
A Natural Language Interface for
Querying Linked Data

Simon Tham
Christoffer Akrin

Faculty of Health, Science and Technology

Computer Science

C-Dissertation 15 HP

Supervisor: Nurul Momen

Examiner: Lothar Fritsch

Date: 2020-06-01

Abstract

The thesis introduces a proof of concept idea that could spark great interest from
many industries. The idea consists of a remote Natural Language Interface (NLI),
for querying Knowledge Bases (KBs). The system applies natural language tech-
nology tools provided by the Stanford CoreNLP, and queries KBs with the use
of the query language SPARQL. Natural Language Processing (NLP) is used to
analyze the semantics of a question written in natural language, and generates
relational information about the question. With correctly defined relations, the
question can be queried on KBs containing relevant Linked Data. The Linked Data
follows the Resource Description Framework (RDF) model by expressing relations
in the form of semantic triples: subject-predicate-object.
With our NLI, any KB can be understood semantically. By providing correct
training data, the AI can learn to understand the semantics of the RDF data
stored in the KB. The ability to understand the RDF data allows for the process
of extracting relational information from questions about the KB. With the rela-
tional information, questions can be translated to SPARQL and be queried on the
KB.

Keywords: SPARQL, NLP, RDF, Semantic Web, Knowledge Base, Knowledge Graph

i

Acknowledgments

We would like to thank our supervisor at Karlstad University, Nurul Momen for

guidance and support.

We would also like to thank our supervisor from Redpill Linpro, Rafael Espino for

advice and inspiring us in the fields of Natural Language Processing and the Semantic

Web.

Lastly, we would like to thank Redpill Linpro for allowing us to do this project.

ii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Roadmap . 2

2 Background 4

2.1 Semantic Web . 4

2.1.1 RDF . 5

2.1.2 Knowledge Graph . 5

2.1.3 SPARQL . 6

2.2 Natural Language Processing . 6

2.2.1 The Stanford CoreNLP . 7

2.2.2 Natural Language to SPARQL . 8

2.3 Literature Survey . 9

2.3.1 Three-pass . 10

2.3.2 Survey Results . 10

3 Design 12

3.1 Build Automation & Framework . 12

3.1.1 Spring . 13

3.1.2 Java Build Tools . 14

3.2 NLP Frameworks . 15

3.2.1 Rasa . 15

iii

3.2.2 Apache OpenNLP . 15

3.3 Initial Design . 16

3.4 Natural Language to SPARQL . 16

3.4.1 Relation Extraction . 17

3.4.2 Relation Recognition . 17

3.4.3 Parsing Triples to SPARQL . 18

3.5 Remote Natural Language Interface . 18

4 Implementation 21

4.1 Interface . 21

4.1.1 Initial Version . 21

4.1.2 Final Version . 22

4.2 Query Parser . 23

4.2.1 Generating Triples . 24

4.2.2 Formatting Triples . 24

4.2.3 Relation Matching . 26

4.2.4 Relation Gathering . 26

4.3 Generating a SPARQL Query . 28

4.4 Connect to a Repository . 29

4.5 Training a NER Model . 30

4.5.1 Conditional Random Field . 30

4.5.2 Training Data . 31

4.6 Final Pipeline Implementation . 32

5 Evaluation 34

5.1 Memory Usage . 34

5.2 Ramification of Training Data . 34

5.3 Fundamental Distinctions . 35

iv

6 Limitations & Future Work 36

6.1 Word2vec . 36

6.2 Generating Training Data . 37

6.3 Distributed Network of Repositories . 37

6.4 Interactive NLI . 37

7 Conclusion 38

Bibliography 39

A Setting up the Query Service . 45

A.1 Setup GraphDB Repository . 45

A.2 Setup Application Properties . 46

A.3 Setup VM Options . 46

B Using the NLI . 46

B.1 Example Queries . 46

v

List of Figures

1.1 Roadmap Diagram describing the work flow of the project. 3

2.1 An overview of the CoreNLP pipeline . 8

3.1 An overview of the initial design. 16

4.1 Early version of the web interface shows an example of how to find all the

Star Wars movies. 22

4.2 Final version of the web interface shows an example of how to find the

orbital period of all planets. 23

4.3 Overview of the final pipeline implementation. 33

vi

List of Tables

2.1 An overview of our systematic literature survey. 9

3.1 Performance test for NER and POS tagging 16

vii

Listings

2.1 An example of a simple SPARQL query. 6

3.1 An example of Maven build script. 13

3.2 An example of Gradle build script. 14

3.3 An example handshake sent by the client using WebSocket. 20

3.4 WebSocket response handshake sent by the server. 20

4.1 Formatted triples for the question What is the gravity of Tatooine?. . . . 25

4.2 SPARQL query for fetching the vocabulary from uri. 27

4.3 SPARQL query for the question What is the height of Vader?. 29

4.4 Example of creating a repository. 29

4.5 An example snippet of training data used by the NER model. 31

viii

Abbreviations

NLP Natural Language Processing
NLI Natural Language Interface
KB Knowledge Base
KG Knowledge Graph
RDF Resource Description Framework
NER Named Entity Recognition
POS Part of Speech
WS Web Service

ix

Chapter 1

Introduction

The Semantic Web provides many great technologies for understanding more complex

data structures. Furthermore, the recent use of Natural Language Processing (NLP) and

Knowledge Graphs (KGs) have had an important role in analyzing data, and adopting

the business.

Knowledge Graphs and the SPARQL query language are areas of growing interest in the

IT industry of today. This technology is already being used by many large corporations

to analyze user behavior and relations between various topics and persons. Used in the

right way, this technology can create insight into large portions of data and help organi-

zations in making the right decisions. Facebook, Google and their likes are already using

this technology to help advertisers target the right audience with the right messaging.

This has sparked an interest also from the traditional industries on how they can make

use of this powerful technology. For example, in the car industry, companies may gather

information about the vehicle and easily extract necessary information. When the inter-

est for the technology broadens and moves into new organizations, one challenge is the

user ability to adopt and make use of the technology.

1

1.1 Motivation

NLP is an interesting branch of Artificial Intelligence. The idea is to ease the interaction

between the human languages and computer language. With the help of NLP, large

amounts of Linked Data [1] can become available for the everyday user. This technology

could potentially also be used to give users access to KGs and data analysis. Currently,

in order to query Linked Data, the user needs knowledge of a certain query language.

This thesis focuses on the Semantic Web technology, RDF [2], and the RDF-specific

query language, SPARQL [3]. We evaluate the possibility to translate natural language

to SPARQL, and retrieve information from a KB.

1.2 Roadmap

Chapter 2 describes relevant information that plays a part in the implementation. First,

we introduce the Semantic Web and some of the technologies it contains. Second, we

briefly explain the syntax and semantics of the query language SPARQL. Afterwards,

we discuss NLP and how we can utilize it in our project. Lastly, we discuss how we

approached the literature study in order to find relevant work, and answer how we can

contribute in the research area.

Chapter 3 introduces a design approach for a remote NLI. We discuss how the initial

vision is outlined. Also, we motivate the technical design decisions made, such as build

automation, network architecture, and NLP framework. Lastly, we describe the design

of the pipeline for translating natural language to SPARQL.

Chapter 4 describes the proof of concept implementation. We discuss how the web in-

terface was modified during development. We also describe how the server connects to

a repository in order to query SPARQL. Later, we explain the approach taken for pars-

ing a query, how the model trains, how triples are generated and formatted, and how

we match relations with the KB. Lastly, we describe the final pipeline implementation,

showcasing how a query gets processed by the system.

2

In Chapter 6 we describe possible future work of the prototype. The project has a lot of

potential for future development, and in this chapter we describe ideas that were planned

or took shape during development.

Figure 1.1 presents a diagram describing the work flow of the project, with the given

time frame. The project can be categorized into four different blocks, as seen in Figure

1.1. Under the timeline, the project is split into phases describing more specifically the

work being done at the given time.

In the Research Phase we gather relevant knowledge, and literature for a survey. To-

wards the Initial Design phase we discuss how the initial design could come to intuition.

With a basic intuition, the approach taken for the design needs to be defined, and exe-

cuted.

In the Initial Prototype phase we implemented a bare bone prototype capable of query-

ing KBs with SPARQL, using a simple web interface. At this point, NLP is not yet

implemented and the user can only query using SPARQL directly. The Final Prototype

phase is the largest phase, and contains the work for using natural language to query a

KB. Also, the work accommodates a cleaner and more intuitive web interface.

Relevant Technical Work
Literature Survey

Related Work

Background Research

Build Automation
Networking Approach

NLP Framework
Natural Language to SPARQL

Designing an NLI

Web Interface
Connecting to a Repository

Training a NER model
Handling Queries

Implementing a Prototype

Prototype Distinctions
Limitations

Future Work
Conclusion

Evaluating the Prototype

Feb
2020

June
2020Initial

Prototype Final PrototypeResearch
Phase

Initial
Design

Design
Approach

Concluding
Phase

Figure 1.1: Roadmap Diagram describing the work flow of the project.

3

Chapter 2

Background

This chapter will first discuss relevant technical work, and later explain the approach

taken for literature study. We begin by introducing the Semantic Web and some of

its building blocks. Next, we discuss how NLP works, and how it can be implemented

to translate natural language to SPARQL. Finally, we discuss techniques used for the

literature study in order to gain information about relevant topics, and elaborate on

relevant papers that contains similar work.

2.1 Semantic Web

The Semantic Web is a standard, set by the World Wide Web Consortium (W3C) [4],

and is a vital component for the next generation internet known as Web 3.0. The

overall premise of The Semantic Web is to translate large amount of data into machine-

readable information [5]. The Semantic Web contains numerous technologies that for

example makes it possible to query the data, or to generate new relations between data.

To make The Semantic Web a reality, we need large amounts of data to work on, which

the web provides to us. Also, the data does not only need to be accessible, but also need

relations between data, known as Linked Data [1]. In the coming subsections, some of

the vital technologies used in The Semantic Web are briefly explained.

4

2.1.1 RDF

The Resource Description Framework [2] is the basic framework for The Semantic Web,

and is the format that allows anyone to describe any kind of statement, and model them

together. RDF statements can be boiled down to what is known as triples. Triples

are the fundamental data structure of RDF and are divided into three parts; subject,

predicate, and object. With triples we can describe the relation between data. For

example: Shakespeare Wrote Hamlet, where Shakespeare is the subject, Wrote is the

predicate, and Hamlet is the object. With RDF we can create a Directed Graph of

Linked Data, structured by a group of triples [6].

2.1.2 Knowledge Graph

The term Knowledge Graph was first coined by Google back in 2012 [7]. From that point

KGs have had a major widespread adoption, both academically and commercially. There

is a handful of different definitions regarding KGs. A common interpretation is that a KG

represents a collection of linked descriptions of entities, and is a graphical representation

of a KB. The KB contains all the data stored in the KG. KB is also sometimes referred

to as an ontology. In order to avoid confusion, we will only use the terms KB and KG

to describe storage of data and its graphical representation respectively.

The intention of KGs is to describe data in a formal structure that is readable by

both human and machine. Together, the entities create a network of relations between

each other, and can for example be interpreted as triples to represent an RDF Graph.

However, not all RDF Graphs should be considered KGs. It is important to consider

that it is not always necessary to represent the semantic knowledge of data. Relations

between entities define the KG, not the language used for representation of data [7, 8].

A handful of large, openly available KBs exist today [9]. For example, DBpedia is a

Wikipedia data extraction tool, and allows us to access information from Wikipedia in

the form of a KB [10]. With DBpedia we can query on more than 38.8 million entities

that Wikipedia offers [11].

5

2.1.3 SPARQL

The query language SPARQL Protocol and RDF Query Language (SPARQL) is nec-

essary when accessing information described in the RDF format. SPARQL allows us

to model questions that are written in natural language, and query them on data that

follows the RDF format. For example, the SPARQL query for the question: What are

all the poems written by Shakespeare? would become the query as seen in Listing 2.1.

1 PREFIX ex: <http: // ShakespeareExample >

2

3 SELECT ?poem WHERE {

4 ?poem ex:medium ex:Poem .

5 ?poem ex:author " Shakespeare " .

6 }

Listing 2.1: An example of a simple SPARQL query.

In this case we are using a SELECT query to gather all poems written by Shake-

speare. The first triple selects all the mediums that are considered poems, and the

second triple checks if the poem has the author Shakespeare. The ? token indicates

a variable and can match any resource given by the RDF data set. The prefix ex is

our prefixed name that represent resources and provides the RDF data set. Resources

are accessed with a Uniform Resource Identifier (URI), which in this example has the

string http://ShakespeareExample [12]. Prefixes also operate as namespaces by providing

organization between objects originating from different data sets [6].

2.2 Natural Language Processing

NLP is the transformation of human language to machine readable information. Se-

mantic understanding of the human language is a very hard problem in the field of AI.

Researchers have yet to master the arts of fully translating the human language with

NLP. NLP can be split up into multiple tasks, and we will briefly explain some of the

6

most common tasks [13].

The first task for NLP is to generate tokens from the words forming the provided sen-

tence. To create tokens we use what is known as tokenization, which can for example

present the words of a sentence in XML-format. With the tokens, we can use many

different analysis tools to gain semantic understanding of the sentence. One of the key

analysis tools is Part-Of-Speech (POS) Tagging. POS allows for tagging of tokens. The

tag indicates the syntactic role of the token, for example plural, noun, adverb [13, 14, 15].

Morphological analysis is another way to analyze tokens, and allow us to find the base

form of the token, also known as a lemma [15].

Lastly, a very important task done by NLP is—Named Entity Recognition (NER). NER

recognizes potential entities in a sentence and labels them such as PERSON, TIME,

LOCATION [13].

2.2.1 The Stanford CoreNLP

CoreNLP is an NLP toolkit built by Stanford University and is one of the most widely

used natural language analysis tools [15]. CoreNLP provides a lightweight JVM-based

(Java Virtual Machine) framework, that is split up into multiple APIs, known as anno-

tators. The annotators can be used separately to annotate the raw text provided. Also,

the annotators allow the user to tailor their own pipeline by creating a flow of execution

on the raw text. Annotators generate analyses of the text, and outputs an annotated

text as a result. CoreNLP also allow us to create our own annotators that we can add

to the pipeline [16, 15].

Originally, CoreNLP was designed for internal use only, and was a set of independent

natural language analysis components, which were glued together to create the open

source framework CoreNLP, showcased in Figure 2.1 [15].

7

Figure 2.1: An overview of the CoreNLP pipeline [16].

2.2.2 Natural Language to SPARQL

With large scale KBs, there is a need to manage searches on the KBs in an easy and

user-friendly way. However, forming SPARQL queries to search an RDF KB is not

the simplest task, even for advanced users. One solution to the problem is to accept

questions in natural language, and translate them to SPARQL queries. Due to high level

of expressiveness in natural language, complex queries can be generated. If queries can

be translated from natural language to SPARQL, human users can search KBs without

having to learn SPARQL [17, 18]. However, translating natural language to SPARQL is

not a trivial task. One of the challenges is to correctly identify the desire of a user query.

The semantics of words can vary in different contexts. For example, how big might refer

to length, height, or population. Also, the same fact can be expressed in different triple

forms and even in multiple triples [18, 19].

8

2.3 Literature Survey

The literature study is mainly made using two similar methods; snowballing and reverse

snowballing [20]. Before starting the snowballing, we identify relevant work as a starting

set of papers. For example, the starting set of papers could be identified using Google

Scholar [20]. Some of the keywords for identifying relevant papers are: NLP, CoreNLP,

Semantic Web, SPARQL, RDF, Knowledge Graph. The keywords are used in different

permutations and combinations.

First a tentative start set is created from the search for papers to include in the start

set. The actual start set are the papers from the tentative start set, included at the end

of the literature study.

Snowballing means identifying new papers which are citing the paper being examined.

To decide if a paper is relevant for our work, a technique called three-pass [21] is used,

which will be discussed in the coming subsection. Reverse snowballing refers to the idea

of going through the reference list of the current paper being examined, and finding new

papers to include.

Start Set—Iteration one Iteration two Iteration three
PANTO (Wong et al. [22]) - -

AutoSPARQL (Lehmann, Bühmann [23]) AutoSPARQL AutoSPARQL
SPARKLIS (Ferré [24]) SPARKLIS -

Controlled Natural Language (Fuchs, Schwitter [25]) - -
SNOMEDCT (Jin-Dong, Cohen [17]) SNOMEDCT SNOMEDCT

SQUALL (Ferré [26]) SQUALL -
Triplet Extraction (Rusu et al. [27]) Triplet Extraction -
NLP-Reduce (Kaufmann et al. [28]) NLP-Reduce NLP-Reduce

The Penn Tree Bank (Taylor et al. [29]) The Penn Tree Bank -
Gradle in Action (Muschko [30]) Gradle in Action Gradle in Action

NLP for the Semantic Web (Maynard et al. [31]) NLP for the Semantic Web -

Table 2.1: An overview of our systematic literature survey.

9

2.3.1 Three-pass

The three-pass approach is a way of reading through papers and giving us the chance

to make up our mind early, whether the paper is interesting for us. Instead of reading

through the whole paper from start to end, we read the paper in three passes.

In the first pass we get an overview of the paper, where we read the title, abstract,

introduction, and conclusion. We also glance over the section and subsection headers.

The first pass is good for deciding if we want to keep reading, or if the paper is not

interesting to us, or if we have to learn more about the area to understand the paper.

In the second pass, we look carefully at figures and diagrams. This pass is also used to

look for relevant references for further reading.

In the third pass, we read through the whole paper. Table 2.1 shows a small sample of

articles, used in our research, and what articles were excluded in each pass. The inclusion

criterion consists of helping to understand the process of translating natural language

to SPARQL. Also, papers are included to help understand and choose appropriate tools

for the design process.

2.3.2 Survey Results

Querying on the Semantic Web in the form of natural language has had multiple different

implementations throughout the years. This section provides information about some

NLIs [32] used on the Semantic Web. Lastly, we discuss our possibilities for contribution

in the field of NLIs.

Ginseng is a guided input natural language search engine. In other words, Ginseng

does not use a predefined vocabulary and does not try to understand the syntax, nor the

logic of the query. Instead, Ginseng uses its preloaded KBs to gain a vocabulary. The

user has to tailor their questions according to the vocabulary, which limits the freedom

of asking any type of question. However, by querying relevant questions, Ginseng will

provide accurate results; hence the name guided input. Ginseng uses the RDF Data

Query Language (RDQL), predecessor to SPARQL [33, 34].

10

AutoSPARQL is an NLI that utilize supervised machine learning. The system learns

the concept with help of good and bad examples as input. The user also does not need

any knowledge of the underlying KB, nor any previous SPARQL prowess [23].

NLP-Reduce uses a lexicon, a query input processor, a SPARQL query generator, and

a KB access layer to transform natural language to SPARQL queries. The lexicon is

automatically built when a KB is loaded into NLP-Reduce. It is built by extracting all

the triples that exist in the KB. The input query processor removes any punctuation

mark and stop words, and passes the words to the SPARQL query generator. The query

generator tries to generate SPARQL queries by matching the queries to the triples stored

in the lexicon [28].

FREyA includes features to let the user improve recall and precision. Therefore it is

called an interactive NLI. FREyA uses disambiguation dialog and involves the user to

resolve any ambiguity. For example, if the user asks a question about New York, the

user is asked to disambiguate, because it can refer to the state or the city. With the

help of the user, the system learns and improves over time. When there is no ambiguity

left to resolve, the system identifies the answer type, and form triples, which are used to

form SPARQL queries [19].

We believe that our work can contribute towards a proof of concept idea, exhibiting

the usefulness and practicality an NLI provides. Many industries store large amount of

data, and the power of NLIs could prove great usefulness for analyzing any kind of data.

Our work is intended to provide a stepping stone for further development of NLIs. Also,

we want to show how it could be useful for many industries that manage some sort of

information.

11

Chapter 3

Design

When designing an NLI, many different approaches are possible. In our approach, we

want to create an NLI that can be accessed remotely, and query on KBs. Also, the NLI

should rely on machine learning when parsing questions, instead of using a predefined set

of rules. During the development process of the NLI, many decision were made in order

to achieve our vision. In this chapter we describe the reasoning behind the choice of

adopted tools and frameworks. Furthermore, we discuss the initial design and describe

the process of translating natural language to SPARQL.

3.1 Build Automation & Framework

To ease the development of our project, we use a framework called Spring [35]. When

we create a Spring project, we get to choose a build automation tool. We can choose

between Gradle or Maven [36, 37]. Maven uses XML in its build script which can get

complex as the project grows, but this will be discussed further in the coming subsection.

To avoid XML, we use Gradle as our build automation tool.

12

3.1.1 Spring

Spring Boot is a Java-based framework used to make the development process easier.

Spring Boot helps with a number of different tasks. To name a few: it eases the depen-

dency management, makes it possible to run the application independently, and offers

an easy way to get started with the project [38]. From the start, Spring makes it easy

to set up a project. All we have to do is choose a build tool, what language we want to

use, and we can also choose what dependencies to add. Spring sets up the project for us

with our chosen build tool, the correct dependencies, etc.

For implementation feasibility, the application has to run independently. Spring contains

infrastructure support for developing stand-alone applications.

<?xml version= "1.0" encoding= "UTF-8 "?>

<project xmlns= "http :// maven . apache .org/POM /4.0.0 "

xmlns :xsi="http :// www.w3.org /2001/ XMLSchema-instance "

xsi: schemaLocation= "http :// maven . apache .org/POM /4.0.0

http :// maven . apache .org/xsd/ maven-4 .0.0. xsd">

<modelVersion>4 .0.0</ modelVersion>

<groupId>org . example< / groupId>

<artifactId>Example< / artifactId>

<version>1 .0 -SNAPSHOT< / version>

<dependencies>

<dependency>

<groupId>junit< / groupId>

<artifactId>junit< / artifactId>

<version>4 .12</ version>

</ dependency>

</ dependencies>

</ project>

Listing 3.1: An example of Maven build script.

13

plugins { id 'java ' }

group 'org.example '

version '1.0 - SNAPSHOT '

sourceCompatibility = 1.8

repositories {

mavenCentral ()

}

dependencies {

testCompile group: 'junit ', name: 'junit ', version: '

4.12 '

}

Listing 3.2: An example of Gradle build script.

3.1.2 Java Build Tools

Maven and Ant are two tools that are highly used to build Java projects. Both Ant

and Maven use XML1 for their build script, which is good for describing hierarchical

data, but is not as effective for describing program flow and conditional logic. XML has

a tendency to get hard to read and understand as the project grows. Listing 3.1 and

3.2 displays the difference between a Gradle and Maven fresh build script. When the

project grows and more dependencies are added, the XML code tends to get cluttered

and become difficult to interpret. This is an advantage of Gradle, which does not use any

XML at all, but instead uses a language called Groovy2. Compared to XML, Groovy is

easier to read and understand [30].

Gradle is the most recent addition to the build automation tools for Java. Gradle

has learned from Ant and Maven, and combines their best features to create a better

build tool. For example, Gradle combines the flexibility from Ant, the dependency
1XML: Version 1.0
2Groovy: Version 4.0

14

management from Apache Ivy, and convention over configuration from Maven [30].

3.2 NLP Frameworks

There are a handful of NLP APIs that we can choose between, which all are using

machine learning to annotate text. CoreNLP became a natural choice because it is very

simple to use, yet very fast and accurate [39]. Also, CoreNLP has a documentation

that is easy to understand, and contains practical examples for how to properly use

the framework. We will now briefly introduce the frameworks we researched, but were

discarded.

3.2.1 Rasa

Rasa is an open source framework for developing contextual assistants, and is written

in Python [40]. An external SDK (Software Development Kit) exist for using Rasa

with Java [41]. The SDK allow us to communicate with Rasa using a REST endpoint.

Overall, we felt that Rasa might not be the perfect fit for our project. Rasa learns

from receiving natural language, and decides on the best response with the conversation

history in mind. Our design does not handle conversations, but handles each question

separately, without past questions in mind. We will discuss the possibilities more for

dynamically creating a model over time in Chapter 6.

3.2.2 Apache OpenNLP

With OpenNLP we can build our own NLP pipeline; much like CoreNLP. OpenNLP

works very similarly to CoreNLP and both are written in Java. Both frameworks require

tokenization in order to do any semantic extraction. In our program, POS tagging is a

critical component in the pipeline, and CoreNLP outperforms OpenNLP when in comes

to POS tagging [42]. However, the OpenNLP NER tagging is significantly faster, as seen

in Table 3.1, it is limited regarding accuracy. For example, OpenNLP NER tagger can

15

OpenNLP CoreNLP
POS 11.65s 2.69s
NER 11.26s 18.04s

Table 3.1: Performance test for NER and POS tagging [42].

not understand abbreviations with punctuation, which CoreNLP can. Also, OpenNLP

needs separate models to understand words that are not English-alphabetical, which

CoreNLP can handle with the same model [42].

3.3 Initial Design

Initially, the project was presented by Redpill-Linpro in Karlstad, Sweden [43]. The

purpose of the project is to explore the possibilities of using NLP to query the Semantic

Web. The initial design, as seen in Figure 3.1, depicts an overview of the project’s vision.

The user asks questions in natural language using a web interface. The question will

be sent to a server, and an NLP framework will extract relevant information about the

questions using syntactic analysis. The analysis will then be translated into a SPARQL

query. With the SPARQL query we can access data from a KB in the form of RDF

triples.

NLI NLP SPARQL KB
natural language analyzed text query

RDF

Figure 3.1: An overview of the initial design.

3.4 Natural Language to SPARQL

As mentioned in Section 2.2.2, the process of translating natural language to SPARQL

is not a trivial task, and requires multiple subtasks in order to be attained properly. In

16

this section we will discuss the design approach of all the necessary tasks contained in

the pipeline. First, we will discuss how we can define relations from natural language.

Second, we want to match the defined relations with the vocabulary of the KB. Lastly,

we need to parse the created triples to a SPARQL query, which should be a trivial task

if the triples are correctly defined.

3.4.1 Relation Extraction

When the user defines a question, the AI needs to extract relations between entities in

order to find what the user wants in return. However, a question does not accommodate

any relational information. For example, the question Where was Shakespeare born?

does not tell the AI any information about the relation between Shakespeare and his

birthplace. Nevertheless, by using CoreNLP we can annotate the question and recon-

struct it as a statement. In our case, the question would translate to Shakespeare be bear

at location. The statement also makes sure to write the tokens in their lemma form; was

becomes be, and born becomes bear. The CoreNLP framework can now extract relational

information about the entities. The relations can be defined in the form of RDF triples:

subject-predicate-object. Once again in our case, the triple would roughly be defined as

following: Shakespeare - be bear at - location. Furthermore, it becomes quite obvious

that location is the variable the user is asking for.

3.4.2 Relation Recognition

When the triples have been roughly defined, we need to match the predicates with

the existing relations defined in the remote KB, also know as a vocabulary. In order

to recognize the relations, we need to link the relations with the existing vocabulary.

For example, the NLP recognizes the relation be bear at; and in our vocabulary the

corresponding relation is birthplace. If we were to query with the relation be bear at,

we would not get any matches, because the KB uses a different predicate, in this case

birthplace. We design the system to query on KBs from GraphDB. With GraphDB we

17

can visually display a graph of the predefined triples. Also, GraphDB allows us to test

the system on smaller KBs, which simplifies the implementation part of the project.

However, the design of the system should not limit the scalability. In other words, the

size of the KB should not increase the difficulty of the task, but can make it harder to

debug during implementation.

3.4.3 Parsing Triples to SPARQL

With correctly defined triples, the translation from triples to a SPARQL query becomes

definite. Apache Jena is a framework for Java, and contains multiple tools to create

Semantic Web and Linked Data applications. ARQ is one of the tools provided, and is

a SPARQL processor for Jena. With ARQ we can manipulate SPARQL, or even create

SPARQL queries from scratch [44].

All the queries in our system will have certain similarities. We know for a fact that all

the queries will be of the SELECT type, because we only want to select and provide

data to the user. When creating a select statement as seen in Listing 2.1 we are selecting

poem entities that match the relations. In other words, the AI needs to know what we

are supposed to select. For example, the question What are all the poems written by

Shakespeare?. As a human, it is trivial that we should select all the poems that was

written by Shakespeare. For an AI it is not obvious what exactly we should select when

parsing the query, and needs to figure this out in order to create the correct query. In

the upcoming chapter, we will dig deeper into how we can solve the problem of selecting

correct entities.

3.5 Remote Natural Language Interface

In order to develop an NLI remotely, as discussed in Section 3.3, we decided to use a

client-server model. The client can query from anywhere with a given connection to

the server. Also, it allows for having multiple seamless connections at the same time,

from different locations. A client-server model offers superior flexibility over a local-only

18

connection. Although, with a client-server model, the users have to rely on a server to

be stable and handle their queries. With a local-only connection, every user relies on

their own system. To achieve a remote NLI, we design a WS (Web Service). The WS

provides the possibility to query over the World Wide Web. With the help of the Spring

Framework, we can develop the WS in Java.

When developing a WS we need to create a web server that handles the incoming re-

quests. The design of a web server can be constructed in multiple ways. The first option

is to create a REST (Representational state transfer) API. REST puts certain constrains

on the design of a WS. Nevertheless, REST is very simple to use and implement, and al-

lows for high scalability [45]. The reason we decided to not design a REST API was due

to statelessness. When designing an NLI, states can be useful in order to create greater

server flexibility, and lower latency. NLP takes great processing power and memory

usage [46]. With states we can optimize the server greatly. Also, we realized that the

response data sent back to the user can be very large, and therefore requires chunking

of data. With a HTTP based protocol, we need to establish a new connection for every

message sent between the server and client, which adds a lot of unnecessary data for

each packet.

Another approach is to use WebSocket, which allow us to achieve a stateful connection

[47]. WebSocket is a communication protocol that allows two-way communication be-

tween clients and server. We can create a single TCP (Transmission Control Protocol)

connection to each client, and the client connects to the server by sending a HTTP

handshake, as seen in Listing 3.3. The server will respond with a handshake, as seen in

Listing 3.4, and a connection will be established [47].

19

1 GET /chat HTTP /1.1

2 Host: server.example.com

3 Upgrade: websocket

4 Connection: Upgrade

5 Sec -WebSocket -Key: dGhlIHNhbXBsZSBub25jZQ ==

6 Origin: http: // example.com

7 Sec -WebSocket - Protocol: chat , superchat

8 Sec -WebSocket - Version: 13

Listing 3.3: An example handshake sent by the client using WebSocket.

1 HTTP /1.1 101 Switching Protocols

2 Upgrade: websocket

3 Connection: Upgrade

4 Sec -WebSocket - Accept: s3pPLMBiTxaQ9kYGzzhZRbK +xOo=

5 Sec -WebSocket - Protocol: chat

Listing 3.4: WebSocket response handshake sent by the server.

When a connection is established, the server does not need to differentiate between mes-

sages. We can simply just handle each client session separately, and listen for incoming

packets.

Because we are using a WebSocket based WS, we decided to design a web page to repre-

sent the NLI, which allows clients to connect and send questions to the server. The web

page logic is designed using the JavaScript library jQuery3. With jQuery it becomes

much easier to design the WebSocket part of the web page. Consequently, the web page

also needs to handle sending and receival of packets.

3jQuery: Version 3.5

20

Chapter 4

Implementation

In this chapter we describe the approach taken to implement a prototype for translating

natural language to SPARQL, as described in Section 3.4. For implementation feasi-

bility, we used a rather small KB, containing information from the Star Wars universe.

We will describe how the NLI changed over time through development, and how we

solved problems encountered along the way. Lastly, we introduce the final version of the

prototype and how it handles a query.

4.1 Interface

We require a simple web interface where the user can enter a question in natural language

and receive an answer. To create the interface, we use CSS, HTML and Javascript. CSS

and HTML describes the design of the interface, whereas Javascript adds functionality

to it.

4.1.1 Initial Version

In the early version of the interface, which is shown in Figure 4.1, we need to enter a

SPARQL query which is sent to GraphDB. To send a query to GraphDB, a session must

first be established with the server, by pressing the connect button. A SPARQL query

21

Figure 4.1: Early version of the web interface shows an example of how to find all
the Star Wars movies.

can then be entered into the text box and sent when pressing the send button. The

server will connect to the repository and send the query to the endpoint. The endpoint

replies to the server and the server forwards the answer to the client, which shows up in

the right box.

4.1.2 Final Version

The goal is to not require a SPARQL query, but instead write a question in natural

language. The interface should also be user friendly, e.g. the user should not have

to press the connect or disconnect buttons. The server should handle the connection

and let the user know when they are connected or disconnected. For our final version

of the interface, we chose to remove the connect and disconnect buttons. The server

now establishes connection, and a text appears to let the user know when they are

connected. If the user disconnects, the text changes and lets the user knows they have

been disconnected. Also, the text area where the user asks the question has been changed

to a single input line. The retrieved data will show up underneath the input field and

is presented in tabular form. Figure 4.2 shows our final version with a slightly more

difficult question than in Figure 4.1.

22

Figure 4.2: Final version of the web interface shows an example of how to find the
orbital period of all planets.

4.2 Query Parser

When the server receives a query from one of the sessions, the server needs to parse the

query into SPARQL before sending it to the repository. The translation from a query

to SPARQL is handled by the QueryParser class. Before parsing queries, we need to

initialize the QueryParser properties used by the pipeline. When creating a pipeline,

we use the StanfordCoreNLP [48] class, and pass the java.util.Properties in-

stance into the constructor. The properties for the annotators key, are defined in order

of execution as following: tokenize, ssplit, pos, depparse, lemma, ner, natlog, openie. We

make sure to include all the annotators we are using in the program, otherwise we might

need to load in the models while parsing a query.

The QueryParser class can handle multiple questions with a single instance. The

query string passed into the constructor can contain multiple questions, separated with

a ?. The separation is made possible by the Document [49] class in CoreNLP, which

allows us to split the sentences in a string, and annotate the sentences seamlessly during

the same annotation.

As mentioned in Section 3.4.1, the query needs to be translated to a statement in or-

der for the NLP framework to find relations. In order to translate the question into a

23

statement, we use the QuestionToStatementTranslator [50] class. The Ques-

tionToStatementTranslator class provides a function toStatement that takes

a list of the annotated words, written as a question. The function transforms the anno-

tated words into a statement, and returns a new list of annotated words. With the newly

created statement, the sentence contains relational information that can be extracted to

generate triples.

4.2.1 Generating Triples

When generating triples we use OpenIE (Open Information Extraction) [51], which is

useful when limited on training data. Generally, the questions translated into statement

will follow a similar pattern, and will make it possible for the OpenIE to extract re-

lations. Therefore, we do not need to train our own relation extractor. Also, OpenIE

is very fast compared to the Stanford relation extractor, and can process around 100

sentences per second per CPU core [51].

Before extracting the triples we need to make sure that the predicate is formatted cor-

rectly. In order to format correctly we analyze the POS tags of the tokens. For example,

when the OpenIE extracts triples from the statement: thing be the orbital period of all

the planets. The final triple should be: thing - orbitalPeriod - planet. In this case the

word orbital is an adjective that modifies the noun period. So we concatenate the words

and write it back in camel case, which is the naming standard used in the repositories. If

we avoid the concatenation, the OpenIE can find undesirable relations. Another example

would be: thing be the eye color of Shakespeare, which has two nouns as the predicate;

eye and color. To match the predicate in the vocabulary, we simply concatenate the

nouns to create the predicate eyeColor.

4.2.2 Formatting Triples

After creating the OpenIE triples, we need to format the triples before creating a

SPARQL query. The triples received from the QueryParser follow common patterns,

24

which simplifies the algorithmic approach when formatting to SPARQL readable triples.

We can split up the queries into two main different categories; queries with an entity,

and those without an entity. When the query contains an entity, we can predict that

the answer should contain some sort of information related to the entity. For example,

if we ask the question: What is the gravity of Tatooine?, the TripleFormatter would

find the NER tag PLANET for Tatooine. With a known NER tag, the SPARQL query

should select all the planets containing the label Tatooine. The triples for the example

question would become as following:

thing - be - gravity

thing - be gravity of - Tatooine

With the triples we know from previously that thing becomes the answer we want to

select. In this case, thing will be the subject that relates to the gravity of the planet

Tatooine. In other words, the triples would be formatted as seen in Listing 4.1.

1 ?root a voc:Planet .

2 ?root rdfs:label " Tatooine " .

3 ?root voc:gravity ?answer

Listing 4.1: Formatted triples for the question What is the gravity of Tatooine?.

We define the SPARQL variable ?root for selecting the entity object. First, we select

all the planets. Second, we filter the planets by their label and only selects the planet

with the label Tatooine. Lastly, we select the literal that is the object with the relation

gravity of the planet.

If the query does not contain an entity, the formatting becomes slightly more trivial.

For example, if we ask: What is the gravity of all the planets?. The only main difference

is that we do not need to select a label for the entity, instead select the gravity for all

the planets.

25

4.2.3 Relation Matching

The relation in the triples has to exactly match the relation defined in the KB. When the

user asks a question, the relation can be defined in many forms. For example, in the Star

Wars repository all the entities have a description. The description is mapped with the

relation desc in the repository, and provides a literal object containing the description

text. We want the user to be able to express the questions without having to provide

the exact name of the relation. If we ask the question: What is the description of Han

Solo?, the answer should contain the desc of Han Solo.

Initially, we wanted to use and train word vectors to find similar words. For example,

the user asks for the birthplace of a character, but the repository has the corresponding

relation homeworld. With word vectors we could possibly map the words to each other.

However, we had no time to fully implement a Word2vec model, but we will discuss the

possibilities of Word2vec more in Chapter 6.

Another important scenario to consider is the use of abbreviation. We implemented

a proof of concept method for matching abbreviations. With the CoreNLP Sen-

timentModel [52] we can use the model for word recognition. The Sentiment-

Model class provides us with a java.util.HashMap containing a vector space of

real words. We can check if the relation described by the user correlates to a key in

the java.util.HashMap, which allows us to identify real words. For example, if the

relation is description, but the repository contains the relation desc. The word vector

contains the key for description, which implies that it is a real word. Furthermore, the

word desc is a substring of description, so we can make the assumption that desc is the

matching word in the vocabulary.

4.2.4 Relation Gathering

Before matching relations, we need to know what relations exist in the repository. We

define the existing relations as the vocabulary of the KB. Fetching the vocabulary from

the KB is necessary in order to match similar relations correctly. By implementing a

26

class for handling the vocabulary we can simply refer to a Vocabulary instance when

parsing queries.

When creating a Vocabulary instance we pass a URI string to the constructor. The

class generates a SPARQL query for selecting all the predicates in the KB:

1 PREFIX rdfs: <http: // www.w3.org /2000/01/ rdf - schema #>

2 PREFIX rdf: <http: // www.w3.org /1999/02/22 - rdf -syntax -ns#>

3 PREFIX voc: < uri >

4

5 SELECT DISTINCT ?p WHERE {

6 ?s ?p ?o FILTER (CONTAINS (str(?p), str(voc:)))

7 }

Listing 4.2: SPARQL query for fetching the vocabulary from uri.

The query selects all the predicates in the KB. By selecting all the predicates we will

end up with duplicates if the KB contains triples with identical predicates. To avoid du-

plication, we use the DISTINCT modifier, which eliminates predicates that have already

been selected. The FILTER keyword is used for adding restrictions on the triples, and in

our case we use the CONTAINS keyword to make sure that the predicates we select are

from the uri specified in the Vocabulary constructor. We do not need the predicates

that exist in the other URIs. The str(voc:) variable obtains the URI of the prefix

voc as a string.

After creating the SPARQL query, we want to send it to the connected repository. The

repository will return the vocabulary. We have to keep in mind that a vocabulary can

be quite large and should not be dynamically allocated. It might be necessary to chunk

the data and serialize it into a file. In our case, the KB is very small and does not need

chunking or serialization.

27

4.3 Generating a SPARQL Query

From the triples generated, we need to create a SPARQL query. Our initial idea included

Apache Jena and the library ARQ to create SPARQL queries. The ARQ library has a

lot of features to create and manipulate queries. However, because we know that we are

only using SELECT queries, and we had a relatively small KB to practice on, we could

figure out a pattern. Once we noticed that almost all the questions could be boiled down

to very similar SPARQL queries, we decided to generate our own SPARQL queries.

Our idea was to utilize SPARQL functions such as BIND, OPTIONAL, and FILTER.

Listing 4.3 shows what the query would look like for the question What is the height of

Vader?.

In the Star Wars repository, Vader is defined as a character. Therefore Vader is assigned

the NER tag CHARACTER. We begin by selecting all the characters. Afterwards, we

select the name of all the characters and store them in the variable ?rootLabel. Next we

use the relation voc:height to get the height of all the characters, which is saved in the

variable ?answer.

We need to filter them to only get the values the user is asking for. For this query,

FILTER and CONTAINS are used to find literals that match a certain string. CONTAINS

performs the check and if ?rootLabel contains Vader, it will return true, else false. Since

?rootLabel contains all the names, it will return true only for Darth Vader. FILTER

takes a condition that returns a boolean value and uses only the results that return true.

Next we use the OPTIONAL function, which creates a new binding if possible. A new

binding can be created if the relation asked for exists, else the object variable will be

empty. In this example, ?answer does not have the relation rdfs:label, it actually contains

a literal, more specifically the height of Darth Vader. If we would not use OPTIONAL, we

would not get any information with this query since ?answer does not have the relation

we ask for.

Lastly in this query we use BIND, IF, and isURI. isURI takes a variable and returns

true if it is a URI, else false. The IF function is a bit more interesting and takes

28

1 PREFIX rdf: <http: // www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX rdfs: <http: // www.w3.org /2000/01/ rdf - schema #>
3 PREFIX voc: <https: // swapi.co / vocabulary />
4
5 SELECT DISTINCT ?answerLabel WHERE {
6 ?root a voc:Character .
7 ?root rdfs:label ?rootLabel .
8 ?root voc:height ?answer .
9

10 FILTER (CONTAINS (?rootLabel , " Vader ")) .
11 OPTIONAL { ?answer rdfs:label ?literal .}
12 BIND(IF(isURI (?answer), COALESCE (?literal),
13 COALESCE (?answer)) AS ?answerLabel) .
14 }

Listing 4.3: SPARQL query for the question What is the height of Vader?.

three arguments. The first argument is evaluated and if it is true, the second argument

is returned, else the third argument is returned. In this example, the first argument

is isURI(?answer), second argument is COALESCE(?literal), and the third is

COALESCE(?answer). COALESCE simply returns the value of the given argument.

The returned argument is then bound to a new variable called ?answerLabel with the

BIND function.

4.4 Connect to a Repository

When a SPARQL query has been created, a connection to a repository must be estab-

lished. To be able to connect to a repository, the URL to an endpoint is required. We

can connect to multiple endpoints simultaneously if we want to query multiple RDF

bases. However, to start we want to connect to a local endpoint through GraphDB.

1 Repository repo = new HTTPRepository (

2 "http: // localhost:7200 / repositories / graphDB ");

3 RepositoryConnection connection = repo.getConnection ();

Listing 4.4: Example of creating a repository.

29

Listing 4.4 shows how to create and connect to a repository with the entered URL as

our endpoint. Once a connection is established with the endpoint, queries can be sent

to that endpoint.

The Repository [53] interface represent a repository that contains RDF data that can

be queried and updated. Access to the repository is acquired by opening a connection to

it. HTTPRepository [54] takes a URL as input and tries to parse the server URL from

the repository URL, and must be done before a connection can be established. Lastly,

a connection to the repository is established, using the RepositoryConnection [55]

interface, which is used for performing queries on a repository containing RDF data.

4.5 Training a NER Model

When querying a repository, the NLP framework needs to know what kind of entities

exist. The standard NER model provided by Stanford CoreNLP is limited, and only

looks for entities such as PERSON, LOCATION, NUMBER, etc. We need to create our

own model were we define our own NER tags that suits the repository. For example,

when querying the Star Wars repository, we want the entity tag CHARACTER that

identifies characters in the question. In CoreNLP, we use the Sequence Classifier, more

specifically the CRFClassifier [56] class, which allow us to train a model. We specify

a property file to the Classifier, were we state options for training, and how the training

data is structured. When training, the CRFClassifier uses a CRF (Conditional

Random Field) model [56].

4.5.1 Conditional Random Field

Training a NER model using CRF has shown to be an appropriate model [57]. The

CRF model will take context into account. For example, in the sentence: Darth Vader

emerges from the shadows. The model tags both Darth and Vader as a CHARACTER.

In this sentence we know that the neighboring tags belong to the same entity. The model

takes neighboring tokens into account, and in our case would learn to treat Darth Vader

30

as one person [58].

4.5.2 Training Data

In the properties file1 we define the structure of our training data. Data is described per

row, and in our case we tell the Classifier that the rows contain the columns word, and

answer. The word column contains the next word in the text used to train on; and the

answer column contains the NER tag of the word. An example snippet of training data

is shown in Listing 4.5. The NER tag O stands for Other, and is used as the default

NER tag for tokens we do not want to define.

1 Chewbacca CHARACTER

2 growls O

3 and O

4 Artoo CHARACTER

5 beeps O

6 with O

7 happiness O

8 . O

Listing 4.5: An example snippet of training data used by the NER model.

For testing purposes we train a model for querying the repository with Star Wars related

RDF data [59]. We used the movie script from the first movie as training data2, where

we split each word in the script, and tagged them with corresponding NER tags. For

example, the repository contains entities for planets; so we will tag planet names in the

text as PLANET. Also, the repository uses the entity name CHARACTER to define

characters in the movie, as seen in Listing 4.5.
1https://github.com/acke80/StarQ/blob/master/src/main/resources/properties/

roth.properties
2https://github.com/acke80/StarQ/blob/master/src/main/resources/trainingData/

trainingDataStarWars.txt

31

https://github.com/acke80/StarQ/blob/master/src/main/resources/properties/roth.properties
https://github.com/acke80/StarQ/blob/master/src/main/resources/properties/roth.properties
https://github.com/acke80/StarQ/blob/master/src/main/resources/trainingData/trainingDataStarWars.txt
https://github.com/acke80/StarQ/blob/master/src/main/resources/trainingData/trainingDataStarWars.txt

The process of tagging each word individually is very time consuming, and should be

automated. We created a script that finds common entities in the movie script, and tags

everything else with O. We will discuss how the tagging process could be automated in

a more generalized approach in Chapter 6.

4.6 Final Pipeline Implementation

The final implementation of the pipeline is presented in Figure 4.3. The pipeline de-

scribes how a query is received in natural language and what steps are taken to give back

an answer to the user. When the question is received, it will be parsed and triples are

generated. The triples will be formatted to fit the SPARQL syntax and then a SPARQL

query is created with the formatted triples. The query is sent to a KB, and the KB

replies with an answer, consisting of bindings. Bindings are variables with assigned val-

ues and are displayed to the user.

In Figure 3.1 we visualize the initial design of the prototype. Figure 4.3 inherits the

abstraction of the initial design and provides more detail. The core premise of the initial

design is still intact. We can view the initial design as a group of black boxes, being de-

fined during the implementation of the prototype. Furthermore, Figure 4.3 describes the

flow of execution; from the server receiving the query, to the user receiving an answer.

The flow of execution is undefined in the initial design.

32

Server

Receive Query

Query in
Natural Language

Parse Query

Relation Triples

Format Triples Formatted Triples Generate SPARQL

SPARQL Query

KB

Bindings

Send Answer
to Session

Figure 4.3: Overview of the final pipeline implementation.

33

Chapter 5

Evaluation

In this chapter, we evaluate the implemented prototype described in the previous chapter.

We will discuss how the proof of concept implementation compares to the initial design

and vision. Lastly, we discuss fundamental distinctions with related work, introduced in

Section 2.3.2.

5.1 Memory Usage

The configuration of annotators used in the implementation does acquire certain amount

of memory. The JVM needs a minimum of 4GB of memory in order to load in all the

necessary annotators used by the pipeline. We have to keep in mind that the memory

usage is only based on the the server side of the program. In other words, the clients

accessing the web page do not need to care about memory usage. This is one of the

great features of having a remote NLI.

5.2 Ramification of Training Data

The model used for NER tagging learns from contextual based data. In other words, the

model needs data presented in context in order to extract entities from sentences. We

34

used the movie script from the first Star Wars movie A New Hope as training data. The

structure of the text in the movie script is not perfectly suited for a CRF model, but

demonstrates a proof of concept of our vision. Our implementation could be implemented

to work with any KB, as long as sufficient training data is provided.

We noticed that the model needs plenty of data in order to extract entities in context.

For example, when asking a question ending with of Tatooine, the model had no problem

recognizing Tatooine as a planet. Nevertheless, when asking a question ending with on

Tatooine, the model struggle to recognize the planet. We tried the same principle with a

different more common planet, and the model successfully extracted the entity in both

scenarios. The model needs to be highly confident when extracting entities, otherwise

the annotation can produce false negative NER tags. We did however notice that the

model is exceptional at avoiding false positives. Although, with such a small training

set, the possibility for false positives becomes dubious, but could be indeterminate for

larger training sets. For example, in the scarce scenario where two different types of

entities, with identical or similar names, are frequent in the training set, the model

might generate false positives during NER tagging.

5.3 Fundamental Distinctions

There are many different NLIs available and we mentioned a few in Chapter 2.3.2. Our

work has some similarities and distinctions from these NLIs. For example, to use our

NLI, the user needs some knowledge about the vocabulary, and tailor the questions

accordingly. This is the case for Ginseng as well but instead of RDQL, we use SPARQL

to query RDF KBs. Our program is an early prototype and does not include the more

advanced features. For example our program does not have an interactive interface and

a dialog with the user. We do not learn from user input either, to increase precision and

recall.

35

Chapter 6

Limitations & Future Work

Many different features have been left for future work due to lack of time. Also, the

prototype exhibits multiple limitations. In this chapter we will mention some of the

work that we would have liked to implement, but did not have time for.

6.1 Word2vec

When the user asks a question, they need to have knowledge about the KB. In order

to avoid the requirement of knowledge, we believe the use of a Word2vec model could

assist in matching similar relations. For example, if the user asks about the residents of a

location, but the KB contains the corresponding relation inhabitants, a word vector space

could possibly map the queried relation with the existing relation. We have implemented

a simplified module for recognizing abbreviations, and is our proof of concept that word

vectors could play an important role in further development of the prototype. Possibly,

we could train our own word vector model that is designed for a certain KB, the same

way our NER model works. Training our own word vector model breaks the limitations

of only matching real words, included in the English vocabulary. We could create our

own vocabulary for the word vector space.

36

6.2 Generating Training Data

The training data used with the prototype was manually generated. We simply copied

the movie script from the Star Wars movie A New Hope, and tagged the text with a

simple script. The script looks for known entities and tags them. We have to manually

define the entities to look for.

We wanted to create a program for gathering large amounts of sensible text, and the

system would tag the words automatically. Possibly, the system asks for feedback when

encountering new unknown entities, and the user would respond with an answer. Over

time the system can tag the training data without needing a lot of feedback.

6.3 Distributed Network of Repositories

In Chapter 4.4 we talked about how to connect to a repository, and briefly mentioned

the possibility to connect to multiple repositories. We used the Star Wars RDF data as

our only KB and it worked well for implementing a prototype. It would be interesting

to query bigger KBs and even multiple KBs simultaneously. During the development of

our prototype, we had the idea of creating a distributed network of KBs. The idea is

to allow the user to ask a question, and the server queries all the connected KBs. All

the connected KBs could possibly have their own vocabulary, and use word vectors to

match the relations.

6.4 Interactive NLI

Another idea we did not have time to implement was a more interactive interface. When

the user asks a question, and does not get any results back, the system should give some

feedback. It could guess what might be wrong or hint at some change to get a better

result. To further increase interactivity, and precision and recall, the system should also

learn from user input. This requires large amounts of training data but will benefit the

system greatly if models can be trained dynamically.

37

Chapter 7

Conclusion

We have developed a proof of concept remote NLI for querying Linked Data. With

correctly structured data and a trained model, the NLI can in theory understand any

context of data semantically. As described in Chapter 4, the implementation does not

rely on a certain KB, but instead the system learns to understand the specified KB. The

system learns to treat the data in a semantic manner, and allows the user to express

their questions in natural language. Also, the user does not need any previous knowledge

of SPARQL in order to query the data.

We lacked the possibility to explore more deeply the limitations of the system. In a real

life scenario, the vast amount of training data necessary might be difficult to acquire.

Nevertheless, our proof of concept demonstrates the possibilities of using an NLI in

many real industries. We hope that our contributions will help industries who attempt

to analyze tons of data, and want to further evolve their business.

38

Bibliography

[1] “Data - W3C.” Available at https://www.w3.org/standards/semanticweb/data.

Accessed 2020-02-12.

[2] “W3C - RDF.”

Available at https://www.w3.org/2001/sw/wiki/RDF. Accessed 2020-04-23.

[3] “W3C - SPARQL.”

Available at https://www.w3.org/standards/semanticweb/query. Accessed

2020-04-23.

[4] “World Wide Web Consortium (W3C).” Available at https://www.w3.org/. Ac-

cessed 2020-05-06.

[5] “Semantic Web - Wikipedia.” Available at https://en.wikipedia.org/wiki/

Semantic_Web. Accessed 2020-02-12.

[6] D. Allemang and J. Hendler, Semantic Web for the Working Ontologist. Denise E.

M. Penrose, 2007.

[7] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs.,” vol. 48,

2016.

[8] “What is a Knowledge Graph? - ontotext.” Available at https://www.ontotext.

com/knowledgehub/fundamentals/what-is-a-knowledge-graph/. Accessed

2020-02-13.

39

https://www.w3.org/standards/semanticweb/data
https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/standards/semanticweb/query
https://www.w3.org/
https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Semantic_Web
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/

[9] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger, “Linked data quality of

dbpedia, freebase, opencyc, wikidata, and yago,” Semantic Web, 2018.

[10] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-

mann, M. Morsey, P. Van Kleef, S. Auer, et al., “Dbpedia–a large-scale, multilingual

knowledge base extracted from wikipedia,” Semantic Web, 2015.

[11] “About - DBpedia,” 2019. Available at https://wiki.dbpedia.org/about. Ac-

cessed 2020-02-27.

[12] L. Feigenbaum, “SPARQL By Example - W3C.” Available at https://www.w3.

org/2009/Talks/0615-qbe/#q13. Accessed 2020-02-13.

[13] R. Collobert and J. Weston, “A unified architecture for natural language process-

ing: Deep neural networks with multitask learning,” in Proceedings of the 25th

international conference on Machine learning, pp. 160–167, 2008.

[14] “POS tags and part of speech tagging - Sketch Engine.” Available at https://www.

sketchengine.eu/pos-tags/. Accessed 2020-02-14.

[15] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky,

“The stanford corenlp natural language processing toolkit,” tech. rep., Stanford

University, 2014.

[16] “Introduction to pipelines - Stanford CoreNLP.”

Available at https://stanfordnlp.github.io/CoreNLP/pipelines.html#

annotations-and-annotators. Accessed 2020-02-27.

[17] J.-D. Kim and K. B. Cohen, “Natural language query processing for sparql gener-

ation: A prototype system for snomed ct,” in Proceedings of biolink, vol. 32, 2013.

[18] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and J. Lehmann, “Asknow: A

framework for natural language query formalization in sparql,” in European Se-

mantic Web Conference, Springer, 2016.

40

https://wiki.dbpedia.org/about
https://www.w3.org/2009/Talks/0615-qbe/#q13
https://www.w3.org/2009/Talks/0615-qbe/#q13
https://www.sketchengine.eu/pos-tags/
https://www.sketchengine.eu/pos-tags/
https://stanfordnlp.github.io/CoreNLP/pipelines.html#annotations-and-annotators
https://stanfordnlp.github.io/CoreNLP/pipelines.html#annotations-and-annotators

[19] D. Damljanovic, M. Agatonovic, and H. Cunningham, “Freya: An interactive way

of querying linked data using natural language,” in Extended Semantic Web Con-

ference, Springer, 2011.

[20] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a repli-

cation in software engineering,” in Proceedings of the 18th international conference

on evaluation and assessment in software engineering, 2014.

[21] S. Keshav, “How to read a paper,” ACM SIGCOMM Computer Communication

Review, vol. 37, no. 3, 2007.

[22] C. Wang, M. Xiong, Q. Zhou, and Y. Yu, “Panto: A portable natural language

interface to ontologies,” in European Semantic Web Conference, Springer, 2007.

[23] J. Lehmann and L. Bühmann, “Autosparql: Let users query your knowledge base,”

in Extended semantic web conference, Springer, 2011.

[24] S. Ferré, “Sparklis: an expressive query builder for sparql endpoints with guidance

in natural language,” Semantic Web, vol. 8, no. 3, 2017.

[25] N. E. Fuchs and R. Schwitter, “Specifying logic programs in controlled natural

language,” arXiv preprint cmp-lg/9507009, 1995.

[26] S. Ferré, “Squall: a controlled natural language as expressive as sparql 1.1,” in

International conference on application of natural language to information systems,

Springer, 2013.

[27] D. Rusu, L. Dali, B. Fortuna, M. Grobelnik, and D. Mladenic, “Triplet extraction

from sentences,” in Proceedings of the 10th International Multiconference Informa-

tion Society-IS, 2007.

[28] E. Kaufmann, A. Bernstein, and L. Fischer, “Nlp-reduce: A naive but domain-

independent natural language interface for querying ontologies,” in 4th European

Semantic Web Conference ESWC, 2007.

41

[29] A. Taylor, M. Marcus, and B. Santorini, “The penn treebank: an overview,” 2003.

[30] B. Muschko, Gradle in action. Manning, 2014.

[31] D. Maynard, K. Bontcheva, and I. Augenstein, Natural language processing for the

semantic web, vol. 6. Morgan & Claypool Publishers, 2016.

[32] L. Zhou, M. Shaikh, and D. Zhang, “Natural language interface to mobile devices,”

pp. 283–286, 2004.

[33] A. Bernstein, E. Kaufmann, and C. Kaiser, “Querying the semantic web with gin-

seng: A guided input natural language search engine,” 2005.

[34] N. Eisinger and J. Maluszynski, Reasoning Web: First International Summer School

2005, Msida, Malta, July 25-29, 2005, Revised Lectures, vol. 3564. Springer, 2005.

[35] “Spring Framework.” Available at https://spring.io/why-spring. Accessed

2020-05-12.

[36] B. Porter, J. van Zyl, and O. Lamy, “Maven–welcome to apache maven,” Maven–

Welcome to Apache Maven, 2018. Available at http://maven.apache.org/. Ac-

cessed 2020-05-12.

[37] “Gradle–gradle build tool.” Available at https://gradle.org/. Accessed 2020-05-

12.

[38] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson, M. Overdijk,

C. Dupuis, and S. Deleuze, “Spring boot reference guide,” Part IV. Spring Boot

features, vol. 24, 2013.

[39] D. M. Cer, M.-C. De Marneffe, D. Jurafsky, and C. D. Manning, “Parsing to stanford

dependencies: Trade-offs between speed and accuracy.,” 2010.

[40] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa: Open source lan-

guage understanding and dialogue management,” arXiv preprint arXiv:1712.05181,

2017.

42

https://spring.io/why-spring
http://maven.apache.org/
https://gradle.org/

[41] “Github - Rasa Java-SDK.” Available at https://github.com/rbajek/

rasa-java-sdk. Accessed 2020-03-25.

[42] H. Pan, “Github - Evaluating OpenNLP.” Available at https://github.com/

Texera/texera/wiki/Evaluating-OpenNLP. Accessed 2020-03-26.

[43] “Redpill-Linpro.” Available at https://www.redpill-linpro.com/. Accessed

2020-03-12.

[44] “ARQ - A SPARQL Processor for Jena.” Available at https://jena.apache.org/

documentation/query/index.html. Accessed 2020-03-13.

[45] A. Rodriguez, “Restful web services: The basics,” IBM developerWorks, vol. 33,

2008.

[46] “Understanding memory and time usage - Stanford CoreNLP.” Available at https:

//stanfordnlp.github.io/CoreNLP/memory-time.html. Accessed 2020-02-14.

[47] I. Fette and A. Melnikov, “The websocket protocol,” 2011.

[48] “StanfordCoreNLP - Stanford CoreNLP.”

Available at https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/

nlp/pipeline/StanfordCoreNLP.html. Accessed 2020-04-21.

[49] “Document - Stanford CoreNLP.”

Available at https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/

nlp/simple/Document.html. Accessed 2020-04-21.

[50] “QuestionToStatementTranslator - Stanford CoreNLP.”

Available at https://javadoc.io/static/edu.stanford.

nlp/stanford-corenlp/3.9.2/edu/stanford/nlp/naturalli/

QuestionToStatementTranslator.html. Accessed 2020-04-21.

43

https://github.com/rbajek/rasa-java-sdk
https://github.com/rbajek/rasa-java-sdk
https://github.com/Texera/texera/wiki/Evaluating-OpenNLP
https://github.com/Texera/texera/wiki/Evaluating-OpenNLP
https://www.redpill-linpro.com/
https://jena.apache.org/documentation/query/index.html
https://jena.apache.org/documentation/query/index.html
https://stanfordnlp.github.io/CoreNLP/memory-time.html
https://stanfordnlp.github.io/CoreNLP/memory-time.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/simple/Document.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/simple/Document.html
https://javadoc.io/static/edu.stanford.nlp/stanford-corenlp/3.9.2/edu/stanford/nlp/naturalli/QuestionToStatementTranslator.html
https://javadoc.io/static/edu.stanford.nlp/stanford-corenlp/3.9.2/edu/stanford/nlp/naturalli/QuestionToStatementTranslator.html
https://javadoc.io/static/edu.stanford.nlp/stanford-corenlp/3.9.2/edu/stanford/nlp/naturalli/QuestionToStatementTranslator.html

[51] “Open Information Extraction - Stanford CoreNLP.”

Available at https://stanfordnlp.github.io/CoreNLP/openie.html. Accessed

2020-04-07.

[52] “SentimentModel - Stanford CoreNLP.” Available at https://nlp.stanford.edu/

nlp/javadoc/javanlp-3.5.0/edu/stanford/nlp/sentiment/SentimentModel.

html. Accessed 2020-04-04.

[53] “RDF Repository Interface.”

Available at https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/

repository/Repository.html. Accessed 2020-04-21.

[54] “HTTPRepository.”

Available at https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/

repository/http/HTTPRepository.html#HTTPRepository-java.lang.String-.

Accessed 2020-04-21.

[55] “RDF RepositoryConnection.”

Available at https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/

repository/RepositoryConnection.html. Accessed 2020-04-21.

[56] “CRFClassifier - Stanford CoreNLP.”

Available at https://nlp.stanford.edu/nlp/javadoc/javanlp-3.5.0/edu/

stanford/nlp/ie/crf/CRFClassifier.html. Accessed 2020-04-07.

[57] A. McCallum and W. Li, “Early results for named entity recognition with condi-

tional random fields, feature induction and web-enhanced lexicons,” 2003.

[58] B. Settles, “Biomedical named entity recognition using conditional random fields

and rich feature sets,” 2004.

[59] J. Rayfield, “A New Hope: The Rise of the Knowledge Graph -

Ontotext,” 2019. Available at https://www.ontotext.com/blog/

the-rise-of-the-knowledge-graph/. Accessed 2020-04-08.

44

https://stanfordnlp.github.io/CoreNLP/openie.html
https://nlp.stanford.edu/nlp/javadoc/javanlp-3.5.0/edu/stanford/nlp/sentiment/SentimentModel.html
https://nlp.stanford.edu/nlp/javadoc/javanlp-3.5.0/edu/stanford/nlp/sentiment/SentimentModel.html
https://nlp.stanford.edu/nlp/javadoc/javanlp-3.5.0/edu/stanford/nlp/sentiment/SentimentModel.html
https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/repository/Repository.html
https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/repository/Repository.html
https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/repository/http/HTTPRepository.html#HTTPRepository-java.lang.String-
https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/repository/http/HTTPRepository.html#HTTPRepository-java.lang.String-
https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/repository/RepositoryConnection.html
https://rdf4j.org/javadoc/latest/org/eclipse/rdf4j/repository/RepositoryConnection.html
https://nlp.stanford.edu/nlp/javadoc/javanlp-3.5.0/edu/stanford/nlp/ie/crf/CRFClassifier.html
https://nlp.stanford.edu/nlp/javadoc/javanlp-3.5.0/edu/stanford/nlp/ie/crf/CRFClassifier.html
https://www.ontotext.com/blog/the-rise-of-the-knowledge-graph/
https://www.ontotext.com/blog/the-rise-of-the-knowledge-graph/

Appendix

A Setting up the Query Service

The project1 is available open source and can be downloaded and tested. The following

appendix will explain how to setup the project.

A.1 Setup GraphDB Repository

1. Go to Ontotext web page, create an account and download GraphDB Free.

2. Start GraphDB Free and make sure the port is set to 7200. To check the port,

press the Settings button to see the current port.

3. Download the Star Wars RDF data, which we have already trained a model for.

We accessed the RDF data from a blog post about Star Wars KGs [59].

4. Make sure GraphDB is up and running, and it should prompt you to local-

host:7200.

5. Go to Import-RDF-Create new repository.

6. Give the Repository an ID, and set the ruleset to No inference.

7. Finally, go to Import-RDF and Upload RDF files, and choose the data.ttl file,

containing the Star Wars RDF data. Lastly, click on Import.
1Source Code, https://github.com/acke80/StarQ

45

A.2 Setup Application Properties

In the project go to resources/application.properties. Change repoURL so

the last part matches the name of your repository in GraphDB. All the other properties

are set by default to work with the Star Wars repository.

A.3 Setup VM Options

The program needs at least 4GB of memory to run. This is due to the amount of

CoreNLP annotators loaded into the pipeline. We added the following Java VM op-

tions: -Xmx4g -Xms4g. The memory usage may change as CoreNLP gets frequent

new updates. At the time of writing we recommend at least 4GB of memory, but in the

future more or less might be needed.

B Using the NLI

To use the Natural Language Interface, start the program and wait for it to load the

properties and start the server. Go to localhost:8080 and you should be prompted

to the web page. If everything is working, the web page should say Connected.

The model has not trained on large amounts of data, so it will not recognize many Star

Wars entities. We used the movie script from the first Star Wars movie: A New Hope to

train the model, which means the NLP will only recognize certain entities that appear

frequently in the first movie, for example: Darth Vader, Tatooine, and Han Solo.

B.1 Example Queries

In the input field, questions does not need to end with a question mark if only asking

one question. Although, when asking multiple questions at the same time, separation

with a question mark is necessary.

• What height is Vader?

46

• What is the orbital period of all the planets?

• Who are the residents of Tatooine?

• What is the description of all the characters?

• What are the films with Han Solo?

• What eye color does Luke have?

• What is the terrain on Alderaan?

• What is the cost in credits for all the starships?

47

	Introduction
	Motivation
	Roadmap

	Background
	Semantic Web
	RDF
	Knowledge Graph
	SPARQL

	Natural Language Processing
	The Stanford CoreNLP
	Natural Language to SPARQL

	Literature Survey
	Three-pass
	Survey Results

	Design
	Build Automation & Framework
	Spring
	Java Build Tools

	NLP Frameworks
	Rasa
	Apache OpenNLP

	Initial Design
	Natural Language to SPARQL
	Relation Extraction
	Relation Recognition
	Parsing Triples to SPARQL

	Remote Natural Language Interface

	Implementation
	Interface
	Initial Version
	Final Version

	Query Parser
	Generating Triples
	Formatting Triples
	Relation Matching
	Relation Gathering

	Generating a SPARQL Query
	Connect to a Repository
	Training a NER Model
	Conditional Random Field
	Training Data

	Final Pipeline Implementation

	Evaluation
	Memory Usage
	Ramification of Training Data
	Fundamental Distinctions

	Limitations & Future Work
	Word2vec
	Generating Training Data
	Distributed Network of Repositories
	Interactive NLI

	Conclusion
	Bibliography
	Setting up the Query Service
	Setup GraphDB Repository
	Setup Application Properties
	Setup VM Options

	Using the NLI
	Example Queries

