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Abstract 

With the increasing demand for solar energy, the forecast of the PV station energy production 

has to be as precisely as possible. To make the prediction more robust, also correlated infor-

mation about the weather can be added to the previous energy production of the PV station. 

This thesis is part of a project, which has the goal to build an energy marketplace for a smart 

energy grid between households. To make the decisions of the prosumer more accurate, a 

forecast for the PV station energy production has to be as accurate as possible. Because not 

every household or even some smart grids will contain a weather station, also interpolated 

weather information has to be considered. The objective of this work is the evaluation of the 

accuracy difference between precise weather information, located directly at the PV station 

and interpolated weather data. 

The errors of the data were recorded due to misfunctions in the sensors and were cleared with 

the usage of winsorization. The unnecessary weather features have been detected with several 

feature selection methods. For the forecast of the energy production three established machine 

learning algorithms were used: Random Forest, LSTM and Facebook Prophet. For the com-

parison of the performance different performance metrics were used. The validation of the 

three models was carried out by a walk-forward cross validation with unseen data. Further-

more, for each of the two datasets one of the three machine learning model were trained. For 

the performance measurement i.e., the LSTM model trained on precise weather information 

also received the interpolated data as an input for the prediction and vice versa. As a conclu-

sion, the Random Forest model performed better than the other two model types, with an av-

erage normalized error of 0.15. Whereas the LSTM model received an error of 0.37 and the 

Prophet model 0.58. For the difference between interpolated and actual weather information 

the results prove, that the uncertainity in those variables also affects the prediction of the PV 

station energy outcome. The LSTM model MSE increased by 14 percent and the Random 

Forest results with an increasement of 16 percent. The end of the thesis includes a discussion 

about the results and possible tasks for future work takes place.  

 

 

 

 

 

  

 



Introduction 

  

  Page 2 

1 Introduction 
 

Due to the increasing usage of renewable energy sources around the globe, the development 

of photovoltaic panels (PV) has intensified significantly over the last few years. Because of 

the increased development the costs of the PV systems dropped as well. This is presented in 

the IRENA report of 2017 which concludes, that the levelized cost of large-scale PV systems 

dropped by 73% from the years 2010 – 2017 [IR18]. Because of the increasing usage of PV 

systems, it is also necessary to predict the upcoming energy outcome of them as precise as 

possible. But due to the fact, that the PV systems are depending on the weather which has 

different random parameter, like: irradiance, relative humidity and ambient temperature which 

can affect the power outcome of the PV.  

To predict the weather and even the corresponding power outcome of the PV stations there 

are two approaches, the deterministic or probabilistic concept or by using machine learning 

for time series data. Both concepts have their positive and negative characteristics for this 

kind of usage.  

 

1.1 Description of the Thesis 
 

This thesis is going to be an introductory work for an upcoming project which is going to in-

tegrate renewable energy (RE) into power grids and also use the advancements of information 

and communication technologies (ICT) like the cloud or edge computing. Those technologies 

have high potential in the development of smart energy grids. In those smart energy grids, a 

customer has the overview of all steps like the production, consumption and also the storage 

capacities. In this system the prosumer has an active role in the reduction of CO2 for this 

smart energy grid. Furthermore, multiple machine learning techniques will be evaluated, 

which will optimize the energy management as well as give the prosumer future predictions 

of the weather and also the estimated PV system energy outcome. Those techniques will help 

the prosumer to make decisions for the energy usage of himself and also the distribution of his 

surplus energy to another prosumer. 

 

1.2 Objectives of the Thesis 
 

One of the objectives of this work is the evaluation of different machine learning methodolo-

gies like LSTM, Random Forest and the Facebook Prophet Library for the two use-cases of 

weather forecasting and also the corresponding PV system energy outcome. In Addition to 

that, an evaluation of the accuracy comparison between the usage of interpolated and precise 
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weather information takes place. This evaluation will indicate how much better a machine 

learning model can perform, if the different weather information are interpolated or received 

from the same location as the PV system itself.  

1.3 Research Question 
 

• RQ1 How can the PV system energy outcome be proactively determined using ma-

chine learning model and weather information?  

• RQ2 Do interpolated weather information affect the future prediction of PV energy 

outcome?  

 

1.4 Ethics and Sustainability 
 

In regard to the scope of this thesis, there are no ethical concerns. With reference to any eco-

nomic sustainability the results of this work will contribute to a project, which aims toward a 

more sustainable energy exchange between prosumer within a smart energy grid. The goal of 

smart energy grids is a smarter energy exchange between different households which uses 

renewable energy productions within the grid, so they do not need that much energy from the 

main grid, which produces only some parts with renewable energy. For Sweden the amount of 

renewable energy produced for the main grid is 54 percent and for some other countries even 

less. [@Swe20] 

 

1.5 Structure of the Thesis 
 

This thesis is divided in seven subareas. The second chapter describes the state of the art of 

current research in the field of weather forecasting as well as predicting the PV system power 

outcome. Furthermore, this chapter presents current techniques for weather and PV energy 

outcome. One method is to use different machine learning model for the prediction and the 

other one is the usage of numerical weather forecasting, which uses deterministic or probabil-

istic methodologies.  

Afterwards in the third chapter all used methodologies are going to be explained in detail. 

This includes the data preparation, feature selection and the actual ML-Model which were 

used. The fourth chapter describes the implementation of the different stages of the machine 

learning pipeline, which includes the data preparation, feature selection and the training and 

hyperparameter tuning of each model type.  

The fifth chapter concludes the evaluations of the machine learning model in the different 

use-cases. These use-cases involve the comparison between model trained with interpolated 
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and actual data. The last chapter describes a discussion about the collected results from the 

previous chapter. 
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 State of the Art 
 

The field of predicting time series data with machine learning is a field of research in which 

many contributors work on. Furthermore, the need for predicting the weather and the corre-

sponding supply of renewable energy with it, is crucial. This chapter concludes the research in 

the field of predicting the energy outcome of PV Systems and the handling of time series data 

in general.  

 

2.1 General Research 
 

The paper [KP11] concludes a summary of techniques for the prediction of PV power out-

come and also states, that there should be an industrial standard for this kind of technology. 

Furthermore, the authors and some other studies found out, that the use of NWP can help the 

long-term prediction of weather forecasting and accompanying the prediction of PV power 

outcome. In addition to that the thesis states, that the predictions can be improved when the 

machine learning model is trained with local weather situations and not simultaneously with 

different situations around the globe. This scheme can also be applied to different weather 

situations over the year. The model performs better if it is just trained for one specific season.  

The conclusion from [KP11] is, that both techniques, the classic time series techniques and 

also the machine learning models have been widely used for weather forecast and also the 

prediction of the PV power outcome. For this thesis only the machine learning model is going 

to be examine in depth. But for the overall view of the current research on weather and PV 

system output forecast also the traditional time series techniques are going to be presented.  

Besides weather forecasting, the prediction of time series data is also useful in many other 

applications like the financial sector [K03] or even for the event detection [GS99]. There are 

many other use cases for this kind of prediction. 

To conclude how the prediction of the PV System outcome works in general, there are two 

different steps which are presented in Figure 1. The first step is the analysis of current or past 

weather situations by specific variables. Those variables are collected by different sources like 

satellite images, sky images or sensors. The prediction of the weather can then be conducted 

by two different ways, by time series techniques or with machine learning. Afterwards the PV 

power outcome can be predicted with the help of the formerly created weather forecast. With 

those two steps it is possible to create i.e., a day-ahead PV production forecast.  
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Figure 1 – Division of PV supply prediction 

 

2.2 Time Series and Machine Learning Techniques 
 

This can either be done by deterministic or probabilistic predictions or even by more ad-

vanced time series methods like Autoregressive integrated moving average (ARIMA) 

[@Eur17]. All of those mentioned methods to predict time series data do not use machine 

learning for the computation of the predictions. Because those models need detailed infor-

mation about the PV systems and also about the weather to predict it precisely, they are not 

suitable for every use case. More in detail the input data of those models could be numerical 

weather prediction (NWP) [W95]. 

For the forecast of the weather the period in which the prediction takes place is also an im-

portant question. In general, there are two kinds of periods, the short-time and long-time pre-

dictions. The short-time prediction only includes a short period, like a few seconds to an hour. 

For the long-time prediction, the period could increase up to a month, which may influence 

the accuracy of the forecast.  

In [R09] short-time weather predictions like ARIMA were tested against machine learning 

models. According to those examinations the normal time series method outperformed the 

machine learning ones. The paper states, that the reason behind it could be that those time 

series methods are better in capturing the transitions in irradiance of the sun over a 24-hour 

period. Furthermore, it is unlikely that the weather will change dramatically over a short peri-

od of time. And because of that, ARIMA perform really good under those conditions.  

But due to the fact, that the data received from the sensors and the PV stations may contain 

missing or corrupted data, the paper [TK18, MS18] states, that there is some other methodol-

ogy needed to comprehend those flaws. Because of those results and the previous mentioned 

possible problems with the raw data, the usage of machine learning is appropriate. Further-
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more, the paper [TK18] states, that machine learning models are gaining even more attention 

in the field of time series data. That is because of the ability of machine learning methods to 

predict relationships between the inputs and outputs without knowing the physical parameters.  

The paper [TK18] also made some experiments with well-known machine learning techniques 

which are predicting the output of PV systems:  

 

• Artificial Neural Network (ANN), especially a Feed Forward Neural Network (FFNN) 

• Support Vector Machines (SVM) 

• Regression Trees (RT) 

 

Those techniques just had the information about the output of the PV Systems, without any 

information about the NWP. As Table 1 states, the FFNN (in the Table 1 presented as ANN) 

performed the best, with the lowest MAPE and nRMSE score. The other two methodologies 

performed similarly.  

 

Table 1 – Performance Overview [TK18] 

 

 

The Study [PC12] did the same comparison with five different forecasting techniques, namely 

the Persistent model, ARIMA, kNNs, ANNs, and ANNs optimized with Genetic Algorithms 

(GAs/ANN). For those tests the machine learning tests were more successful than the time 

series models, because they need more information about the physical parameters like NWP. 

But it should be mentioned that the testing of those models was only used for the prediction of 

the power output of PV Systems and not for the weather forecast. [PC12] concludes the same 

observation about the better performance of machine learning techniques on local areas rather 

than different locations as [KP11].  

In other research like [AB17, DA16] techniques like the Principal Component Analysis 

(PCA) and feature engineering with RT were used. In addition to that the NWP data were 

smoothed with various approaches and the authors used a grid of NWP data around the PV 

System and took the spatial average of those collected data. One of the main conclusions of 

the experiments were, that aspects as the feature engineering and also the usage of PCA con-
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cludes to better results for the weather forecast. In [DA16] PCA was combines with an ANN 

and Analog Ensemble (AnEn) to predict solar irradiance. In this experiment the PCA was also 

used for the feature selection. Furthermore, it was compared, if the model would give better 

results without the usage of PCA within the model. But the results prove, that they give better 

outcomes with it.  

For long-term predictions [CD11] used an ANN as the prediction method and NWP as an 

input data. The model was sensitive to prediction errors within the NWP data and also showed 

deterioration while forecasting on rainy days. During cloudy or sunny days, the model pro-

duced results with MAPE at around 8%. [SL12] on the other site proposed a day-ahead 

weather classification, which is using SVM to forecast the PV system power output on a 15-

minute interval. For that, it divides the weather information in different classes, like: clear 

sky, cloudy day, foggy day and rainy day. The reason behind the classification is the analysis 

of local weather forecast and the PV system energy outcome. For each categorization a sepa-

rate SVM model was created. This experiment shows how to use SVM model for training 

models on specific climatic conditions.  

2.3 Feature Preparation 
 

Most machine learning algorithms need a specific way of data inputs for the training and also 

later for the prediction. Those are called structured or tabled data. Thus, it is not possible to 

use this raw data for machine learning. Another citation for using unqualified data for the 

training of machine learning is garbage in, garbage out. Which means, that if the machine 

learning model is fed with unstructured or not useful datasets it also produces a model which 

does not fit for the prediction at the end. [BRO20] 

Furthermore, the raw data may also include outliers within the datasets. Outliers are data-

points within the raw data, which are not representative for the structure of the other data-

points within the data. This behaviour is represented in Figure 2. To detect those outliers and 

treat them correctly there are several techniques available. [CC10] 

 

 
Figure 2 – Presentation of outliers within raw datasets [@Cou20] 
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In general, it is not possible to use a general framework to detect and treat those outliers for 

every scenario, because every observation contains different underlaying datasets which has 

to be treated differently. For example, in the use-case of using the observations of blood-

pressure sometimes the outliers can tell the machine learning algorithm, that something is 

wrong with the blood sample [CC10]. In the paper [TSB07, BRO20] there is a comparison 

between raw-data which is prepared which outliers detection and just using the raw-data. It is 

shown that the adaption of the outliers to the corresponding neighbours have a positive impact 

on the machine learning algorithm which is used afterwards.  

After the cleaning of outliers within the dataset the data may seem well-fitted enough for the 

task, but there may also be some noise within the data which can lead to not useful prediction 

results in the end.  

 

 
 

Figure 3 – Data Cleaning Methodologies  

To prevent this behaviour of the machine learning model, it is necessary to use one of the, in 

Figure 3 presented, techniques. Beforehand the handling of outliers was already discussed. 

But maybe there are also missing values of some kind in the dataset. This can happen if i.e., 

the sensor, which accumulates the data, had a power loss or failed completely for some time. 

For this there are two options to treat those missing values. The first one is the deletion of the 

whole period within the dataset, which will decrease the number of observations within the 

dataset and could lead to a worse machine learning algorithm in the end. The other solution 

would be to simply take the average of the neighbour numbers of the observation and take 

those values as the missing number. This technique can only be applied, if the number of se-

quentially missing values are not that great. [BRO20] 

Sometimes the observations are not in the desired data format. Figure 4 describes that there 

are two examples of data types which are desired for the usage within machine learning mod-

el. For the usage of i.e., regression type ML-Algorithms numerical figures are necessary. 
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Those can be represented as an integer or float value. In comparison there can also be categor-

ical ML-Model which can be divided in nominal, ordinal or Boolean values. The nominal and 

ordinal values describe some kind of label for the end-state of the ML-Model. [BRO20]  

 

 
Figure 4 – Data preparation, data transformation 

2.4 Feature Extraction 
 

As states in the previous sub-chapter and also in [AB17] the usage of different NWP data as 

features helps the prediction of the PV system energy output significantly. For this reason, it 

is necessary find the relevant ones and sort out redundant information within them. Further-

more, it is necessary to normalize those data to stabilize them.     
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Table 2 – NWP from Meteomatics [IC18] 

 

 

Table 2 shows some example data from a weather station nearby some PV systems. As stated 

in [IC18, AB17] it is useful to eliminate the information which are not useful for this task. 

Here the Gradient Boosting Regression Trees (GBRT) are used to search for variables which 

do affect the cost function mostly and rank them on that behave. This methodology is proven 

to be effective by different sources like [PC09]. There are also some other techniques to 

choose the most effective features like Relief feature selection (ReliefF) and Correlation fea-

ture selection (CFS) [KC19].  

 

 
Figure 5 – Feature selection methods [Bro20] 
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Figure 5 also presents a distinction between the different methodologies of feature selection. 

The first one is the usage Trees, which is also used in the paper [IC18]. This method uses the 

intrinsic information of the features to present correlations between them. Furthermore, wrap-

per methods are introduced in the graph. One of the techniques is called recursive feature 

elimination (RFE). [BRO20] 

 

 
 

Figure 6 – Methodology of wrapper selection methods 

Figure 6 presents how the wrapper selection for a set of features work. In the first step all 

available features are taken and will be split up into a train and test dataset. Afterwards those 

selected features will be used in an actual learning algorithm. After the measurement of the 

performance of the subset of features a new subset of the features will be randomly generated 

and evaluated. After all possible combinations of the features are used, the ones with the best 

performance at the end will be chosen. [@KAU16] 

There are different techniques to use those wrapper selection methods:  

1. Forward selection 

2. Backward elimination 

3. Recursive feature elimination 

The forward selection starts with only one feature (the most important one) in the beginning 

and keeps adding more features iteratively, until the performance does not improve anymore. 

In comparison to that, the backward elimination does the complete opposite. It starts with all 

features in the subset und removes one after another until the performance does not increase 

anymore. In addition to that the RFE creates a new ML-Model after each iteration and 

measures the performance. Afterwards the worst feature gets eliminated. [@KAU16] 

2.5 Conclusion 

 

One of the important conclusions which could be taken from almost every study is the im-

portance of using NWP data as inputs for the different model to increase the accuracy. In Ad-
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dition to the importance of NWP data is the sensitivity to NWP data errors. One way to over-

come those errors is to collect the data from several sources. Furthermore, the usage of data 

preparation is presented, which cleans the data and also handles the occurrence of possible 

outliers and noise within the dataset  

Also, it is important to only choose the most important weather attributes for the prediction. 

For this reason, several techniques were presented to identify those attributes.  

Furthermore, there are many different machine learning techniques presented in those studies, 

especially the optimizations of the different algorithms have a positive impact on those 

ANNs. But in the scope of this thesis there is going to be a general overview of different ma-

chine learning techniques, as stated in chapter one. 

 

 



Methodology 

  

  Page 14 

 Methodology 
 

The scope of the thesis requires to predict the forecast of the PV system energy outcome with 

past energy measurements, which are augmented by observational weather-related parame-

ters. For this several data pre-processing and ML-Model methodologies were used. In this 

section of the thesis all the used techniques are explained in detail. 

3.1 Structure of the Data 

 

For the evaluation of the interpolated and precise weather information two different kind of 

datasets were created. The first one describes the Glava dataset and it consists of several 

weather parameters, as well as information about the energy production of the PV system. In 

this dataset the weather station is co-located with the PV station and contains fine granular 

samples. The second dataset consists of interpolated weather parameters. One part of those 

information will be gathered with MeteoStat (https://meteostat.net/en) and the global radiation 

with SMHI (https://www.smhi.se/). The separation of the radiation and the other weather in-

formation is due to the fact, that the radiation is not available at MeteoStat. The interpolated 

radiation information from SMHI has an error of accuracy of 30 percent for the global radia-

tion and 60 percent for the direct radiation. For the interpolated weather information of Mete-

oStat, there were no official information about the accuracy loss.  

For the structure of the data, it consists of six years of observations for the month July in Gla-

va, Sweden. That information consists of hourly measurement points and have the following 

features for the weather: 

 

Table 3 – Weather information 

Variable name Unit 

Temperature C 

Wind Direction Gradient 

Wind Speed m/s 

Humidity % 

Precipitation L/m² 

Barometric Pressure mBar 

Global Radiation W/m² 

40 Degrees Radiation W/m² 

30 Degrees Radiation W/m² 

Indirect Radiation W/m² 
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Table 3 represents the available weather information from the corresponding weather stations. 

In total there are ten different parameters, which can be used as an input for the prediction. 

The only difference between the two datasets is, that the three features 40 Degrees Radiation, 

30 Degrees Radiation and the Indirect Radiation from the Glava dataset are not available 

from the MeteoStat or SMHI dataset. For the data of the PV systems there are only three dif-

ferent measurements, which are relevant for the prediction:  

 

Table 4 – PV System information 

Variable name Unit 

Stot kVA 

Qtot kVAr 

Ptot kW 

 

Ptot describes the amount of power, which is usable for the end-user of the system. This ener-

gy can be directly converted to practical energy for i.e., energy outlets. Qtot describes the 

power, which is only available for the system itself and is used to keep the system itself usa-

ble. Stot describes the total power in the system itself. This includes the Qtot and Ptot and can 

be calculated as followed:  

 

 

𝑆𝑡𝑜𝑡 =  √(𝑄𝑡𝑜𝑡2 + 𝑃𝑡𝑜𝑡2
) (1) 

 

 

 

3.2 Data Preparation 

 

After the explanation of the different parameters of the weather and PV energy observations, 

this sub-chapter is going to explain different techniques on how to pre-process the data for the 

machine learning algorithms to be developed.  

 

3.2.1 Outliers 
 

As explained in chapter 2.3, outliers are values within the raw data which are not in the nor-

mal deviation of the i.e., sensory data. For the handling of such data points there are several 
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techniques like the interquartile range (IQR) or quantile-based censoring (winsorization) 

available. The interquartile range describes the body of a dataset. This means, that the dataset 

is split up into three different quartiles. First the median of the dataset has to be found. After-

wards the first quartile (Q1) will be calculated the same way as the median, but with the da-

taset cut in half and only the lower part is considered. That means, that the Q1 now holds the 

25 percent below the median. In the same way the upper quartile can be calculated (Q3). But 

now only the upper half of the dataset is considered. Now the interquartile range can be com-

puted by the following formula, which is stated at [BA09, p. 123]: 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (2) 

 

Figure 7 illustrates this process using an example. First the general median is calculated, 

which is 71. Afterwards the median of the lower half and the upper half is going to be calcu-

lated. In this case it is 64 for the lower boundary and 77 for the upper one. Thus, the inter-

quartile range is 13. [@Sla16]  

 

 

 
Figure 7 – Interquartile Range [@Sla16] 

Most statistical tests assume, that the data is normal “Gaussian” distributed. This implies, that 

the majority of outlier data must lay far away from the majority of the other datapoints. To 

find actual outliers within the data points, an additional range to the Q1 and Q3 quartiles has 

to be added. This range is described by the value k in (3). As a rule of thumb, the value, repre-

sented by k is set to 1.5. Afterwards this value is added to the third quartile to find any outlier 

greater than this and subtract it from the first quartile to find any value lower than this.  

 

[𝑄1 − 𝑘(𝑄3 − 𝑄1), (𝑄3 + 𝑘(𝑄3 − 𝑄1))] (3) 
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The next step is the handling with false datapoints. The easiest solution would be to just de-

lete those from the dataset and continue with the left-over datapoints. But sometimes it is not 

the best solution, especially if there is only a limited amount observation available. For this 

reason, one approach is to set a median of the i.e., five datapoints before and after the outlier 

and set this value to the outlier itself. This technique is called trimmed estimator.  

Another technique to further pre-process the data to get an improved dataset is the rolling 

quantile (RQ). This works similar to the IQR, but now not the whole of the dataset is consid-

ered, but only a pre-defined window of datapoints. The window size can be determined to any 

size the user wants. If for example the data does not consist of sensitive data, which can easily 

be changed in a matter of a few datapoints, the window should be made as small as possible, 

otherwise the window can also be a few hundred datapoints.  

For the winsorization technique the outliers from the dataset will be set to a specific percen-

tile. If for example a 90 percent winsorization was chosen, the data below the five percentile 

and the data above 95 percentiles will be chosen as outliers. Figure 8 visualizes how the win-

sorization works. The top graph represents the original dataset, which contains a few outliers 

on the positive as well as on the negative axes. After the winsorization was carried out, those 

values were taken care of and the dataset was cleaned. This graph also points out another 

characteristic of the winsorization, which is the symmetric property of this technique.  

 

 
Figure 8 – Winsorization example [WIC17] 
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3.2.2 Formation of the Dataset 
 

In some cases, some features of the dataset do not contain numeric values and consist of for 

example Strings. This can be mainly observed in the case of the feature wind direction. This 

feature is sometimes saved as North, South, West and East. The ML Algorithms used in this 

work are not able to handle those information as it only can comprehend numerical values. 

For this case that information has to be converted to normal values. With the example of the 

wind direction, each of the wind direction is saved as a numerical value with the OrdinalEn-

coder() from Sklearn. This function arranges each individual string to a unique number.  

 

3.2.3 Normalization  
  

Before the now well processed data can be used for the feature extraction or for the actual 

machine learning model, there is still a problem with the different ranges of the datapoints. 

This can be a problem, if for example the temperature is in the range of –10 to 30 Celsius and 

the barometric pressure has a value range between 0 mBar and 1500 mBar. The range of the 

barometric pressure includes much higher values than the temperature, for this reason the bar-

ometric pressure has a higher valence than the temperature.   

To prevent this to happen a normalization or standardization of the whole dataset must be 

accomplished. The difference between on when to use normalization or standardizing is main-

ly on the distribution of the dataset. If the dataset is distributed as a Gaussian distribution the 

standardization is the better choice. [BRO20]   

The formula of calculating the standardization [SS17] is described as follows:  

 

𝑧 =  
𝑋 −  𝜇

𝜎
(4) 

  

  

Equation (4) describes the formula on how the current value which is going to be standard-

ized. μ is the mean value of the whole dataset for this feature and σ is the standard deviation. 

This procedure is going to be accomplished with every datapoint within the raw data.   

For the normalization there are several techniques. For the scope of the master thesis, the Min-

Max Scalar is going to be used. This normalization technique converts the datapoints to the 

fixed range between 0 and 1 and is described as follows:  
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𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(5) 

  

The variables 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 in formula (5) describe the upper and lower range, in which the 

value normalize into.  

The previous step of sorting out the outliers is important for the usage of normalization, be-

cause this process is sensitive to numbers, which are not in the normal distribution of the da-

taset. If the previous step for detecting the outliers has not been made, there is also a normali-

zation process called Robust Scalar which jointly performs normalization and IQR processing 

and is more stable to outliers compared to the Min Max Scalar. 

 

3.3 Feature Extraction 

 

After the cleaning and pre-processing of the raw data to actual usable data for ML the next 

step is the feature extraction. Because there are ten weather features in total, it is maybe ad-

visable to clarify which features are the most important ones and which are maybe not that 

well fitted for this task. For this reason, there are many techniques to figure out which features 

are the strongest ones and will help the performance of the ML-Algorithm in general.   

  

3.3.1 Pearson Correlation  
  

With the Pearson correlation it is possible to find a monotonic correlation between two varia-

bles in a dataset. This relationship between two variables can have one of the following corre-

lations:  

  

• If value A increases, the other observed value B also increases  

• If value A increases, the other observed value B decreases  

  

Mathematically the Pearson correlation can be described as following:  

 

𝑟 =  
∑(𝑥 −  𝑚𝑥)(𝑦 −  𝑚𝑦)

√∑(𝑥 −  𝑚𝑥)2  ∑(𝑦 −  𝑚𝑦)
2

(7)
 

 

𝑟     = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  
𝑥𝑖    = 𝑉𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 
𝑚𝑥  = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 
𝑦𝑖    = 𝑉𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 
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𝑚𝑦  = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

 

The result of the Pearson correlation (7) ranges in the area between: −1 ≤ 𝑟 ≤ 1. If the corre-

lation is in the negative spectrum of the range, the two observed features influence themselves 

in the opposite direction. The same interpretation can be made for the positive spectrum, but 

reverse. If the correlation is close to one, the two features have a strong correlation between 

each other and if 𝑟 is close to zero, there is no correlation in general. 

 

3.3.2 Spearman Correlation 
 

The Spearman correlation, in comparison to the Pearson correlation assesses monotonic rela-

tionships between two ordinal variables. That means, that the Pearson correlation only con-

siders a perfect correlation (+1) between two variables, if the observing variables increase or 

decrease for the same amount each timestep. On the other side, the Spearman correlation also 

considers a correlation between two variables perfect, even when they do not increase or de-

crease in the same amount each timestep. The Spearman correlation coefficient can be de-

scribed as follows: 

 

 

𝜌 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
(8) 

 

𝜌     = 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝑑𝑖     = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑛     = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

 

 

 

3.3.3 Principal Component Analysis 

  

Another well-researched technique to analyse the importance of features in a dataset of sever-

al features is PCA. With this method it is possible to reduce the number of features in a huge 

dataset without decreasing the accuracy at best. [Tmp02]  

The structure of the PCA methodology is divided into six different steps, which are going to 

be explained in detail now:  
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1. Standardization  

 

This step is as important as the standardization for the usage of the IQR, because 

this technique is also sensitive to the variance of the initial variables. The calculation of the 

standardization is the same as the one previously explained.   

  

2. Covariance Matrix Computation  

  

This matrix consists of the covariance information of each feature to another. That means, that 

the dimensions of this matrix are (p x p) with p as the number of features in the dataset. This 

is the same computation as for the Pearson Correlation.   

  

3.  Compute the Eigenvectors and Eigenvalues of the covariance matrix  

  

With the help of the calculation of the eigenvectors and eigenvalues of the covariance matrix 

it is possible to determine the principal components (PC) of the data. The principal compo-

nents are a linear combination of the initial variables. These combinations are so structured, 

that they are uncorrelated and most of the information of the initial variables are squeezes into 

the first component. In the case of the weather features there also exist ten PC. The PCA algo-

rithm tries to put as much information in the first component and then the maximum of infor-

mation in the second one and so on, until it reaches the last one.  These steps of putting the 

left-over information into the next PC is presented in the Figure 9.   

 
Figure 9 – Graph to present the different variances of the PCAs [Tmp02]  
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4.   Calculation of the PC  

  

For each PC there are as many eigenvectors and eigenvalues as features available. Those ei-

genvectors describe the directions of the axes where there is the most variance, this axis is 

called the PC. The eigenvalues, which are corresponding to the eigenvectors present the 

amount of variance carried by each PC or eigenvector. Afterwards those PCs are going to be 

ranked by the importance from highest to lowest.   

   

5.   Calculating the feature vector  

  

The next step is to decide whether to keep all the calculated PC or to discard some of the ir-

relevant ones. This is going to be handled with the feature vectors. The feature vector contains 

columns of the eigenvectors of each PC. The first step is the reduction of the dimensionality. 

This means, that I.e., out of n dimensions of the PC only p dimensions are left over.   

  

6.     Recast the data along the PC axes  

  

Apart from the standardization there were no changes made by the original dataset. But the 

input datasets remain in the original axes. Now, to find out, which corresponding feature are 

present with each PC the original data must be formed to the axes described by the PCs. This 

step can be made by multiplying the transpose of the original data by the transpose of the fea-

ture vector:   

 

𝐹𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡 =  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑇 ∗  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑇 (9) 

  

3.3.4 Random Forest  
  

One of the most popular ML-Algorithms is the random forest. They are well-established for 

the usage of ML-Tasks but are also used for the task of feature selection. Random Forest is 

used in many ways, because they are highly accurate, generalize better and are even interpret-

able for humans. [TMP04] For the random forest a user-selected amount of decision 

trees is created. For those trees there are several options of trees:  

  

3.3.4.1 ID 3    
 

The ID3 methodology was created in 1986 by Ross Quinlan. This algorithm creates a multi-

way tree which finds for each node the feature with the highest informational gain for the tar-
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get. Those trees are grown to their maximum size and then get pruned to improve the ability 

of the tree to generalise the unseen data.  

  

There are three steps for the creation of an ID3-Decision Tree:  

 

 

 

 

1. Find the feature with the highest amount of information gain  

  

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑
#(𝑆𝑖)

#(𝑆)
∗ 𝐻(𝑆𝑖)

𝑛

𝑖=1

(9) 

 

𝑆                             = 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

𝐴                             = 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 

𝐻(𝑆)                       = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

∑
#(𝑆𝑖)

#(𝑆)
∗ 𝐻(𝑆𝑖)

𝑛
𝑖=1 = 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠  

 

For each attribute 𝐴 the information gain over the whole dataset 𝑆 is calculated (9). The in-

formational gain is the difference of the entropy 𝐻(𝑆) of the whole dataset, which is repre-

sented by the formula (10) and the individual entropy weighted entropy 𝐻(𝑆𝑖) of the observed 

attribute, which is shown in formula (11).  

 

 

𝐻(𝑆) =  ∑ −𝑝(𝑥)𝑙𝑜𝑔2𝑝(𝑥)

𝑥 𝜖 𝑋

(10) 

  

 

𝑆                             = 𝑇ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

𝑋                            = 𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑆 

𝑝(𝑥)                       = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛    

                              𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆 

 

 

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) −  ∑ 𝑝(𝑡)𝐻(𝑡)

𝑡 𝜖 𝑇

(11) 
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𝐻(𝑆)                      = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

𝑇                            = 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑏𝑦 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑆 𝑏𝑦 𝑎𝑡𝑡𝑖𝑏𝑢𝑡𝑒 𝐴 

𝑝(𝑡)                       = 𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆 

𝐻(𝑇)                     = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝑡  

 

 

2. Creation of the root node 

The attribute with the highest informational gain is the attribute chosen for the root node. 

 

3. Recursive calculation for new root nodes for the sub-branches  

 

 

3.3.4.2 ID 4.5   
 

This tree is the successor of the ID3 algorithm. The improvements of the ID4.5 decision tree 

algorithm are:  

  

• It is possible to handle continuous and discrete attributes  

• The ID4.5 algorithm can also handle training data with missing attribute values  

• Pruning trees after the creation  

 

3.3.4.3 Classification and Regression Trees  
 

Decision Trees are one of the most commonly used, practical approaches for the task of su-

pervised learning. It can be used to solve both, regression and classification tasks. Within the 

trees the class labels are represented by the leaves and the branches denote the conjunctions of 

features leading to those class labels. The regression tree is used, when the prediction out-

come is a real number, and the classification trees are used to predict the class to which the 

data belongs to. These two categories are collectively called CART. 

The Gini Index or Gini Impurity is calculated by subtracting the sum of the squared probabili-

ties of each class from one. It favours mostly the larger partitions and are very simple to im-

plement. The Gini Index ranges between zero and one, where zero represents purity of the 

classification and one denotes random distribution of the elements among various classes. The 

middle shows that there is an equal distribution of elements across some classes.  
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As a metric or cost function for the regression tree the least square is used. Because the CART 

decision tree is used as a regression tree in this thesis, only the least square cost function is 

going to be explained:  

  

𝑦 = 𝑎 + 𝑏𝑥 (12) 

  

With this function it is possible to calculate the corresponding y-value with the knowledge of 

the x-value. But for this function, it is necessary to previously calculate the a and b value. The 

following calculations are used to describe those figures.  

  

𝑎    =   𝑦 − 𝑏𝑥 (13) 

 

                         𝑏     =  
𝑛 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

𝑛 ∑ 𝑥2 − (∑ 𝑥)2
 (14) 

  

 

This described cost function is the equivalent to the informational gain of the previous shown 

ID3 and ID4.5 decision trees. For the usage of random forest, this methodology is the most 

used one.  

3.3.5  Wrapper Feature Selection 
 

All those feature selection methods, which were mentioned and explained earlier were filter 

methods to classify the features with the most informational input to boost the perfor-

mance and accuracy of the ML-Algorithm afterwards. Another approach is the usage of 

wrappers. [TMP05] 

There are four different types of wrapper algorithms, which are also explain in the up-coming 

sections.  

3.3.5.1 Sequential Forward Selection   
  

The SFS starts with a subset of zero features and increases the number of features for each 

iteration. The feature which maximises the criterion function is going to be selected each iter-

ation until desired number of features is reached.  

 

Input values:           𝑌 = {𝑦1, 𝑦2, 𝑦3,…….,𝑦𝑑
}  

Output values:       𝑋𝑘 = {𝑥𝑗  | 𝑗 = 1,2, … . , 𝑘: 𝑥𝑗𝜖 𝑌} , 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0,1,2,3, … . , 𝑑) 

The algorithm takes the whole d-dimensional feature set as an input and returns a subset of 

features k, where 𝑘 < 𝑑.  

 



Methodology 

  

  Page 26 

Initialization:  𝑋0 =  ∅ , 𝑘 = 0 

The algorithm is initialized with an empty feature set. 

 

Recursive steps (inclusion): 

𝑥+     = arg max 𝐽(𝑋𝑘 + 𝑥) ,   𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖  𝑌 −  𝑋𝑘 

𝑋𝑘+1 =  𝑋𝑘 +  𝑥+ 

𝑘      = 𝑘 + 1 

In this recursive step each iteration the additional feature 𝑥+ is added to the feature subset 𝑋𝑘. 

𝑥+ is the feature which maximizes the criteria function. This recursive step is iterated, until 

the amount of desirable feature is reached (𝑘 = 𝑝).  

 

3.3.5.2 Sequential Backwards Selection  
  

The SBS starts with a subset of all available features and decreases the amount each iteration. 

The feature which maximises the criterion function is going to be selected each iteration until 

the amount corresponds to the desired amount.  

 

Input values:           𝑌 = {𝑦1, 𝑦2, 𝑦3,…….,𝑦𝑑
}  

Output values:       𝑋𝑘 = {𝑥𝑗  | 𝑗 = 1,2, … . , 𝑘: 𝑥𝑗𝜖 𝑌} , 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0,1,2,3, … . , 𝑑) 

The algorithm takes the whole d-dimensional feature set as an input and returns a subset of 

features k, where 𝑘 < 𝑑.  

 

Initialization:  𝑋0 =  𝑌 , 𝑘 = 𝑑 

The algorithm is going to be initialized with an empty feature set. 

 

Recursive steps (exclusion): 

𝑥−     = arg max 𝐽(𝑋𝑘 − 𝑥) ,   𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖  𝑌 −  𝑋𝑘 

𝑋𝑘−1 =  𝑋𝑘 −  𝑥− 

𝑘      = 𝑘 + 1 

In this recursive step each iteration the feature 𝑥− is removed to the feature subset 𝑋𝑘. 𝑥− is 

the feature which maximizes the criteria function. In this case the criteria function describes 

the feature with the least informational input. This recursive step is iterated, until the amount 

of previously selected features is reached (𝑘 = 𝑝).  
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3.3.5.3 Exhaustive Feature Selection 

  

The EFS starts with an amount of possible feature subsets and finds the optimal feature subset 

at the end of all possibilities. The feature subset, which maximises the criterion function is 

selected at each iteration until every possibility was tested.  

 

Input values:    Set of features 𝑋 , size of feature set 𝑛 , size of target feature subset 𝑑 , set of 

     possible feature subsets 𝐹 of 𝑋 where each subset is the size of 𝑑.          

Output values: Optimum feature subset 𝑌𝑜𝑝𝑡 of size 𝑑.  

Initialization:   𝑌𝑜𝑝𝑡 =  ∅ 

        𝐺𝑜𝑝𝑡 =  −∞ 

The algorithm is initialized with an empty optimal feature subset and a minus infinite place-

holder optimal feature subset. 

 

Recursive steps: 

For all 𝑌𝑖 𝜖 𝐹 = {𝑌0, 𝑌1, … … , 𝑌𝑘} | 𝑘 =  (𝑛
𝑑

) do 

 𝐺𝑖 = 𝐽(𝑌𝑖) 

 If 𝐺𝑖 >  𝐺𝑜𝑝𝑡 then  

  𝑌𝑜𝑝𝑡 =  𝑌𝑖 

  𝐺𝑜𝑝𝑡 =  𝐺𝑖 

 End if 

End for 

 

In this recursive step each iteration evaluates with the criteria function whether the current 

combination of features performs better than the former 𝐺𝑜𝑝𝑡, the new subset is the optimal 

one. This is repeated, until all combinations are used and the optimal one is chosen.  

 

3.3.5.4 Bi-Directional Elimination 
 

The Bi-Directional Elimination (Stepwise Selection) is similar to the SFS, but in each itera-

tion while adding a new feature, it also checks the significance of already added features in 

the subset. If one of the already chosen features are not significant enough, it removes this 

feature from the subset via SBS. So, this algorithm is a combination of both previous ex-

plained wrapper algorithms. [@Gct18] 

 

Input values:           𝑌 = {𝑦1, 𝑦2, 𝑦3,…….,𝑦𝑑
}  
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Output values:       𝑋𝑘 = {𝑥𝑗  | 𝑗 = 1,2, … . , 𝑘: 𝑥𝑗𝜖 𝑌} , 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0,1,2,3, … . , 𝑑) 

The algorithm takes the whole d-dimensional feature set as an input and returns a subset of 

features k, where 𝑘 < 𝑑.  

 

Initialization:  𝑋0 =  ∅ , 𝑘 = 0 

The algorithm is initialized with an empty feature set. 

 

Recursive steps (Bidirectional): 

Perform the next step of SFS to select the best feature of the dataset 

 

𝑥+     = arg max 𝐽(𝑋𝑘 + 𝑥) ,   𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖  𝑌 −  𝑋𝑘 

𝑋𝑘+1 =  𝑋𝑘 +  𝑥+ 

 

Perform SBS on the new selected features and remove the ones with the poorest performance 

from the dataset. 

 

𝑥−     = arg max 𝐽(𝑋𝑘 − 𝑥) ,   𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖  𝑌 −  𝑋𝑘 

𝑋𝑘−1 =  𝑋𝑘 −  𝑥−  

 

There are some limitations to the algorithm to guarantee, that SFS and SBS are converging to 

the same solution: 

• Features, which are already selected by SFS are not removed by SBS. 

• Features, which are already removed by SBS are not added by SFS anymore. 

 

3.4 Machine Learning Model 

 

As stated in chapter 2.2 there are many different techniques to predict and handle time series 

data in general. Mostly they are divided into two main categories: statistical or machine learn-

ing algorithms. For the scope of this master thesis only the machine learning algorithms were 

used. In detail the following algorithms in particular:  

 

• LSTM (Long Short-Term Memory) 

• Facebook Prophet 

• Random Forest 
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In this chapter the LSTM and also the Facebook Prophet algorithms are going to be explained. 

The Random Forest was already explained in chapter 3.3.3 and because of that, its omitted in 

this chapter. 

3.4.1 LSTM 
 

In comparison to normal MLP (Multilayer Perceptron), which consists of many layers with 

neurons in it and the input data is propagated through the network itself, the LSTM has recur-

rent connections. This means, that the state of the previous activations is also used as a con-

text for the output. But in comparison to normal RNN the design of the LSTM Network al-

lows to overcome the problem of the vanishing or exploding gradients. This means, that the 

weight update procedure changes the weights so fast in one direction or the other, that it is 

graduate to zero or infinity. Those phenomena make the neural network useless for longer 

sequences. [BRO17a, GLF09] 

In general, RNNs are good for the processing of sequential data and for the prediction of 

those. But those networks suffer from short-term memory. To overcome this obstacle, LSTM 

networks were created, which uses gates to migrate short-term memory to those algorithms. 

Primarily gates are neural networks, which regulate the flow of information through a se-

quence chain.  

 

 

 

 
 

Figure 10 – Repeating Module in normal RNN [@Col15] 

 

The previously mentioned problem of the normal RNN is called the long-term dependency 

problem. To overcome this problem, Hochreiter and Schmidhuber introduced the architecture 

1997 [HS97] and were refined during the years by many people afterwards. Figure 10 illus-



Methodology 

  

  Page 30 

trates the architecture of a single-layer RNN. The single layer consists of a chain of repeating 

modules and contains a tanh activation function within them. With this layer it is possible to 

squish the incoming values in the range of -1 and 1.  

In comparison to that, a LSTM Network also contains a chain structure, but instead of a single 

tanh, the repeating module consists of three different gates in general. This structure can be 

seen in Figure 11.  

In this diagram the yellow boxes represent the different NN-Layer. The red dots are pointwise 

operations, like vector addition or multiplication. The arrows represent the copying of the 

whole vector from one state to the next one.  

The main features of the LSTM Networks are the so-called gates and cell states. With the 

gates the flow of information can be regulated. With those operations the network can decide 

to keep information or forget them. The cell states act as a transport highway. Those carry the 

information from one layer to the next one. In combination of those two features the networks 

learns in each layer, which information are relevant or not.  

The gates consist of sigmoid activations. Those acts similar to the tanh activation of the nor-

mal RNNs. Except, that in the case of the sigmoid activation, the values are going to be 

squished in a range of 0 to 1. With this it is easier to decide which information can be forgot-

ten. Because any value, which is multiplied by 0 results also in a 0. In the following, the three 

different gates of a LSTM Network are going to be explained.  

 

 
 

Figure 11 – LSTM Architecture [@Col15] 
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Forget Gate 

With the help of this gate (represented as a red box in Figure 11), the network decides, what 

information is important or can be forgotten. For this, the information of the previous hidden 

state (bottom arrow from the previous hidden cell ℎ𝑡−1) and the current input (𝑋𝑡) are merged 

and the result is passed through the sigmoid function. The outcome of this results in a value 

between 0 and 1 and is called 𝑓𝑡. Afterwards this number is then multiplied with the previous 

cell state (𝐶𝑡−1).  

 

Input Gate 

The input gate is in charge of updating the cell state.  This gate is illustrated as the orange box 

in the upper figure. Firstly, the previous hidden state (ℎ𝑡−1) and the current input (𝑋𝑡) are go-

ing through the sigmoid function (𝑖𝑡). Simultaneously those numbers go through the tanh ac-

tivation layer (𝜍𝑡). This value is called the candidate. Afterwards the results of those layer are 

multiplied.  

 

 

Cell State 

Now, after the importance of the current input in combination with the previous hidden layer 

were calculated, the new cell state is computed. This happens with the following formula: 

 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1 +  𝑖𝑡 ∗  𝜍𝑡 (15) 

 

 

Output Gate 

The last gate in the LSTM Network is called the output gate. This gate decides, what the next 

hidden state should be. This gate is visualized as the blue box in Figure 13. First the previous 

hidden state (ℎ𝑡−1) and the current input (𝑋𝑡) are going through another sigmoid activation 

layer. Simultaneously the new cell state will go through a tanh activation layer. The results of 

both computations are multiplied afterwards. This figure represents the new hidden state (ℎ𝑡), 

which is passed to the next step. 

 

3.4.2 Facebook Prophet 
 

“Prophet is a procedure for forecasting time series data based on an additive model where 

non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It 

works best with time series that have strong seasonal effects and several seasons of historical 
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data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers 

well.” [TL17] 

In other words, with this open-source framework which Facebook created, it is possible to 

make a forecast of time series data. It is especially useful for the prediction of data with strong 

seasonal effects, which also occurs with the weather and energy data from the project.  

 

For the algorithm Facebook Prophet uses a decomposable time series model. This means, that 

the overall machine learning algorithm contains several smaller ones inside. This methodolo-

gy was first introduced in the paper [HP90]. In this paper the model contains a breakdown 

into a trend, seasonal and irregular model. In total the formula for the algorithm is composed 

of the following components: 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) +  𝜀𝑡 (16) 

 

In this formula, 𝑔(𝑡) describes the trend function. This includes non-periodic changes within 

the time series data. 𝑠(𝑡) implies periodic changes, for example weekly, yearly or seasonally 

changes within the data. And the third component ℎ(𝑡) contains the effects of holiday seasons 

throughout the year. The last component 𝜀𝑡 represents the idiosyncratic changes which cannot 

be retrieved by the other components of the model 𝑦(𝑡). For this model it is assumed, that the 

error 𝜀𝑡 is normally distributed.  

In the following, the three main components of the Facebook Prophet model are going to be 

briefly explained:  

 

Trend Model 

 

In general, two different kinds of model were created to (mainly) fit the most applications 

Facebook needed. On the one hand a saturating growth model and on the other a piecewise 

linear model. The saturating growth model is described as following:  

 

𝑔(𝑡) =  
𝐶

1 + exp(−𝑘(𝑡 − 𝑚))
(17) 

 

With 𝐶 as the carrying capacity, 𝑘 as the growth rate, and 𝑚 as an offset parameter. The car-

rying capacity is i.e., the maximum amount of people who have access to internet to use Fa-

cebook. In the case of the PV outcome or weather prediction, this value can be described as 

the maximum amount of energy which the system can produce in the end. The second model 

which can be used as a trend model is the piecewise linear model:  
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𝑔(𝑡) = (𝑘 + 𝑎(𝑡)𝑇 𝛿)𝑡 + (𝑚 +  𝑎(𝑡)𝑇 𝛾) (18) 

 

This model is beneficial, when the dataset does not show a saturating growth. A piecewise 

constant rate of growth also creates a useful model for those cases. In this model 𝑘 also de-

scribes the growth rate while 𝛿 has the rate adjustments. 𝑚 is the offset parameter.  

Another question for the trend are the so-called changepoints. Those points in time describe 

any underlaying changes in the time series data. For example, a new launch of a phone or any 

other product can change the growth rate tremendously. For this reason, at those points it is 

allowed for the growth rate to increase or decrease. [@Ch18, TL17] 

 

Seasonality Model 

 

This part of the main model is the most important for time series data, which is infected by 

seasonality during a specific range of time. This can be i.e., by vacation times during the year, 

which are mostly during the summer or holidays. In the use-case of weather information the 

weather during the four seasons are completely different to each other. In the case of Face-

book Prophet, a Fourier series provides a flexible model of periodic effects: 

𝑠(𝑡) =  ∑(𝑎𝑛  cos (
2𝜋𝑛𝑡

𝑃
) +  𝑏𝑛  sin (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

(19) 

 

The variable 𝑃 describes the period of time. This can be for example a year  (𝑃 = 365.25) or 

a week (𝑃 = 7). [@Ch18, TL17] 

 

Holiday Model 

 

This model is relatively complex to describe, because each country has its own holidays. For 

example, in the United States, there is thanksgiving, which always falls on the fourth Thurs-

day in November. Many other countries have holidays which follow the lunar calendar. For 

this, it is possible to set a list of holidays which, then can be feed in the machine learning al-

gorithm. With this the future holidays are going to be set on the same day as the past ones. 

Also, the algorithm knows, that those days have to be treated specially. Otherwise, it is also 

possible to set a flag for a specific country with pre-defined holiday information given by Fa-

cebook.  
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3.5 Performance Metrics 

 

Performance Metrics calculates an error or accuracy for two or more observing variables. For 

this reason, those metrics are used to measure the performance of machine learning algo-

rithms, where the actual value is compared with the predicted one. For the scope of this mas-

ter thesis various performance metrics were used. In the following equations 𝑌 represents the 

actual value and 𝑌̂ the predicted one. 

 

Mean Absolute Percentage Error  

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑌𝑡 −  𝑌̂𝑡

𝑌𝑡
|

𝑛

𝑡=1

(20)     

Mean Square Error 

 

  𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑌𝑖 −  𝑌̂𝑖)

2
𝑛

𝑖=1

(21) 

 

 

 

 

Root Mean Squared Error 

 𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑖 −  𝑌̂𝑖)
2𝑁

𝑖=1

𝑁
(22) 

 

 

Mean Absolute Error 

𝑀𝐴𝐸 =   
∑ |𝑌̂𝑖 −  𝑌𝑖|

𝑁
𝑖=1

𝑁
 (23)    

𝑹𝟐 

 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

(24)   
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 Implementation 
 

In this section of the master thesis, the implementation of the different methodologies, which 

were explained in chapter 3, are going to be described. Furthermore, the development envi-

ronment is going to be explained. The implementation was carried out with Python 3 version 

3.8.5 to be precise. Python was used in this project, because it is a wide-spread programming 

language in the field of machine learning and inherits many libraries like TensorFlow and 

Sklearn.  

The implementation is divided in five different sections. The first one describes the retrieval 

of the different datasets, such as the Glava, SMHI and Meteostat. The second section outline 

the different techniques of the data preparation. After the different datasets are well-prepared 

for the next step, the methodologies of the feature selection are explained in the third sub-

chapter. Now, that the datasets are cleaned and the most important features are selected, those 

features are used as an input for the different ML-Model, which are explained in the fourth 

section. The last sub-chapter explains the methods for the evaluation of the different ML-

Model and the different use-cases. 

 

4.1 Development Environment 

 

For the development of the project Jupyter notebook was used. This development environ-

ment was founded in February of 2015 by Fernando Pérez and Brian Granger. With this envi-

ronment it is possible to use different interactive data science and scientific computing across 

all programming languages. Furthermore, Jupyter provides the Jupyter hub, which allows 

multiple people to work on one server simultaneously and share the resources of the server, 

like GPUs and CPUs. [@Jup20] 

Within the datacentre of the University of Karlstad a new server for the Jupyter hub was cre-

ated. For each user it contributes enough computing power to accelerate the training of i.e., 

machine learning model training with a Nvidia RTX 2080.  

One of the main advantages of the usage of Jupyter notebook is, that it is accessible through 

mostly any web browser. Furthermore, each notebook is structured in different small cells 

which contains the code, which is presented in Figure 12. 
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                           Figure 12 – Jupyter Notebook Cell 

4.2 Data Downloader 

 

In this section the different downloader for the various datasets are explained. In total there 

are three data sources, which are used: Glava Energy Center, SMHI and Meteostat. For the 

data of the Glava Energy Center there are two different ways to access the data. The first one 

is via the virtual desktop and the second one is the web API. In the beginning of the project 

the web API was not accessible, so the data was retrieved via the virtual desktop and the 

Metrum Software (see Figure 13). The problem with the received data was, that there were 

several errors within the downloaded data. The Metrum Software is able to retrieve the correct 

data and present it, but the exporter simply adds every value from the previous state, which 

makes the outcome useless. Furthermore, it is only possible to retrieve a maximum of six days 

with the Metrum Software, because otherwise the output file will be corrupted.  

 

 
 

Figure 13 – Metrum Software 

With the Web API it is possible to retrieve the necessary data from GLAVA faster and more 

stable. For example, the download of a whole month was possible within a few minutes. The 
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received data from the Web API will be stored as a JSON file afterwards. The structure of the 

file is presented in Listing 1.  

The JSON file consists of three main attributes. The mPoint represents the name of the senso-

ry endpoint. In this case it is the ABB Inverter. The next main attribute is the datatype. This 

element contains the information about the type of data within the dataset. Here it represents 

the information about the General Inputs. The last relevant information within this JSON file 

is the channels attribute. In this object the information about the different sensory pairs are 

saved. It contains the date and the corresponding value for each sensor pair.  

 

"mPoint": 

   { 

    "name": "ABB Inverter", 

    "id": 1 

   } 

} 

 

{ 

"dataType": 

    { 

    "name": "General Inputs", 

    "id":   3 

    } 

} 

{ 

"channels": 

    { 

    "0": 

        { 

        "name": "GI1" 

        "values": [ 

                  { 

                  "value": 197.216, 

                  "time": "2015-07-01" 

                  },  

                  "...." 

                  ] 

        } 

    } 

 

  

Listing 1 – JSON Structure GLAVA 

As seen in the Listing 1, there are the two attributes mPoint and datatype. The Glava Web 

API has 14 different kinds of attributes, which are represented as the datatype and four differ-

ent input sources, which are labelled as mPoint. All the different data inputs and data types 

are presented in the Figure 14. The four input sources are: ABB Inverter, ELTEK VALERE 

Inverter, Laddstolpe and the HSB ACES. Each of those sources have most of the 14 attrib-
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utes, which are also presented in the Figure 15. Most of those attributes are about electronic 

information from the system and only one is specific for the weather information. This one is 

called General Inputs.  

For the scope of this thesis and also for the prediction of the weather and the corresponding 

PV energy outcome, only a few of those variables are necessary. The two most important at-

tributes are the Energy attribute and the General Inputs attribute. Those two attributes are also 

divided in different features. The energy attribute for example consists of three different input 

values: Ptot, Stot and Qtot. As described in chapter 3.1. the total amount of energy, which is 

produced by the PV station is saved in the value Stot.  

 

 
Figure 14 – Glava Sensor Information 

The other attribute General Inputs inherit the information about the weather. Each of the four 

sensors has four different weather information in total. For this reason, the weather infor-

mation has to be gathered separately from those four sensors. In the following Figure 16 the 

weather information of each sensor is presented. In general, there are ten different weather 

features, which are present in the database of Glava. The ABB Inverter and the HSB ACES 

Inverter have two or more endpoints, which are currently not available or not in use. Because 

of this, the HSB ACES input source is not used in general for retrieving any weather infor-

mation. 
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Figure 15 – Glava Weather Features 

For the download of the Glava weather and energy data the two libraries urllib and json were 

used in general. As seen in Listing 2, the first step is to disable the SSL certificate verifica-

tion. Afterwards the needed URL for the download is going to be set together. This is done by 

creating a fixed URL and set the needed parameter in the String. The needed parameters are 

the sensorID and the typeID. The user of the system can set that information via variables 

while calling this function.  

Then the URL is going to be opened with the help of the library urllib and the JSON is re-

quested. The call back JSON file is then saved within a folder the user selected.  

 

# disable ssl certificate verification 

ssl._create_default_https_context = ssl._create_unverified_context 

         

# Creating the url 

url_fixed ='https://systemet.glavaenergycenter.se:444/MetrumWebapi 

           /api/longtimedata?dataTypeId=' 

 

final_url = url_fixed + typeID + '&mpointId=' + sensorID + '&from=' +  

            begin + '&to=' + end 

         

with urllib.request.urlopen(final_url) as url: 

    data = json.loads(url.read().decode()) 

    print("Successfully Downloaded the Timeseries data from GLAVA") 

             

    with open(filepath + 'GLAVA_Sensor_' + sensorID + '_Type_' + typeID +  

              '_From_' + begin + 'To_' + end + '.json','w') as json_file: 

             

       json.dumps(data) 

 

 

Listing 2 – Glava Downloader 
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For the input source Meteostat there is an official Python library to use. To receive the weath-

er information from the closest weather station, the first step is to find the closest one, which 

is available in the database of Meteostat. 

 

 
02404 Arvika / Högvalta SE S 02404 ESKV 59.6667 12.5833 

02418 Karlstad Flygplats SE S 02418 ESSQ 59.3667 13.4667 

02416 Nolgård SE S 02416 ESOK 59.3600 13.4700 

 

 

Listing 3 – Meteostat closest stations 

Listing 3 is presenting the three closest stations to the city Glava, where the actual PV stations 

are located. The second step is to receive historical data from the closest station to Glava, 

which is Arvika in this case. Listing 4 is showing an example of downloading hourly data 

from the Meteostat database. The three parameters for the Hourly-Function are the id of the 

weather station, the start and end date of the observation. With the function fetch() the previ-

ously described data will be downloaded and set into a dataframe. Because only weather in-

formation for the last five years (2015 - 2020) in July is needed, the downloader will automat-

ically only download the datasets for those years.  

 

from meteostat import Stations, Daily, Hourly 

 

# Get hourly data             

data = Hourly(id_m, start, end) 

data = data.fetch() 

 
 

Listing 4 – Meteostat, download hourly data 

Because the Meteostat database only serves the data for some of the needed weather infor-

mation, another source for the radiation has to be included. For this reason, the interpolated 

data of SMHI also has to be acquired. For this dataset there is no python API available and 

that information had to be received manually from the official SMHI website (http://strang.sm 

hi.se/extraction/index.php). There it is possible to retrieve the global radiation for a specific 

longitude and latitude during a pre-defined date.  
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4.3 Data Preparation 

 

In the previous chapter it is explained, how the different data sets are obtained. Naturally there 

are some issues with those, like outliers, missing data or even the structure of the data is not 

optimal for the upcoming usage of those. Because of that there are several steps of data prepa-

ration and cleaning needed to make the handling easier later on.  

 

4.3.1 Combining Datasets 
 

As stated in the previous chapter 4.2 the Glava datasets for the weather information had to be 

downloaded from each sensor separately. This is the same for the data of the energy produced 

(Stot). To use this information comfortably in the next steps of feature extraction and creating 

the model it is necessary to create one big data set with all the different information together.  

This is described in the Listing 5. First each of the loaded Dataframes receive the unique 

name for each column and afterwards the different Dataframes gets combined on the axis=1. 

Afterwards the different columns of the Dataframe are getting scaled. This is needed, if the 

user of the system wants to use a different kind of timescale for the machine learning algo-

rithm. The default time is six seconds for each sample of the data and can be either used like 

this or it can be changed in every possible scale for seconds bigger than six seconds, minutes, 

hours or respectively days. All of the different features within the dataset are then meaned for 

the scale which is set.  
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# Rename the different Columns 

ABB.columns    = ['Date','Wind 

Direction','Precipitation','Unused','Unused'] 

ELTEK.columns  = ['Date','Temperatur','Humidity','Barometric 

Pressure','Wind Speed'] 

LADD.columns   = ['Date','Global Radiation','Radiation 40 

Degrees','Radiation 30 Degrees','Indirect Radiation'] 

Energy.columns = ['Date','Ptot','Qtot','Stot'] 

         

         

# Combine the different DF to one 

frames = [ABB, ELTEK, LADD,Energy] 

combined = pd.concat(frames, ignore_index=True, axis=1) 

 
# Set the Scale of the DF 

combined = combined.apply(pd.to_numeric, errors = 'coerce') 

combined.reset_index() 

combined.index = pd.to_datetime(combined.index) 

 

combined = combined.resample(scale).mean() 

 
 

Listing 5 – Combining the Glava Datasets 

For the interpolated datasets from Meteostat and SMHI those modifications also have to take 

place. Almost all weather information can be taken from the Meteostat dataset, except for the 

radiation.  

 

del meteo['Dew Point'] 

del meteo['Snow'] 

del meteo['Sunshine'] 

del meteo['W-Code'] 

del meteo['Peak Wind Gust'] 

 

meteo = meteo[pd.to_datetime(meteo['Date']).dt.month == 7] 

        meteo = meteo[(pd.to_datetime(meteo['Date']).dt.year == 2016) |        

                      (pd.to_datetime(meteo['Date']).dt.year == 2017) |   

                      (pd.to_datetime(meteo['Date']).dt.year == 2018) |  

                      (pd.to_datetime(meteo['Date']).dt.year == 2019) |  

                      (pd.to_datetime(meteo['Date']).dt.year == 2020)] 

 

 

meteo['Irradiance'] = smhi['Irradiance'].values 

meteo['Stot']       = energy['Stot'].values 

 
 

Listing 6 – Combining Interpolated Datasets 

Furthermore, it is necessary to include the energy information from Glava in this dataset as 

well. As stated in the Listing 6, first the unnecessary columns of the Meteostat dataset are 
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deleted, because those features are not present in the dataset of Glava and for the comparison 

it is needed to have the same attributes. Afterwards only the month of July is selected from 

the dataset, because the Glava dataset only contains these months and the years 2016 until 

2020. The year 2015 is not considered, because at that point only a few features of the weath-

er information are available.  

The last step of the combination is the inclusion of the radiation from the SMHI dataset and 

the Stot of the energy dataset from Glava.  

 

4.3.2 Data Cleaning 
 

After the combination of the different datasets into two main datasets, one for Glava and one 

for the interpolated data, there are still some obstacles with the data in general. Like in chapter 

3.2.2. described, there are still outliers and possibly missing values in the dataset. Further-

more, there could be possible datatypes in the dataset, which are also not numeric.  

 

 

lower_p = combined['Temperatur'].quantile(0.01) 

higher_p = combined['Temperatur'].quantile(0.99) 

combined['Temperatur'] = np.where(combined['Temperatur'] 

<lower_p,lower_p,combined['Temperatur']) 

combined['Temperatur'] = np.where(combined['Temperatur'] >higher_p, 

higher_p,combined['Temperatur']) 

         

         

# accelerating the negativ radiation figures 

combined["Global Radiation"]     = np.where(combined["Global Radiation"]     

<0,0,combined['Global Radiation']) 

combined["Indirect Radiation"]   = np.where(combined["Indirect Radiation"]   

<0,0,combined['Indirect Radiation']) 

combined["Radiation 30 Degrees"] = np.where(combined["Radiation 30 

Degrees"] <0,0,combined['Radiation 30 Degrees']) 

combined["Radiation 40 Degrees"] = np.where(combined["Radiation 40 

Degrees"] <0,0,combined['Radiation 40 Degrees']) 

 
 
 

Listing 7 – Correction of Outliers 

Listing 7 describes exemplary for the temperature, how the in chapter 3.2.1. described quan-

tile-based censoring was implemented using the quantile() function from NumPy. First, the 

quantile range for the data is calculated. Normally the range for the upper and lower quantile 

is 25 percent each. The outliers within the used dataset are only a few datapoints within a 

huge scale, for that reason a winsorization of two percent was chosen. After some tests with 
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adjustments of the quantiles the presented two percent did not cut of datapoints and only se-

lected the outliers. [NG06]  

This methodology was used in most of the existing features of both datasets, to make sure that 

there are no existing outliers anymore. Furthermore, there is an alignment for the radiation 

features of the Glava dataset in Listing 7. This measurement has to be done, because there are 

several readings of the sensors, which presented the radiation on the negative level, which is 

not possible.  

 

 
 

Figure 16 – Winsorization on Temperature (left: cleared, right: without) 

As seen on Figure 16, there is a clear advantage of using the winsorization on datasets, which 

contains a lot of outliers. This example shows that the temperature feature of the Glava da-

taset contained many outliers. The left side of the Figure 16 shows the temperature feature 

before the clearing of outliers. This figure clearly shows that now there is a normal distribu-

tion of the datapoints within the data. The datasets, which contained the outliers were deleted 

from the dataset. There is also the possibility of finding the median of the direct neighbours of 

the outlier, but this technique can lead to problems, if the neighbours are also outliers and thus 

contribute into the median calculation. [@Sin19] 

Another aspect of data cleaning is the identification of values, which are Not a Number or 

NaN or NULL values. For this reason, the function in Listing 8 checks the whole dataset for 

those missing values and return TRUE, if there are missing values and FALSE if the dataset is 

cleared from those. If there are any missing values the simplest way to deal with those is the 

deletion of those.  

 

 

print('Dieser Datensatz hat NaN oder NULL Werte: ' + 

str(combined.isnull().values.any())) 

 

 

Listing 8 – Checking Dataset for NaN or NULL Values 
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4.3.3 Feature Extraction 
 

Feature Extraction describes the progress of making a dataset smaller and more convenient for 

machine learning. With this process it is possible to reduce the number of features within a 

dataset. This methodology is primarily used to only use features, which are most likely to im-

prove the accuracy of a machine learning model and reduce the training time simultaneously.  

4.3.3.1 Pearson Correlation 
 

As described in the chapter 3.3.1. the Pearson correlation calculates the correlation between 

two variables. In the dataset of Glava there are eleven features in general. Listing 9 presents 

how the Pearson correlation is calculated. With the function df.corr() it is possible to calculate 

those correlations. The function is included in the pandas framework. Furthermore  

 

#get correlations of each features in dataset 

corrmat = df.corr(method=Feature_Selection_GLAVA.histogram_intersection) 

top_corr_features = corrmat.index 

plt.figure(figsize=(20,20)) 

 

#plot heat map 

g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn") 

 

 

Listing 9 – Pearson Correlation 

Figure 17 represents the correlation from each feature of the Glava dataset to each other as a 

heatmap. The figures within the heatmap diverge between -1 and 1. A high association to mi-

nus one represents a negative correlation. This means, that if for example the total amount of 

energy in the system (Stot) increases, the corresponding figure grows in the negative way. 

Features which are in the positive scale of the Pearson correlation grows in the same direction 

as the observed value. If the relationship between two features is close to zero, there is no 

immediate correlation between those figures. In the heatmap of Figure 19 the connection be-

tween two values is red, if the correlation is negative, green for a positive connection and yel-

low, if the combination of those features diverges to zero. 

Out of those eleven features only seven have a high correlation to the Stot, which represents 

the total amount of energy produced with the PV station. In this case the features Wind Direc-

tion, Precipitation and Barometric Pressure have a low impact on the output feature Stot. All 

of those variables are close to zero with the Pearson correlation. But those attributes do not 

only have a low impact on the energy output of the PV systems, but also on the other weather 
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features. The Pearson correlation does imply, that the seven features, which are going to in-

fluence the machine learning model the most are: Temperature, Humidity, Wind Speed, Glob-

al Radiation, Radiation 30 Degrees, Radiation 40 Degrees and Indirect Radiation. All of 

them, except of the Humidity have a positive Pearson Correlation, which means, that they are 

grow in the same way as the attribute Stot. Humidity is the only feature, which has a high neg-

ative correlation. This means, that it grows in exact the opposite direction as Stot. This makes 

sense because, when it is raining, there are also a lot of clouds, which affects the energy pro-

duction of solar panels. These results were produced with a limited dataset of one month in 

the summer. The results could vary, with data from other seasons with more cloud occurrence.  

For the interpolated dataset the results for the different features are mostly similar. Except, 

that the amplitude is not so strong for each attribute. For example, the Humidity only received 

a score of -0.53, instead of the -0.62 in the case of the Glava dataset.  
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Figure 17 – Pearson Correlation Heatmap 

4.3.3.2 Spearman Correlation 
 

The Spearman correlation does, similar to the Pearson correlation, calculate the relation be-

tween two variables. As defined in chapter 3.3.2. the difference between the Spearman and 

the Pearson correlation is, that it also considers a difference in the increase or decrease of the 

two observed variables.  
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for column in df: 

        result  = spearmanr(df[column],df['Stot']) 

        print("Result " + str(df[column]) + ": " + str(result)) 

 
 

Listing 10 – Calculation of the Spearman Correlation 

 

Listing 10 shows, how the Spearman correlation is calculated within the system. For this the 

implementation of the Python library SciPy was used. This library contains many different 

modules for i.e., optimization, linear algebra and interpolation. The function only needs all 

values of the two different features to calculate their correlation to each other.  

 

Table 5 – Spearman Correlation Results 

Variable name Spearman Glava Spearman Interpolated 

Temperature 0.633 0.571 

Wind Direction 0.042 0.166 

Wind Speed 0.584 0.304 

Humidity -0.636 -0.591 

Precipitation -0.042 -0.060 

Barometric Pressure 0.087 0.051 

Global Radiation 0.977 0.932 

40 Degrees Radiation 0.959 - 

30 Degrees Radiation 0.984 - 

Indirect Radiation 0.883 - 

 

Table 5 represents the results for each feature in both datasets. The results are mostly similar 

to the ones from the Pearson Correlation. Except, that each result has a stronger amplitude in 

the positive or negative direction. Only the wind speed shows a stronger difference between 

the two tested datasets. But in general, the Spearman correlation suggests the same features.  

 

4.3.3.3 Random Forest 
 

As presented in the chapter 3.3.4. the random forest can be used for machine learning tasks, 

but also for the feature extraction. In this implementation the ExtraTreeClassifier() function 

from the python library Sklearn was used. This implementation uses the classification and 

regression trees (CART) methodology to build the trees.  
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# Select X and Y 

Y = df['Stot']                

X = df.drop("Stot", 1) 

                 

lab_enc = preprocessing.LabelEncoder() 

Y = lab_enc.fit_transform(Y) 

         

extra_tree_forest = ExtraTreesClassifier(n_estimators = 15, criterion 

='gini', max_features = 7)          

extra_tree_forest.fit(X, Y) 

 
 

Listing 11 – Random Forest Implementation 

Listing 11 presents the implementation of the random forest. The first step is the division of 

the dataset into X and Y. This means, that X represents the feature dataset which is going to be 

evaluated if they have a correlation to the output value, which is embodied by Y. Afterwards 

the random forest can be build up. There are three values which can be tweaked: 

 

• n_estimators: described the number of trees which are going to be build 

• criterion: measures the quality of the split, which includes the information gain 

• max_features: number of features which are considered when looking for a split 

 

In this case a number of 15 trees were chosen, because a higher number did not impact the 

variance of the results in general. There are two functions available for the criterion function: 

Gini and Entropy. Both work similar, except, that the Gini methodology does not require log-

arithmic functions for the computation, which makes it not as computational heavy as the en-

tropy. Because of this the Gini criterion function was chosen. For the number of features sev-

en were chosen, because of the previous testing the Pearson and Spearman Correlation. 

Figure 18 presents the results of the random forest feature extraction. On the left side are the 

results for the Glava dataset, which states, that the most important features are: Wind Direc-

tion, Temperature, Humidity, Global Radiation, 30 Degrees Radiation, 40 Degrees Radiation 

and Indirect Radiation. This results almost reflects the outcome of the previous tests, except 

for the Wind Direction and Wind Speed. For the interpolated dataset the results are almost the 

same, but the informational gain for Wind Speed is rated higher than in the Glava dataset. 
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Figure 18 – Random Forest Results (left: Glava Dataset, right: Interpolated Dataset) 

 

4.3.3.4 Principal Component Analysis 
 

The PCA methodology generates a subset of different features and analyses how well those 

combinations work in correlation to the output feature. Because PCA converts high dimen-

sional datasets into low dimensional ones, there is no resemble of the output principles to the 

real features anymore. If the results were used for the training and generating of machine 

learning model, only those principles can be used and not the real features. Because of this 

reason, the methodology was implemented but not used afterwards. Those principled could be 

used in the ongoing project to test if those principles are generating better results.  

 

 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, 

random_state=0) 

         

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

         

pca = PCA() 

X_train = pca.fit_transform(X_train) 

X_test = pca.transform(X_test) 

explained_variance = pca.explained_variance_ratio_ 

 
 

Listing 12 – Implementation of PCA 

Listing 12 describes the implementation of the PCA. Fist different training and test datasets 

have to be created. For this, the train_test_split() function of Sklearn were used. This function 

has two variables: test_size and random_state. The first variable controls the size of the test 

size and the second one sets, if there should be a random state within the datasets. Because 



Implementation 

  

  Page 51 

time series data has to be in order, the random_state was set to zero. The next step scales the 

data with the help of the StandartScaler() from Sklearn. This function scales each value in the 

dataset individually by subtracting the mean and divides this new value by the standard devia-

tion. Afterwards the PCA function of Sklearn is used to generate the different principles of the 

former dataset.  

 

  
Figure 19 – PCA Results (left: Glava Dataset, right: Interpolated Dataset) 

The results of the PCA shows, that in the Glava dataset there is one principal, which inherits 

over 40 percent of the informational gain. The other nine principles only contain a gain of 

close to ten percent and lower. For the interpolated data the informational gain of each princi-

ple is more distributed between them. This means, that if those principles were used for ma-

chine learning, there are more principles which can be ignored in the Glava dataset. This is 

not the case for the interpolated dataset. The reason for this could be, that there are less fea-

tures in this dataset than in the Glava one.  

 

4.3.3.5 Wrapper Feature Selection 

 

The last feature extraction method is the wrapper selection. As described in chapter 3.3.5. 

there are five different wrapper selection algorithms. For all of those different methodologies 

the Python library mlxtend was used. This library is specialized in data science tasks. The user 

of the system can choose between those five different methodologies or run all of them at the 

same time. Listing 13 presents the implementation of those five wrapper methods. The first 

three methodologies are using the SequentialFeatureSelector() method from mlxtend. This 

method is a greedy search algorithm, which is used to reduce an initial d-dimensional feature 

space and reduces it to a k-dimensional one. Where 𝑘 < 𝑑. For this task different estimator 

classes can be used. For this task the LinearRegression() and the K-Nearest Neighbour() func-

tions from Sklearn were used as the estimators. The user of the system can also choose the 



Implementation 

  

  Page 52 

number of features, which are going to be chosen with this methodology. The next two pa-

rameter forward and floating can be toggled between True and False. The forward variable 

represents if the forward selection or the backward elimination is going to be chosen. With the 

floating variable it is possible to activate the bi-directional wrapper selection.  

 

 

sfs = 

SFS(LinearRegression(),k_features=num_features,forward=True,floating=False,

scoring = 'r2',cv = 0) 

 

sbs = 

SFS(LinearRegression(),k_features=num_features,forward=False,floating=False

,cv=0) 

 

sffs = 

SFS(LinearRegression(),k_features=num_features,forward=True,floating=True,c

v=0) 

 

efs = EFS(LinearRegression(), 

min_features=1,max_features=num_features,scoring='r2',cv=10) 

 
 

Listing 13 – Wrapper Feature Selection Implementation 

The exhaustive feature selection is using the EFS function from mlxtend. This method is cre-

ating all possible subsets of the selected feature dataset evaluates over all of them. Because of 

that, the runtime of this function is substantial longer than the normal wrapper feature selec-

tion with an average 43 seconds in comparison to two seconds for the other wrapper methods.  

 

Table 6 – Wrapper Selection Results, Glava Dataset 

SFS SBS Bi-Directional Exhaustive 

Wind Direction Wind Direction Wind Direction Wind Direction 

Temperature Temperature Temperature Temperature 

Wind Speed Wind Speed Wind Speed Wind Speed 

Global Radiation Global Radiation Global Radiation Global Radiation 

Radiation 40 Degrees Radiation 40 Degrees Radiation 40 Degrees Radiation 40 Degrees 

Radiation 30 Degrees Radiation 30 Degrees Radiation 30 Degrees Radiation 30 Degrees 

Indirect Radiation Indirect Radiation Indirect Radiation Indirect Radiation 

 

Table 6 represents the results of the feature selection for each method. Each row represents a 

feature which was selected from all ten possible features. They are not in an increasing order 
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of importance. As the table shows, are the results for each test exactly the same. But those 

results show, that with the wrapper selection also the feature Wind Direction seems to have an 

important role for the variable Stot. Those tests were made with the number of features set to 

seven.   

 

Figure 20 represents the performance of the SFS wrapper method. On the left side seven fea-

tures in total were selected and on the left side only six. It is visible, that the performance in-

crease of using seven features instead of six is marginally. The feature, which is not in the 

subset of the six chosen features anymore is the Wind Direction. This means, that this feature 

is more important than the other four, but only effects the performance slightly in general.  

For the interpolated dataset only seven features in general were accessible. For this reason, a 

subset of five features were chosen for the different wrapper methods. Surprisingly two fea-

tures, which were not visible during the testing of the Glava dataset, were chosen during the 

tests with the interpolated data. Those features are the Barometric Pressure and the Precipita-

tion. Another difference is the result of the exhaustive feature selection. Here only a subset of 

two features in total were chosen.  

 

Table 7 – Wrapper Selection Results, Interpolated Dataset 

SFS SBS Bi-Directional Exhaustive 

Barometric Pressure Barometric Pressure Barometric Pressure Global Radiation 

Temperature Temperature Temperature Temperature 

Wind Speed Wind Speed Wind Speed - 

Global Radiation Global Radiation Global Radiation - 

Precipitation Precipitation Precipitation - 

 

  

Figure 20 – SFS Wrapper Selection on Glava Dataset (left: seven features, right: six features) 
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As Figure 21 presents, does the feature performance increase only slightly with the inclusion 

of five features instead of four. Because of this reason the tests were repeated with only four 

features and the Precipitation was the feature which was excluded this time.  

 

  
Figure 21 – SFS Wrapper Selection on Interpolated Dataset (left: four features, right: five features) 

 

4.3.3.6 Conclusion 
 

The five different methods for feature selection conclude dissimilar results for the ten or sev-

en features in the two datasets. But not for all features. For example, the following features 

are important in every of the conducted tests: Temperature, Global Radiation, 30 Degrees 

Radiation, 40 Degrees Radiation, Indirect Radiation and Wind Speed. Because those features 

are important in every feature selection test, those will be taken for the implementation of the 

machine learning model. Furthermore, other paper like [ASM20] also did feature selection for 

weather information in the case of PV outcome prediction. The weather information were 

measured in the Applied Science Private University (ASU) in Amman, Jordan. At the same 

location, where the PV stations are located.  

Table 8 concludes their results for the correlation between weather information and PV station 

energy outcome. The results conduct the same conclusion, that the solar radiance or irradi-

ance are the most important weather features for the prediction of PV station energy produc-

tion. Furthermore, the temperature and humidity also have a strong correlation with the output 

value. In addition to that, there are two features in this paper, which are not available in the 

Glava dataset: cloud type and dew point. Those features also have a strong correlation to the 

PV energy outcome but could not be tested in the scope of this thesis, due to the limitations of 

the datasets. There are two features, which are not comparable to the results shown above and 

those are: precipitation and wind speed. In the feature selection tests the correlation or infor-

mational gain between precipitation and the PV system energy outcome was not relevant 

enough in comparison to the other features. But in the testing of [ASM20] it shows a correla-
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tion of 0.3409, which does not coincide with the results of the preceding tests. The feature 

wind speed does only have a correlation of 0.1970 in these testing, but reached i.e., a Pearson 

correlation of 0.5 in the previous testing.  

 

Table 8 – Feature Correlation [ASM20] 

Variable name Correlation  

Temperature 0.7615 

Solar Irradiance 0.9840 

Cloud Type -0.4847 

Dew Point 0.6386 

Humidity -0.4918 

Precipitation 0.3409 

Wind Direction 0.1263 

Wind Speed 0.1970 

Air Pressure 0.0815 

 

 

Those inconsistences between the correlation of features can be observed, when the actual 

weather data is perceived closely. The dataset which is used in the paper [ASM20] is collect-

ed throughout two years and also consist of all four seasons and their different seasonal ef-

fects on the weather.  

 

Table 9 – Spearman Correlation, Yearly and Monthly Datasets 

Variable name Spearman July Dataset Spearman Yearly Dataset 

Temperature 0.633 0.734 

Wind Direction 0.042 0.156 

Wind Speed 0.584 0.256 

Humidity -0.636 -0.467 

Precipitation -0.042 -0.040 

Barometric Pressure 0.087 0.241 

Global Radiation 0.977 0.952 

40 Degrees Radiation 0.959 0.961 

30 Degrees Radiation 0.984 0.988 

Indirect Radiation 0.883 0.808 
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The data, which were used for the feature extraction in this paper consists only of weather 

information of July for five years. It is possible, that the seasonality also changes those re-

sults. These changes can be observed in Table 9. It is clearly visible, that the feature wind 

speed loses almost half of its importance. Also, the barometric pressure wins importance. 

Only the precipitation is still irrelevant to the PV energy outcome. Precipitation can only oc-

cur, when there are also clouds. Because of that, the paper [IK18] researched the variability in 

the data.  

 

 
Figure 22 – Left: Cloudy Day, Right: Sunny Day [IK18] 

 

Figure 22 displays this variability in the data of cloud coverage. The left image represents a 

cloudy day and the right one a sunny day. Both cloud coverage forecasts result in completely 

different PV energy outcome profiles. In general, those variabilities in the precipitation con-

cludes to a low correlation between the PV system energy outcome and this feature.  

In summary, there are seven features, which are going to be used for the creation of the ma-

chine learning model for the Glava dataset: Wind Speed, Temperature, Humidity, Global Ra-

diation, 30 Degrees Radiation, 40 Degrees Radiation and Indirect Radiation. And for the 

interpolated dataset the following features are going to be considered: Temperature, Wind 

Speed, Global Radiation and Humidity.  
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4.4 Machine Learning Model 

 

There are different methodologies for the prediction of time series data. In the scope of this 

master thesis three different kind of machine learning model are going to be used: Random 

Forest, LSTM and Facebook Prophet. For each of those methods three kind of model were 

created:  

 

Table 10 – Machine Learning Model 

Input Output 

Weather features PV power outcome 

Weather and PV Feature PV power outcome 

Weather Features Weather Features 

 

The following sub-chapter of the master thesis contains the implementation of the in chapter 3 

mathematically explained model.  

4.4.1 Random Forest 
 

As described in chapter 4.3.3.3. random forest can be either used for classification i.e., feature 

extraction, but also for regression. For the task of predicting time series data this characteristic 

is needed. Listing 14 describes the implementation of the random forest prediction model. In 

the first step of the training section the whole dataset is split up in X and Y. Furthermore, those 

two separate datasets are split up into X_train, X_test, Y_train and Y_test. Whereas the train-

ing splits represent the dataset for the training and the testing ones the dataset for the testing 

afterwards. To create those subsets of the dataset the function train_test_split() of Sklearn was 

used.  

The Sklearn function RandomForestRegressor() was used as the regression function. It inher-

its the same variables as the ExtraTreeClassifier(), used in the previous chapter to filter fea-

tures. For the evaluation of the machine learning model the metrics functions from Sklearn 

were used. In detail the mean absolute error, mean squared error and the root mean squared 

error, mean absolute percentage error and the 𝑅2 score. Afterwards the actual values are going 

to presented overlapping the predicted ones for presentation purposes. The user of the system 

can choose between creating different modes, for the three different machine learning model 

and also for the two datasets.  
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# Training 

X_train, X_test, y_train, y_test = train_test_split(X, Y, 

test_size=test_size, shuffle=False) 

 

regressor = RandomForestRegressor(n_estimators=2000, random_state=0) 

regressor.fit(X_train, y_train) 

y_pred = regressor.predict(X_test) 

 

# Evaluation 

print('Mean Absolute Error:', 

metrics.mean_absolute_error(test_list,pred_list)) 

print('Mean Squared Error:', metrics.mean_squared_error(test_list, 

pred_list)) 

print('Root Mean Squared Error:', 

np.sqrt(metrics.mean_squared_error(test_list, pred_list))) 

print('Mean Absolute Percentage Error:' , 

(metrics.mean_absolute_error(test_list,pred_list)*100)) 

print('R2 Score:' , metrics.r2_score(test_list,pred_list)) 

 

         

plt.figure(figsize=(18, 6)) 

plt.plot(test_list, label='Actual Datapoint') 

plt.plot(pred_list, label='RandomForestRegressor') 

plt.tick_params(axis='x', which='both', bottom=False, 

top=False,labelbottom=False) 

 

plt.ylabel('Predicted ' + temp_list[i]) 

plt.xlabel('Time Steps') 

plt.legend(loc="best") 

plt.title('Regressor predictions and their average') 

plt.show() 

 
 

Listing 14 – Random Forest Regression Implementation 

 

To find the best hyperparameter for a random forest, the Sklearn function Random-

izedSearchCV() was used. This function uses a grid of pre-defined hyperparameter ranges and 

randomly samples each possible combination to find the best solution with K-Fold cross vali-

dation.  

Listing 15 presents the creation of the grid, which consists of four adjustable variables: 

n_estimators, max_features, max_depth and bootstrap. For each of those variables a pre-

defined range was selected. Afterwards a random forest is going to be filled with this grid and 

the best solution for those variables are iterative selected.  
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# Hyperparameters 

# Number of trees in random forest 

n_estimators = [int(x) for x in np.linspace(start = 10, stop = 2000, num = 

2000)] 

# Number of features to consider at every split 

max_features = ['auto', 'sqrt'] 

# Maximum number of levels in tree 

max_depth = [int(x) for x in np.linspace(1, 110, num = 110)] 

max_depth.append(None) 

# Minimum number of samples required to split a node 

bootstrap = [True, False] 

# Create the random grid 

random_grid = { 

'n_estimators': n_estimators, 

'max_features': max_features, 

'max_depth': max_depth, 

'bootstrap': bootstrap} 

 
rf_random = RandomizedSearchCV(estimator = rf, param_distributions = 

random_grid, n_iter = 1000, cv = 3, verbose=2, random_state=0, n_jobs = -1) 

 

rf_random.fit(X_train, y_train) 

best_random = rf_random.best_estimator_ 

 
 

Listing 15 – Hyperparameter Tuning Random Forest 

 

For this task the RandomizedSearchCV() function selected the following variables as the best 

solution:  

 

Table 11 – Hyperparameter Tuning Results Random Forest 

Variable Selected Value Previous Value 

n_estimators 681 10 

max_features auto auto 

max_depth 108 50 

bootstrap True True 

 

Afterwards those results were compared with the previous used values for those variables. 

The mean squared error of the previous model was 59.31 and with the new values set for the 

variables, the error decreased to 43.20, which is an improvement of 27.16 percent. 
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4.4.2 Facebook Prophet 
 

With the Facebook Prophet library, it is possible to also make predictions on time series data. 

The methodology was already explained in chapter 3.4.2. and this sub-chapter treats the im-

plementation of the three different machine learning model, which are going to be evaluated 

in this master thesis.  

The input structure of Facebook Prophet consists of two columns within the dataset: ds and y. 

Because the Facebook Prophet model is implemented to use continuous datasets as an input 

and performs poor with bigger gaps in between time steps, only one month of input data was 

chosen. 

The column ds describe the timestamp of each value. The date has to be in the correct Pandas 

format. The second column y consists of the actual feature, which is going to be predicted. 

The Listing 16 presents the restructuring of the Glava dataset. The user of the system chooses 

a feature, which is going to be predicted. Out of the whole Glava dataset, with all features this 

one is going to be selected and chosen as the y parameter. Furthermore, the date column of the 

Glava column had to be adjusted. The Glava date timestamp includes the time zone, which is 

not compatible with the structure of Facebook Prophet.  

 

 

features_considered = [feature] 

df = df[features_considered] 

df = df.reset_index() 

         

# recreate the column names 

df.columns = ['ds','y'] 

 

# Removing the timezone from the date 

df['ds'] = pd.to_datetime(df['ds'], format='%d-%b-%Y:%H:%M:%S' , utc=True) 

df['ds'] = df['ds'].dt.tz_convert(None) 

 

 

Listing 16 – Facebook Prophet Data Structure 

 

The next step for the prediction with Facebook Prophet is the creation of the training and test 

datasets, which is shown in Listing 17. Because Facebook Prophet always assumes that the 

dataset is continuously, only one year of the six available were chosen. Otherwise, the results 

of the prediction would be inconclusive. Afterwards a new Prophet-Object is going to be cre-

ated. For this the yearly_seasonality was set to False, because there is no seasonality in a da-

taset, consisting of only one month of values. In the end the historical dataset is going to be fit 

in the Prophet model.  
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# Creating the test and training data 

print("Creating the test and training sets") 

train = df[(df['ds'] >= '2019-07-01') & (df['ds'] <= '2019-07-31 

23:00:00')] 

test  = df[(df['ds'] > '2019-07-31')] 

 

m = Prophet(yearly_seasonality=False) 

 

print("Fitting the Regressors into the model!") 

m.fit(train) 

 

 

Listing 17 – Facebook Prophet Fitting the Model 

After the model is fitted into the Prophet model, it is possible to create a prediction out of it. 

For this, the function make_future_dataframe() was used to create a new dataframe which 

also extends into the future. This function requires a period and a frequency. In the Listing 18 

a future dataframe consisting a forecast of 24 hours in the future is going to be created. Af-

terwards the prediction is going to be executed with the predict() function. For each row in the 

future dataset a predicted value is going to be assigned. The prediction returns three different 

variables: yhat, yhat_lower and yhat_upper. Where yhat represents the actual predicted value 

and the other two contain the upper and lower border for the uncertainty interval.  

 
 

future = m.make_future_dataframe(periods=24, freq='H') 

forecast = m.predict(future) 

forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail() 

fig1 = m.plot(forecast) 

fig2 = m.plot_components(forecast) 

 

print("Cross Validation: ") 

cv_results = cross_validation(model = m, horizon ="24 hours") 

df_p = performance_metrics(cv_results) 

print(str(df_p)) 

 

fig3 = plot_cross_validation_metric(cv_results, metric='mape') 

 

 
Listing 18 – Facebook Prophet Creating the Model 

Furthermore, the Facebook Prophet library contains the functionality of cross-validate the 

predictions. For this the function cross_validation() was used. This function needs the trained 

model, an initial span of data from the dataset, a horizon and a period. Figure 23 presents, 

how those variables are distributed in the dataset. The initial variable is the initial training 

period, the horizon is the forecast horizon, and the period is represented by cutoff in the Fig-

ure 23. For the validation only the horizon has to be set, the others are going to be determined 
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automatically. The initial training period is set three times the horizon and the period is creat-

ed for every half a horizon.  

 

 
Figure 23 – Facebook Prophet Cross-Validation [@Pro20] 

Because those functionalities are only working for univariate datasets, a workaround had to be 

implemented. For each new feature, which is going to be included in the prediction a new 

regressor had to be included in the Facebook Prophet model. Furthermore, those regressors 

already need to be future values. Because there are no future values for those features in the 

dataset, they had to be predicted beforehand with the same methodology as for the univariate 

presented previously. For this the iterative function create_future_feature() was created. 

 

 

future_dict = create_future_feature() 

data.columns = ['ds','y','Temperatur', 'Humidity' , 'Wind Speed','Global 

Radiation', 'Indirect Radiation','30 Degrees Radiation', '40 Degrees 

Radiation'] 

 

m.add_regressor('Temperatur') 

m.add_regressor('Humidity') 

m.add_regressor('Wind Speed') 

m.add_regressor('Global Radiation') 

m.add_regressor('Indirect Radiation') 

m.add_regressor('30 Degrees Radiation') 

m.add_regressor('40 Degrees Radiation') 

 

 

Listing 19 – Facebook Prophet Multivariate Prediction 

Afterwards the different columns of the Glava dataset are going to be added and named after 

the naming conventions of Facebook Prophet, where y represents the output feature. Each of 
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the pre-predicted features are then added to the Prophet model with the add_regressor() func-

tion. The fitting, creation of the model and the prediction afterwards is working in the same 

way as in the case of the univariate prediction.  

For the hyperparameter tuning of the Facebook Prophet machine learning model a similar 

approach as the one from random forest is used. First a parameter grid has to be created with 

the possible variables. For the Prophet framework, the number of parameters, which can be 

observed is limited. Only the following parameter can be checked:  

 

• Changepoint_prior_scale: Describes the flexibility of the trend and how much the  

trend changes the observed value. 

• Seasonality_prior_scale: This parameter controls the flexibility of the seasonality. 

• Holidays_prior_scale: This controls the flexibility to fit holiday effects. 

 

Afterwards all combinations of the parameters are going to be created and for each combina-

tion a new model is trained. The results are stored in an array and the best result is presented.  

 

 

param_grid = {   

'changepoint_prior_scale': [0.001, 0.01, 0.1, 0.5], 

'seasonality_prior_scale': [0.01, 0.1, 1.0,5.0, 10.0], 

'holidays_prior_scale' :   [0.01,0.1,1.0,5.0,10.0] 

} 

 

# Generate all combinations of parameters 

all_params = [dict(zip(param_grid.keys(), v)) for v in 

itertools.product(*param_grid.values())] 

rmses = []   

 

# Use cross validation to evaluate all parameters 

for params in all_params: 

    m = Prophet(**params).fit(df)  # Fit model with given params 

    df_cv = cross_validation(m, horizon='24 hours', parallel="processes") 

    df_p = performance_metrics(df_cv, rolling_window=1) 

    rmses.append(df_p['rmse'].values[0]) 

 

best_params = all_params[np.argmin(rmses)] 

 

 

 

Listing 20 – Hyperparameter Tuning Facebook Prophet 

As Table 12 presents, there are three parameters, which can improve the performance of the 

model in general. Especially the holidays_prior_scale changed from 10 to 0.01. This could 
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be, because Prophet assumes a dataset in a yearly manner and the Glava dataset only consists 

of data from one month.  

Table 12 – Hyperparameter Tuning Facebook Prophet Results 

Variable Selected Value Previous Value 

Changepoint_prior_scale 0.01 0.05 

Seasonality_prior_scale 10 10 

Holidays_prior_scale 0.01 10 

 

Both variants were used to compare the quality of the prediction. With the new parameters a 

mean squared error of 33.90 was achieved. The previous model with the default values was 

only minor worse than the new model with a MSE of 33.95. Those results come to the con-

clusion, that the three adjustable parameters, do not have such a high impact on the prediction. 

Mainly, because those variables primarily target effects of seasonality or holidays on the da-

taset. Those effects are not visible in the observed dataset. 

4.4.3 LSTM 
 

The methodology of LSTM machine learning model was already introduced in chapter 3.4.1. 

and this sub-chapter implies the implementation. For a variation of testing scenarios, a total of 

18 different kinds of LSTM model were made. As presented in Table 10, there are three com-

binations of input and output features. In addition to that, three implementations of the LSTM 

model itself were produced. For the simplest one only a single LSTM-Layer in combination 

with a dense-Layer were used. The more complex one inherits multiple stacked LSTM-Layer. 

The last one introduces the usage of bi-directional LSTM-Layer.  

For the implementation of a LSTM network is divided in three steps: preparing the dataset for 

the usage of a LSTM machine learning model, defining and fitting the model and the last step 

is the hyperparameter tuning and evaluation of the specific model.  
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# Load the Dataset 

df = Training_Model.loading_dataframe(filepath) 

 

# Normalize the Dataset 

scaler = MinMaxScaler(feature_range=(0,1)) 

df = scaler.fit_transform(df) 

 

# Create the training and testing Dataset 

x_train_multi, y_train_multi = Training_Model.multivariate_data(df[:,0:8], 

df[:,7:8], 0,TRAIN_SPLIT, past,future, STEP) 

x_val_multi, y_val_multi = Training_Model.multivariate_data(df[:,0:8], 

df[:,7:8],TRAIN_SPLIT, None, past,future, STEP) 

 

 

Listing 21 – LSTM Data Preparation 

Listing 21 presents a sample preparation of the Glava dataset for the training of a LSTM 

model. After the model was loaded, all the values within that dataset has to be normalized. 

For the normalization, the Sklearn function MinMaxScaler() was used. The theory of this 

scaler was described in chapter 3.2.3 with the equalization (5). For the training a total of four 

subsets of the whole dataset have to be created. For the training and testing each two separate 

datasets for the input and output have to be constructed. For the construction of multistep and 

multivariate datasets the function multivariate_data() was created. This function just needs 

the input and output shape, what sizes the different datasets need and the step. The step char-

acterises in this case, in what timesteps it samples the data.  
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multi_step_model = tf.keras.models.Sequential()  

 

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=False,input_shape=x_train_multi.shape[-2:]))) 

multi_step_model.add(tf.keras.layers.RepeatVector(output)) 

multi_step_model.add(Dropout(0.2)) 

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=True))) 

multi_step_model.add(Dropout(0.2)) 

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=True))) 

multi_step_model.add(Dropout(0.2)) 

multi_step_model.add(Bidirectional(tf.keras.layers.LSTM(32,return_sequences

=True))) 

multi_step_model.add(Dropout(0.2)) 

multi_step_model.add(tf.keras.layers.Dense(x_train_multi.shape[2])) 

 

optimizer = tf.keras.optimizers.RMSprop(lr=0.003, clipvalue=1.0) 

multi_step_model.compile(loss = "mse", optimizer = optimizer, metrics = 

['mae', 'mse', 'mape', 'rmse']) 

 

 

 

Listing 22 – LSTM Model Definition 

After the different training and validation datasets were created, the next step is the definition 

of the machine learning model. Listing 22 describes the definition of a stacked LSTM ma-

chine learning model with four bi-directional LSTM-Layer. As defined in chapter 3.4.1 the 

LSTM-Layer contain internal activation functions (tanh and as a recurrent activation the sig-

moid function) and thus the LSTM-Layer do not need additional activation functions. The 32 

parameter describes the dimensionality of the output space.  

As a model type a sequential model was chosen. After testing different combinations with the 

parameter return_sequences from the LSTM-Layer and the RepeatVector() layer of Keras, the 

best results resulted with the usage of a RepeatVector() after the first LSTM-Layer and after-

wards use the return_sequences statement. To reduce overfitting the model the additional lay-

er Dropout() was used.  

The last layer, which is used for the bi-directional LSTM model, is the Dense-Layer. With the 

help of this last layer, it is possible to reduce the number of input data to a specific number of 

output values. In the case of Listing 21 it is possible to reduce the number of features, which 

are outputted to the same amount of input features.  

Afterwards the optimizer is defined. There are several optimizers available with the Keras 

framework [@Ker20], but for the usage of LSTM machine learning model the Adam optimiz-

er outperforms the other ones [@Seb20]. The same behaviour was visible during the creation 
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of the different LSTM model. To reduce or overcome exploding gradients within the LSTM 

model also the clipvalue parameter was set.  

Exploding gradients is the problem, when the weights of the machine learning model con-

verge to a value greater than one. Because in that case, the subsequent multiplications be-

tween and within the layer will increase the gradient exponentially. This is the opposite of the 

vanishing gradient, where the values become too small. [MAB20] 

The last step is the compiling of the machine learning model. For this, the compile function of 

Keras was used. It needs a loss function, an optimizer and an error metric. As a loss function 

the mean squared error was used and the previous explained optimizer. For the evaluation of 

the performance four different metrics were used. The mathematical explanation of those met-

rics took place in chapter 3.5. The 𝑅2 evaluation metric is not supported within the Keras 

framework and thus was used in the evaluation later on.  

Afterwards the compiled LSTM model can now be fitted, which is presented in Listing 23. 

The fit() function needs several input variables to kick off the training: the training and valida-

tion datasets, the amount of epochs and steps. Furthermore, it is possible to create callbacks, 

which are able to trigger actions during the various stage of the training. Here one callback for 

the earlystopping was created. This callback checks for each epoch in the training, a specific 

monitor. In this case the validation_loss was observed. Furthermore, the parameter patience 

can be adjusted, which adds a delay to the cancellation of the training. If the argument re-

store_best_weights was set to True, the weights from previous epochs with the best value is 

chosen and maybe not the ones from the actual epoch.  

 

 

early_stopping = EarlyStopping(monitor='val_loss', patience = 3, 

restore_best_weights=True) 

         

multi_step_history = multi_step_model.fit(train_data_multi, 

                         epochs=EPOCHS, 

                         steps_per_epoch=EVALUATION_INTERVAL, 

                         validation_data=val_data_multi, 

                         validation_steps=EVALUATION_INTERVAL, 

                         verbose=1, 

            callbacks=[early_stopping]) 

 

 

Listing 23 – LSTM Model Fitting 

For the hyperparameter tuning of the LSTM model, the library Kerastuner was used. With 

this library it is possible to evaluate the number of units within each layer and the learning 

rate. Listing 24 presents the implementation of the Hypermodel. This special model represents 

the future structure of the real model. There are only minor differences between this model 
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and the actual one. The first difference is that the first layer does not need the input shape of 

the dataset. Secondly the observed parameter units and learning_rate now contain a range of 

possible values instead of a fixed one.  

 

 

def build_model_small(hp): 

    multi_step_model = tf.keras.models.Sequential() 

    multi_step_model.add(tf.keras.layers.LSTM(units = 

hp.Int('units',min_value=32,max_value=512,step=32),return_sequences=False)) 

 

    multi_step_model.add(tf.keras.layers.RepeatVector(output)) 

    multi_step_model.add(tf.keras.layers.LSTM(units = 

hp.Int('units',min_value=32,max_value=512,step=32), 

activation='relu',return_sequences=True)) 

 

    multi_step_model.add(tf.keras.layers.Dense(1)) 

    multi_step_model.compile(loss = "mse", optimizer =  

keras.optimizers.Adam(hp.Choice('learning_rate',values=[1e-2, 1e-3, 1e-

4])), metrics = ['mae', 'mse']) 

 

 

Listing 24 – LSTM Model Hyperparameter Tuning Hypermodel 

After the creation of the Hypermodel, the tuner for the hyperparameter tuning is going to be 

defined. For this the framework pre-defines four different tuners: RandomSearch, Hyperband, 

BayesianOptimization and Sklearn.  

 

 

bayesian_opt_tuner = BayesianOptimization( 

                    Training_Model.build_model_big, 

                    objective='mse', 

                    max_trials=3, 

                    executions_per_trial=1, 

                    overwrite=True, 

                    directory=os.path.normpath('BIG')) 

 

   

bayesian_opt_tuner.search(x_train_multi, 

y_train_multi,epochs=EPOCHS,validation_split=0.2,verbose=1)   

bayesian_opt_tuner.get_best_hyperparameters()[0].values 

bayesian_opt_tuner.get_best_models()[0].summary() 

 

 

Listing 25 – LSTM Model Hyperparameter Tuning Tuner 

For the evaluation of the best parameters the Bayesian optimization was used, as presented in 

Listing 25. The objective describes the metric to maximize or minimize, which is the mean 

square error in this case. The max_trials parameter defines the number of model configura-
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tions are tested at most. If the search space is exhausted, the tuner will stop the search before 

reaching the pre-defined value. Execution_per_trial is the number of models that should be 

built and fit for each trial. The Boolean overwrite reloads an existing hyperparameter project, 

if there was one created beforehand. And the last parameter directory sets the path where the 

results of the hyperparameter testing are stored.  

  
Table 13 – Hyperparameter Tuning LSTM Results 

Variable Selected Value Previous Value 

Units 63 32 

Learning Rate 0.001 0.003 

 

Table 13 presents the results of the hyperparameter tuning. The results suggest a number of 

units for each LSTM-Layer of 63, instead of the previous used 32. For the learning rate, it 

proposes a decreasing from 0.003 to 0.001. Both options were afterwards tested with the 

training dataset. The model with the new selected parameters achieved a mean squared error 

of 22.41 and the previous one had an MSE of 28.20 for the prediction. That is an improve-

ment of 20.53 percent.  
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 Evaluation 
 

In this section, we evaluate our approaches focussing on prediction quality of the different 

models. In addition, we evaluate the impact of using interpolated data on prediction quality.  

For the evaluation of the different models, we use metrics presented in chapter 3.5. Further-

more, a window size analyzation and a walk-forward cross validation of the training and test 

datasets was performed.  

In addition to that, the dataset with the actual weather information from Glava was bench-

marked against the interpolated weather information from the other dataset. For the compari-

son of each model the datasets used in this work are normalized with the MinMax-Scaler. 

That means, that also the calculated MSE is presented as normalized in the end.  

 

5.1 Window Size Analysis 

 

For each of the in chapter 4.4 presented machine learning model a window size analysis was 

carried out. The general assumption is, that the greater the window size of the training data, 

the better the performance of the actual machine learning model. [KU18] 

The window size of the training dataset was set between 5 and 95 percent of the whole da-

taset. For each step, the amount of data in the training dataset was increased by five percent.  

 

 
 

Figure 24 – Training Dataset Analysis 
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Figure 24 presents the effect of the increasing amount of data within the training dataset. The 

MSE was calculated between the actual and interpolated values, which are normalized accord-

ing to (5). The impact of a training dataset lower than 50 percent is clearly visible on the 

LSTM model. Afterwards, with a bigger dataset the prediction error stabilized itself. Whereas 

the Facebook Prophet model only show an unstable state at the beginning, with a small da-

taset for the training. After the data within the training set increased to over 20 percent, the 

prediction error is stabilizing. For the random forest, the fluctuation of the mean squared error 

is unstable for most of the time and behaves in a similar way as the LSTM model. The model 

stabilizes itself with a training dataset over 65 percent. 

 

5.2 Walk-Forward Cross Validation 

 

The walk-forward cross validation is an important evaluation method, which is especially 

useful for time series data, where the order of the data is mandatory. Figure 25 illustrates the 

functionality of this methodology. Each row represents the whole possible time steps. In the 

first row, only six time steps (blue dots) were used as a training dataset to predict the next 

timestep (red dot). After each step the amount of data in the training set is increased by one 

time step. It is also possible to create bigger steps than singular ones.  

 

 
Figure 25 – Walk-Forward Cross Validation [HA18] 

The performance of each machine learning model was measured with MSE between the pre-

dicted and the actual values for each step in the cross validation. As mentioned previously, a 

bigger step count was chosen for the cross validation. In this test scenario for each iteration 

the step was increased by two hours until the prediction horizon reached 24 hours, with a da-

taset which contains hourly data. Figure 26 describes the different errors of each machine 

learning model during the different periods. For the cross validation of the LSTM and the 

random forest the whole dataset was used. Because the dataset contains six months of data 
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with 31 days, a total of 4464 time steps were available for the cross validation. For the Face-

book Prophet model only one month of data was used, because of the limitations of the 

framework with gaps within the continuous dataset as described in chapter 4.2.2. The Face-

book Prophet model is completely stable during the cross validation. But in general, the MSE 

shows, that it does not perform as good as the other two methodologies. Normally, machine 

learning model do perform worse, the higher the prediction horizon is set. This behaviour is 

visible in the representation of the LSTM model with an increasing horizon. But at a horizon 

of 12 hours, the error decreases again. This behaviour of LSTM model with an increasing 

horizon is also visible during the experiments in [BFO18]. The random forest model has the 

lowest error from the three machine learning techniques used. Furthermore, the error increas-

es when the forecast horizon is extended, but not as massive, as the LSTM model in the be-

ginning.  

 

 
Figure 26 – Walk-Forward Cross Validation 

5.3 Ex-Ante Forecasting Performance 

 

This sub-chapter introduces the evaluation of the performance of the different machine learn-

ing model. The machine learning model use previous observations of 120 hours, which are 

five days, to predict the next 24 hours. This process of only use existing information of the 

data is called Ex-Post. The opposite methodology is Ex-Ante. With this methodology observa-

tions, which extends beyond the time steps of the executed forecast are used for the predic-

tion. An example for these terminologies is that, in the case of Ex-Ante, the machine learning 
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model is predicting over test data, which it has not seen before. While with the Ex-Post meth-

od, the model predicts over a dataset, which is known by the model itself.  

 

5.3.1 Evaluation of the Residuals 
 

Residuals describe the difference between the actual observations and the forecasted values. 

This distribution of the residual describes whether a model has adequately learned all infor-

mation within a given dataset. A well-trained forecasting should have a residuals outcome 

with the following properties [KU18]:  

 

• The residuals should be uncorrelated 

• The residuals should be normally distributed 

• The residuals should have a mean of zero 

 

  
Figure 27 – Residual Distribution (left: Facebook Prophet, right: LSTM) 

Figure 27 presents the residual distributions of the Facebook Prophet and LSTM model. The 

Y-axes describes the frequency of the residual and the X-axes the residual itself. Both ar-

rangements have a normal distribution and a mean around zero which propose that the models 

do not have any correlation between the residuals. But both residual graphs have a moderate 

left tail. 
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Figure 28 – Facebook Prophet Ex-Ante Forecasting Performance 

Figure 28 shows the prediction of the Facebook Prophet model. The Y-axes represents the PV 

station energy production. In general, the predictions are close to the actual values of the da-

taset. In addition to that the framework creates an upper and lower interval for each time step, 

which is represented by the light-blue areas in the graph. The blue wave line is the predicted 

forecast, and the black dots show the actual datapoints. The forecast horizon is 24 hours, 

while the graph also shows the results of the training.  

The prediction of the bi-directional LSTM model in Figure 29 also shows the 24-hour predic-

tion. The red dots represent the predicted values and the blue ones the true values. It shows 

that the algorithm learned the pattern well, but with sudden changes within the dataset it 

struggles. 

 

 
Figure 29 – Bi-Directional LSTM Forecasting Performance 
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5.3.2 Evaluation of Forecasting Performance  
 

For the uncertainity of the prediction of renewable energy production, two different datasets 

were compared. In general, two sets of machine learning model were created. One with the 

precise weather information and one with the interpolated ones. For the prediction each of the 

created model received both of the datasets individually, which is presented in Table 14. That 

means, that i.e., the model trained with the actual weather information made a prediction with 

the same dataset it was trained on and with the predicted dataset. These test-cases were creat-

ed, because not every household in a smart grid has a corresponding weather station and the 

usage of interpolated data is needed, which may lead to an uncertainity in the prediction.  

 

 

 

Table 14 – Combinations of Input and Output Features  

Model Training Input Training 

Output 

Prediction Input Prediction 

Output 

Model A WI Actual PV Actual WI Actual PV Actual 

Model B WI Actual PV Actual WI Interpolated PV Actual 

Model C WI Interpolated PV Actual WI Interpolated PV Actual 

Model D WI Interpolated PV Actual WI Actual PV Actual 

 

Furthermore, for each model presented in Table 14, three different model were created. The 

three test scenarios are:  

 

• PVALL: Contains all weather information and the past PV energy output and 

predicts the future PV energy outcome 

• PVWeather: Contains all weather information and predicts the future PV energy 

outcome 

• Weather: Contains all weather information and predicts each of them. The 

weather information are: Temperature, Wind Speed, Humidity, 

Global Radiation, Indirect Radiation, 30 and 40 Degrees Radiation 

 

In total 36 different machine learning model were created and evaluated, 12 for each machine 

learning model type. Figure 30 presents the results of each of the previously explained model 

with random forest, as the prediction model.  

 



Evaluation 

  

  Page 76 

 
Figure 30 – Random Forest – Performance Results 

The prediction of PVALL with random forest achieves a better MSE, than the PVWeather 

model, which only uses the weather information without the past PV energy outcome. For the 

prediction of the weather features the results vary from each feature. The forecast of the glob-

al radiation, humidity and the temperature were predicted mostly accurate, with the exception, 

that the temperature prediction with the interpolated model performed bad in this case. For 

both prediction types, the forecast of the wind speed turned out to perform even worse. In 

general, it is visible, that the prediction with the actual weather information performs better 

than the interpolated information, with an increasement of 16 percent of the normalized MSE. 

 Furthermore, the error increases in small amounts, when the i.e., interpolated dataset was 

used for a model which was trained on the precise weather information. 

The prediction of all twelve variations for the forecast of the PV energy outcome and the 

weather information with Facebook Prophet are visible in Figure 31.  
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Figure 31 – Facebook Prophet Performance Results 

The prediction of the Facebook Prophet machine learning model performs more stable with 

the interpolated data, than the random forest model. This is evident from the Figure 31, which 

shows the difference of the prediction on the two datasets with the Facebook Prophet model 

presented in chapter 4.4.2. Almost every iteration of the sample prediction leads to the same 

MSE. 

 

 
Figure 32 – LSTM Performance Results 
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The last model, which was also evaluated with the same test-scenarios, is the LSTM machine 

learning model. For these tests the, in chapter 4.4.3 presented, bi-directional LSTM model 

was used because this model predicted the forecasts with the lowest error between the differ-

ent LSTM model. In general, the pattern of the different errors for each model look similar to 

the calculated errors of the random forest prediction. Except, that the errors of the LSTM 

models are in average higher. But the difference of the performance between the interpolated 

weather information and the precise ones only concluded to an increase of the normalized 

MSE of 14 percent, which is better than the result from the Random Forest model. 

 

5.3.3 Effects of Seasonality 
 

In addition to the uncertainity of forecasting renewable energy between accurate and interpo-

lated weather information another aspect is the seasonality of the weather in general. Each 

season of the year has a strong impact on the weather and the corresponding energy produc-

tion with renewable energy sources like PV stations. Because the datasets used for the fore-

casting in the previous chapter contained only monthly observations during the summer sea-

son, the LSTM model was used in this test scenario for the prediction of a dataset, which in-

herits data from the winter season.  

More accurate, the dataset consists of the two months October and November in 2020 in an 

hourly basis. Figure 33 presents the results of the comparison between using seasonal data, 

which correspond to the training data and observations from a different season. The normal-

ized MSE for the LSTM model increases 0.24 percent to 0.41 percent for the prediction of 

PVALL and has an even stronger deviation in the case of the prediction of the feature humidi-

ty, where the MSE increases from 0.24 percent to 0.58 percent.  
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Figure 33 – Seasonality Comparison 
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 Discussion 
 

This section of the master thesis aims to discuss the studies from the previous chapter. Which 

introduced results from the forecasting applied on two different datasets. Furthermore, the 

objective fulfilment of the topic of the master thesis is another part of the discussion.  

 

6.1 Forecasting Performance 

 

The objective of this master thesis was the evaluation of the uncertainity of predicting renew-

able time series data with machine learning. To measure this uncertainity and also the perfor-

mance of the machine learning model different approaches like performance metrics to meas-

ure the given error, walk-forward cross validation and the usage of residuals were used. To 

measure the error difference between interpolated and actual weather information 36 test sce-

narios were created. Those are specified in chapter 5.3.2. Furthermore, a comparison between 

the prediction of weather information from a specific time to another season was performed.  

For the walk-forward cross validation an average MSE score of 0.55 was measured for the 

Facebook Prophet. For the random forest, the cross validation resulted in a score of 0.15 and 

for the bi-directional LSTM 0.37. The bad score of the Prophet model concludes out of the 

less training dataset and the non-continuous dataset used for the testing. To increase the per-

formance of each machine learning model in general, hyperparameter tuning was performed. 

For the LSTM model an improvement by 20.53 percent was achieved. The tuning for the ran-

dom forest model was also increased by 27.16 percent. Only the tuning for the Prophet model 

did not work as intended. The adjustable hyperparameter from Prophet are only for seasonali-

ty and holidays, which are not existing in the used dataset.  

For the difference on the performance of interpolated and accurate weather information, the 

Random Forest performed 16 percent worse with the interpolated dataset. In comparison, the 

difference for the LSTM model was two percent less, with an increase of the normalized MSE 

of 14 percent.   

Table 15 – Performance Comparison between Actual and Interpolated Data 

Model PVALL PVWeather Weather 

Interpolated Random Forest + Actual Data -51% -52% -9.5% 

Actual Random Forest + Interpolated Data -22% 21% 16% 

Interpolated Prophet + Actual Data -2% 0% 0% 

Actual Prophet + Interpolated Data 0% 0% 0% 

Interpolated LSTM + Actual Data -16% -49% -22% 

Actual LSTM + Interpolated Data -12% -16% -28% 



Discussion 

  

  Page 81 

In addition to that, the models were cross tested with the two datasets. That means, that the 

trained model was i.e., trained with the actual weather information of the Glava energy centre 

and afterwards fed with the interpolated dataset and vice versa. Moreover, the general MSE of 

the different models trained with the actual and interpolated data were compared. Table 15 

presents the performance comparison between the usage of the opposing dataset for the pre-

diction. As mentioned in chapter 5.3.2 the performance decreases in general. A negative per-

centage in the table means, that the performance dropped by that amount and the other way 

around. Especially the usage of the interpolated data on a model trained on actual weather 

information resulted in a decrease of the performance by around 50 percent at some instances. 

The only model, where the usage of the other dataset did not infect the performance was the 

Facebook Prophet model.  

The experiment of using a dataset from another season of the year also concluded in an in-

crease of the MSE. The dataset was from the winter season, with the months October and No-

vember, which show different weather conditions, than the summer season from the training 

dataset. The increasement of the normalized MSE for the different seasons ranged between 20 

and 50 percent. This behaviour of the seasonality could be overcome by using a machine 

learning model which was trained with data from the whole year or seasonality models. Fur-

thermore, seasonality can be used or removed to increase the performance of the machine 

learning model. [Bro17b] 

 

6.2 Objectives and Scope fulfilment 

 

At the beginning of the master thesis, the objectives and scope of the work was set in chapter 

1.4. For the first step a pipeline had to be implemented, which starts at the acquirement of the 

data and ends in a finished machine learning model with the option to evaluate the created 

model. The first step was the automatic call of the Glava database to receive the necessary 

weather and PV energy information. This data was collected via the web API of the Glava 

Energy Center. In the beginning the data had to be collected manually through the Metrum 

software. As stated in chapter 4.2, the output file was corrupted after every export. For that 

reason, the usage of the web API was mandatory, which also allowed an automatic download 

from the Glava database to the university server.  

The next step was the data preparation, which is introduced in the chapter 4.3. The first step 

was the combining of the different data sources into one file. Afterwards the data had to be 

cleared from outliers and not existing values. As presented in chapter 4.3.2, the dataset had 

some values, which do not correlate with the rest. With the usage of winsorization, the data-

points for each feature seemed reasonable in comparison to the neighbour datapoints.  
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In Addition to the data preparation the different features of the dataset also had to be evaluat-

ed. The different methodologies in chapter 4.3.3. proved, that the features precipitation, bar-

ometric pressure and wind direction contain the least informational gain and for that reason, 

they were excluded from the dataset afterwards.  

The next step of the pipeline was the creation of the three different machine learning model. 

As described in the previous chapter, the performance of those models was increased with the 

usage of hyperparameter tuning. For the implementation of the random forest and the LSTM 

model the frameworks Keras, TensorFlow and Sklearn were used, which are well established 

machine learning frameworks. The last machine learning model was created with the Face-

book Prophet framework, which only needs the preparation of the dataset from the user. The 

rest of the creation of the model is handled by the framework itself.  

In addition to that, also a comparative analysis of the forecasting methods was performed. The 

different models were compared in their performance among each other with methods de-

scribed in chapter 5. Furthermore, their performance with different training and prediction 

input data was examined.  

 

Research Objectives 

How can the PV system energy outcome be proactively determined using machine learning 

model and weather information?  

 

The first step was the framing of the problem as a supervised learning problem. That means, 

that the model is learning a function that maps a predefined input to an output. The model 

infers from labelled training data. The input data consists of a sequence of previous time se-

ries observations and the output represents the next x timesteps. With this structure it is possi-

ble to preserve the structure and order of the data, which is needed for time series data.  

For the prediction of the PV energy outcome, not only the past energy outcome is a good in-

dicator for future outcome, but also the current weather information. For that reason, also a 

good forecast of the weather information and the usage of those information for the prediction 

of the PV system energy outcome is needed.  

 

Do interpolated weather information affect the future prediction of PV energy outcome?  

 

One objective of this master thesis was the comparison of the usage of weather information, 

which were accumulated directly at the PV station and interpolated ones. For that reason, each 

of the three used machine learning model were once created and tested with the accurate da-

taset and a second pair with the interpolated dataset. Furthermore, the difference in the per-

formance was also measured with three different types of input and output. The different 
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types are presented with Table 14. The results of those tests came to the conclusion, that in 

general, the usage of an interpolated dataset effects the performance. In addition to that the 

tests yielded, that the usage of interpolated data for the prediction on a model, which was 

trained with the accurate dataset, also the performance drops.  
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 Conclusion 
 

In resemblance of the objectives from chapter one, a study on the forecasting of PV systems 

energy outcome was undertaken. The studies on this machine learning task are part of the 

forecast of time series data, which have some special requirements to the machine learning 

model. Furthermore, different data preparation techniques like the winsorization or normaliza-

tion were used to prepare the dataset for the next tasks. These methodologies were especially 

needed for the Glava dataset, because these data structures inherit some outliers, which could 

result into a worse performance in general.  

The dataset of the weather information consists of many different features, which had to be 

evaluated in the regard of the importance to the outcome of the prediction. Each of the fea-

tures was compared to their specific informational gain for the prediction of the PV system 

energy outcome. In general, only seven out of the eleven available features from the Glava 

dataset were chosen, because the others only had a low effect on the prediction. For the de-

termination of these features different techniques were used, which are presented in chapter 

3.3.  

For the prediction of the future PV system energy outcome three different techniques were 

developed, as presented in chapter 4.4. Each of them was trained on the same dataset of 

weather and PV information, except the Facebook Prophet model, because it only perfor-

mance well with continuous datasets. The LSTM and also the random forest models experi-

enced a performance boost with the usage of hyperparameter tuning with a decreasement of 

the MSE of 20.53 percent for the LSTM model and 27.16 percent for the random forest. 

The evaluation results presented in chapter 5 presents, that in total the random forest model 

outperforms the other two machine learning model with an average MSE of 0.15. In compari-

son the bi-direction LSTM model achieved a MSE score of 0.37 and the Facebook Prophet 

model 0.58. But in general, the Facebook Prophet model could achieve a better prediction 

with more continuous data for the training. Furthermore, the results of the different input data 

show, that the prediction results are strongly affected by the accuracy of the weather infor-

mation, which makes the prediction with interpolated data more uncertain. In addition to that 

uncertainity, the different seasons of the weather also play a big part in the uncertainity. As 

presented in the Figure 33, a model trained with yearly data for the summer had problems 

with the prediction using weather information from the winter season.  

7.1 Future Work 

 

For the extension of the work presented in this master thesis, the first step could be the usage 

of different inputs for the weather information. Because some of the weather information 

from the Glava dataset had many errors within it, which had to be cleaned. Furthermore, dif-
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ferent ranges for the interpolated data could be worth to be invested. For the scope of this the-

sis, the interpolated data was taken from a weather station at the Karlstad centre, which is a 

distance of around 70 kilometres. 

In addition to that, different machine learning model could be trained with a longer continu-

ous time range, to fetch the seasonal effects of the weather to the PV energy outcome. The 

other option could be the training of several seasonal models.  
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