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We study a system of parabolic equations consisting of a double nonlinear parabolic 
equation of Forchheimer type coupled with a semilinear parabolic equation. The 
system describes a fluid-like driven system for active-passive pedestrian dynamics. 
The structure of the nonlinearity of the coupling allows us to prove the uniqueness of 
solutions. We provide also the stability estimate of solutions with respect to selected 
parameters.
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1. Introduction

A recent result on the weak solvability of a mixed fluid-like driven system for active–passive pedestrians 
has been reported in [12], where the authors provided the existence of solutions to the problem (1) by 
using a Schauder’s fixed point argument. This type of mixed pedestrian dynamics is originally proposed in 
[10] by considering their evacuation dynamics in a complex geometry in the presence of a fire as well as of 
a slowly spreading smoke curtain. From a stochastic processes perspective, various lattice gas models for 
active-passive pedestrian dynamics have been explored in [4,6]. Within the present framework, our model 
is embedded in a continuum scale and resembles the structure of Forchheimer flows in porous media [2]. 
The aim of this paper is to complete the proof of the well-posedness of the system (1) by showing the 
uniqueness and stability of solutions with respect to parameters. The nonlinear structure in the transport 
term where the Forchheimer polynomial appears, allows us to establish the wanted uniqueness and stability 
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estimates. This work focuses on the structural stability of solutions with respect to initial and boundary 
data, nonlinear coupling coefficient, and to the diffusion coefficient from the semi-linear equation.

A number of relevant results are available on structural stability topics. In particular, standard nonlinear 
energy stability results have been presented in [11] for convection problems, where the author dealt with an 
integral inequality technique referred to as the energy method. The structural stability of solutions to gen-
eralized Forchheimer equations (introduced in [3]) has been provided in [1], where the authors investigated 
the uniqueness, the Lyapunov asymptotic stability together with the large time behavior features of the 
corresponding initial boundary value problems. A structural stability with respect to boundary data and 
the coefficients of Forchheimer is considered in [9]. In [14], a stability estimate is introduced by considering 
a nonlinear drag force term corresponding to the Forchheimer term in a Navier–Stokes type model of flow 
in non-homogeneous porous media. Such investigations on stability estimates not only contribute to the 
understanding of the well-posedness of model equations, but also can point out inherent delimitations of 
the parameters regions outside which it makes no sense to search for solutions, see e.g. [13].

This paper is organized as follows. In Section 2, the setting of the model equations is provided. In Section 3, 
preliminaries and assumptions are provided. Then, we recall available energy estimates in Section 4. In 
Section 5, we show the proof of the uniqueness of solutions to our system. Finally, the target stability 
estimate is established in Section 6.

2. Setting of the model equations

Let a bounded set Ω �= ∅, Ω ⊆ R2 has C1-boundary1 ∂Ω such that ∂Ω = ΓN ∪ ΓR, ΓN ∩ ΓR = ∅ with 
H(ΓN ) �= ∅ and H(ΓR) �= ∅, where H denotes the surface measure on ΓN , ΓR and take S = (0, T ). We 
shall consider the following equations, where the pair of velocities is (u = u(t, x), v = v(t, x)) such that the 
mappings u : S × Ω −→ R2 and v : S × Ω −→ R2 satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(uλ) + div(−K1(|∇u|)∇u) = −b(u− v) in S × Ω,

∂tv −K2Δv = b(u− v) in S × Ω,

−K1(|∇u|)∇u · n = ϕuλ at S × ΓR,

−K1(|∇u|)∇u · n = 0 at S × ΓN ,

−K2∇v · n = 0 at S × ∂Ω,

u(t = 0, x) = u0(x) for x ∈ Ω̄,

v(t = 0, x) = v0(x) for x ∈ Ω̄.

(1)

In (1), K2 > 0 and function K1 stems from the derivation of a nonlinear version of the Darcy equation 
defined via a generalized polynomial with non-negative coefficients (e.g. [9], [1], [3]). The structure of K1 in 
the first equation of (1) will be described in Section 2. In addition, λ ∈ (0, 1] is a fixed number and b(·) is a 
sink/source term.

In model (1), the dynamics of interacting pedestrians involves the evolution of two distinct populations 
behaving very differently from each other. Seen at a microscopic level, the motion takes place in an heteroge-
neous domain - obstacles are obstructing the sight of the exit. The active pedestrians follow a predetermined 
velocity field (the map of the location is known), while the passive agents that have no preferred direction 
of motion. We assume that the size of the overall population is significantly large so that using macroscopic 
models makes sense. In this context, we consider that the active population of pedestrians follows velocity 
fields similar to a generalized Darcy flow, namely, a Forchheimer flow typically applicable for slightly com-
pressible fluids in porous media, while the passive population is governed macroscopically by some averaged 

1 This boundary information is to guarantee the trace’s inequality (8) (e.g. [3]).
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diffusion equation. To build this model, we took inspiration from the field of reactive flows in porous me-
dia (see, e.g., [2]). It is worth pointing out that both reactive flows in porous media as well as pedestrian 
flows in heterogeneous domains are able to produce coherent flow patterns, manifestation of some sort of 
built-in self-organization mechanisms. Cf. e.g. [7,8], either uniform or not, pedestrian flows can form col-
lective patterns of motion. For instance, one notices circulating flows at intersections, lane formation, local 
clogging due a complex geometry (typically caused by walls and obstacles under normal walking conditions 
or when the evacuation of pedestrians takes place during an emergency situation). If the pedestrian flow is 
composed of mixed active-passive populations, then we see that often groups of passive pedestrians block 
the motion of the active ones. This effect was pointed out by the numerical results reported in [4,10] and 
[5]. Of course, to get the needed trust in our model, equations (1) have to be approximated numerically and 
the corresponding numerical output has to be confronted with suitable statistics of experimental results. 
This will be one of our next steps in this investigation, which will be studied elsewhere.

3. Preliminaries and assumptions

We list in this section a couple of preliminary results (mostly inequalities and compactness results) as 
well as our assumptions on data and parameters.

Lemma 3.1. Let x, y ≥ 0. Then the following elementary inequalities hold:

(x + y)p ≤ 2p(xp + yp) for all p > 0, (2)

(x + y)p ≤ xp + yp for all 0 < p ≤ 1, (3)

(x + y)p ≤ 2p−1(xp + yp) for all p ≥ 1, (4)

xβ ≤ xα + xγ for all 0 ≤ α ≤ β ≤ γ, (5)

xβ ≤ 1 + xγ for all 0 ≤ β ≤ γ. (6)

The proof is elementary and we omit it from here.

Lemma 3.2 (Trace lemma). Let λ ∈ (0, 1], δ = 1 −λ, a = αN

αN+1 ∈ (0, 1), a > δ, α ≥ 2 − δ, α ≤ 2, μ0 = a−δ
1−a , 

α� = n(a−δ)
2−a and

θ = θα := 1
(1 − a)(α/α� − 1) ∈ (0, 1). (7)

Then it exists C > 0 such that the following estimate holds
∫
ΓR

|u|αdσ ≤ 2ε
∫
Ω

|u|α+δ−2|∇u|2−adx + C‖u‖αLα(Ω) + Cε−
1

1−a ‖u‖α+μ0
Lα(Ω) + Cε−μ2‖u‖α+μ1

Lα(Ω), (8)

where

μ1 = μ1,α := μ0(1 + θ(1 − a))
1 − θ

, (9)

μ2 = μ2,α := 1
1 − a

+ θ(2 − a)
(1 − θ)(1 − a) . (10)

For the proof of Lemma 2.2, see Lemma 2.2 in [3].
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3.1. Structure of K1

In this section, we recall the definitions on the constructions based on the nonlinear Darcy equation 
and its monotonicity properties as they have been presented in [1]. First of all, we introduce the function 
K1 : R+ −→ R+ defined for ξ ≥ 0 by K1(ξ) = 1

g(s(ξ)) which is supported to be the unique non-negative 
solution of the equation sg(s) = ξ, where g : R+ → R+ is a polynomial with positive coefficients defined by

g(s) = a0s
α0 + a1s

α1 + . . . + aNsαN for s ≥ 0, (11)

where αk ∈ R+ with k ∈ {0, . . . , N}.
The function g is taken to be independent of the spatial variable. Thus, we may have

G(|v|) = g(|v|)|v| = |∇p|, (12)

where G(s) = sg(s) for s ≥ 0. From now on we use the following notation for the function G and its inverse 
G−1, namely, G(s) = sg(s) = ξ and s = G−1(ξ). To be successful with the analysis to follow, we impose the 
following condition on the polynomial g, referred to as (G).

(G1) g ∈ C([0, ∞)) ∩ C1((0, ∞)) such that

g(0) > 0 and g′(s) ≥ 0 for all s ≥ 0.

(G2) It exists θ > 0 with g ∈ C([0, ∞)) ∩ C1((0, ∞)) such that

g(s) ≥ θsg′(s) for all s > 0. (13)

To be able to ensure the uniqueness of solution to the system (1), we use the monotonicity properties 
of the function F : Rd −→ Rd such that F (y) = K1(|y|)y. This is related to the nonlinear Darcy structure 
(12). Furthermore, we recall the following basic essential ingredients:

Definition 3.1. Let F : Rd −→ Rd be a given mapping.

• F is monotone if

(F (y′) − F (y)) · (y′ − y) ≥ 0 for all y′, y ∈ Rd. (14)

• F is strictly monotone if there is c > 0, such that

(F (y′) − F (y)) · (y′ − y) ≥ c|y′ − y|2 for all y′, y ∈ Rd. (15)

• F is strictly monotone on bounded sets if for any R > 0, there is a positive number cR > 0, such that

(F (y′) − F (y)) · (y′ − y) ≥ cR|y′ − y|2 for all |y′| ≤ R, |y| ≤ R. (16)

See Definition III.3 in [1] for more details.

We introduce a useful formulation by defining the following function Φ : Rd ×Rd −→ R as follows

Φ(y, y′) = (K1(|y′|)y′ −K1(|y|)y) · (y′ − y) for y, y′ ∈ Rd. (17)
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Proposition 3.1. Let g satisfy (G1). Then F (y) = K1(|y|)y is monotone, hence Φ(y, y′) ≥ 0 for all y, y′ ∈ Rd, 
where Φ is defined as in (17).

For the proof of Proposition 3.1, see Proposition III.4 in [1].

Lemma 3.3. Let g satisfy (G1). The function K1(·) = K1g(·) = 1
g(s(·)) , is well defined, belongs to C1([0, ∞)), 

and is decreasing. Moreover, for any ξ ≥ 0, let s = G−1(ξ), then one has

K ′
1(ξ) = −K1(ξ)

g′(s)
ξg′(s) + g2(s) ≤ 0. (18)

For the proof of Lemma 3.3, see Lemma III.2 in [1].

Proposition 3.2. Let g satisfy (G1) and (G2). Then F (y) = K1(|y|)y is strictly monotone on bounded sets. 
More precisely,

Φ(y, y′) ≥ λ

λ + 1K1(max{|y|, |y′|})|y′ − y|2 for all y, y′ ∈ Rd. (19)

For the proof 3.2, see Proposition III.6 in [1].

3.2. Assumptions

We make the following choices on the structure of the involved nonlinearities.

(A1) The structure of K1(ξ) has the following properties hold K1 : [0, ∞) −→ (0, 1
a0

] such that K1 is 
decreasing and

d1

(1 + ξ)a ≤ K1(ξ) ≤
d2

(1 + ξ)a ; (20)

d3(ξ2−a − 1) ≤ K1(ξ)ξ2 ≤ d2ξ
2−a for all ξ ∈ [0,∞). (21)

In (20), d1, d2, d3 are strictly positive constants depending on g(s) and a ∈ (0, 1).
(A2) The function b : R −→ R satisfies the following structural condition: it exists ĉ > 0 such that 

b(z) ≤ ĉ|z|σ, with σ ∈ (0, 1).
(A3) The source term b : R −→ R is globally Lipschitz continuous.
(A4) The boundary data satisfies ϕ ∈ L∞(ΓN ).

Assumptions (A1)-(A4) are all technical. The choice of (A1) was inspired by Theorem III.10 in [1].
We recall from [12] the following concept of solution to (1) fitting to the case α ∈ [1 + λ, 2].

Definition 3.2. Find

(u, v) ∈ Lα(S;Lα(Ω)) ∩ L2−a(S;W 1,2−a(Ω)) × L2(S;W 1,2(Ω))

satisfying the identities
∫
Ω

∂t(uλ)ψdx +
∫
Ω

K1(|∇u|)∇u∇ψdx +
∫
ΓR

ϕuλψdγ = −
∫
Ω

b(u− v)ψdx (22)
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and ∫
Ω

∂tvφdx +
∫
Ω

K2∇v∇φdx =
∫
Ω

b(u− v)φdx (23)

for a.e. t ∈ S and for all (ψ, φ) ∈ Lα(Ω) ×W 1,2(Ω) with the initial data (u0, v0) ∈ Lα(Ω) × L2(Ω).

This weak formulation has been presented in [12].

Theorem 3.1. Assume that (A1) and (A2) hold. Let λ ∈ (0, 1], δ = 1 −λ, a = αN

αN+1 ∈ (0, 1), a > δ, α ≥ 2 −δ, 
α ≤ 2, σ ≤ α

2 , σ ∈ (0, 1) and u0 ∈ Lα(Ω), v0 ∈ L2(Ω). Then the problem (1) has at least a weak solution 
(u, v) ∈ Lα(S; Lα(Ω)) ∩ L2−a(S; W 1,2−a(Ω)) × L2(S; W 1,2(Ω)) in the sense of Definition 3.2.

For the proof of this result, see Theorem 3.4 in [12].

3.3. Statement of the main results

The main results of this paper are stated in Theorem 3.2 and Theorem 3.3. They correspond to the case 
λ = 1, δ = 0.

Theorem 3.2. Assume that (A1)-(A4) hold. Let a = αN

αN+1 ∈ (0, 1), a > δ, α ≥ 2 − δ, α ≤ 2 and σ ≤ α
2 , 

σ ∈ (0, 1). Then, the problem (1) admits at most a weak solution in the sense of Definition 3.2.

We look for the case when the coupling is linear, i.e. b : R −→ R is a given function such that b(s) =
rB(s), where r ∈ (0, ∞). Here, B is fixed and B is taken such that (A2) and (A3) are satisfied. We 
call S1 = (0, T1), S2 = (0, T2) and S = (0, min{T1, T2}) = (0, τ). Let (ui, vi) be weak solutions to (1)
corresponding to the choices of data (Di, ϕi, ri, u0i, v0i), i ∈ {1, 2}. We define a triplet (ui, vi, Di), where 
(ui, vi) ∈

(
Lα(S;Lα(Ω)) ∩ L2−a(S;W 1,2−a(Ω))

)
× L2(S; W 1,2(Ω)) and Di = (Di, ri, u0i, v0i) ∈ (0, ∞) ×

(0, ∞) ×Lα(Ω) ×L2(Ω). To avoid the use of multiple indices, we denote D := K2, where K2 > 0 is entering 
(1). We give stability estimates of the solutions with respect to initial and boundary data, nonlinear coupling 
coefficient r and the diffusion coefficient D.

Theorem 3.3. Assume that (A1)-(A4) hold, where (A2) and (A3) hold for the function B(s). For i ∈ {1, 2}, 
(Di, ri, u0i, v0i) belong to a fixed compact subset K ⊂ (0, ∞) ×(0, ∞) ×Lα(Ω) ×L2(Ω), λ = 1, r̄ ≥ |r1−r2| > 0. 
Then, the following stability estimate holds

‖u1 − u2‖αLα(Ω) + ‖v1 − v2‖2
L2(Ω) ≤ eC(α,λ,ĉ,r̄)|r1−r2|t

[
‖u01 − u02‖αLα(Ω)

+‖v01 − v02‖2
L2(Ω) + Ct(|D1 −D2| + |r1 − r2| − ‖ϕ1 − ϕ2‖2

L∞(ΓR))
]
, (24)

for t ∈ S.

The proofs of Theorem 3.2, Theorem 3.3 are given in Section 5 and Section 6, respectively.

4. Energy estimates

In this section, we recall the energy estimates available for the problem (1). In particular, Proposition 4.1
contains Lα − L2 estimates, while gradient and time derivative estimates are reported in Proposition 4.2.
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Proposition 4.1. Assume that (A1)-(A5) hold and let λ ∈ (0, 1], δ = 1 − λ, a = αN

αN+1 ∈ (0, 1), a > δ, 
α ≥ 2 − δ, α ≤ 2, σ ≤ α

2 , σ ∈ (0, 1) and u0 ∈ Lα(Ω), v0 ∈ L2(Ω). Then, for any t ∈ S, the following 
estimates hold

d

dt

∫
Ω

|u|αdx +
∫
Ω

|∇u|2−a|u|α+δ−2dx ≤ C1 +
( 3

2C2
ĉ + d3(α− λ)

C2

)
‖u‖αLα(Ω) + ĉ

2C2
‖v‖2

L2(Ω). (25)

∫
Ω

|u|αdx +
∫
Ω

v2dx ≤ eC3t
(
1 + ‖u0‖αLα(Ω) + ‖v0‖2

L2(Ω)

)
, (26)

T∫
0

∫
Ω

|u|α+δ−2|∇u|2−adxdt +
T∫

0

∫
Ω

|∇v|2dxdt ≤ C5 + C6

(
‖u0‖αLα(S;Lα(Ω)) + ‖v0‖2

L2(S;L2(Ω))

)
, (27)

where C1 := d3(α−λ)+ĉ
C5

|Ω|, C2 := min
{

λ
α , d3(α− λ)

}
, C3 := max

{5
2 c̃ĉ|Ω|, 2c̃ĉ

}
, C4 := min {α− λ,K2}, 

C5 := 5T
2C4

ĉ|Ω| + 2T ĉeC3t

C4
, and C6 := 2ĉeC3t

C2
with c̃ := 1

min
{

λ
α , 12

} and ĉ is as in (A2), respectively.

For the proof of this result, see Proposition 4.1 in [12]. We consider the following function H : R+ −→ R+
given by

H(ξ) =
ξ2∫
0

K1(
√
s)ds for ξ ∈ R+. (28)

We admit a structural inequality between H(ξ) and K1(ξ)ξ2 of the form:

K1(ξ)ξ2 ≤ H(ξ) ≤ 2K1(ξ)ξ2 for all ξ ∈ R+. (29)

By combining (20) and (29), we deduce also that

d3(ξ2−a − 1) ≤ H(ξ) ≤ 2d2ξ
2−a for all ξ ∈ R+. (30)

In (30), d2, d3 and a are defined as in (A1).

Proposition 4.2. Assume that (A1) and (A2) hold. Let λ ∈ (0, 1], δ = 1 − λ, a = αN

αN+1 , a > δ, α ≥ 2 − δ, 
α ≤ 2 and σ ≤ α

2 . Furthermore, suppose that ∇u0 ∈ Lα(Ω) ∩ L2−a(Ω), u0 ∈ Lα(Ω), v0 ∈ H1(Ω) and 
ϕ ∈ L∞(ΓR). Then, for any t ∈ S, the following estimates hold

∫
Ω

|∇u|2−adx +
∫
Ω

|∇v|2dx ≤ C(ĉ, λ, a)
[
Λ(0) +

t∫
0

(1 + ‖u‖αLα(Ω))βds

+
t∫

0

‖v‖2
L2(Ω)ds +

t∫
0

∫
ΓR

|ϕt|
α

α−λ−1 dσds

]
+

∫
Ω

|∇v0|2dx

+ ĉ2

C2
|Ω|t + ĉ2

2C2
eC3t

(
1 + ‖u0‖αLα(S,Lα(Ω)) + ‖v0‖2

L2(S,L2(Ω))

)
. (31)

∫
|(uλ)t|2dx +

∫
|vt|2dx ≤ C(ĉ, λ, a)

[
1 + (1 + ‖u‖αLα(Ω))β + ‖v‖2

L2(Ω)
Ω Ω
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+
∫
ΓR

|ϕt|
α

α−λ−1 dσ

]
+ ĉ2

C2
|Ω| + ĉ2

2C2
eC3t

(
1 + ‖u0‖αLα(Ω) + ‖v0‖2

L2(Ω)

)
, (32)

where C(ĉ, λ, a) > 0 is a constant and

Λ(0) := λ + 1
2

∫
Ω

H(|∇u0|)dx +
∫
Ω

|u0|αdx.

For the proof of this result, see Proposition 4.2 in [12].

5. Proof of Theorem 3.2

Proof. To prove the uniqueness of solutions in the sense of Definition 3.2, we adapt the arguments by E. 
Aulisa et al. (cf. Section IV, [1]) to our setting. Essentially, we are using the monotonicity properties of the 
term K1(y)y as stated in Proposition 3.1 and Proposition 3.2.

Let (ui, vi), i ∈ {1, 2} be two arbitrary weak solutions to problem (1) in the sense of Definition 3.2, where 
the initial data is take ui(t = 0, x) = ui0(x) and vi(t = 0, x) = vi0(x) for all x ∈ Ω̄. We denote w = u1 − u2

and z = v1 − v2. If we substitute the pair (w, z) into (22)-(23), we obtain

∫
Ω

∂t(uλ
1 − uλ

2 )ψdx +
∫
Ω

∂tzφdx +
∫
Ω

(K1(|∇u1|)∇u1 −K1(|∇u2|)∇u2)∇ψdx+

+K2

∫
Ω

∇z∇φdx = −
∫
ΓR

ϕ(uλ
1 − uλ

2 )ψdγ −
∫
Ω

(b(u1 − v1) − b(u2 − v2))(ψ − φ)dx (33)

Now, choosing the test function

(ψ, φ) := (|w|α+δ−1, z) ∈
((
Lα(Ω) ∩W 1,2−a(Ω)

)
×W 1,2(Ω)

)
leads to

λ

α

d

dt

∫
Ω

|w|αdx + 1
2
d

dt

∫
Ω

z2dx +
∫
Ω

(
K1(|∇u1|)∇u1 −K1(|∇u2|)∇u2

)
∇w|w|α+δ−2dx + K2

∫
Ω

|∇z|2dx

+
∫
ΓR

ϕ(uλ
1 − uλ

2 )|w|α+δ−1dγ = −
∫
Ω

(b(u1 − v1) − b(u2 − v2))(|w|α+δ−1 − z)dx. (34)

Using assumption (A3) to handle the right hand side of (34), we have the following estimate

λ

α

d

dt

∫
Ω

|w|αdx + 1
2
d

dt

∫
Ω

z2dx +
∫
Ω

Φ(∇u1,∇u2)|w|α+δ−2dx + K2

∫
Ω

|∇z|2dx +
∫
ΓR

|ϕ||uλ
1 − uλ

2 ||w|α+δ−1dγ

≤

∣∣∣∣∣∣
∫
Ω

(b(u1 − v1) − b(u2 − v2))(|w|α+δ−1 − z)dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

(|u1 − u2| + |v1 − v2|)(|w|α+δ−1 − z)dx

∣∣∣∣∣∣

Ω
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≤

∣∣∣∣∣∣
∫
Ω

|w|α+δdx−
∫
Ω

|w||z|dx−
∫
Ω

|v1 − v2||w|α+δ−1dx +
∫
Ω

z2dx

∣∣∣∣∣∣
≤

∫
Ω

|w|α+δdx + 1
2

∫
Ω

|w|2(α+δ−1)dx + 1
2

∫
Ω

|w|2dx + C

∫
Ω

z2dx. (35)

Since Φ(∇u1, ∇u2) ≥ 0, (35) becomes

λ

α

d

dt

∫
Ω

|w|αdx + 1
2
d

dt

∫
Ω

z2dx ≤
∫
Ω

|w|α+δdx + 1
2

∫
Ω

|w|2(α+δ−1)dx + C

∫
Ω

|w|2dx + C

∫
Ω

|z|2dx. (36)

We set δ = 0 and use the inequality (5) to rewrite (36) as

d

dt

⎛
⎝∫

Ω

|w|αdx +
∫
Ω

z2dx

⎞
⎠ ≤ C(α, λ) + C(α, λ)

⎛
⎝∫

Ω

|w|αdx +
∫
Ω

z2dx

⎞
⎠ . (37)

It is convenient to introduce the notation:

W (t) :=
∫
Ω

|w|αdx +
∫
Ω

|z|2dx for t ∈ S.

Hence, the inequality (37) becomes

d

dt
W (t) ≤ C(α, λ)W (t), (38)

for t ∈ S with W (0) =
∫
Ω |w0|αdx +

∫
Ω |z0|2dx, where w0 := u01 −u02 and z0 := v01 − v02. Here we consider 

u01, u02 ∈ Lα(Ω) and v01, v02 ∈ L2(Ω).
By using Grönwall’s inequality, (38) yields

W (t) ≤ W (0)etC(α,λ) for all t ∈ S. (39)

This also implies

∫
Ω

|w|αdx +
∫
Ω

|z|2dx ≤ (‖w0‖αLα(Ω) + ‖z0‖2
L2(Ω))etC(α,λ). (40)

Clearly, if w0 = z0 = 0, then the weak solution of (1) is unique. �
6. Proof of Theorem 3.3

Proof. Let us recall the weak formulation corresponding to the different choices of data: (u0i, v0i, Di, ϕi), i ∈
{1, 2}. We denote D = D1 − D2, ϕ̃ = ϕ1 − ϕ2, r̃ = r1 − r2, ũ0 = u01 − u02 and ṽ0 = v01 − v02. We 
denote also w := u1 − u2 and z := v1 − v2. Multiplying the first and the second equations of (1) with 
ψ := |w|α+δ−1, φ := z, respectively and iterating the result by parts over Ω together with combining the 
two equations, one gets
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∫
Ω

∂t(uλ
1 − uλ

2 )ψdx +
∫
Ω

∂t(v1 − v2)φdx +
∫
Ω

(
K1(|∇u1|)∇u1

−K1(|∇u2|)∇u2

)
∇ψdx +

∫
Ω

(D1∇v1 −D2∇v2)∇φdx +
∫
ΓR

(
ϕ1u

λ
1 − ϕ2u

λ
2
)
ψdγ

= −
∫
Ω

[r1B(u1 − v1)(ψ − φ) − r2B(u2 − v2)(ψ − φ)] dx. (41)

Regarding (41), note that

∫
Ω

(D1∇v1 −D2∇v2)∇φdx = D1‖∇φ‖2
L2(Ω) + (D1 −D2)

∫
Ω

∇v2∇φdx, (42)

∫
ΓR

(
ϕ1u

λ
1 − ϕ2u

λ
2
)
ψdγ =

∫
ΓR

ϕ1(uλ
1 − uλ

2 )ψdγ +
∫
ΓR

(ϕ1 − ϕ2)uλ
2ψdγ (43)

and ∫
Ω

[r1B(u1 − v1)(ψ − φ) − r2B(u2 − v2)(ψ − φ)] dx

=
∫
Ω

r1 (B(u1 − v1) −B(u2 − v2)) (ψ − φ)dx + (r1 − r2)
∫
Ω

B(u2 − v2)(ψ − φ)dx. (44)

Using now (42), (44), as well as Young’s inequality applied to the last terms of (42), (43) together with the 
assumption (A2) and (A3), we use that (41) becomes

λ

α

d

dt

∫
Ω

|u1 − u2|αdx + 1
2
d

dt

∫
Ω

φ2dx +
∫
Ω

Φ(∇u1,∇u2)|u1 − u2|α+δ−2dx+

+ D1

∫
Ω

|∇φ|2dx +
∫
ΓR

ϕ1|uλ
1 − uλ

2 |ψdγ ≤ Cε1

∫
Ω

|∇φ|2dx+

+ C|D1 −D2|
∫
Ω

|∇v2|2dx− 1
2

∫
ΓR

|ϕ1 − ϕ2|2|u2|2λdγ

− 1
2

∫
ΓR

|u1 − u2|2(α+δ−1)dγ +
∫
Ω

r1(|u1 − u2| + |v1 − v2|)(ψ − φ)dx

+ |r1 − r2|
ĉ

r̄

∫
Ω

|u2 − v2|σ(ψ − φ)dx. (45)

Using the inequality (3), (45) receives the form

λ

α

d

dt

∫
Ω

|u1 − u2|αdx + 1
2
d

dt

∫
Ω

φ2dx +
∫
Ω

Φ(∇u1,∇u2)|u1 − u2|α+δ−2dx+

+ D1

∫
|∇φ|2dx +

∫
ϕ1|uλ

1 − uλ
2 |ψdγ ≤ Cε1

∫
|∇φ|2dx+
Ω ΓR Ω
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+ C|D1 −D2|
∫
Ω

|∇v2|2dx− 1
2

∫
ΓR

|ϕ1 − ϕ2|2|u2|2λdγ

− 1
2

∫
ΓR

|u1 − u2|2(α+δ−1)dγ +
∫
Ω

r1|u1 − u2|ψdx−
∫
Ω

r1|u1 − u2|φdx+

∫
Ω

r1|v1 − v2|ψdx−
∫
Ω

r1|v1 − v2|ψdx + |r1 − r2|
ĉ

r̄

∫
Ω

(|u2|σ + |v2|σ)(ψ − φ)dx. (46)

Applying the trace inequality (8) together with Cauchy-Schwarz’s inequality, we obtain the following esti-
mate

λ

α

d

dt

∫
Ω

|u1 − u2|αdx + 1
2
d

dt

∫
Ω

φ2dx +
∫
Ω

Φ(∇u1,∇u2)|u1 − u2|α+δ−2dx

+ D1

∫
Ω

|∇φ|2dx +
∫
ΓR

ϕ1|uλ
1 − uλ

2 |ψdγ ≤ Cε1

∫
Ω

|∇φ|2dx+

+ C|D1 −D2|
∫
Ω

|∇v2|2dx− 1
2

∫
ΓR

|ϕ1 − ϕ2|2|u2|2λdγ

− 1
2

(
2ε2

∫
Ω

|∇u1 −∇u2|2−a|u1 − u2|α+δ−2dx + C

∫
Ω

|u1 − u2|αdx

+ C

∫
Ω

|u1 − u2|α+μ0dx + C

∫
Ω

|u1 − u2|α+μ1dx
)

+ r1

∫
Ω

|u1 − u2|α+δdx− r1
2

∫
Ω

|u1 − u2|2dx− r1
2

∫
Ω

|v1 − v2|2dx

+ r1
2

∫
Ω

|v1 − v2|2dx + r1
2

∫
Ω

|u1 − u2|2(α+δ−1)dx− r1

∫
Ω

|v1 − v2|2dx

+ |r1 − r2|
ĉ

2r̄

∫
Ω

|u2|2σdx + |r1 − r2|
ĉ

2r̄

∫
Ω

|u1 − u2|2(α+δ−1)dx

− |r1 − r2|
ĉ

2r̄

∫
Ω

|u2|2σdx− |r1 − r2|
ĉ

2r̄

∫
Ω

|v1 − v2|2dx

+ |r1 − r2|
ĉ

2r̄

∫
Ω

|v2|2σdx + |r1 − r2|
ĉ

2r̄

∫
Ω

|u1 − u2|2(α+δ−1)dx

− |r1 − r2|
ĉ

2r̄

∫
Ω

|v2|2σdx− |r1 − r2|
ĉ

2r̄

∫
Ω

|v1 − v2|2dx. (47)

Choosing ε1 = D1
C and ε2 = 1, we have

λ

α

d

dt

∫
Ω

|u1 − u2|αdx + 1
2
d

dt

∫
Ω

φ2dx ≤ C|D1 −D2|
∫
Ω

|∇v2|2dx−

1
2

∫
|ϕ1 − ϕ2|2|u2|2λdγ + r1

∫
|u1 − u2|α+δdx− r1

2

∫
|u1 − u2|2dx
ΓR Ω Ω
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+r1
2

∫
Ω

|u1 − u2|2(α+δ−1)dx− r1

∫
Ω

|v1 − v2|2dx

+|r1 − r2|
ĉ

r̄

∫
Ω

|u1 − u2|2(α+δ−1)dx− |r1 − r2|
ĉ

r̄

∫
Ω

|v1 − v2|2dx. (48)

Moreover, if we assume that δ = 0, then the maximum allowed power of ‖w‖ is α. As next step, we use the 
inequality (6) together with the energy estimates (26), (31) to deal with the terms 

∫
Ω |u2|αdx, 

∫
Ω |v2|2dx

and 
∫
Ω |∇u2|2dx. Furthermore, we use also the trace inequality (8). It yields

d

dt

(∫
Ω

|u1 − u2|αdx +
∫
Ω

|v1 − v2|2dx
)
≤ C(α, λ, ĉ, r̄)(|D1 −D2| + |r1 − r2|

−‖ϕ1 − ϕ2‖2
L∞) + C(α, λ, ĉ, r̄)|r1 − r2|

(
|u1 − u2‖αLα(Ω) + ‖v1 − v2‖2

L2(Ω)

)
. (49)

Denoting

Z(t) :=
∫
Ω

|u1 − u2|αdx +
∫
Ω

|v1 − v2|2dx for any t ∈ S. (50)

The expansion (49) can be rewritten as follows

d

dt
Z(t) ≤ C(α, λ, ĉ, r̄)(|D1 −D2| + |r1 − r2| − ‖ϕ1 − ϕ2‖2

L∞(ΓR)) + C(α, λ, ĉ, r̄)|r1 − r2|Z(t), (51)

for t ∈ S. It holds Z(0) =
∫
Ω |u01 − u02|αdx +

∫
Ω |v01 − v02|2dx.

Applying the Grönwall’s inequality to (50), we obtain

Z(t) ≤ e
∫ t
0 C(α,λ,ĉ,r̄)|r1−r2|ds

[
Z(0) +

t∫
0

C(α, λ, ĉ, r̄)(|D1 −D2| + |r1 − r2| − ‖ϕ1 − ϕ2‖2
L∞(ΓR))ds

]
. (52)

(52) implies

‖u1 − u2‖αLα(Ω) + ‖v1 − v2‖2
L2(Ω) ≤ eC(α,λ,ĉ,r̄)|r1−r2|t

[
‖u01 − u02‖αLα(Ω)

+‖v01 − v02‖2
L2(Ω) + Ct(|D1 −D2| + |r1 − r2| − ‖ϕ1 − ϕ2‖2

L∞(ΓR))
]
, (53)

which is precisely the kind of stability estimate with respect to data and parameters we are looking for. �
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