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Abstract We study the upscaling of a system of

many interacting particles through a heterogenous thin

elongated obstacle as modeled via a two-dimensional

diffusion problem with a one-directional nonlinear

convective drift. Assuming that the obstacle can be

described well by a thin composite strip with period-

ically placed microstructures, we aim at deriving the

upscaled model equations as well as the effective

transport coefficients for suitable scalings in terms of

both the inherent thickness at the strip and the typical

length scales of the microscopic heterogeneities.

Aiming at computable scenarios, we consider that

the heterogeneity of the strip is made of an array of

periodically arranged impenetrable solid rectangles

and identify two scaling regimes what concerns the

small asymptotics parameter for the upscaling

procedure: the characteristic size of the microstructure

is either significantly smaller than the thickness of the

thin obstacle or it is of the same order of magnitude.

We scale up the diffusion–polynomial drift model and

list computable formulas for the effective diffusion

and drift tensorial coefficients for both scaling

regimes. Our upscaling procedure combines ideas of

two-scale asymptotics homogenization with dimen-

sion reduction arguments. Consequences of these

results for the construction of more general transmis-

sion boundary conditions are discussed. We illustrate

numerically the concentration profile of the chemical

species passing through the upscaled strip in the finite

thickness regime and point out that trapping of

concentration inside the strip is likely to occur in at

least two conceptually different transport situations:

(i) full diffusion/dispersion matrix and nonlinear

horizontal drift, and (ii) diagonal diffusion matrix

and oblique nonlinear drift.
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1 Introduction

1.1 Background. Motivation

The study of the physics of interfaces has known a

great impulse in the last decades; different point of

views have been adopted and several related problem

have been investigated, ranging from the dynamical

evolution of a membrane to its static morphology and,

also, to the possibility of metastable behaviors [26]. In

this paper we investigate flat static (not fluctuating)

strips separating two regions of space and crossed by a

flow of particles. This is a typical setup one is

interested in when studying membrane filtration.

Traditionally, membrane filtration is one of the most

common methods for purifying fluids. Furthermore,

recent advances in conductive and mass transport

through a composite medium have led to increased

interest in the process of mixed–matrix membrane

separation. In both such cases, small particles of a

microporous material, identified as a filler, are

dispersed in a dense nonporous polymer material,

identified as a matrix, and then processed into a thin

composite layer, identified as a membrane. The

objective is that the filler, chosen for its high

adsorption affinity or transport rate for a molecular

species of interest, improves the efficacy of the matrix

in membrane–mediated separation [29]. Depending on

pore sizes and level of microscopic activity, one also

encounters the so-called enhanced matrix diffusion

[30]. Our main motivation is to develop multiscale

mathematical modelling strategies of transport pro-

cesses that can describe, over several space scales,

how internal structural features of the filler and of the

local defects affect the effective diffusivity of the

material, perceived here as a thin long composite

membrane. As concrete applications, we have in mind

the transport of O2 and/or CO2 molecules through

packaging materials [28] (layered composite mem-

branes) as well as the dynamics of human crowds

through barrier—like heterogeneous environments

(active particles walking inside geometries with

obstacles). In both cases, a relevant question concerns

the possibility of concentration trapping. The motiva-

tion of doing this work was originally inspired by our

research on lattice dynamics of reduced jamming in

interacting particles by barriers.

We study the diffusion of particles through such a

thin heterogeneous membrane under a one-directional

nonlinear drift. We consider the mean–field equation

ou

ot
� d1

o2u

ox21
� d2

o2u

ox22
¼ �b

o

ox1
½uð1� uÞ� þ f ðxÞ;

ð1:1Þ

where t is time, x1 and x2 the space coordinates, u the

typical occupation number (a number in [0, 1] repre-

senting the probability to find a particle at the specified

position), d1 and d2 are the possibly different diffusion

coefficients in the two spatial directions, b[ 0 is

found in the hydrodynamic limit of the two-dimen-

sional random walk with simple exclusion and drift

along the x1-direction, and f is a particle source. Then,

we scale up the system and derive computable effec-

tive transport coefficients accounting for the presence

of the strip (complementing our simulation study [10]

with new results).

Essentiallythesameproblemisaddressedin[9,10]for

an interacting–particle system setup—a lattice model,

knownassimpleexclusionmodel,isconsideredonatwo-

dimensionalstripofZ2, where particles move randomly

with the constraint that at most one particle at a time

can occupy the sites of the lattice. Particles move

while choosing at random one of the four neighboring

sites, and additionally, a drift is introduced in the

dynamics so that one of the four direction is more

probable. This model is a generalization of the

celebrated TASEP (total asymmetric simple exclusion

model) which is a one-dimensional simple exclusion

model in which particles move to the right at random

times [14].

It is important to have in view that the Eq. (1.1) is

derived in the macroscopic diffusive limit, i.e. when

the space and the drift are rescaled with a small

parameter and, correspondingly, the time is rescaled

with the square of the same parameter. In ‘‘Ap-

pendix A’’, see also [9], we report a heuristic deriva-

tion of this equation which, in the one-dimensional

case, was rigorously proven in [15] (see, also, [22] for

an account of more recent techniques developed for

hydrodynamic limits). In particular, our heuristic

computation shows that the two diffusion coefficients

can be different as a consequence of the fact that, at the

lattice level, the probability of a particle to move

horizontally or vertically can differ drastically. This is

an important feature in our context, since the peculiar
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anisotropic structure of the transport term is related to

the probability of a particle performing a move, which

the simple exclusion might in fact prevent. Conse-

quently, the factor u comes from the probability to find

a particle at a given site and the factor 1� u accounts

for the probability that the site where the particle tries

to move to is indeed empty. In other words, the

structure of the nonlinearity of the right hand side of

Eq. (1.1) is connected to the hard-core repulsion of the

molecules at the lattice level.

We emphasize that the model we have in mind is

(1.1), while the techniques that are developed in this

article apply directly to more general transport terms

obtained by substituting uð1� uÞ with general poly-

nomials in terms of u. Note that polynomials drifts are

not uncommon—they appear also in the structure of

Forchheimer flows. The heterogeneities we account

for in this context are assumed to be arranged

periodically, but the same working methodology can

be adapted to the locally periodic case.

We scale up our problem for two scaling regimes.

In the first case, we simply average the information

over the strip, by keeping the strip width unchanged,

while in the second case we look for the structure of

the upscaled model in the limit in which both the width

and the height of the cells tend to zero and their

number is increased so that the total height of the cells

equals that of the whole strip. In this second limiting

procedure, the strip is reduced to a solid line.

Additionally, we investigate also the effect of

diffusion correlations and cross-diffusion (diagonal

vs. full diffusion tensors) on the structure of the

upscaled equations. We observe that in the case of the

infinitely thin upscaled membrane1 the structure of the

limit equations is unchanged, while in the case of the

finite–length upscaled membrane the presence of the

off-diagonal terms does not permit the use of closed

form representations of oscillations in terms of cell

functions. Furthermore, it is worth mentioning that

even a local clogging of the strip cannot be achieved

with our model, i.e. pores cannot be blocked and hence

transport always takes place. This effect occurs in such

diffusion context only if the boundaries of the

microstructures would be allowed to grow freely (cf.

a suitable moving–boundary formulation), leading, as

time elapses, to contacts in a number of positions in

space between micro-interfaces at neighboring cells.

In similar situations, the effective diffusion coefficient

degenerates. We refer the reader to [25] for a setting

that accounts for local clogging of the pores. Instead,

we will see that localization/trapping of concentration

is in principle possible, as our simulations indicate.

However, we are not able yet to quantify a priori how

much concentration can be stored within the mem-

brane for a given time interval. An open issue in this

context relates to unveiling the microscopic origin of

quenching—we would like to understand whether

infinitely–thin periodic membrane models, where

diffusion is accompanied also by chemical reactions,

can be used to shed light on the nonlinear structure of

singular reaction terms. In such a context, production

terms in coupled reaction–diffusion equations take the

form kr=sc for a certain asymptotic regime, where

k[ 0; 0\c� 1 with r; s 2 ½0;1� (cf. [11] or [12]).
As working techniques, we employ scaling argu-

ments as well as two-scale homogenization asymp-

totic expansions to guess the structure of the model

equations and the corresponding effective transport

coefficients. The research presented in this article

pursues a formal two-scale asymptotics route; it

follows the thread of the original mathematical

analysis work by Neuss-Radu and Jäger [27] by

adding to the discussion the presence of nonlinear

transport terms and is remotely related to our work on

filtration combustion through heterogeneous thin

layers; compare [19, 20] and also related recent work

[3]. Strongly connected scenarios to the transport–

through–membranes problem are the theoretical esti-

mation of the effective interfacial resistance of regular

rough surfaces (cf. [16], e.g.) and the upscaling of

reaction, diffusion, and flow processes in porous

media with thin fissures (cf. [4, 32], e.g.).

Asalternative approach to the two-scale asymptotics

homogenization, one could also attempt of using a

matched asymptotics approach, a volume averaging

approachforasuitablydefinedrepresentativeelementary

volume (REV), or a renormalization strategy. Each

method brings in both advantages and disadvantages,

depending onwhat assumptions (closure relations) one

relies on. We refer the reader to [7, 13, 23] for critical

discussions around this topic.Wechoose to perform the

1 For a particular scaling regime, we perform a simultaneous

homogenization asymptotics and dimension reduction, allowing

us not only to replace the heterogeneous membrane by an

homogeneous obstacle line, but also to provide the effective

transmission conditions needed to complete the upscaled model

equations.
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homogenization via the so-called formal two-scale

asymptotics [21] simply because we trust that we can

justify rigorously the asymptotic expansions using a

combination of arguments based on the two-scale con-

vergenceandontheperiodicunfoldingoperator.Theother

upscaling techniques seem applicable as well, but their

rigorousjustificationismuchhardertoguarantee.

1.2 Main findings. Organization of the paper

In this context, the challenge is the handling of the

combination of heterogeneous strip structure and the

presence of the transport term on the right-hand side in

the evolution equation (1.1). Our results extend to a

more general model obtained by assuming the trans-

port term to be the x1–derivative of a polynomial of the

field u with a finite arbitrary large degree. The main

findings of this work are:

• We deduced the structure of the formal asymptotic

expansionswhicharebehindtheconceptoftwo-scale

boundarylayerconvergencefrom[27];possiblyusing

working ideas from[21], this structurecanbefurther

employedtoconstructcorrectorestimatestojustifythe

upscaling and to provide convergence rates for the

upscalingprocedure.

• We derived the structure of the upscaled transmis-

sion conditions valid across the obstacle line with

the corresponding jumps in both transport fluxes

and concentrations. These jumps are expressed in

terms of the local physics of the situation, i.e. they

incorporate microstructural information.

• Using finite element approximations of our

upscaled model equations implemented in FEniCS

[2], we illustrate numerically profiles of concen-

tration within the upscaled strip in the finite

thickness scaling regime. We simulate a basic

scenario using a reference set of parameters

corresponding to the penetration of gaseous CO2

through a thin periodically perforated strip. We

gain confidence that our model equations and their

implementation can be used for testing practical

applications and, in principle, can be extended to

deal with more realistic membranes (multiple

layers, different kind of periodicities in the

arrangement of microstructures, defects, curvature

effects, etc.).

The article is organized as follows: In Sect. 2 we

present the equations of our mean–field model as well

as the strip geometry. After a suitable scaling, we point

out two relevant asymptotic regimes in terms of a

small parameter e which incorporates the periodicity

and selected size effects of the internal structure of the

strip. Section 3 contains the derivation of the finite

thickness upscaled strip model, while in Sect. 4 we

consider the more delicate case of the upscaling of the

infinitely–thin strip. Here the two-scale homogeniza-

tion asymptotics is performed simultaneously with a

dimension reduction procedure—a non-standard sin-

gular perturbation problem. We illustrate numerically

in Sect. 5 the approximation of the solution to the

upscaled strip in the finite thickness regime and point

out the possibility of concentration localization.

Finally, we present our conclusions in Sect. 6.

2 The microscopic model

Let ‘; h[ 0 and consider the two-dimensional strip

½�‘=2; ‘=2� � ½0; h�, say that ‘ and h are, respectively,

its horizontal and vertical side lengths. Partition the

strip into the blocks xl ¼ ½�‘=2;�w=2� � ½0; h�,
xm ¼ ½�w=2;w=2� � ½0; h�,
xr ¼ ½w=2; ‘=2� � ½0; h�, and call xm the membrane.

Let 0\g� h and e ¼ 2g=‘. We partition the mem-

brane into rectangular cells xi
c ¼ ð�w=2;w=2Þ �

ðði� 1Þg; igÞ \ ð0; hÞ with i running from one to the

smallest integer larger than or equal to h=g. In each

cell consider an impenetrable rectangular region,

called obstacle, with its center in the center of the

cell and diameter OðeÞ in the limit e ! 0. Denote by

xo the union of all the obstacles.

We denote by cv and ch, the vertical and horizontal
boundaries of the strip, by co the boundary of the

obstacle region xo and by ci the boundary of the

region xi for i ¼ l,m,r. The boundaries c’s are

considered deprived of singular points. The external

normal vector to a smooth arc of a closed curve is

denoted here by n.

We let x ¼ ðxl [ xr [ xmÞ n xo and f : x ! R

be a real function. Fixing the parameters d1; d2 [ 0,

we consider the differential problem
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ou

ot
� d1

o2u

ox21
� d2

o2u

ox22
¼ �b

o

ox1
uð1� uÞ þ f ðxÞ in x;

ð2:1Þ

endowed with the homogeneous Neumann boundary

conditions

�
d1

ou

ox1
� buð1� uÞ; d2

ou

ox2

�
� n ¼ 0 on ch [ co;

ð2:2Þ

as well as with the Dirichlet boundary conditions

uðx; tÞ ¼ ul on cv \ cl and uðx; tÞ ¼ ur on cv \ cr

ð2:3Þ

for any t� 0, where ul; ur 2 R. As initial condition we

take

uðx; 0Þ ¼ vðxÞ on x: ð2:4Þ

2.1 The non-dimensional model

To perform the upscaling of the diffusion and drift

processes through the heterogeneous strip depicted in

Fig. 1, we need first to identify the small parameter as

well as the corresponding scaling of the geometry that

fits to the situation at hand. It is therefore useful to

introduce the dimensionless variables

X ¼ ðX1;X2Þ ¼
� 2x1

‘
;
2x2
‘

�
and T ¼ t

s
; ð2:5Þ

where s is a fixed positive real representing a

suitable characteristic time scale.2

Using (2.5), the original strip is mapped to

½�1; 1� � ½0; 2h=‘�, which is partitioned into

Xl ¼ ½�1;�w=‘� � ½0; 2h=‘�,
Xm ¼ ½�w=‘;w=‘� � ½0; 2h=‘�, and

Xr ¼ ½w=‘; 1� � ½0; 2h=‘�. The cells are mapped to

Xi
c ¼ ð�w=‘;w=‘Þ � ðði� 1Þe; ieÞ \ ð0; 2h=‘Þ, where

we recall that e ¼ 2g=‘. In the new variables, we

denote by Xo the region occupied by the obstacle and

by Cv, Ch, Cl, Cm, Cr, and Co the boundaries

introduced above.

Take a reference concentration uref . It is convenient

to set

UðX; TÞ ¼ 1

uref
u
� ‘X

2
; sT
�
; VðXÞ ¼ 1

uref
v
� ‘X

2

�
;

FðXÞ ¼ s
uref

f
� ‘X

2

�

ð2:6Þ

and rewrite the model (2.1) as follows

oU

oT
þr � J ¼ F ð2:7Þ

in X ¼ ðXl [ Xr [ XmÞ n Xo, where we introduced

the flux

Fig. 1 Schematic

representation of the model

geometry

2 In this paper, the letter T is used to denote both the

dimensionless time variable and the transpose of a matrix A,

i.e. AT . The context will make clear what we mean.
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J ¼ �DðrU þGðUÞÞ ; ð2:8Þ

with the derivatives in r taken with respect to the

dimensionless variables X1;X2, and let

D ¼
D1 0

0 D2

� �
; D1 ¼

4sd1
‘2

; D2 ¼
4sd2
‘2

; and

GðUÞ ¼
gðUÞ
0

� �
;

ð2:9Þ

with gðUÞ ¼ ‘buref pðUÞ=ð2d1Þ, where

pðUÞ ¼ �Uð1� UÞ—a choice that makes (2.8) to

correspond precisely to the setting discussed in [10].

Furthermore, we introduce Ur ¼ ur=uref and

Ul ¼ ul=uref .

The derivations done in this paper cover the more

general case:

D ¼
D11 D12

D21 D22

� �
and pðUÞ ¼

Xk
n¼1

anU
n ð2:10Þ

with arbitrary coefficients an 2 R and arbitrary poly-

nomial order k 2 N. The parameter k is simply the

degree of the polynomial appearing in (2.10); in the

physical example described in the introduction k is

equal to 2. In other words, the diffusion matrix is not

necessarily diagonal and p(U) is an arbitrary polyno-

mial. If not mentioned otherwise, in the rest of the

paper D is a full matrix as indicated in (2.10).

For any T � 0, problem (2.7) is endowed with the

Dirichlet boundary conditions

UðX; TÞ ¼ Ul on Cv \ Cl and

UðX; TÞ ¼ Ur on Cv \ Cr;
ð2:11Þ

the Neumann boundary conditions

J � n ¼ 0 on Ch [ Co; ð2:12Þ

and the initial condition

UðX; 0Þ ¼ VðXÞ for X 2 �X: ð2:13Þ

A few remarks are in order:

(i) All diffusion coefficients mentioned in this

section are given positive numbers. Typical

values corresponding to the diffusion of CO2

are indicated in Sect. 5. In the next sections, all

diffusion coefficients acting within the strip

become space–dependent functions depending

on the geometry of the periodic cell (of the

strip).

(ii) If a single species diffuses through an homo-

geneous medium, then the off-diagonal ele-

ments ofD are zero. If two populations decide

to diffuse together through an homogeneous

medium, then cross-diffusion effects might

come into play and the matrixD becomes full.

If a single species diffuses through an hetero-

geneous medium, then the occurrence of non-

zero off diagonal elements indicate deviations

from geometric isotropy. In some textbooks on

porous media, such diffusion matrix is referred

to as dispersion tensor. The reason why we

prefer to work with the full matrix is rather of

technical nature—we wish to verify whether

the upscaling results can be obtained for the

case of a full matrix.

3 Derivation of the finite–thickness upscaled strip

model

In this section, we use a two-scale homogenization

approach to average the strip internal structure and then

toderivethecorrespondingupscaledevolutionequation

for the mass transport as well as the effective transport

coefficients. If the diffusionmatrix is diagonal, thenwe

point out explicitly the structure of the corresponding

tortuositytensor.Furthermore,itisworthnotingthatifthe

nonlinear drift term is neglected (hence, the model

becomeslinear),thenthederivationofthefinite-thickness

upscaledmembranemodel canbemade rigorous e.g. by

followingthestrategyfromChapter9ofRef.[5].Werefer

thereaderalsotothemonograph[8].

3.1 Two-scale expansions

Welookforupscaledmodelequationsinthelimitinwhich

the height of the cells tends to zero and its number is

increasedsothatthetotalheightofthecellsequalsthatofthe

whole strip. Due to the periodic micro-structure of the

membraneXm, with vertical spatial period e ¼ 2g=‘, it
is reasonable to attack the problem expanding the

unknown function U in the strip region as

UðX; TÞ ¼
X1
n¼0

enUm
n ðX; Y2; TÞ in Xm; ð3:1Þ
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where Y2 ¼ X2=e and the functions Um
n are Y2–

periodic functions.

To keep the notation simple, we understand in (2.7)

r ¼ rX þ 1

e
rY2 with rX ¼

o

oX1

o

oX2

0
BB@

1
CCA and rY2 ¼

0
o

oY2

0
@

1
A :

We now compute the various terms appearing in (2.7)

in the different regions of X. We have

oU

oT
¼
X1
n¼0

en
oUm

n

oT
and

oU

oX1

¼
X1
n¼0

en
oUm

n

oX1

in Xm:

ð3:2Þ

For handling the terms involving the gradient r, we

distinguish between the regions Xl,Xm, andXr. InXl
andXr, we simply haverUðX; TÞ ¼ rUl

0ðX; TÞ inXl

and rUðX; TÞ ¼ rUr
0ðX; TÞ in Xr. Instead of rUl

0

and rUr
0, we use rUl and rUr, respectively.

In Xm, the computation of the gradient reads

rU ¼r
X1
n¼0

enUm
n ¼

X1
n¼0

enrXU
m
n þ

X1
n¼0

en
1

e
rY2U

m
n

¼ 1

e
rY2U

m
0 þ

X1
n¼0

enðrXU
m
n þrY2U

m
nþ1Þ:

ð3:3Þ

Hence, it yields

r �DrU ¼ 1

e2
rY2 �DrY2U

m
0 þ 1

e
rX �DrY2U

m
0

þ
X1
n¼0

en
h
rX �DrXU

m
n þrX �DrY2U

m
nþ1

þ 1

e
rY2 �DrXU

m
n

þ 1

e
rY2 �DrY2U

m
nþ1

i

¼ 1

e2
rY2 �DrY2U

m
0 þ 1

e
½rX �DrY2U

m
0

þrY2 �DrXU
m
0

þrY2 �DrY2U
m
1 �

þ
X1
n¼0

en½rX �DrXU
m
n þrX �DrY2U

m
nþ1

þrY2 �DrXU
m
nþ1

þrY2 �DrY2U
m
nþ2�:

ð3:4Þ

Moreover, we have

DGðUÞ ¼DGðUm
0 Þ

þ eD
Um

1

Pk
n¼1 nbnðUm

0 Þn�1

0

 !
þ oðeÞ:

ð3:5Þ

It is worth noting already at this stage that if the matrix

D is diagonal, then (3.5) implies

r �DGðUÞ ¼ rX �DGðUm
0 Þ þ oð1Þ : ð3:6Þ

We consider now the equation inside the membrane

region Xm at the lowest order e�2 and we find

rY2 �DrY2U
m
0 ¼ 0: ð3:7Þ

By expanding J and by collecting the terms with the

lowest e order, we get the Neumann boundary

condition

ð�DrY2U
m
0 Þ � n ¼ 0 on ðCo [ ChÞ \ Xm; ð3:8Þ

the transmission boundary conditions:

Um
0 ðX; TÞ ¼ Ul

0ðX; TÞ on Cl \ Cm and

Um
0 ðX; TÞ ¼ Ur

0ðX; TÞ on Cr \ Cm;

as well as

�DðrUl þGðUlÞÞ � n
¼ ð�DðrUm

0 þGðUm
0 ÞÞÞ � n at Cl \ Cm;

ð3:9Þ

�DðrUr þGðUrÞÞ � n
¼ ð�DðrUm

0 þGðUm
0 ÞÞÞ � n at Cr \ Cm;

ð3:10Þ

for any T � 0, where we used that n is horizontal.

We recall that Um
0 is Y2–periodic. Based on (3.7)

and (3.8), we claim that Um
0 is independent of Y2, i.e.

Um
0 ¼ Um

0 ðX; TÞ.
At the order e�1, using that Um

0 does not depend on

Y2, we get the equation

rY2 �DrY2U
m
1 ¼ �rY2 �DrXU

m
0 ð3:11Þ

with Neumann boundary condition (2.12) at order e0 in
(3.3) and (3.5)

�DrY2U
m
1 � n ¼ DrXU

m
0 � nþDGðUm

0 Þ � n on Ch [ Co:

ð3:12Þ
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Recall that Um
1 is Y2–periodic.

The structure of (3.11) allows us to assume that

Um
1 ¼ WðY2Þ � rXU

m
0 þGðUm

0 Þ
� �

þ h; ð3:13Þ

whereWðY2Þ is a vector with Y2–periodic components

and h ¼ hðXÞ is some arbitrarily chosen function

independent on Y2 that will play no role in further

calculations. We will refer to WðY2Þ as cell function.
Substituting now the expression (3.13) in (3.11), we

get

rY2 �DrY2WðY2Þ � rXU
m
0 þGðUm

0 Þ
� �

¼ �rY2 �D � rXU
m
0 þGðUm

0 Þ
� �

;

while substituting the same expression now in (3.12)

leads to

�DrY2WðY2Þ � rXU
m
0 þGðUm

0 Þ
� �

� n ¼ D rXU
m
0 þGðUm

0 Þ
� �

� n:

Now, we can introduce the following cell problems:

find the Y2–periodic cell function W ¼ ðw1;w2ÞT
satisfying the following elliptic partial differential

equations:

rY2 � ðDrY2wjðY2ÞÞ ¼ �rY2 �Dej; ð3:14Þ

rY2wj � n ¼ 0 on Ch [ Co; ð3:15Þ

for j ¼ 1; 2: In (3.14), we use the coordinate vectors

e1 ¼ ð1 0ÞT and e2 ¼ ð0 1ÞT . When D is diagonal,

we point out that (3.14) can be written explicitly as

o
oY2

D22
ow1

oY2

� �
¼ 0 and o

oY2
D22 1þ ow1

oY2

� �h i
¼ 0, which

in the absence of the internal heterogeneity can be

solved analytically; see Proposition 3.3, p. 13 in [18].

For Um
2 , taking into account (3.2), (3.4), and (3.6),

at the order e0, we have the following equation

oUm
0

oT
� ½rX �DrXU

m
0 þrX �DrY2U

m
1

þrY2 �DrXU
m
1 þrY2 �DrY2U

m
2

þrX �DGðUm
0 Þ� ¼ F

ð3:16Þ

with boundary condition (2.12) across

ðCo [ ChÞ \ Xm

�D rXU
m
1 þrY2U

m
2 þ Um

1

Pk
n¼0 bnnðUm

0 Þn�1

0

 !" #

� n ¼ 0;

ð3:17Þ

obtained by using the order e of the expansions (3.3)

and (3.5).

To derive the final form of the upscaled equations

we use the Fredholm alternative argument as it applies

to linear elliptic partial differential equations with

periodic boundary conditions (see e.g. Lemma 1.3.21

in [1]). This boils down to integrating (3.16) with

respect to Y2 over a cell, say over the set Z ¼ ½0; 2g=‘�.
Using the divergence theorem with respect to the

variable Y2 and (3.13), we have

Z

Z

oUm
0

oT
dY2 �rX �

Z

Z

DrXU
m
0 dY2

�rX �
Z

Z

DrY2 WðY2Þ � rXU
m
0 þGðUm

0 Þ
� 	� �

dY2

�rX �
Z

Z

DGðUm
0 ÞdY2 �

Z

Z

rY2 �DrXU
m
1 dY2

¼
Z

Z

FdY2 þ
Z

oZ

DrY2U
m
2 � n dr:

Notice that the last term in the above equation is

nothing but the differences between the values of the

function DrY2U
m
2 � n evaluated at the extremes 2g=‘

and 0 of the integration interval. In that term n is the

external normal to the horizontal parts of the boundary

of the elementary cell, in particular it is a vertical unit

vector. Hence, by using (3.17), we obtain

Z

Z

oUm
0

oT
dY2 �rX �

Z

Z

DrXU
m
0 dY2

�rX �
Z

Z

DrY2 WðY2Þ � rXU
m
0 þGðUm

0 Þ
� 	� �

dY2

�rX �
Z

Z

DGðUm
0 ÞdY2 �

Z

Z

rY2 �DrXU
m
1 dY2

¼
Z

Z

FdY2

�
Z

oZ

DrXU
m
1 � n dr:

By the divergence theorem, the last term of the left-

hand side cancels the last term of the right-hand side.

Thus, we get
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Z

Z

oUm
0

oT
dY2 �rX �

Z

Z

D½rXU
m
0 þGðUm

0 Þ�dY2

�rX �
Z

Z

DrY2 WðY2Þ � rXU
m
0 þGðUm

0 Þ
� 	� �

dY2

¼
Z

Z

FdY2 :

Recalling that Um
0 does not depend on Y2, we finally

get

oUm
0

oT
�rX � 1

jZj

Z

Z

D Iþ
0 0

ow1

oY2

ow2

oY2

0
@

1
A

0
@

1
AdY2

2
4

3
5

rXU
m
0 þGðUm

0 Þ
� 	

¼ 1

jZj

Z

Z

FdY2:

ð3:18Þ

We refer to the coefficient

DH :¼ 1

jZj

Z

Z

D Iþ
0 0

ow1

oY2

ow2

oY2

0
@

1
A

0
@

1
AdY2 ð3:19Þ

as effective transport coefficient.

The upscaled equation (3.18) for the zero term of

the expansion has the same structure as the original

Eq. (2.7). The source term F on the right-hand side is

replaced by its average over the cell on the Y2. The

diffusion matrix is replaced by its average over the cell

on the Y2 variable weighted by the function

Iþ
0 0

ow1

oY2

ow2

oY2

0
@

1
A;

which is referred to as tortuosity tensor in the porous

media literature; we refer the reader to the review

paper [19] for a discussion done in terms of this

tortuosity tensor of the role played by microscopic

anisotropies in understanding macroscopically a

smoldering combustion scenario.

Summarizing, the upscaled model equation reads:

Find Um
0 ðX; Y1; TÞ satisfying

oUm
0

oT
�rX � 1

jZj

Z

Z

D Iþ
0 0

ow1

oY2

ow2

oY2

0
@

1
A

0
@

1
AdY2

2
4

3
5

rXU
m
0 þGðUm

0 Þ
� 	

¼ 1

jZj

Z

Z

FdY2:

ð3:20Þ

Um
0 ¼ Ul;�DðrUl þGðUlÞÞ � n ¼ �DðrXU

m
0

þGðUm
0 ÞÞ � n at Cl \ Cm;

ð3:21Þ

Um
0 ¼ Ur;�DðrUr þGðUrÞÞ � n ¼ �DðrXU

m
0

þGðUm
0 ÞÞ � n at Cr \ Cm;

ð3:22Þ

together with the initial condition

Um
0 ðT ¼ 0Þ ¼ VmðX; Y1Þ: ð3:23Þ

Using the transmission conditions at Cl and Cr, the
information inXm is now linked (in a well-posed way)

with equation (2.7) posed in Xl and Xr, respectively.

4 Derivation of the infinitely–thin upscaled strip

model

We look for the upscaled model in the limit in which

both the width and the height of the cells tends to zero

and the number of cells is increased so that the total

height of the cells equals that of the whole strip. To

handle such a situation, the equation inside the strip

must be replaced by a matching condition between the

solutions of the problems in the left and the right

regions Xl and Xr. In this case, the upscaling

procedure needs to be combined with a singular

perturbation ansatz; see [17] for a remotely related

case. We stress that within this new framework the

scaling in terms of the small parameter e is quite

different than what was achieved in Sect. 3. A quick

comparison between (4.3) and (2.7) indicates differ-

ences in size of order of Oð1=eÞ in the characteristic

time scale of the process and in the forcing (produc-

tion) term inside the membrane as well as differently

scaled fluxes; compare (4.4) and (2.8).

4.1 Two-scale layer expansions

We consider the geometry introduced in Sect. 2.1 and

assume w ¼ 2g, so that the strip is the region

½�2g=‘; 2g=‘� � ½0; 2h=‘� (see Fig. 2). Recalling the

relation e ¼ 2g=‘, in the homogenization limit e ! 0

the strip shrinks to a sharp separating surface. The

equations in Xl and Xr are as in Sect. 2.1, see

Eqs. (2.7)–(2.9). More precisely, we have
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oUi

oT
þr � Ji ¼ Fi in Xi with Ji

¼ �DiðrUi þGðUiÞÞ for i ¼ l,r;

ð4:1Þ

where Fl : ½�1;�e� ! R, Fr : ½e;þ1� ! R, Di a

general real 2� 2 matrix, and

GðUÞ ¼
gðUÞ
0

� �
ð4:2Þ

with gðUÞ ¼
Pk

n¼1 bnU
n where bn are real coeffi-

cients. In the strip Xm n Xo, we consider the equation

1

e
oUm

oT
þr � Jm ¼ 1

e
Fm
�X1

e
;X2

�
ð4:3Þ

with Fm : ½�1;þ1� � ½0; 2h=‘� ! R and the flux Jm

defined as

Jm ¼ �Dm
�X1

e
;X2

�
ðerUm þGðUmÞÞ ; ð4:4Þ

where Dm is a 2� 2 square matrix

Dm ¼ Dm
11 Dm

12

Dm
21 Dm

22

 !
:

These equations are endowed with the Dirichlet

boundary conditions

UlðX; TÞ ¼ Ul on Cv \ Cl and

UrðX; TÞ ¼ Ur on Cv \ Cr
ð4:5Þ

for any T � 0, the initial condition

UiðX; 0Þ ¼ ViðXÞ in Xi for i ¼ l,r and

UmðX; 0Þ ¼ VmðXÞ in Xm n Xo;
ð4:6Þ

the Neumann boundary conditions

JiðX; TÞ � n ¼ 0 on Ch \ Xi for i ¼ l,r and

JmðX; TÞ � n ¼ 0 on ðCh \ XmÞ [ Co

ð4:7Þ

for any T � 0, the continuity (linear transmission)

conditions

UiðX; TÞ ¼ UmðX; TÞ and JiðX; TÞ � n
¼ JmðX; TÞ � n on Ci \ Cm for i ¼ l,r

ð4:8Þ

for any T � 0, where in the last equation n is the

horizontal unit vector pointing to the left on Cl and to

the right on Cr.
Inside the membrane we use the same two-scale

expansion as the one introduced in the Sect. 3, namely

we take

UmðX; TÞ ¼
X1
n¼0

enUm
n ðX; y2; TÞ in Xm; ð4:9Þ

where y2 ¼ X2=e and the functions Ui
n, with i ¼ l,m,r,

are y2–periodic functions. Since the domain where the

two-scale expansion is defined vanishes as e ! 0, we

refer to (4.9) as two-scale layer expansion. We claim

that this expansion formally discovers the limit point

of the two-scale convergence for thin homogeneous

layers (as presented cf. Definition 4.1 in [27]).

Fig. 2 Schematic

representation of the

dimensionless model

geometry
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We define the new variables

z1 ¼
X1

e
and z2 ¼ X2; ð4:10Þ

and we set

vmðz; TÞ ¼ Umðez1; z2; TÞ ð4:11Þ

for the original functions and

vmn ðz; y2; TÞ ¼ Um
n ðez1; z2; y2; TÞ ð4:12Þ

for the perturbative terms n� 0.

It is immediate to deduce the following differenti-

ation rules with respect to the new variables. We let

rz1 ¼
o

oz1
0

0
@

1
A; rz2 ¼

0
o

oz2

0
@

1
A; and

ry2 ¼
0
o

oy2

0
@

1
A

ð4:13Þ

and prove

rUm
n ¼ 1

e
rz1v

m
n þrz2v

m
n þ 1

e
ry2v

m
n for n� 0:

ð4:14Þ

Firstly, we note that the first term e0 in the expansion of
Jm is

Jm ¼ �Dmrz1v
m
0 �Dmry2v

m
0 �

Dm11gðvm0 Þ
Dm21gðvm0 Þ

 !
þ oð1Þ :

ð4:15Þ

Hence, expanding the equation (4.3) in the region

Xm n Xo and taking into account the order e�1 we get

the following equation

ovm0
oT

� rz1 �Dmrz1v
m
0 þry2 �Dmry2v

m
0

�

þrz1 �Dmry2v
m
0 þry2 �Dmrz1v

m
0

�

� o

oz1
ðDm

11gðvm0 ÞÞ � o

oy2
ðDm

21gðvm0 ÞÞ ¼ Fm:

ð4:16Þ

Integrating (4.16) with respect to the variable z1 (or

invoking once more the Fredholm alternative argu-

ment), it turns out that the limit function vm0 will have

to solve the equation

ovm0
oT

�ry2 �Dm½ry2v
m
0 þGðvm0 Þ� ¼ Fm ð4:17Þ

for any X2. The limit function vm0 is periodic in y2 and

has to satisfy the conditions

vm0 ðz2; y2; TÞ ¼ Uið0; z2;TÞ for i ¼ l,r and

vm0 ðz2; y2; 0Þ ¼ Vm:
ð4:18Þ

In the limit e ! 0 the functions Ui, with i ¼ l,r will

solve the equations (4.1) with the conditions (4.5),

(4.6) (first equation), and (4.7) (first equation). More-

over, the matching conditions (4.8) will provide as

with a jump condition on the flux associated to the

limit solutionsUi. Indeed, we first note that at order e0,
using (4.15), the matching condition (4.8) (second

equation) can be written as

�Dl rUl þGðUlÞ
� �

� n

¼ Dm11
ovm0
oz1

þ Dm12
ovm0
oy2

þ Dm11gðvm0 Þ
� �

� n

ð4:19Þ

and

�DrðrUr þGðUrÞÞ � n

¼ � Dm11
ovm0
oz1

� Dm12
ovm0
oy2

� Dm11gðvm0 Þ
� �

� n:

ð4:20Þ

The last two interface conditions act on the flat solid

line, say C, where the strip X reduces as e ! 0. It is

worth noting that equations (4.19) and (4.20) complete

the system of upscaled equations; compare e.g. how

Corollary 7.1 in [27] proves a similar statement. These

conditions emphasize that the macroscopic flux is

obtained by averaging the corresponding microscopic

flux.

4.2 Summary of the upscaled equations

The resulting upscaled problem corresponding to this

asymptotic regime is: Find the triplet ðUl; vm0 ;UrÞ
satisfying the following set of equations:

123

Meccanica (2020) 55:2159–2178 2169



oUi

oT
þr � ½�DiðrUi þGðUiÞÞ� ¼ Fi in Xi; i ¼ l; r;

ð4:21Þ

ovm0
oT

�ry2 �Dm½ry2v
m
0 þGðvm0 Þ� ¼ Fm in C� ð0; 2h=‘Þ

ð4:22Þ

vm0 is periodic in y2 ð4:23Þ

vm0 ðz2; y2; TÞ ¼ Uið0; z2; TÞ for i ¼ l,r and vm0 ðz2; y2; 0Þ ¼ Vm;

ð4:24Þ

�DlðrUl þGðUlÞ � n

¼ Dm11
ovm0
oz1

þ Dm12
ovm0
oy2

þ Dm11gðvm0 Þ
� �

� n at C;

ð4:25Þ

�DrðrUr þGðUrÞÞ � n

¼ �Dm11
ovm0
oz1

� Dm12
ovm0
oy2

� Dm11gðvm0 Þ
� �

� n at C;

ð4:26Þ

UlðX; TÞ ¼ Ul on Cv \ Cl and UrðX; TÞ
¼ Ur on Cv \ Cr;

ð4:27Þ

JiðX; TÞ � n ¼ 0 on Ch \ Xi for i ¼ l,r; ð4:28Þ

UiðX; 0Þ ¼ Vi in Xi for i ¼ l,r: ð4:29Þ

4.3 Further remarks

In what follows, we deduce alternative transmission

relations across the membrane, recovering expected

structures as if one would have applied two-scale layer

convergence arguments as indicated in [27]. Integrat-

ing the equation (4.16) with respect to z1 we get

Z 1

�1

ovm0
oT

dz1 � Dm11
ovm0
oz1


 �z1¼þ1

z1¼�1

�ry2 �
Z 1

�1

Dmry2v
m
0 dz1 � Dm12

ovm0
oy2


 �z1¼þ1

z1¼�1

�ry2 �
Z 1

�1

Dmrz1v
m
0 dz1 � Dm11gðvm0 Þ

� �z1¼1

z1¼�1

�
Z 1

�1

o

oy2
ðDm21gðvm0 ÞÞdz1 ¼

Z 1

�1

Fmdz1:

By (4.19) and (4.20) we get

Z 1

�1

ovm0
oT

dz1 �ry2 �
Z 1

�1

Dmry2v
m
0 dz1

�ry2 �
Z 1

�1

Dmrz1v
m
0 dz1

�
Z 1

�1

o

oy2
ðDm21gðvm0 ÞÞdz1 �DrrUr � n

��
z1¼þ1

�DlrUl � n
��
z1¼�1

¼
Z 1

�1

Fmdz1:

Now we integrate with respect to y2 and we obtain

Z 1

0

Z 1

�1

ovm0
oT

dy2dz1 �
Z 1

�1

Dm22
ovm0
oy2


 �y2¼1

y2¼0

dz1

�
Z 1

�1

Dm21
ovm0
oz1


 �y2¼1

y2¼0

dz1

�
Z 1

�1

Dm21gðvm0 Þ
� �y2¼1

y2¼0
dz1

�
Z 1

0

Z 1

�1

o

oy2
ðDm21gðvm0 ÞÞdy2dz1

�
Z 1

0

h
DrrUr � n

��
z1¼þ1

þDlrUl � n
��
z1¼�1

i
dy2

¼
Z 1

0

Z 1

�1

Fmdy2dz1:

Now, we note that the second equation in (4.7) yields

Dm21
ovm0
oz1

þ Dm22
ovm0
oy2

þ Dm21gðvm0 Þ ¼ 0

on Ch \ Xm. Recalling that Dm and vm0 are y2–

periodic functions, we find the aforementioned jump

condition
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Z 1

0

h
DrrUr � n

��
z1¼þ1

þDlrUl � n
��
z1¼�1

i
dy2

¼
Z 1

0

Z 1

�1

"
ovm0
oT

� o

oy2
ðDm21gðvm0 ÞÞ � Fm

#
dy2dz1:

The relations (4.19) and (4.20) provide direct access to

the jump in the flux of matter when crossing the

membrane. Interestingly from a modeling point of

view, we can also obtain a quantitative description of

the jump in concentrations across the reduced strip,

say C; the situation is somehow similar to the case

described by Theorem 2.4 in [27];

5 Numerical illustration of the finite–thickness

upscaled strip

We illustrate numerically the behavior of the finite–

thickness upscaled strip derived in Sect. 3. To fix a

simulation scenario, we imagine the diffusion and drift

of a gaseous species (e.g. CO2 or O2) supposed to cross

a heterogeneous strip with finite thickness. Experi-

mental values of the diffusion coefficient of gaseous

CO2 in cells have been estimated to be around d ¼
3:5 cm2 s�1 (cf. [24]). We choose values for the

diffusion coefficients within this range, viz. take d1 ¼
10 cm2 s�1 and d2 ¼ 1 cm2 s�1, letting the horizontal

diffusion dominate the process. Initially, we assume

that there is no mass present in the system, i.e.

uðt ¼ 0Þ ¼ 0.We fix the inflow of the left boundary by

choosing ur ¼ 5:8� 10�5 g cm�3 according to [24],

ul ¼ 0 g cm�3, uref ¼ 1 g cm�3. Concerning the strip

geometry, we set: l ¼ 1 cm, h ¼ 0:4 cm, w ¼ 0:25 cm.

Case (i): Full diffusion/dispersion matrix and

nonlinear horizontal drift.We choose the non-linear

transport term from (1.1) with b ¼ 2 g cm2 s�1. AsD22

is an essentially bounded function on the set Xm n Xo,

i.e. it lies in L1ðXm n XoÞ, solving the parameter–

dependent ODEs

o

oY2
D22ðY1; Y2Þ

ow1

oY2

� �
¼ 0 ð5:1Þ

and

o

oY2
D22ðY1; Y2Þ 1þ ow2

oY2

� �
 �
¼ 0; ð5:2Þ

is rather delicate since it involves distributions local-

ized along oXo. To handle this issue, one needs a

convenient regularization of the ‘‘contrast jump’’. It is

worth also noting that, based on (5.1)–(5.2), the

coefficient D11 plays no role in the construction of the

cell functions. Instead of smoothing the contrast, we

suggest the following regularization: Take d ¼ OðgÞ.
Find (w1;w2) such that

d
o

oY1
D11ðY1; Y2Þ

o

oY1
w1

� �
þ o

oY2
D22ðY1; Y2Þ

o

oY2
w1

� �

¼ �
ffiffiffi
d

p o

oY1
D11ðY1; Y2Þ;

ð5:3Þ

d
o

oY1
D11ðY1; Y2Þ

o

oY1
w2

� �
þ o

oY2
D22ðY1; Y2Þ

o

oY2
w2

� �

¼ � o

oY2
D22ðY1; Y2Þ:

ð5:4Þ

These formulations are obtained based on (3.14) by

interpreting rY2 as

ffiffiffi
d

p o

oy1
o

oy2

0
BB@

1
CCA instead of

rY2 ¼
0
o

oy2

 !
. The boundary conditions needed to

complete the regularized problem are described in

(3.15). Such a procedure appears to work well for

symmetric obstacles. Note that both problems (5.3)

and (5.4) are singular perturbations of linear elliptic

PDEs. Under suitable assumptions, the convergence

d ! 0 can be made rigorous in terms of weak

solutions via a weak convergence procedure using

symmetry restrictions and dimension reduction

arguments.

To solve numerically the cell problems (5.3) and

(5.4) (with corresponding boundary conditions), we

use a FEM scheme implemented in FEniCS3. The cell

problem and the macroscopic equations are solved on

a triangular mesh with quadratic basis functions. We

illustrate the behavior of the cell functions in Fig. 3.

3 This is an open source platform FEniCS [2]; see https://

fenicsproject.org.
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The explicit appearance of the variable Y1 in

(3.20)–(3.23) needs to be removed by integrating the

system of equations with respect to the Y1 variable.

Using the transmission conditions at Cl and Cr, the
information inXm is now linked (in a well-posed way)

with equation (2.7) posed in Xl and Xr, respectively.
The numerical approximations of the cell functions

can now be used to compute the effective diffusion

tensor

DH :¼ DH

11 DH

12

DH

21 DH

22

 !
¼ D Iþ

0 0
ow1

oY2

ow2

oY2

0
@

1
A

0
@

1
A;

ð5:5Þ

and hence, FEM approximations of the upscaled

diffusion–drift equation can be reached. Note that

D�1DH is the so-called tortuosity4 tensor for the strip.

Typical macroscopic concentration profiles are shown

in Fig. 4. For the chosen parameter regime, one can

see that the strip is usually permeable. Interestingly,

the efficiency of the transport through the strip reduces

when increasing the strength of the drift b. Figure 4

(right) is obtained via turning the diagonal matrix DH

into a full matrix by adding diffusion correlations. The

off-diagonal entries are small DH

12 ¼ �0:05 cm2 s�1

and DH

21 ¼ þ0:05 cm2 s�1. Combined with a polyno-

mial drift (of type buð1� uÞ with b ¼ 54 g cm2 s�1)

this causes some sort of concentration localization that

we refer here as concentration trapping. In such case,

the strip might play the role of a barrier, especially if

the geometric setting would be extended to account for

a multilayer structure as it is the case of materials like

paperboard.

Although the finite–thickness strip scaling is rather

standard (in the sense that the structure of the upscaled

coefficients was foreseeable), Fig. 5(left) points out an

outstanding opportunity: The numerical example

shows that changing the aspect ratio of the rectangular

obstacle can be used as tool to optimize the strip

performance (in the spirit of shape optimization). This

leads to the following key question: Is such non-

monotonic behavior specific to the choice of rectan-

gles as microstructures, or is it actually generic?

To answer this question, intensive simulations

involving a large variety of shapes of microstructures

need to be performed. Particularly, the role played by

the asymmetry of the microstructure is one target of

investigation. We expect that if the chosen microstruc-

ture has asymmetries, then d is not a parameter

anymore, but rather an internal length scale that is

linked to the asymmetry of the microstructure. More

insight based on numerical simulations is needed to

clarify the situation. Such simulations are typically

quite involved as they are expected to capture

simultaneously effects at two distinct spatial scales.

Furthermore, the possibility of concentration trapping

needs to be studied by, for instance, carefully consid-

ering the effect of the curvature of the micro-

boundaries on the macroscopic outflux. We will

address this issue somewhere else. At this moment,

relying on the numerical stability with respect to

changes in g shown in Fig. 5(right), we only speculate
that the answer to the question is affirmative. If this

were true, then one could start optimizing filtration

processes by searching for best–suitable microstruc-

ture shapes. This would be a useful tool for a number

of engineering applications. For what the finite strip

scaling is concerned, the optimization problem is

straightforward, since it can be linked exclusively to

the structure of the cell problem. For the second

scaling, i.e. for the infinitely–thin upscaled strip

model, the optimization problem is not easily acces-

sible. Here, any route towards optimizing filtration

needs to take into account the structure of the limit

two-scale model with nonlinear transmission condi-

tion [cf. (4.21)–(4.29)]. Hence, a significant compu-

tational power is needed for each optimization task.

Case (ii): Diagonal diffusion matrix and oblique

nonlinear drift.

In this section, we consider our starting problem

endowed now with a diagonal diffusion tensor as well

as with an oblique drift exhibiting the same type of

polynomial nonlinearity as before. The heuristics done

in Appendix can be adapted to the case of a full

oblique drift. To be specific, we set

4 When dealing with mass transfer in porous materials, the

tortuosity refers to the ratio of the effective diffusivity in the

porous medium to the diffusivity in the free space to (analogous

to arc-chord ratio of path) and is usually a tensor, say T; see e.g.

[6] and [31] for a discussion of the concept of tortuosity in

3D and 2D, respectively. To be specific, it holds DH ¼ D/T,
where / denotes here the volumetric porosity of the porous

material. Note that the structure of the tortuosity tensor is

usually unknown, excepting for the some of the cases when

upscaling procedures are applicable.
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D12 ¼ D21 ¼ 0; namely, D ¼
D11 0

0 D22

� �
and

GðUÞ ¼
gðUÞ
agðUÞ

� �
;

with a[ 0 a dimensionless parameter.

In this context, we are using the parameter a to

emphasize in our simulations the presence of a strong

anisotropic drift. As before, due to the presence of the

microstructure (‘‘perforation’’),D and g(U) genuinely

depend on ðY1; Y2Þ. The two-scale asymptotics

homogenization proceeds in a similar way as in

Sect. 3. Essentially, we are lead to the cell problem:

Find (w1;w2) such that

o

oY1
D11ðY1; Y2Þ

o

oY1
w1

� �
þ o

oY2
D22ðY1; Y2Þ

o

oY2
w1

� �

¼ � o

oY1
D11ðY1; Y2Þ;

ð5:6Þ

o

oY1
D11ðY1; Y2Þ

o

oY1
w2

� �
þ o

oY2
D22ðY1; Y2Þ

o

oY2
w2

� �

¼ � o

oY2
D22ðY1; Y2Þ;

ð5:7Þ

which for d ¼ 1 coincides with the former regularized

cell problem (5.3) and (5.4) (with corresponding

boundary conditions) and to the same upscaled

Eqs. (3.20)–(3.23) (with updated drift nonlinearity).

In Fig. 6 we show snapshots of simulation results

obtained with this modified model. If one compares

the concentration localization patterns in Figs. 4(-

right) and 6, then one sees that they seem to have a

different structure. In the first case, the locallization

tends to take place inside the strip, while in the second

case along a part of a Neumann boundary. We believe

that as soon as one replaces the Dirichlet conditions of

the original system with the more natural Robin

boundary conditions, then localization patterns will be

more prominent, i.e. the concentration field has ‘‘more

time’’ to localize due to the surface resistance effect

incorporated in the structure of a Robin boundary

condition (say, in the mass transfer Biot number).

6 Discussion

Starting off from a hydrodinamic limit of an asym-

metric simple exclusion process (ASEP), we have

investigated the problem of diffusion interplaying

with a polynomial drift through a composite mem-

brane in two specific scaling regimes. We have

obtained upscaled model equations for the finite–

length strip as well as for the infinitely–thin strip. We

have explicitly seen how the strip’s internal

microstructure affects the resulting upscaled equa-

tions. The entries of the tensorial effective transport

coefficients and our simulations show that these

effects are visible at the macroscopic level. From the

perspective of materials design, what concerns the

penetration of CO2 through a thin flat composite

membrane, there are parameter options that can be

used to optimize the membrane performance. A

careful exploration of both the parameter space and

of possible microstructure shapes can improve effec-

tive transport fluxes (e.g. speed-up transport or slow-

down transport via enhancing the localization of

concentration fields).

To gain additional confidence in the upscaled

model equations further investigations are needed. In

this spirit, two directions are more prominent:

(a) The upscaling needs to be made mathematically

rigorous. We foresee that the two-scale conver-

gence and the boundary layer techniques

employed in [27] can be adapted to our scenario,

provided one can handle the passage to the

homogenization limit in the non-linear drift

terms for both scalings. Additionally, the

knowledge of the asymptotic expansions behind

the singular perturbation (dimension reduc-

tion)–homogenization procedure can poten-

tially be used to derive convergence rates for

the involved limiting processes. This would

deliver quantitative information on the expected

size of fluctuations.

(b) The stochastic particle simulations from [10]

need to be extended from the one-barrier-case to

the multiple-thin-barriers case. Then the sta-

tionary concentration profiles and the particles

residence time can be compared with findings

based on the finite element approximations of

the upscaled model (both single and two-scale).

We have chosen to include solid rectangles as
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microstructures precisely so that the comparison

between the lattice model and the upscaled

evolution equations becomes possible. Such

comparison would shed light not only on purely

transport matters through thin porous layers

(like the motion of gaseous O2 or CO2 through

layered composite membranes mimicking a

paper sheet), but would also bring understand-

ing on the effect the environment knowledge has

on the stochastic dynamics of active particles

(agents). Here, the concentration localization

becomes an unwanted pattern if one considers

e.g. pedestrian evacuation scenarios.
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Appendix

Simple exclusion random walk

As we mentioned in the Introduction, the Eq. (1.1) can

be derived as the hydrodynamic limit for the two-

dimensional random walk with simple exclusion and

drift along the x1-direction. The formal derivation is

explained in detail in [9]; for a rigorous result in the

symmetric case we refer the interested reader to [22,

Chapter 4] from where we borrow the notation. To

explain the physical meaning of the different terms

appearing in the equation, we summarize in this

Appendix the main points of the derivation for the case

of a the two-dimensional torus, namely, when periodic

boundary conditions are considered.

Let Z be the set of integers and Z2 the two-

dimensional lattice. Given the positive integer N, we

also let TN ¼ Z=NZ be the N points torus and set

T2
N ¼ ðTNÞ2. The elements z ¼ ðz1; z2Þ of T2

N are

called sites. The direction associated with the first
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Fig. 6 Typical macroscopic diffusion profiles. Left: A moder-

ate permeability regime; Right: Increased barrier regime

exhibiting a harder-to-cross strip. In both cases, the diffusion

tensor is diagonal with an oblique full nonlinear drift just that in

the picture exhibiting concentration localization (right) the drift

is five times stronger
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(resp. second) coordinate will be called horizontal

(resp. vertical). A configuration is a map g : T2
N !

f0; 1g and we say that gðzÞ is the number of particles at

site z in the configuration g; if gðzÞ ¼ 0 we say that the

site z is empty, whereas if gðzÞ ¼ 1 we say that the site

z is occupied by a particle. Since a site can be occupied

by at most one particle, we say that the system is

governed by an exclusion (or hard core repulsion)

rule.

The evolution of the system is a continuous time

s� 0 Markov process gs defined as follows: particles

jump from site z to site zþ e, with e ¼ �e1;�e2,

where e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ, with rate gðzÞ½1�
gðzþ eÞ�pðeÞ where p is the probability distribution

pðe1Þ ¼
1

2
ð1� hÞð1þ dÞ; pðe2Þ ¼

1

2
h;

pð�e1Þ ¼
1

2
ð1� hÞð1� dÞ; pð�e2Þ ¼

1

2
h;

ð1:74Þ

on fe1;�e1; e2;�e2g, where h 2 ½0; 1� is called ver-

tical displacement probability and d 2 ½0; 1� is called
drift. Note that if h ¼ 0 particles move only horizon-

tally, if h ¼ 1 they move only vertically, if d ¼ 0 the

horizontal motion is left–right symmetric, and if d ¼ 1

the horizontal motion is totally biased to the right.

Note, also, that the jump from site z to site zþ e can be

performed only if z is occupied, i.e., gðzÞ ¼ 1, and

zþ e is empty, i.e., gðzþ eÞ ¼ 0, otherwise the rate is

zero.

We remark that for the jumping probabilties we are

adopting the same notation that some of the authors

used in the papers [9, 10] although in those papers the

biased direction was supposed to be vertical. More-

over, we note that there we adopted the discrete time

formalism for Markov processes, since it was more

convenient to perform and discuss the numerical

simulations. Here, we prefer to use the continuous

time language, since it allows a more intuitive

derivation of the hydrodynamic equation.

Coming back to the definition of the model, more

formally, we are considering the continuous time

Markov process with infinitesimal generator

ðLNf Þ ¼
X
z2T2

N

X
e¼�e1;�e2

gðzÞ½1� gðzþ eÞ�pðeÞ

½f ðgz;zþeÞ � f ðgÞ�
ð1:75Þ

for any function f : f0; 1gT
2
N ! R, where gz;zþe is the

configuration obtained from g by moving a particle

from site z to site zþ e.

For an arbitrary site z in the torus we write the

balance equation for the average occupation number

vðz; sÞ of the site z in the interval of time between s and
sþ Ds:

vðz; sþ DsÞ � vðz; sÞ

¼ 1

2
hvðzþ e2; sÞ½1� vðz; sÞ�

�

þ 1

2
ð1� hÞð1þ dÞvðz� e1; sÞ½1� vðz; sÞ�

þ 1

2
hvðz� e2; sÞ½1� vðz; sÞ�

þ 1

2
ð1� hÞð1� dÞvðzþ e1; sÞ½1� vðz; sÞ�

� 1

2
hvðz; sÞ½1� vðzþ e2; sÞ�

� 1

2
ð1� hÞð1� dÞvðz; sÞ½1� vðz� e1; sÞ�

� 1

2
hvðz; sÞ½1� vðz� e2; sÞ�

� 1

2
ð1� hÞð1þ dÞvðz; sÞ½1� vðzþ e1; sÞ�

�
Ds

where the first four terms on the right-hand-side

account for particles moving to x from neighboring

sites, while the remaining terms account for particles

moving from x to neighboring sites. Hence,

vðz; sþ DsÞ � vðz; sÞ

¼ 1

2
h½vðzþ e2; sÞ � 2vðz; sÞ þ vðz� e2; sÞ�

�

þ 1

2
ð1� hÞ½vðzþ e1; sÞ � 2vðz; sÞ þ vðz� e1; sÞ�

� 1

2
dð1� hÞf½1� vðz; sÞ�½vðzþ e1; sÞ � vðz� e1; sÞ�

þvðz; sÞ½ð1� vðzþ e1; sÞÞ � ð1� vðz� e1; sÞÞ�ggDs:
ð1:76Þ

To derive the limit hydrodynamic equation, we let

n ¼ 1

N
; ð1:77Þ

consider the macroscopic variables

x ¼ nz 2 ½0; 1�2 and t ¼ n2s ð1:78Þ

and set
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uðx; tÞ ¼ v
� x
n
;
t

n2

�
: ð1:79Þ

Finally, letting Dt ¼ n2Ds, the balance Eq. (1.76) in

the new variables becomes

½uðx; t þ DtÞ � uðx; tÞ�=Dt

¼ 1

2
h½uðxþ ne2; tÞ � 2uðx; tÞ þ uðx� ne2; tÞ�

�

þ 1

2
ð1� hÞ½uðxþ ne1; tÞ � 2uðx; tÞ þ uðx� ne1; tÞ�

� 1

2
dð1� hÞf½1� uðx; tÞ�½uðxþ ne1; tÞ � uðx� ne1; tÞ�

þuðx; tÞ½ð1� uðxþ ne1; tÞÞ � ð1� vðx� ne1; tÞÞ�gg=e2:

ð1:80Þ

Finally, if we assume that in the limit n ! 0, namely,

N ! 1, the drift scales to zero as

d ¼ n�d;

we find the limit hydrodynamic equation

ou

ot
¼ 1

2
h
o2u

ox22
þ 1

2
ð1� hÞ o

2u

ox12
� �dð1� hÞ o

ox1
½uð1� uÞ�:

ð1:81Þ

The above equation, which provides a microscopic

interpretation of the different terms appearing in (1.1),

is a diffusion–like equation with a nonlinear aniso-

tropic flux. The diffusion part of the equation is linear,

while the effect of the drift is captured in the non-

linear transport term which vanishes when �d ¼ 0, so

that linearity is approximatively restored at very small
�d.

It is worth noting that a derivation of the mean–fied

equations can be done in a similar way for the case of

oblique nonlinear drifts.
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