step is to receive historical data from the closest station to Glava,

which is Arvika in this case. Listing 4 is showing an example of downloading hourly data

from the Meteostat database. The three parameters for the Hourly-Function are the id of the

weather station, the start and end date of the observation. With the function fetch() the previ-

ously described data will be downloaded and set into a dataframe. Because only weather in-

formation for the last five years (2015 - 2020) in July is needed, the downloader will automat-

ically only download the datasets for those years.

from meteostat import Stations, Daily, Hourly

Get hourly data

data = Hourly(id_m, start, end)

data = data.fetch()

Listing 4 – Meteostat, download hourly data

Because the Meteostat database only serves the data for some of the needed weather infor-

mation, another source for the radiation has to be included. For this reason, the interpolated

data of SMHI also has to be acquired. For this dataset there is no python API available and

that information had to be received manually from the official SMHI website (http://strang.sm

hi.se/extraction/index.php). There it is possible to retrieve the global radiation for a specific

longitude and latitude during a pre-defined date.

Implementation

 Page 41

4.3 Data Preparation

In the previous chapter it is explained, how the different data sets are obtained. Naturally there

are some issues with those, like outliers, missing data or even the structure of the data is not

optimal for the upcoming usage of those. Because of that there are several steps of data prepa-

ration and cleaning needed to make the handling easier later on.

4.3.1 Combining Datasets

As stated in the previous chapter 4.2 the Glava datasets for the weather information had to be

downloaded from each sensor separately. This is the same for the data of the energy produced

(Stot). To use this information comfortably in the next steps of feature extraction and creating

the model it is necessary to create one big data set with all the different information together.

This is described in the Listing 5. First each of the loaded Dataframes receive the unique

name for each column and afterwards the different Dataframes gets combined on the axis=1.

Afterwards the different columns of the Dataframe are getting scaled. This is needed, if the

user of the system wants to use a different kind of timescale for the machine learning algo-

rithm. The default time is six seconds for each sample of the data and can be either used like

this or it can be changed in every possible scale for seconds bigger than six seconds, minutes,

hours or respectively days. All of the different features within the dataset are then meaned for

the scale which is set.

Implementation

 Page 42

Rename the different Columns

ABB.columns = ['Date','Wind

Direction','Precipitation','Unused','Unused']

ELTEK.columns = ['Date','Temperatur','Humidity','Barometric

Pressure','Wind Speed']

LADD.columns = ['Date','Global Radiation','Radiation 40

Degrees','Radiation 30 Degrees','Indirect Radiation']

Energy.columns = ['Date','Ptot','Qtot','Stot']

Combine the different DF to one

frames = [ABB, ELTEK, LADD,Energy]

combined = pd.concat(frames, ignore_index=True, axis=1)

Set the Scale of the DF

combined = combined.apply(pd.to_numeric, errors = 'coerce')

combined.reset_index()

combined.index = pd.to_datetime(combined.index)

combined = combined.resample(scale).mean()

Listing 5 – Combining the Glava Datasets

For the interpolated datasets from Meteostat and SMHI those modifications also have to take

place. Almost all weather information can be taken from the Meteostat dataset, except for the

radiation.

del meteo['Dew Point']

del meteo['Snow']

del meteo['Sunshine']

del meteo['W-Code']

del meteo['Peak Wind Gust']

meteo = meteo[pd.to_datetime(meteo['Date']).dt.month == 7]

 meteo = meteo[(pd.to_datetime(meteo['Date']).dt.year == 2016) |

 (pd.to_datetime(meteo['Date']).dt.year == 2017) |

 (pd.to_datetime(meteo['Date']).dt.year == 2018) |

 (pd.to_datetime(meteo['Date']).dt.year == 2019) |

 (pd.to_datetime(meteo['Date']).dt.year == 2020)]

meteo['Irradiance'] = smhi['Irradiance'].values

meteo['Stot'] = energy['Stot'].values

Listing 6 – Combining Interpolated Datasets

Furthermore, it is necessary to include the energy information from Glava in this dataset as

well. As stated in the Listing 6, first the unnecessary columns of the Meteostat dataset are

Implementation

 Page 43

deleted, because those features are not present in the dataset of Glava and for the comparison

it is needed to have the same attributes. Afterwards only the month of July is selected from

the dataset, because the Glava dataset only contains these months and the years 2016 until

2020. The year 2015 is not considered, because at that point only a few features of the weath-

er information are available.

The last step of the combination is the inclusion of the radiation from the SMHI dataset and

the Stot of the energy dataset from Glava.

4.3.2 Data Cleaning

After the combination of the different datasets into two main datasets, one for Glava and one

for the interpolated data, there are still some obstacles with the data in general. Like in chapter

3.2.2. described, there are still outliers and possibly missing values in the dataset. Further-

more, there could be possible datatypes in the dataset, which are also not numeric.

lower_p = combined['Temperatur'].quantile(0.01)

higher_p = combined['Temperatur'].quantile(0.99)

combined['Temperatur'] = np.where(combined['Temperatur']

<lower_p,lower_p,combined['Temperatur'])

combined['Temperatur'] = np.where(combined['Temperatur'] >higher_p,

higher_p,combined['Temperatur'])

accelerating the negativ radiation figures

combined["Global Radiation"] = np.where(combined["Global Radiation"]

<0,0,combined['Global Radiation'])

combined["Indirect Radiation"] = np.where(combined["Indirect Radiation"]

<0,0,combined['Indirect Radiation'])

combined["Radiation 30 Degrees"] = np.where(combined["Radiation 30

Degrees"] <0,0,combined['Radiation 30 Degrees'])

combined["Radiation 40 Degrees"] = np.where(combined["Radiation 40

Degrees"] <0,0,combined['Radiation 40 Degrees'])

Listing 7 – Correction of Outliers

Listing 7 describes exemplary for the temperature, how the in chapter 3.2.1. described quan-

tile-based censoring was implemented using the quantile() function from NumPy. First, the

quantile range for the data is calculated. Normally the range for the upper and lower quantile

is 25 percent each. The outliers within the used dataset are only a few datapoints within a

huge scale, for that reason a winsorization of two percent was chosen. After some tests with

Implementation

 Page 44

adjustments of the quantiles the presented two percent did not cut of datapoints and only se-

lected the outliers. [NG06]

This methodology was used in most of the existing features of both datasets, to make sure that

there are no existing outliers anymore. Furthermore, there is an alignment for the radiation

features of the Glava dataset in Listing 7. This measurement has to be done, because there are

several readings of the sensors, which presented the radiation on the negative level, which is

not possible.

Figure 16 – Winsorization on Temperature (left: cleared, right: without)

As seen on Figure 16, there is a clear advantage of using the winsorization on datasets, which

contains a lot of outliers. This example shows that the temperature feature of the Glava da-

taset contained many outliers. The left side of the Figure 16 shows the temperature feature

before the clearing of outliers. This figure clearly shows that now there is a normal distribu-

tion of the datapoints within the data. The datasets, which contained the outliers were deleted

from the dataset. There is also the possibility of finding the median of the direct neighbours of

the outlier, but this technique can lead to problems, if the neighbours are also outliers and thus

contribute into the median calculation. [@Sin19]

Another aspect of data cleaning is the identification of values, which are Not a Number or

NaN or NULL values. For this reason, the function in Listing 8 checks the whole dataset for

those missing values and return TRUE, if there are missing values and FALSE if the dataset is

cleared from those. If there are any missing values the simplest way to deal with those is the

deletion of those.

print('Dieser Datensatz hat NaN oder NULL Werte: ' +

str(combined.isnull().values.any()))

Listing 8 – Checking Dataset for NaN or NULL Values

Implementation

 Page 45

4.3.3 Feature Extraction

Feature Extraction describes the progress of making a dataset smaller and more convenient for

machine learning. With this process it is possible to reduce the number of features within a

dataset. This methodology is primarily used to only use features, which are most likely to im-

prove the accuracy of a machine learning model and reduce the training time simultaneously.

4.3.3.1 Pearson Correlation

As described in the chapter 3.3.1. the Pearson correlation calculates the correlation between

two variables. In the dataset of Glava there are eleven features in general. Listing 9 presents

how the Pearson correlation is calculated. With the function df.corr() it is possible to calculate

those correlations. The function is included in the pandas framework. Furthermore

#get correlations of each features in dataset

corrmat = df.corr(method=Feature_Selection_GLAVA.histogram_intersection)

top_corr_features = corrmat.index

plt.figure(figsize=(20,20))

#plot heat map

g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn")

Listing 9 – Pearson Correlation

Figure 17 represents the correlation from each feature of the Glava dataset to each other as a

heatmap. The figures within the heatmap diverge between -1 and 1. A high association to mi-

nus one represents a negative correlation. This means, that if for example the total amount of

energy in the system (Stot) increases, the corresponding figure grows in the negative way.

Features which are in the positive scale of the Pearson correlation grows in the same direction

as the observed value. If the relationship between two features is close to zero, there is no

immediate correlation between those figures. In the heatmap of Figure 19 the connection be-

tween two values is red, if the correlation is negative, green for a positive connection and yel-

low, if the combination of those features diverges to zero.

Out of those eleven features only seven have a high correlation to the Stot, which represents

the total amount of energy produced with the PV station. In this case the features Wind Direc-

tion, Precipitation and Barometric Pressure have a low impact on the output feature Stot. All

of those variables are close to zero with the Pearson correlation. But those attributes do not

only have a low impact on the energy output of the PV systems, but also on the other weather

Implementation

 Page 46

features. The Pearson correlation does imply, that the seven features, which are going to in-

fluence the machine learning model the most are: Temperature, Humidity, Wind Speed, Glob-

al Radiation, Radiation 30 Degrees, Radiation 40 Degrees and Indirect Radiation. All of

them, except of the Humidity have a positive Pearson Correlation, which means, that they are

grow in the same way as the attribute Stot. Humidity is the only feature, which has a high neg-

ative correlation. This means, that it grows in exact the opposite direction as Stot. This makes

sense because, when it is raining, there are also a lot of clouds, which affects the energy pro-

duction of solar panels. These results were produced with a limited dataset of one month in

the summer. The results could vary, with data from other seasons with more cloud occurrence.

For the interpolated dataset the results for the different features are mostly similar. Except,

that the amplitude is not so strong for each attribute. For example, the Humidity only received

a score of -0.53, instead of the -0.62 in the case of the Glava dataset.

Implementation

 Page 47

Figure 17 – Pearson Correlation Heatmap

4.3.3.2 Spearman Correlation

The Spearman correlation does, similar to the Pearson correlation, calculate the relation be-

tween two variables. As defined in chapter 3.3.2. the difference between the Spearman and

the Pearson correlation is, that it also considers a difference in the increase or decrease of the

two observed variables.

Implementation

 Page 48

for column in df:

 result = spearmanr(df[column],df['Stot'])

 print("Result " + str(df[column]) + ": " + str(result))

Listing 10 – Calculation of the Spearman Correlation

Listing 10 shows, how the Spearman correlation is calculated within the system. For this the

implementation of the Python library SciPy was used. This library contains many different

modules for i.e., optimization, linear algebra and interpolation. The function only needs all

values of the two different features to calculate their correlation to each other.

Table 5 – Spearman Correlation Results

Variable name Spearman Glava Spearman Interpolated

Temperature 0.633 0.571

Wind Direction 0.042 0.166

Wind Speed 0.584 0.304

Humidity -0.636 -0.591

Precipitation -0.042 -0.060

Barometric Pressure 0.087 0.051

Global Radiation 0.977 0.932

40 Degrees Radiation 0.959 -

30 Degrees Radiation 0.984 -

Indirect Radiation 0.883 -

Table 5 represents the results for each feature in both datasets. The results are mostly similar

to the ones from the Pearson Correlation. Except, that each result has a stronger amplitude in

the positive or negative direction. Only the wind speed shows a stronger difference between

the two tested datasets. But in general, the Spearman correlation suggests the same features.

4.3.3.3 Random Forest

As presented in the chapter 3.3.4. the random forest can be used for machine learning tasks,

but also for the feature extraction. In this implementation the ExtraTreeClassifier() function

from the python library Sklearn was used. This implementation uses the classification and

regression trees (CART) methodology to build the trees.

Implementation

 Page 49

Select X and Y

Y = df['Stot']

X = df.drop("Stot", 1)

lab_enc = preprocessing.LabelEncoder()

Y = lab_enc.fit_transform(Y)

extra_tree_forest = ExtraTreesClassifier(n_estimators = 15, criterion

='gini', max_features = 7)

extra_tree_forest.fit(X, Y)

Listing 11 – Random Forest Implementation

Listing 11 presents the implementation of the random forest. The first step is the division of

the dataset into X and Y. This means, that X represents the feature dataset which is going to be

evaluated if they have a correlation to the output value, which is embodied by Y. Afterwards

the random forest can be build up. There are three values which can be tweaked:

• n_estimators: described the number of trees which are going to be build

• criterion: measures the quality of the split, which includes the information gain

• max_features: number of features which are considered when looking for a split

In this case a number of 15 trees were chosen, because a higher number did not impact the

variance of the results in general. There are two functions available for the criterion function:

Gini and Entropy. Both work similar, except, that the Gini methodology does not require log-

arithmic functions for the computation, which makes it not as computational heavy as the en-

tropy. Because of this the Gini criterion function was chosen. For the number of features sev-

en were chosen, because of the previous testing the Pearson and Spearman Correlation.

Figure 18 presents the results of the random forest feature extraction. On the left side are the

results for the Glava dataset, which states, that the most important features are: Wind Direc-

tion, Temperature, Humidity, Global Radiation, 30 Degrees Radiation, 40 Degrees Radiation

and Indirect Radiation. This results almost reflects the outcome of the previous tests, except

for the Wind Direction and Wind Speed. For the interpolated dataset the results are almost the

same, but the informational gain for Wind Speed is rated higher than in the Glava dataset.

Implementation

 Page 50

Figure 18 – Random Forest Results (left: Glava Dataset, right: Interpolated Dataset)

4.3.3.4 Principal Component Analysis

The PCA methodology generates a subset of different features and analyses how well those

combinations work in correlation to the output feature. Because PCA converts high dimen-

sional datasets into low dimensional ones, there is no resemble of the output principles to the

real features anymore. If the results were used for the training and generating of machine

learning model, only those principles can be used and not the real features. Because of this

reason, the methodology was implemented but not used afterwards. Those principled could be

used in the ongoing project to test if those principles are generating better results.

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,

random_state=0)

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

pca = PCA()

X_train = pca.fit_transform(X_train)

X_test = pca.transform(X_test)

explained_variance = pca.explained_variance_ratio_

Listing 12 – Implementation of PCA

Listing 12 describes the implementation of the PCA. Fist different training and test datasets

have to be created. For this, the train_test_split() function of Sklearn were used. This function

has two variables: test_size and random_state. The first variable controls the size of the test

size and the second one sets, if there should be a random state within the datasets. Because

Implementation

 Page 51

time series data has to be in order, the random_state was set to zero. The next step scales the

data with the help of the StandartScaler() from Sklearn. This function scales each value in the

dataset individually by subtracting the mean and divides this new value by the standard devia-

tion. Afterwards the PCA function of Sklearn is used to generate the different principles of the

former dataset.

Figure 19 – PCA Results (left: Glava Dataset, right: Interpolated Dataset)

The results of the PCA shows, that in the Glava dataset there is one principal, which inherits

over 40 percent of the informational gain. The other nine principles only contain a gain of

close to ten percent and lower. For the interpolated data the informational gain of each princi-

ple is more distributed between them. This means, that if those principles were used for ma-

chine learning, there are more principles which can be ignored in the Glava dataset. This is

not the case for the interpolated dataset. The reason for this could be, that there are less fea-

tures in this dataset than in the Glava one.

4.3.3.5 Wrapper Feature Selection

The last feature extraction method is the wrapper selection. As described in chapter 3.3.5.

there are five different wrapper selection algorithms. For all of those different methodologies

the Python library mlxtend was used. This library is specialized in data science tasks. The user

of the system can choose between those five different methodologies or run all of them at the

same time. Listing 13 presents the implementation of those five wrapper methods. The first

three methodologies are using the SequentialFeatureSelector() method from mlxtend. This

method is a greedy search algorithm, which is used to reduce an initial d-dimensional feature

space and reduces it to a k-dimensional one. Where 𝑘 < 𝑑. For this task different estimator

classes can be used. For this task the LinearRegression() and the K-Nearest Neighbour() func-

tions from Sklearn were used as the estimators. The user of the system can also choose the

Implementation

 Page 52

number of features, which are going to be chosen with this methodology. The next two pa-

rameter forward and floating can be toggled between True and False. The forward variable

represents if the forward selection or the backward elimination is going to be chosen. With the

floating variable it is possible to activate the bi-directional wrapper selection.

sfs =

SFS(LinearRegression(),k_features=num_features,forward=True,floating=False,

scoring = 'r2',cv = 0)

sbs =

SFS(LinearRegression(),k_features=num_features,forward=False,floating=False

,cv=0)

sffs =

SFS(LinearRegression(),k_features=num_features,forward=True,floating=True,c

v=0)

efs = EFS(LinearRegression(),

min_features=1,max_features=num_features,scoring='r2',cv=10)

Listing 13 – Wrapper Feature Selection Implementation

The exhaustive feature selection is using the EFS function from mlxtend. This method is cre-

ating all possible subsets of the selected feature dataset evaluates over all of them. Because of

that, the runtime of this function is substantial longer than the normal wrapper feature selec-

tion with an average 43 seconds in comparison to two seconds for the other wrapper methods.

Table 6 – Wrapper Selection Results, Glava Dataset

SFS SBS Bi-Directional Exhaustive

Wind Direction Wind Direction Wind Direction Wind Direction

Temperature Temperature Temperature Temperature

Wind Speed Wind Speed Wind Speed Wind Speed

Global Radiation Global Radiation Global Radiation Global Radiation

Radiation 40 Degrees Radiation 40 Degrees Radiation 40 Degrees Radiation 40 Degrees

Radiation 30 Degrees Radiation 30 Degrees Radiation 30 Degrees Radiation 30 Degrees

Indirect Radiation Indirect Radiation Indirect Radiation Indirect Radiation

Table 6 represents the results of the feature selection for each method. Each row represents a

feature which was selected from all ten possible features. They are not in an increasing order

Implementation

 Page 53

of importance. As the table shows, are the results for each test exactly the same. But those

results show, that with the wrapper selection also the feature Wind Direction seems to have an

important role for the variable Stot. Those tests were made with the number of features set to

seven.

Figure 20 represents the performance of the SFS wrapper method. On the left side seven fea-

tures in total were selected and on the left side only six. It is visible, that the performance in-

crease of using seven features instead of six is marginally. The feature, which is not in the

subset of the six chosen features anymore is the Wind Direction. This means, that this feature

is more important than the other four, but only effects the performance slightly in general.

For the interpolated dataset only seven features in general were accessible. For this reason, a

subset of five features were chosen for the different wrapper methods. Surprisingly two fea-

tures, which were not visible during the testing of the Glava dataset, were chosen during the

tests with the interpolated data. Those features are the Barometric Pressure and the Precipita-

tion. Another difference is the result of the exhaustive feature selection. Here only a subset of

two features in total were chosen.

Table 7 – Wrapper Selection Results, Interpolated Dataset

SFS SBS Bi-Directional Exhaustive

Barometric Pressure Barometric Pressure Barometric Pressure Global Radiation

Temperature Temperature Temperature Temperature

Wind Speed Wind Speed Wind Speed -

Global Radiation Global Radiation Global Radiation -

Precipitation Precipitation Precipitation -

Figure 20 – SFS Wrapper Selection on Glava Dataset (left: seven features, right: six features)

Implementation

 Page 54

As Figure 21 presents, does the feature performance increase only slightly with the inclusion

of five features instead of four. Because of this reason the tests were repeated with only four

features and the Precipitation was the feature which was excluded this time.

Figure 21 – SFS Wrapper Selection on Interpolated Dataset (left: four features, right: five features)

4.3.3.6 Conclusion

The five different methods for feature selection conclude dissimilar results for the ten or sev-

en features in the two datasets. But not for all features. For example, the following features

are important in every of the conducted tests: Temperature, Global Radiation, 30 Degrees

Radiation, 40 Degrees Radiation, Indirect Radiation and Wind Speed. Because those features

are important in every feature selection test, those will be taken for the implementation of the

machine learning model. Furthermore, other paper like [ASM20] also did feature selection for

weather information in the case of PV outcome prediction. The weather information were

measured in the Applied Science Private University (ASU) in Amman, Jordan. At the same

location, where the PV stations are located.

Table 8 concludes their results for the correlation between weather information and PV station

energy outcome. The results conduct the same conclusion, that the solar radiance or irradi-

ance are the most important weather features for the prediction of PV station energy produc-

tion. Furthermore, the temperature and humidity also have a strong correlation with the output

value. In addition to that, there are two features in this paper, which are not available in the

Glava dataset: cloud type and dew point. Those features also have a strong correlation to the

PV energy outcome but could not be tested in the scope of this thesis, due to the limitations of

the datasets. There are two features, which are not comparable to the results shown above and

those are: precipitation and wind speed. In the feature selection tests the correlation or infor-

mational gain between precipitation and the PV system energy outcome was not relevant

enough in comparison to the other features. But in the testing of [ASM20] it shows a correla-

Implementation

 Page 55

tion of 0.3409, which does not coincide with the results of the preceding tests. The feature

wind speed does only have a correlation of 0.1970 in these testing, but reached i.e., a Pearson

correlation of 0.5 in the previous testing.

Table 8 – Feature Correlation [ASM20]

Variable name Correlation

Temperature 0.7615

Solar Irradiance 0.9840

Cloud Type -0.4847

Dew Point 0.6386

Humidity -0.4918

Precipitation 0.3409

Wind Direction 0.1263

Wind Speed 0.1970

Air Pressure 0.0815

Those inconsistences between the correlation of features can be observed, when the actual

weather data is perceived closely. The dataset which is used in the paper [ASM20] is collect-

ed throughout two years and also consist of all four seasons and their different seasonal ef-

fects on the weather.

Table 9 – Spearman Correlation, Yearly and Monthly Datasets

Variable name Spearman July Dataset Spearman Yearly Dataset

Temperature 0.633 0.734

Wind Direction 0.042 0.156

Wind Speed 0.584 0.256

Humidity -0.636 -0.467

Precipitation -0.042 -0.040

Barometric Pressure 0.087 0.241

Global Radiation 0.977 0.952

40 Degrees Radiation 0.959 0.961

30 Degrees Radiation 0.984 0.988

Indirect Radiation 0.883 0.808

Implementation

 Page 56

The data, which were used for the feature extraction in this paper consists only of weather

information of July for five years. It is possible, that the seasonality also changes those re-

sults. These changes can be observed in Table 9. It is clearly visible, that the feature wind

speed loses almost half of its importance. Also, the barometric pressure wins importance.

Only the precipitation is still irrelevant to the PV energy outcome. Precipitation can only oc-

cur, when there are also clouds. Because of that, the paper [IK18] researched the variability in

the data.

Figure 22 – Left: Cloudy Day, Right: Sunny Day [IK18]

Figure 22 displays this variability in the data of cloud coverage. The left image represents a

cloudy day and the right one a sunny day. Both cloud coverage forecasts result in completely

different PV energy outcome profiles. In general, those variabilities in the precipitation con-

cludes to a low correlation between the PV system energy outcome and this feature.

In summary, there are seven features, which are going to be used for the creation of the ma-

chine learning model for the Glava dataset: Wind Speed, Temperature, Humidity, Global Ra-

diation, 30 Degrees Radiation, 40 Degrees Radiation and Indirect Radiation. And for the

interpolated dataset the following features are going to be considered: Temperature, Wind

Speed, Global Radiation and Humidity.

Implementation

 Page 57

4.4 Machine Learning Model

There are different methodologies for the prediction of time series data. In the scope of this

master thesis three different kind of machine learning model are going to be used: Random

Forest, LSTM and Facebook Prophet. For each of those methods three kind of model were

created:

Table 10 – Machine Learning Model

Input Output

Weather features PV power outcome

Weather and PV Feature PV power outcome

Weather Features Weather Features

The following sub-chapter of the master thesis contains the implementation of the in chapter 3

mathematically explained model.

4.4.1 Random Forest

As described in chapter 4.3.3.3. random forest can be either used for classification i.e., feature

extraction, but also for regression. For the task of predicting time series data this characteristic

is needed. Listing 14 describes the implementation of the random forest prediction model. In

the first step of the training section the whole dataset is split up in X and Y. Furthermore, those

two separate datasets are split up into X_train, X_test, Y_train and Y_test. Whereas the train-

ing splits represent the dataset for the training and the testing ones the dataset for the testing

afterwards. To create those subsets of the dataset the function train_test_split() of Sklearn was

used.

The Sklearn function RandomForestRegressor() was used as the regression function. It inher-

its the same variables as the ExtraTreeClassifier(), used in the previous chapter to filter fea-

tures. For the evaluation of the machine learning model the metrics functions from Sklearn

were used. In detail the mean absolute error, mean squared error and the root mean squared

error, mean absolute percentage error and the 𝑅2 score. Afterwards the actual values are going

to presented overlapping the predicted ones for presentation purposes. The user of the system

can choose between creating different modes, for the three different machine learning model

and also for the two datasets.

Implementation

 Page 58

Training

X_train, X_test, y_train, y_test = train_test_split(X, Y,

test_size=test_size, shuffle=False)

regressor = RandomForestRegressor(n_estimators=2000, random_state=0)

regressor.fit(X_train, y_train)

y_pred = regressor.predict(X_test)

Evaluation

print('Mean Absolute Error:',

metrics.mean_absolute_error(test_list,pred_list))

print('Mean Squared Error:', metrics.mean_squared_error(test_list,

pred_list))

print('Root Mean Squared Error:',

np.sqrt(metrics.mean_squared_error(test_list, pred_list)))

print('Mean Absolute Percentage Error:' ,

(metrics.mean_absolute_error(test_list,pred_list)*100))

print('R2 Score:' , metrics.r2_score(test_list,pred_list))

plt.figure(figsize=(18, 6))

plt.plot(test_list, label='Actual Datapoint')

plt.plot(pred_list, label='RandomForestRegressor')

plt.tick_params(axis='x', which='both', bottom=False,

top=False,labelbottom=False)

plt.ylabel('Predicted ' + temp_list[i])

plt.xlabel('Time Steps')

plt.legend(loc="best")

plt.title('Regressor predictions and their average')

plt.show()

Listing 14 – Random Forest Regression Implementation

To find the best hyperparameter for a random forest, the Sklearn function Random-

izedSearchCV() was used. This function uses a grid of pre-defined hyperparameter ranges and

randomly samples each possible combination to find the best solution with K-Fold cross vali-

dation.

Listing 15 presents the creation of the grid, which consists of four adjustable variables:

n_estimators, max_features, max_depth and bootstrap. For each of those variables a pre-

defined range was selected. Afterwards a random forest is going to be filled with this grid and

the best solution for those variables are iterative selected.

Implementation

 Page 59

Hyperparameters

Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 10, stop = 2000, num =

2000)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(1, 110, num = 110)]

max_depth.append(None)

Minimum number of samples required to split a node

bootstrap = [True, False]

Create the random grid

random_grid = {

'n_estimators': n_estimators,

'max_features': max_features,

'max_depth': max_depth,

'bootstrap': bootstrap}

rf_random = RandomizedSearchCV(estimator = rf, param_distributions =

random_grid, n_iter = 1000, cv = 3, verbose=2, random_state=0, n_jobs = -1)

rf_random.fit(X_train, y_train)

best_random = rf_random.best_estimator_

Listing 15 – Hyperparameter Tuning Random Forest

For this task the RandomizedSearchCV() function selected the following variables as the best

solution:

Table 11 – Hyperparameter Tuning Results Random Forest

Variable Selected Value Previous Value

n_estimators 681 10

max_features auto auto

max_depth 108 50

bootstrap True True

Afterwards those results were compared with the previous used values for those variables.

The mean squared error of the previous model was 59.31 and with the new values set for the

variables, the error decreased to 43.20, which is an improvement of 27.16 percent.

Implementation

 Page 60

4.4.2 Facebook Prophet

With the Facebook Prophet library, it is possible to also make predictions on time series data.

The methodology was already explained in chapter 3.4.2. and this sub-chapter treats the im-

plementation of the three different machine learning model, which are going to be evaluated

in this master thesis.

The input structure of Facebook Prophet consists of two columns within the dataset: ds and y.

Because the Facebook Prophet model is implemented to use continuous datasets as an input

and performs poor with bigger gaps in between time steps, only one month of input data was

chosen.

The column ds describe the timestamp of each value. The date has to be in the correct Pandas

format. The second column y consists of the actual feature, which is going to be predicted.

The Listing 16 presents the restructuring of the Glava dataset. The user of the system chooses

a feature, which is going to be predicted. Out of the whole Glava dataset, with all features this

one is going to be selected and chosen as the y parameter. Furthermore, the date column of the

Glava column had to be adjusted. The Glava date timestamp includes the time zone, which is

not compatible with the structure of Facebook Prophet.

features_considered = [feature]

df = df[features_considered]

df = df.reset_index()

recreate the column names

df.columns = ['ds','y']

Removing the timezone from the date

df['ds'] = pd.to_datetime(df['ds'], format='%d-%b-%Y:%H:%M:%S' , utc=True)

df['ds'] = df['ds'].dt.tz_convert(None)

Listing 16 – Facebook Prophet Data Structure

The next step for the prediction with Facebook Prophet is the creation of the training and test

datasets, which is shown in Listing 17. Because Facebook Prophet always assumes that the

dataset is continuously, only one year of the six available were chosen. Otherwise, the results

of the prediction would be inconclusive. Afterwards a new Prophet-Object is going to be cre-

ated. For this the yearly_seasonality was set to False, because there is no seasonality in a da-

taset, consisting of only one month of values. In the end the historical dataset is going to be fit

in the Prophet model.

Implementation

 Page 61

Creating the test and training data

print("Creating the test and training sets")

train = df[(df['ds'] >= '2019-07-01') & (df['ds'] <= '2019-07-31

23:00:00')]

test = df[(df['ds'] > '2019-07-31')]

m = Prophet(yearly_seasonality=False)

print("Fitting the Regressors into the model!")

m.fit(train)

Listing 17 – Facebook Prophet Fitting the Model

After the model is fitted into the Prophet model, it is possible to create a prediction out of it.

For this, the function make_future_dataframe() was used to create a new dataframe which

also extends into the future. This function requires a period and a frequency. In the Listing 18

a future dataframe consisting a forecast of 24 hours in the future is going to be created. Af-

terwards the prediction is going to be executed with the predict() function. For each row in the

future dataset a predicted value is going to be assigned. The prediction returns three different

variables: yhat, yhat_lower and yhat_upper. Where yhat represents the actual predicted value

and the other two contain the upper and lower border for the uncertainty interval.

future = m.make_future_dataframe(periods=24, freq='H')

forecast = m.predict(future)

forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

fig1 = m.plot(forecast)

fig2 = m.plot_components(forecast)

print("Cross Validation: ")

cv_results = cross_validation(model = m, horizon ="24 hours")

df_p = performance_metrics(cv_results)

print(str(df_p))

fig3 = plot_cross_validation_metric(cv_results, metric='mape')

Listing 18 – Facebook Prophet Creating the Model

Furthermore, the Facebook Prophet library contains the functionality of cross-validate the

predictions. For this the function cross_validation() was used. This function needs the trained

model, an initial span of data from the dataset, a horizon and a period. Figure 23 presents,

how those variables are distributed in the dataset. The initial variable is the initial training

period, the horizon is the forecast horizon, and the period is represented by cutoff in the Fig-

ure 23. For the validation only the horizon has to be set, the others are going to be determined

Implementation

 Page 62

automatically. The initial training period is set three times the horizon and the period is creat-

ed for every half a horizon.

Figure 23 – Facebook Prophet Cross-Validation [@Pro20]

Because those functionalities are only working for univariate datasets, a workaround had to be

implemented. For each new feature, which is going to be included in the prediction a new

regressor had to be included in the Facebook Prophet model. Furthermore, those regressors

already need to be future values. Because there are no future values for those features in the

dataset, they had to be predicted beforehand with the same methodology as for the univariate

presented previously. For this the iterative function create_future_feature() was created.

future_dict = create_future_feature()

data.columns = ['ds','y','Temperatur', 'Humidity' , 'Wind Speed','Global

Radiation', 'Indirect Radiation','30 Degrees Radiation', '40 Degrees

Radiation']

m.add_regressor('Temperatur')

m.add_regressor('Humidity')

m.add_regressor('Wind Speed')

m.add_regressor('Global Radiation')

m.add_regressor('Indirect Radiation')

m.add_regressor('30 Degrees Radiation')

m.add_regressor('40 Degrees Radiation')

Listing 19 – Facebook Prophet Multivariate Prediction

Afterwards the different columns of the Glava dataset are going to be added and named after

the naming conventions of Facebook Prophet, where y represents the output feature. Each of

Implementation

 Page 63

the pre-predicted features are then added to the Prophet model with the add_regressor() func-

tion. The fitting, creation of the model and the prediction afterwards is working in the same

way as in the case of the univariate prediction.

For the hyperparameter tuning of the Facebook Prophet machine learning model a similar

approach as the one from random forest is used. First a parameter grid has to be created with

the possible variables. For the Prophet framework, the number of parameters, which can be

observed is limited. Only the following parameter can be checked:

• Changepoint_prior_scale: Describes the flexibility of the trend and how much the

trend changes the observed value.

• Seasonality_prior_scale: This parameter controls the flexibility of the seasonality.

• Holidays_prior_scale: This controls the flexibility to fit holiday effects.

Afterwards all combinations of the parameters are going to be created and for each combina-

tion a new model is trained. The results are stored in an array and the best result is presented.

param_grid = {

'changepoint_prior_scale': [0.001, 0.01, 0.1, 0.5],

'seasonality_prior_scale': [0.01, 0.1, 1.0,5.0, 10.0],

'holidays_prior_scale' : [0.01,0.1,1.0,5.0,10.0]

}

Generate all combinations of parameters

all_params = [dict(zip(param_grid.keys(), v)) for v in

itertools.product(*param_grid.values())]

rmses = []

Use cross validation to evaluate all parameters

for params in all_params:

 m = Prophet(**params).fit(df) # Fit model with given params

 df_cv = cross_validation(m, horizon='24 hours', parallel="processes")

 df_p = performance_metrics(df_cv, rolling_window=1)

 rmses.append(df_p['rmse'].values[0])

best_params = all_params[np.argmin(rmses)]

Listing 20 – Hyperparameter Tuning Facebook Prophet

As Table 12 presents, there are three parameters, which can improve the performance of the

model in general. Especially the holidays_prior_scale changed from 10 to 0.01. This could

Implementation

 Page 64

be, because Prophet assumes a dataset in a yearly manner and the Glava dataset only consists

of data from one month.

Table 12 – Hyperparameter Tuning Facebook Prophet Results

Variable Selected Value Previous Value

Changepoint_prior_scale 0.01 0.05

Seasonality_prior_scale 10 10

Holidays_prior_scale 0.01 10

Both variants were used to compare the quality of the prediction. With the new parameters a

mean squared error of 33.90 was achieved. The previous model with the default values was

only minor worse than the new model with a MSE of 33.95. Those results come to the con-

clusion, that the three adjustable parameters, do not have such a high impact on the prediction.

Mainly, because those variables primarily target effects of seasonality or holidays on the da-

taset. Those effects are not visible in the observed dataset.

4.4.3 LSTM

The methodology of LSTM machine learning model was already introduced in chapter 3.4.1.

and this sub-chapter implies the implementation. For a variation of testing scenarios, a total of

18 different kinds of LSTM model were made. As presented in Table 10, there are three com-

binations of input and output features. In addition to that, three implementations of the LSTM

model itself were produced. For the simplest one only a single LSTM-Layer in combination

with a dense-Layer were used. The more complex one inherits multiple stacked LSTM-Layer.

The last one introduces the usage of bi-directional LSTM-Layer.

For the implementation of a LSTM network is divided in three steps: preparing the dataset for

the usage of a LSTM machine learning model, defining and fitting the model and the last step

is the hyperparameter tuning and evaluation of the specific model.

Implementation

 Page 65

Load the Dataset

df = Training_Model.loading_dataframe(filepath)

Normalize the Dataset

scaler = MinMaxScaler(feature_range=(0,1))

df = scaler.fit_transform(df)

Create the training and testing Dataset

x_train_multi, y_train_multi = Training_Model.multivariate_data(df[:,0:8],

df[:,7:8], 0,TRAIN_SPLIT, past,future, STEP)

x_val_multi, y_val_multi = Training_Model.multivariate_data(df[:,0:8],

df[:,7:8],TRAIN_SPLIT, None, past,future, STEP)

Listing 21 – LSTM Data Preparation

Listing 21 presents a sample preparation of the Glava dataset for the training of a LSTM

model. After the model was loaded, all the values within that dataset has to be normalized.

For the normalization, the Sklearn function MinMaxScaler() was used. The theory of this

scaler was described in chapter 3.2.3 with the equalization (5). For the training a total of four

subsets of the whole dataset have to be created. For the training and testing each two separate

datasets for the input and output have to be constructed. For the construction of multistep and

multivariate datasets the function multivariate_data() was created. This function just needs

the input and output shape, what sizes the different datasets need and the step. The step char-

acterises in this case, in what timesteps it samples the data.

Implementation

 Page 66

multi_step_model = tf.keras.models.Sequential()

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=False,input_shape=x_train_multi.shape[-2:])))

multi_step_model.add(tf.keras.layers.RepeatVector(output))

multi_step_model.add(Dropout(0.2))

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=True)))

multi_step_model.add(Dropout(0.2))

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=True)))

multi_step_model.add(Dropout(0.2))

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=True)))

multi_step_model.add(Dropout(0.2))

multi_step_model.add(tf.keras.layers.Dense(x_train_multi.shape[2]))

optimizer = tf.keras.optimizers.RMSprop(lr=0.003, clipvalue=1.0)

multi_step_model.compile(loss = "mse", optimizer = optimizer, metrics =

['mae', 'mse', 'mape', 'rmse'])

Listing 22 – LSTM Model Definition

After the different training and validation datasets were created, the next step is the definition

of the machine learning model. Listing 22 describes the definition of a stacked LSTM ma-

chine learning model with four bi-directional LSTM-Layer. As defined in chapter 3.4.1 the

LSTM-Layer contain internal activation functions (tanh and as a recurrent activation the sig-

moid function) and thus the LSTM-Layer do not need additional activation functions. The 32

parameter describes the dimensionality of the output space.

As a model type a sequential model was chosen. After testing different combinations with the

parameter return_sequences from the LSTM-Layer and the RepeatVector() layer of Keras, the

best results resulted with the usage of a RepeatVector() after the first LSTM-Layer and after-

wards use the return_sequences statement. To reduce overfitting the model the additional lay-

er Dropout() was used.

The last layer, which is used for the bi-directional LSTM model, is the Dense-Layer. With the

help of this last layer, it is possible to reduce the number of input data to a specific number of

output values. In the case of Listing 21 it is possible to reduce the number of features, which

are outputted to the same amount of input features.

Afterwards the optimizer is defined. There are several optimizers available with the Keras

framework [@Ker20], but for the usage of LSTM machine learning model the Adam optimiz-

er outperforms the other ones [@Seb20]. The same behaviour was visible during the creation

Implementation

 Page 67

of the different LSTM model. To reduce or overcome exploding gradients within the LSTM

model also the clipvalue parameter was set.

Exploding gradients is the problem, when the weights of the machine learning model con-

verge to a value greater than one. Because in that case, the subsequent multiplications be-

tween and within the layer will increase the gradient exponentially. This is the opposite of the

vanishing gradient, where the values become too small. [MAB20]

The last step is the compiling of the machine learning model. For this, the compile function of

Keras was used. It needs a loss function, an optimizer and an error metric. As a loss function

the mean squared error was used and the previous explained optimizer. For the evaluation of

the performance four different metrics were used. The mathematical explanation of those met-

rics took place in chapter 3.5. The 𝑅2 evaluation metric is not supported within the Keras

framework and thus was used in the evaluation later on.

Afterwards the compiled LSTM model can now be fitted, which is presented in Listing 23.

The fit() function needs several input variables to kick off the training: the training and valida-

tion datasets, the amount of epochs and steps. Furthermore, it is possible to create callbacks,

which are able to trigger actions during the various stage of the training. Here one callback for

the earlystopping was created. This callback checks for each epoch in the training, a specific

monitor. In this case the validation_loss was observed. Furthermore, the parameter patience

can be adjusted, which adds a delay to the cancellation of the training. If the argument re-

store_best_weights was set to True, the weights from previous epochs with the best value is

chosen and maybe not the ones from the actual epoch.

early_stopping = EarlyStopping(monitor='val_loss', patience = 3,

restore_best_weights=True)

multi_step_history = multi_step_model.fit(train_data_multi,

 epochs=EPOCHS,

 steps_per_epoch=EVALUATION_INTERVAL,

 validation_data=val_data_multi,

 validation_steps=EVALUATION_INTERVAL,

 verbose=1,

 callbacks=[early_stopping])

Listing 23 – LSTM Model Fitting

For the hyperparameter tuning of the LSTM model, the library Kerastuner was used. With

this library it is possible to evaluate the number of units within each layer and the learning

rate. Listing 24 presents the implementation of the Hypermodel. This special model represents

the future structure of the real model. There are only minor differences between this model

Implementation

 Page 68

and the actual one. The first difference is that the first layer does not need the input shape of

the dataset. Secondly the observed parameter units and learning_rate now contain a range of

possible values instead of a fixed one.

def build_model_small(hp):

 multi_step_model = tf.keras.models.Sequential()

 multi_step_model.add(tf.keras.layers.LSTM(units =

hp.Int('units',min_value=32,max_value=512,step=32),return_sequences=False))

 multi_step_model.add(tf.keras.layers.RepeatVector(output))

 multi_step_model.add(tf.keras.layers.LSTM(units =

hp.Int('units',min_value=32,max_value=512,step=32),

activation='relu',return_sequences=True))

 multi_step_model.add(tf.keras.layers.Dense(1))

 multi_step_model.compile(loss = "mse", optimizer =

keras.optimizers.Adam(hp.Choice('learning_rate',values=[1e-2, 1e-3, 1e-

4])), metrics = ['mae', 'mse'])

Listing 24 – LSTM Model Hyperparameter Tuning Hypermodel

After the creation of the Hypermodel, the tuner for the hyperparameter tuning is going to be

defined. For this the framework pre-defines four different tuners: RandomSearch, Hyperband,

BayesianOptimization and Sklearn.

bayesian_opt_tuner = BayesianOptimization(

 Training_Model.build_model_big,

 objective='mse',

 max_trials=3,

 executions_per_trial=1,

 overwrite=True,

 directory=os.path.normpath('BIG'))

bayesian_opt_tuner.search(x_train_multi,

y_train_multi,epochs=EPOCHS,validation_split=0.2,verbose=1)

bayesian_opt_tuner.get_best_hyperparameters()[0].values

bayesian_opt_tuner.get_best_models()[0].summary()

Listing 25 – LSTM Model Hyperparameter Tuning Tuner

For the evaluation of the best parameters the Bayesian optimization was used, as presented in

Listing 25. The objective describes the metric to maximize or minimize, which is the mean

square error in this case. The max_trials parameter defines the number of model configura-

Implementation

 Page 69

tions are tested at most. If the search space is exhausted, the tuner will stop the search before

reaching the pre-defined value. Execution_per_trial is the number of models that should be

built and fit for each trial. The Boolean overwrite reloads an existing hyperparameter project,

if there was one created beforehand. And the last parameter directory sets the path where the

results of the hyperparameter testing are stored.

Table 13 – Hyperparameter Tuning LSTM Results

Variable Selected Value Previous Value

Units 63 32

Learning Rate 0.001 0.003

Table 13 presents the results of the hyperparameter tuning. The results suggest a number of

units for each LSTM-Layer of 63, instead of the previous used 32. For the learning rate, it

proposes a decreasing from 0.003 to 0.001. Both options were afterwards tested with the

training dataset. The model with the new selected parameters achieved a mean squared error

of 22.41 and the previous one had an MSE of 28.20 for the prediction. That is an improve-

ment of 20.53 percent.

Evaluation

 Page 70

 Evaluation

In this section, we evaluate our approaches focussing on prediction quality of the different

models. In addition, we evaluate the impact of using interpolated data on prediction quality.

For the evaluation of the different models, we use metrics presented in chapter 3.5. Further-

more, a window size analyzation and a walk-forward cross validation of the training and test

datasets was performed.

In addition to that, the dataset with the actual weather information from Glava was bench-

marked against the interpolated weather information from the other dataset. For the compari-

son of each model the datasets used in this work are normalized with the MinMax-Scaler.

That means, that also the calculated MSE is presented as normalized in the end.

5.1 Window Size Analysis

For each of the in chapter 4.4 presented machine learning model a window size analysis was

carried out. The general assumption is, that the greater the window size of the training data,

the better the performance of the actual machine learning model. [KU18]

The window size of the training dataset was set between 5 and 95 percent of the whole da-

taset. For each step, the amount of data in the training dataset was increased by five percent.

Figure 24 – Training Dataset Analysis

Evaluation

 Page 71

Figure 24 presents the effect of the increasing amount of data within the training dataset. The

MSE was calculated between the actual and interpolated values, which are normalized accord-

ing to (5). The impact of a training dataset lower than 50 percent is clearly visible on the

LSTM model. Afterwards, with a bigger dataset the prediction error stabilized itself. Whereas

the Facebook Prophet model only show an unstable state at the beginning, with a small da-

taset for the training. After the data within the training set increased to over 20 percent, the

prediction error is stabilizing. For the random forest, the fluctuation of the mean squared error

is unstable for most of the time and behaves in a similar way as the LSTM model. The model

stabilizes itself with a training dataset over 65 percent.

5.2 Walk-Forward Cross Validation

The walk-forward cross validation is an important evaluation method, which is especially

useful for time series data, where the order of the data is mandatory. Figure 25 illustrates the

functionality of this methodology. Each row represents the whole possible time steps. In the

first row, only six time steps (blue dots) were used as a training dataset to predict the next

timestep (red dot). After each step the amount of data in the training set is increased by one

time step. It is also possible to create bigger steps than singular ones.

Figure 25 – Walk-Forward Cross Validation [HA18]

The performance of each machine learning model was measured with MSE between the pre-

dicted and the actual values for each step in the cross validation. As mentioned previously, a

bigger step count was chosen for the cross validation. In this test scenario for each iteration

the step was increased by two hours until the prediction horizon reached 24 hours, with a da-

taset which contains hourly data. Figure 26 describes the different errors of each machine

learning model during the different periods. For the cross validation of the LSTM and the

random forest the whole dataset was used. Because the dataset contains six months of data

Evaluation

 Page 72

with 31 days, a total of 4464 time steps were available for the cross validation. For the Face-

book Prophet model only one month of data was used, because of the limitations of the

framework with gaps within the continuous dataset as described in chapter 4.2.2. The Face-

book Prophet model is completely stable during the cross validation. But in general, the MSE

shows, that it does not perform as good as the other two methodologies. Normally, machine

learning model do perform worse, the higher the prediction horizon is set. This behaviour is

visible in the representation of the LSTM model with an increasing horizon. But at a horizon

of 12 hours, the error decreases again. This behaviour of LSTM model with an increasing

horizon is also visible during the experiments in [BFO18]. The random forest model has the

lowest error from the three machine learning techniques used. Furthermore, the error increas-

es when the forecast horizon is extended, but not as massive, as the LSTM model in the be-

ginning.

Figure 26 – Walk-Forward Cross Validation

5.3 Ex-Ante Forecasting Performance

This sub-chapter introduces the evaluation of the performance of the different machine learn-

ing model. The machine learning model use previous observations of 120 hours, which are

five days, to predict the next 24 hours. This process of only use existing information of the

data is called Ex-Post. The opposite methodology is Ex-Ante. With this methodology observa-

tions, which extends beyond the time steps of the executed forecast are used for the predic-

tion. An example for these terminologies is that, in the case of Ex-Ante, the machine learning

Evaluation

 Page 73

model is predicting over test data, which it has not seen before. While with the Ex-Post meth-

od, the model predicts over a dataset, which is known by the model itself.

5.3.1 Evaluation of the Residuals

Residuals describe the difference between the actual observations and the forecasted values.

This distribution of the residual describes whether a model has adequately learned all infor-

mation within a given dataset. A well-trained forecasting should have a residuals outcome

with the following properties [KU18]:

• The residuals should be uncorrelated

• The residuals should be normally distributed

• The residuals should have a mean of zero

Figure 27 – Residual Distribution (left: Facebook Prophet, right: LSTM)

Figure 27 presents the residual distributions of the Facebook Prophet and LSTM model. The

Y-axes describes the frequency of the residual and the X-axes the residual itself. Both ar-

rangements have a normal distribution and a mean around zero which propose that the models

do not have any correlation between the residuals. But both residual graphs have a moderate

left tail.

Evaluation

 Page 74

Figure 28 – Facebook Prophet Ex-Ante Forecasting Performance

Figure 28 shows the prediction of the Facebook Prophet model. The Y-axes represents the PV

station energy production. In general, the predictions are close to the actual values of the da-

taset. In addition to that the framework creates an upper and lower interval for each time step,

which is represented by the light-blue areas in the graph. The blue wave line is the predicted

forecast, and the black dots show the actual datapoints. The forecast horizon is 24 hours,

while the graph also shows the results of the training.

The prediction of the bi-directional LSTM model in Figure 29 also shows the 24-hour predic-

tion. The red dots represent the predicted values and the blue ones the true values. It shows

that the algorithm learned the pattern well, but with sudden changes within the dataset it

struggles.

Figure 29 – Bi-Directional LSTM Forecasting Performance

Evaluation

 Page 75

5.3.2 Evaluation of Forecasting Performance

For the uncertainity of the prediction of renewable energy production, two different datasets

were compared. In general, two sets of machine learning model were created. One with the

precise weather information and one with the interpolated ones. For the prediction each of the

created model received both of the datasets individually, which is presented in Table 14. That

means, that i.e., the model trained with the actual weather information made a prediction with

the same dataset it was trained on and with the predicted dataset. These test-cases were creat-

ed, because not every household in a smart grid has a corresponding weather station and the

usage of interpolated data is needed, which may lead to an uncertainity in the prediction.

Table 14 – Combinations of Input and Output Features

Model Training Input Training

Output

Prediction Input Prediction

Output

Model A WI Actual PV Actual WI Actual PV Actual

Model B WI Actual PV Actual WI Interpolated PV Actual

Model C WI Interpolated PV Actual WI Interpolated PV Actual

Model D WI Interpolated PV Actual WI Actual PV Actual

Furthermore, for each model presented in Table 14, three different model were created. The

three test scenarios are:

• PVALL: Contains all weather information and the past PV energy output and

predicts the future PV energy outcome

• PVWeather: Contains all weather information and predicts the future PV energy

outcome

• Weather: Contains all weather information and predicts each of them. The

weather information are: Temperature, Wind Speed, Humidity,

Global Radiation, Indirect Radiation, 30 and 40 Degrees Radiation

In total 36 different machine learning model were created and evaluated, 12 for each machine

learning model type. Figure 30 presents the results of each of the previously explained model

with random forest, as the prediction model.

Evaluation

 Page 76

Figure 30 – Random Forest – Performance Results

The prediction of PVALL with random forest achieves a better MSE, than the PVWeather

model, which only uses the weather information without the past PV energy outcome. For the

prediction of the weather features the results vary from each feature. The forecast of the glob-

al radiation, humidity and the temperature were predicted mostly accurate, with the exception,

that the temperature prediction with the interpolated model performed bad in this case. For

both prediction types, the forecast of the wind speed turned out to perform even worse. In

general, it is visible, that the prediction with the actual weather information performs better

than the interpolated information, with an increasement of 16 percent of the normalized MSE.

 Furthermore, the error increases in small amounts, when the i.e., interpolated dataset was

used for a model which was trained on the precise weather information.

The prediction of all twelve variations for the forecast of the PV energy outcome and the

weather information with Facebook Prophet are visible in Figure 31.

Evaluation

 Page 77

Figure 31 – Facebook Prophet Performance Results

The prediction of the Facebook Prophet machine learning model performs more stable with

the interpolated data, than the random forest model. This is evident from the Figure 31, which

shows the difference of the prediction on the two datasets with the Facebook Prophet model

presented in chapter 4.4.2. Almost every iteration of the sample prediction leads to the same

MSE.

Figure 32 – LSTM Performance Results

Evaluation

 Page 78

The last model, which was also evaluated with the same test-scenarios, is the LSTM machine

learning model. For these tests the, in chapter 4.4.3 presented, bi-directional LSTM model

was used because this model predicted the forecasts with the lowest error between the differ-

ent LSTM model. In general, the pattern of the different errors for each model look similar to

the calculated errors of the random forest prediction. Except, that the errors of the LSTM

models are in average higher. But the difference of the performance between the interpolated

weather information and the precise ones only concluded to an increase of the normalized

MSE of 14 percent, which is better than the result from the Random Forest model.

5.3.3 Effects of Seasonality

In addition to the uncertainity of forecasting renewable energy between accurate and interpo-

lated weather information another aspect is the seasonality of the weather in general. Each

season of the year has a strong impact on the weather and the corresponding energy produc-

tion with renewable energy sources like PV stations. Because the datasets used for the fore-

casting in the previous chapter contained only monthly observations during the summer sea-

son, the LSTM model was used in this test scenario for the prediction of a dataset, which in-

herits data from the winter season.

More accurate, the dataset consists of the two months October and November in 2020 in an

hourly basis. Figure 33 presents the results of the comparison between using seasonal data,

which correspond to the training data and observations from a different season. The normal-

ized MSE for the LSTM model increases 0.24 percent to 0.41 percent for the prediction of

PVALL and has an even stronger deviation in the case of the prediction of the feature humidi-

ty, where the MSE increases from 0.24 percent to 0.58 percent.

Evaluation

 Page 79

Figure 33 – Seasonality Comparison

Discussion

 Page 80

 Discussion

This section of the master thesis aims to discuss the studies from the previous chapter. Which

introduced results from the forecasting applied on two different datasets. Furthermore, the

objective fulfilment of the topic of the master thesis is another part of the discussion.

6.1 Forecasting Performance

The objective of this master thesis was the evaluation of the uncertainity of predicting renew-

able time series data with machine learning. To measure this uncertainity and also the perfor-

mance of the machine learning model different approaches like performance metrics to meas-

ure the given error, walk-forward cross validation and the usage of residuals were used. To

measure the error difference between interpolated and actual weather information 36 test sce-

narios were created. Those are specified in chapter 5.3.2. Furthermore, a comparison between

the prediction of weather information from a specific time to another season was performed.

For the walk-forward cross validation an average MSE score of 0.55 was measured for the

Facebook Prophet. For the random forest, the cross validation resulted in a score of 0.15 and

for the bi-directional LSTM 0.37. The bad score of the Prophet model concludes out of the

less training dataset and the non-continuous dataset used for the testing. To increase the per-

formance of each machine learning model in general, hyperparameter tuning was performed.

For the LSTM model an improvement by 20.53 percent was achieved. The tuning for the ran-

dom forest model was also increased by 27.16 percent. Only the tuning for the Prophet model

did not work as intended. The adjustable hyperparameter from Prophet are only for seasonali-

ty and holidays, which are not existing in the used dataset.

For the difference on the performance of interpolated and accurate weather information, the

Random Forest performed 16 percent worse with the interpolated dataset. In comparison, the

difference for the LSTM model was two percent less, with an increase of the normalized MSE

of 14 percent.

Table 15 – Performance Comparison between Actual and Interpolated Data

Model PVALL PVWeather Weather

Interpolated Random Forest + Actual Data -51% -52% -9.5%

Actual Random Forest + Interpolated Data -22% 21% 16%

Interpolated Prophet + Actual Data -2% 0% 0%

Actual Prophet + Interpolated Data 0% 0% 0%

Interpolated LSTM + Actual Data -16% -49% -22%

Actual LSTM + Interpolated Data -12% -16% -28%

Discussion

 Page 81

In addition to that, the models were cross tested with the two datasets. That means, that the

trained model was i.e., trained with the actual weather information of the Glava energy centre

and afterwards fed with the interpolated dataset and vice versa. Moreover, the general MSE of

the different models trained with the actual and interpolated data were compared. Table 15

presents the performance comparison between the usage of the opposing dataset for the pre-

diction. As mentioned in chapter 5.3.2 the performance decreases in general. A negative per-

centage in the table means, that the performance dropped by that amount and the other way

around. Especially the usage of the interpolated data on a model trained on actual weather

information resulted in a decrease of the performance by around 50 percent at some instances.

The only model, where the usage of the other dataset did not infect the performance was the

Facebook Prophet model.

The experiment of using a dataset from another season of the year also concluded in an in-

crease of the MSE. The dataset was from the winter season, with the months October and No-

vember, which show different weather conditions, than the summer season from the training

dataset. The increasement of the normalized MSE for the different seasons ranged between 20

and 50 percent. This behaviour of the seasonality could be overcome by using a machine

learning model which was trained with data from the whole year or seasonality models. Fur-

thermore, seasonality can be used or removed to increase the performance of the machine

learning model. [Bro17b]

6.2 Objectives and Scope fulfilment

At the beginning of the master thesis, the objectives and scope of the work was set in chapter

1.4. For the first step a pipeline had to be implemented, which starts at the acquirement of the

data and ends in a finished machine learning model with the option to evaluate the created

model. The first step was the automatic call of the Glava database to receive the necessary

weather and PV energy information. This data was collected via the web API of the Glava

Energy Center. In the beginning the data had to be collected manually through the Metrum

software. As stated in chapter 4.2, the output file was corrupted after every export. For that

reason, the usage of the web API was mandatory, which also allowed an automatic download

from the Glava database to the university server.

The next step was the data preparation, which is introduced in the chapter 4.3. The first step

was the combining of the different data sources into one file. Afterwards the data had to be

cleared from outliers and not existing values. As presented in chapter 4.3.2, the dataset had

some values, which do not correlate with the rest. With the usage of winsorization, the data-

points for each feature seemed reasonable in comparison to the neighbour datapoints.

Discussion

 Page 82

In Addition to the data preparation the different features of the dataset also had to be evaluat-

ed. The different methodologies in chapter 4.3.3. proved, that the features precipitation, bar-

ometric pressure and wind direction contain the least informational gain and for that reason,

they were excluded from the dataset afterwards.

The next step of the pipeline was the creation of the three different machine learning model.

As described in the previous chapter, the performance of those models was increased with the

usage of hyperparameter tuning. For the implementation of the random forest and the LSTM

model the frameworks Keras, TensorFlow and Sklearn were used, which are well established

machine learning frameworks. The last machine learning model was created with the Face-

book Prophet framework, which only needs the preparation of the dataset from the user. The

rest of the creation of the model is handled by the framework itself.

In addition to that, also a comparative analysis of the forecasting methods was performed. The

different models were compared in their performance among each other with methods de-

scribed in chapter 5. Furthermore, their performance with different training and prediction

input data was examined.

Research Objectives

How can the PV system energy outcome be proactively determined using machine learning

model and weather information?

The first step was the framing of the problem as a supervised learning problem. That means,

that the model is learning a function that maps a predefined input to an output. The model

infers from labelled training data. The input data consists of a sequence of previous time se-

ries observations and the output represents the next x timesteps. With this structure it is possi-

ble to preserve the structure and order of the data, which is needed for time series data.

For the prediction of the PV energy outcome, not only the past energy outcome is a good in-

dicator for future outcome, but also the current weather information. For that reason, also a

good forecast of the weather information and the usage of those information for the prediction

of the PV system energy outcome is needed.

Do interpolated weather information affect the future prediction of PV energy outcome?

One objective of this master thesis was the comparison of the usage of weather information,

which were accumulated directly at the PV station and interpolated ones. For that reason, each

of the three used machine learning model were once created and tested with the accurate da-

taset and a second pair with the interpolated dataset. Furthermore, the difference in the per-

formance was also measured with three different types of input and output. The different

Discussion

 Page 83

types are presented with Table 14. The results of those tests came to the conclusion, that in

general, the usage of an interpolated dataset effects the performance. In addition to that the

tests yielded, that the usage of interpolated data for the prediction on a model, which was

trained with the accurate dataset, also the performance drops.

Conclusion

 Page 84

 Conclusion

In resemblance of the objectives from chapter one, a study on the forecasting of PV systems

energy outcome was undertaken. The studies on this machine learning task are part of the

forecast of time series data, which have some special requirements to the machine learning

model. Furthermore, different data preparation techniques like the winsorization or normaliza-

tion were used to prepare the dataset for the next tasks. These methodologies were especially

needed for the Glava dataset, because these data structures inherit some outliers, which could

result into a worse performance in general.

The dataset of the weather information consists of many different features, which had to be

evaluated in the regard of the importance to the outcome of the prediction. Each of the fea-

tures was compared to their specific informational gain for the prediction of the PV system

energy outcome. In general, only seven out of the eleven available features from the Glava

dataset were chosen, because the others only had a low effect on the prediction. For the de-

termination of these features different techniques were used, which are presented in chapter

3.3.

For the prediction of the future PV system energy outcome three different techniques were

developed, as presented in chapter 4.4. Each of them was trained on the same dataset of

weather and PV information, except the Facebook Prophet model, because it only perfor-

mance well with continuous datasets. The LSTM and also the random forest models experi-

enced a performance boost with the usage of hyperparameter tuning with a decreasement of

the MSE of 20.53 percent for the LSTM model and 27.16 percent for the random forest.

The evaluation results presented in chapter 5 presents, that in total the random forest model

outperforms the other two machine learning model with an average MSE of 0.15. In compari-

son the bi-direction LSTM model achieved a MSE score of 0.37 and the Facebook Prophet

model 0.58. But in general, the Facebook Prophet model could achieve a better prediction

with more continuous data for the training. Furthermore, the results of the different input data

show, that the prediction results are strongly affected by the accuracy of the weather infor-

mation, which makes the prediction with interpolated data more uncertain. In addition to that

uncertainity, the different seasons of the weather also play a big part in the uncertainity. As

presented in the Figure 33, a model trained with yearly data for the summer had problems

with the prediction using weather information from the winter season.

7.1 Future Work

For the extension of the work presented in this master thesis, the first step could be the usage

of different inputs for the weather information. Because some of the weather information

from the Glava dataset had many errors within it, which had to be cleaned. Furthermore, dif-

Conclusion

 Page 85

ferent ranges for the interpolated data could be worth to be invested. For the scope of this the-

sis, the interpolated data was taken from a weather station at the Karlstad centre, which is a

distance of around 70 kilometres.

In addition to that, different machine learning model could be trained with a longer continu-

ous time range, to fetch the seasonal effects of the weather to the PV energy outcome. The

other option could be the training of several seasonal models.

Conclusion

 Page 86

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to my research pro-

fessor Dr. Andreas Kassler and Dr. Andreas Theocharis, for giving me the opportunity to do

the research for this master thesis and providing me with invaluable guidance throughout this

research. It was a great privilege and honour to work and study under your guidance. I would

also like to thank you for your friendship, empathy and great sense of humour.

Furthermore, I would like to thank my project partner Viviana Raffa for all the great hours

together in CARL.

Conclusion

 Page 87

VI Bibliography

[@Ch18] A. Choudhary: Generate Quick and Accurate Time Series Forecast using Face-

book Prophet. https://www.analyticsvidhya.com/blog/2018/05/generate-

accurate-forecasts-facebook-prophet-python-r/, last viewed: 25.11.2020.

[@Col15] Colah’s Blog: Understanding LSTM Networks. https://colah.github.io

/posts/2015-08-Understanding-LSTMs/, last viewed: 20.12.2020.

[@Cou20] Countants: How Machine Learning Can Enable Anomaly Detection.

https://www.countants.com/blogs/how-machine-learning-can-enable

-anomaly-detection/. last viewed: 22.11.2020.

[@Gct18] Georgia College of Tech Computing: Lecture 16: Feature Selection:

https://www.cc.gatech.edu/~bboots3/CS4641-Fall2018/Lecture16/16_Feature

Selection.pdf, last viewed: 20.12.2020.

[@Jup20] Jupyter: Jupyter Notebook. https://jupyter.org, last viewed: 20.12.2020.

[@Kau16] S. Kaushik: Introduction to Feature Selection methods with an example.

https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature

-selection-methods-with-an-example-or-how-to-select-the-right-variables/.

last viewed: 22.11.2020.

[@Ker20] Keras: Optimizers. https://keras.io/api/optimizers/, last viewed: 04.01.2020.

[@Pro20] Facebook Prophet: Diagnostics. https://facebook.github.io/prophet/ docs/

diagnostics.html, last viewed: 04.01.2020.

[@Seb20] Sebastian Ruder: An overview of gradient descent optimization algorithms.

https://ruder.io/optimizing-gradient-descent/index.html,

last viewed: 04.01.2020.

[@Sin19] Deeprika Singh: Cleaning of Outliers. https://www.pluralsight.com/guides

/cleaning-up-data-from-outliers, last viewed: 20.12.2020.

[@Sla16] L. Sullivan, W. LaMorte: InterQuartile Range. https://sphweb.bumc.bu.edu/otlt/

mph-modules/bs/bs704_summarizingdata/bs704_summarizingdata7.html, last

viewed: 22.11.2020.

[@Sta17] A. McQuistan: Using Machine Learning to predict weather. https://stackabuse

.com/using-machine-learning-to-predict-the-weather-part-2/, last viewed:

02.01.2020.

[@Swe20] Sweden: Energy Use in Sweden. https://sweden.se/nature/energy-use-in

Sweden, Last viewed: 14.01.2020.

Bibliography
Bibliography

Conclusion

 Page 88

[AA13] Allende-Cid H., Allende H.: Wind Speed Forecast under a Distributed Learn-

ing Approach. 2013 32nd International Conference of the Chilean Computer

Science Society (SCCC), Temuco, 2013, pp. 44-48, doi:

10.1109/SCCC.2013.24.

[AB17] Andrade J., Bessa R.: Improving renewable energy forecasting with a grid of

Numeral weather predictions. IEEE Transactions on Sustainable Energy,

8 (4):1571-1580, 2017.

[AO16] Antonanzas J., Osorio N., et. al.: Review of photovoltaic power forecasting.

Solar Energy, 136:78–111, October 2016.

[ASM20] R. Ahmet, V. Sreeram, Y. Mishra et. Al.: A review and evaluation of the state

Of The-art in PV solar power forecasting: Techniques and optimization. Re-

Newable And Sustainable Energy Reviews, Volume 124, 2020.

[BA09] N. Bajpai: Business Statistics. Pearson Education India, India, 2009.

[BFO18] S. Bouktif, A. Fiaz, A. Ouni, et. Al.: Optimal Deep Learning LSTM Model for

Electric Load Forecasting using Feature Selection and Genetic Algorithm. En-

ergies 2018, 11, 2018.

[BRO17a] J. Brownlee: Long Short-Term Memory Networks with Python. Machine

Learning Mastery, 2017.

[BRO17b] J. Brownlee: Introduction to Time Series Forecasting with Python. Machine

Learning Mastery, 2017.

[BRO20] J. Brownlee: Data Preparation for Machine Learning: Data Cleaning, Feature

Selection and Data Transforms in Python. Machine Learning Mastery, 2020.

[CC10] D. Cousineau, S. Chartier: Outliers detection and treatment: a review. Interna-

tional Journal of Psychological Research, pp. 2011-2084, Columbia, 2010.

[CD11] Chen C., Duan S., et. al.: Online 24-h solar power forecasting based on weath-

er Type classification using artificial neural network. Solar Energy,

85(11):2856 - 2870, 2011.

[DA16] Davo F., Alessandrini S., et. al.: Post-processing techniques and principal

Components analysis for regional wind power and solar irradiance fore-

Casting. Solar Energy, 134:327 – 338, 2016.

[GLF09] A. Graves, M. Liwicki, S. Fernandez, et. Al.: A Novel Connectionist System

for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol 31, no. 5, pp 855-868, 2009.

[GS99] Guralnik V., Srivastava J.: Event Detection from Time Series Data. ACM,

University of Minnesota, 1999.

[HA18] R. Hyndman, G. Athanasopoulos: Forecasting: Principles and Practice. OTexts

Australia, 2018.

Bibliography

Conclusion

 Page 89

[HS90] A. Harvey, S. Peters: Estimation Procedures for Structural Time Series Mod-

els. Journal of Forecasting, Vol. 09, pp 89 – 108, 1990.

[HS97] S. Hochreiter, J. Schmidhuber: LSTM can solve hard long time lag problems.

Neural Computation, Volume 9, Issue 8, 1997.

[IC18] Isaksson E., Conde M.: Solar Power Forecasting with Machine Learning Tech-

niques. School of Engineering Sciences, Stockholm, Sweden, 2018.

[IK18] E. Isaksson, M. Karpe: Solar Power Forecasting with Machine Learning Tech-

Niques. Stockholm, School of Engineering, 2018.

[IP13] Inman R., Pedro H., et. al.: Solar forecasting methods for renewable energy

integration. Progress in Energy and Combustion Science, 39(6):535 – 576,

2013.

[IR18] IRENA: Renewable power generation costs in 2017. Technical report, Interna-

tional Renewable Energy Agency, Abu Dhabi, 2018.

[K03] Kim K.: Financial time series forecasting using support vector machines.

Neurocomputing 55 (2003) 307-319, South Korea, 2003.

[KC19] Khandakar A., Chowhury M., et. al.: Machine Learning Based PV Power Pre-

diction Using Different Environmental Parameters of Qatar. Energies 2019,

12, 2782, Qatar, 2019.

[KM17] J. Konecny, H. McMahan, et. al.: Federated Learning: Strategies for Improv

Ing, Communication Efficiency. 2017.

[KP11] Kostylev V., Pavlovski A., et al.: Solar power forecasting performance–

towards industry standards. In 1st national workshop on the integration of so-

lar power into power systems, Aarhus, Denmark, 2011.

[KU18] P. Kumar: Forecasting Cloud Resource Utilization Using Time Series Meth-

ods. KTH Royal Institute of Technology, Sweden, 2018.

[MAB20] M. Moocarme, M. Abdolahnejad, R. Bhagwat: The Deep Learning with Keras

Workshop. Packt Publishing Ltd, 2020.

[MS18] Makridakis S., Spiliotis E. et. al.: Statistical and Machine Learning forecasting

Methods: Concerns and ways forward, en. Ln: PLOS ONE 13.3, Greece, 2018.

[NG06] C. Nachmias, A. Guerrero: Social Statistics for a diverse society. Pine Forge

Press, 2006.

[PC09] Pan F., Converse T., et. al.: Feature selection for ranking using boosted trees.

In Proceedings of the 18th ACM conference on Information and knowledge

management, pages 2025-2028. ACM, 2009.

[PC12] Pedro H., Coimbra C.: Assessment of forecasting techniques for solar power

Production with no exogenous inputs, Elsevier, USA, 2012.

[PK13] Pelland S., Kleissl J., et. al.: Photovoltaic and Solar Forecasting: State of the

Bibliography

Conclusion

 Page 90

Art, IEA PVPS 14, Canada, 2013.

[R09] Reikard G.: Predicting solar radiation at high resolutions: A comparison of

Time Series forecasts. Solar Energy, 83(3):342 – 349, 2009.

[SL12] Shi J., Lee W., et. al.: Forecasting power output of photovoltaic systems based

On weather classification and support vector machines. IEEE Transactions on

Industry Applications, 48(3):1064-1069, 2012.

[SS17] M. Spiegel, L. Stephens: Schaums Outline of Statistics, McGraw-Hill Educa-

tion, 2017.

[TK18] Theocharides S., Kyprianou A. et. al.: Machine Learning Algorithms for Pho

to-voltaic System Power Output Prediction, Conference Paper, IEEE, 1678

Cyprus, 2018.

[TL17] J. Taylor, B. Letham: Forecasting at Scale. PeerJ Preprints, Open Access,

2017.

[TSB07] A. Tabibi, N. Simforoosh, A. Basiri, et. al.: Bowel Transformation Versus no

Preparation Before Ileal Urinary Diversion. Urology, Volume 70, pp. 654-658,

2007.

[W95] Wilks D.: Statistical Methods in the Atmospheric Sciences, Academic Press,

Volume 59, 1995.

[WIC17] R. Wicklin: Winsorization: The good, the bad and the ugly. SAS, 2017.

Bibliography

Declaration

I (Phil Aupke) hereby declare in lieu of an oath that I have written this thesis independently

and without the use of any aids other than those indicated; any ideas taken directly or indirect-

ly from outside sources are marked as such. The thesis has not yet been submitted to any other

examination authority in the same or a similar form, nor has it been published.

Place, Date Signature

	1 Introduction
	1.1 Description of the Thesis
	1.2 Objectives of the Thesis
	1.3 Research Question
	1.4 Ethics and Sustainability
	1.5 Structure of the Thesis

	2 State of the Art
	2.1 General Research
	2.2 Time Series and Machine Learning Techniques
	2.3 Feature Preparation
	2.4 Feature Extraction
	2.5 Conclusion

	3 Methodology
	3.1 Structure of the Data
	3.2 Data Preparation
	3.2.1 Outliers
	3.2.2 Formation of the Dataset
	3.2.3 Normalization

	3.3 Feature Extraction
	3.3.1 Pearson Correlation
	3.3.2 Spearman Correlation
	3.3.3 Principal Component Analysis
	3.3.4 Random Forest
	3.3.4.1 ID 3
	3.3.4.2 ID 4.5
	3.3.4.3 Classification and Regression Trees

	3.3.5 Wrapper Feature Selection
	3.3.5.1 Sequential Forward Selection
	3.3.5.2 Sequential Backwards Selection
	3.3.5.3 Exhaustive Feature Selection
	3.3.5.4 Bi-Directional Elimination

	3.4 Machine Learning Model
	3.4.1 LSTM
	3.4.2 Facebook Prophet

	3.5 Performance Metrics

	4 Implementation
	4.1 Development Environment
	4.2 Data Downloader
	4.3 Data Preparation
	4.3.1 Combining Datasets
	4.3.2 Data Cleaning
	4.3.3 Feature Extraction
	4.3.3.1 Pearson Correlation
	4.3.3.2 Spearman Correlation
	4.3.3.3 Random Forest
	4.3.3.4 Principal Component Analysis
	4.3.3.5 Wrapper Feature Selection
	4.3.3.6 Conclusion

	4.4 Machine Learning Model
	4.4.1 Random Forest
	4.4.2 Facebook Prophet
	4.4.3 LSTM

	5 Evaluation
	5.1 Window Size Analysis
	5.2 Walk-Forward Cross Validation
	5.3 Ex-Ante Forecasting Performance
	5.3.1 Evaluation of the Residuals
	5.3.2 Evaluation of Forecasting Performance
	5.3.3 Effects of Seasonality

	6 Discussion
	6.1 Forecasting Performance
	6.2 Objectives and Scope fulfilment

	7 Conclusion
	7.1 Future Work

