
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 13th International Conference on
Software Testing, Validation and Verification (ICST).

Citation for the original published paper:

Ahmed, B S. (2020)
Open-source Defect Injection Benchmark Testbedfor the Evaluation of Testing
In: IEEE 13th International Conference on Software Testing, Validation and
Verification (ICST) (pp. 442-447). IEEE Computer Society
https://doi.org/10.1109/ICST46399.2020.00059

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-77357



Open-source Defect Injection Benchmark Testbed
for the Evaluation of Testing

Miroslav Bures
Dept. of Computer Science

FEE, CTU in Prague
Prague, Czech Republic

miroslav.bures@fel.cvut.cz

Pavel Herout
Dept. of Computer Science and Engineering

University of West Bohemia
Pilsen, Czech Republic

herout@kiv.zcu.cz

Bestoun S. Ahmed
Dept. Mathematics & Comp. Science

Karlstad University
Karlstad, Sweden
bestoun@kau.se

Abstract—A natural method to evaluate the effectiveness of
a testing technique is to measure the defect detection rate
when applying the created test cases. Here, real or artificial
software defects can be injected into the source code of software.
For a more extensive evaluation, injection of artificial defects
is usually needed and can be performed via mutation testing
using code mutation operators. However, to simulate complex
defects arising from a misunderstanding of design specifications,
mutation testing might reach its limit in some cases. In this paper,
we present an open-source benchmark testbed application that
employs a complement method of artificial defect injection. The
application is compiled after artificial defects are injected into
its source code from predefined building blocks. The majority
of the functions and user interface elements are covered by
creating front-end-based automated test cases that can be used
in experiments.

Index Terms—Software Testing, Fault injection, mutation test-
ing, benchmarking

I. INTRODUCTION

To evaluate the effectiveness of a testing technique for
software systems, various approaches can be employed. A
natural and well-known approach to assess the effectiveness of
a test suite generated by a testing technique is to measure the
defect detection rate when applying a generated test suite to a
System Under Test (SUT). As such, an experimental SUT that
represents a real-world system containing real defects from
the past software development process can be useful here.
Alternatively, the mutation testing technique can be applied by
introducing artificial defects into the code of an experimental
SUT using defined mutation operators [1], [2]. Additionally,
a defect injection technique, which can be considered to be
a more general variant, can be employed. In defect injection,
defects are introduced into an experimental SUT and various
technical possibilities can be used.

Measuring the defect detection rate can be used to determine
the effectiveness of the Combinatorial or Constrained Interac-
tion Testing [3], [4] or Path-based Testing [5] techniques. As
a typical example, one can examine the strength of test cases
generated by the Combinatorial Interaction Testing (CIT) algo-
rithm using a mutation testing technique. As an experimental
SUT, an open-source software system can be selected. Then,
various mutants are created from the source code by a set of
mutation operators. Subsequently, the generated test cases are

assessed in the experimental SUT and it is determined whether
the test case can detect a defect introduced into SUT by a
mutation operator. These types of experiments are typically
run in multiple series with various sets of mutants and test
cases to obtain convincing evidence regarding the effectiveness
of the generated test cases [2].

The approach can be generalized as illustrated in Figure 1.

Fig. 1. Defect introduction process to an experimental SUT.

In this paper, we present a new open-source benchmark
testbed to support defect injection testing. The testbed is
available to the community and can be used to evaluate various
testing techniques. In this approach, we do not insist on defined
mutation operators. The goal of the testbed is to provide a
complement to the classical mutation testing approach for
evaluating the effectiveness of test cases.

In contrast to the established classical code mutation op-
erators, various complex software defects can be introduced
into the code, especially defects caused by a misunderstanding
of the SUT design specification or requirements during the
development process. The practical use case of the presented
testbed is to provide researchers with a complementary option
to the mutation testing technique to be able to simulate a
broader spectrum of possible software defects during experi-
ments. The testbed is, hence, a complement to mutation testing
rather a replacement of mutation testing via a defect injection
approach. As we show later in Section II, both approaches have
certain advantages and disadvantages. Hence, both approaches
can be combined to provide the best objective measurement
of the effectiveness of a testing technique.

ar
X

iv
:2

00
1.

09
34

2v
1 

 [
cs

.S
E

] 
 2

5 
Ja

n 
20

20



The rest of this paper is organized as follows. Section II
discusses the background in more depth and analyzes the state
of the art. Section III describes the presented testbed from var-
ious viewpoints, including the system scope, implementation
details, available automated tests, mechanism of insertion of
artificial defects and process of evaluating the effectiveness
of the examined testing techniques. Section IV discusses the
presented concept and also analyzes its possible limits. The
last section concludes the paper.

II. BACKGROUND AND STATE OF THE ART

As mentioned previously, a common practice to evaluate
a set of test cases generated by an algorithm is to assess
the defect detection rate of the test cases in an experimental
SUT that contains defects. In this general approach, several
aspects have to be maintained to give the technical possibility
of conducting a well-defined and objective experiment. The
following bullet-points address three common aspects in this
direction:

1) The defects presented in the experimental SUT simulate
real defects in software projects.

2) It is possible to create a set of various instances of an
experimental SUT with different sets of injected defects
to examine the testing technique for a reliable sample
of situations.

3) The experimental SUT has to support effective auto-
mated evaluation of the examined test cases. Hence,
the experiments can be repeated with different sets of
defects in an effective manner to assess more extensive
sets of situations.

Table I presents an analysis of these aspects for three possi-
bilities of artificial defect introduction within an experimental
SUT. These possibilities are as follows: (1) using real project
defects, (2) mutation testing, and (3) defect injection. Defect
injection, here, is a generalized method in which we do not
employ standard source code mutation operators. In fact, it
is difficult to reach a clear understanding of an objective
approach from all three discussed options when considering all
the advantages and disadvantages presented in Table I. Instead,
it is worthwhile to consider a combination of the presented
approaches to increase the reliability of the experiments.

Among the discussed approaches, mutation testing can be
considered to be the most established approach, originating
in the late 70s [6]. On the technical level, this approach
depends on a particular programming language. However,
code mutations have been performed for major programming
languages. As an example, the Mujava system [7] is used
for the Java programming language and MuCPP [8] is used
for C++. Here, for a particular program code mutation, a
set of established operators is defined [1], [2]. While these
operators are useful, there are concerns in the literature about
the relation of the code mutants to real software defects
and types of software defects that are difficult to express
using various mutants [9], [10]. To overcome this problem,
various approaches have been considered in the literature –
for instance, the construction of more complex mutants [9].

However, the mutation testing approach might still meet its
limit when trying to insert certain types of complex defects
that may be caused by a misunderstanding of the design
specification [10]. Generally, the similarity of mutants to real
defects varies in empirical experiments [10], [11].

The defect injection method can be seen as a more general
method than mutation testing to insert artificial defects into
experimental software. In this process, various techniques at
any software level can be used to insert defects, e.g., [12],
[13]. As an alternative to mutation testing and artificial defect
injection, a number of experiments have also been conducted
using real defects from past software projects, e.g., [14].
Here, comparing those different approaches is challenging
because the objectivity of the experiment in which we evaluate
the effectiveness of the testing techniques strongly depends
on the testing technique, the characteristics of the software
used as a benchmark, and how realistic the inserted defects
are compared to real defects. Moreover, the characteristics
of the software defects might also change with changes in
the development styles, the usage of integrated development
environments and the best practices of programming. To this
end, in this paper, we suggest applying a benchmark testbed
as a complement to the mutation testing approach.

III. TESTBED DESCRIPTION

To create a benchmark testbed for the evaluation of the
effectiveness of the test technique, we designed and imple-
mented the University Information System Testbed (TbUIS)1.
The testbed is an open-source testbed that can be used to
evaluate any test technique. The TbUIS system is a three-
layered web application that uses a relational database as a
persistent data storage and object-relational mapping (ORM)
layer.

The system supports the artificial defect injection approach,
as discussed in Table I (column Defect injection). A special
module allows the creation of defect clones of the system by
introducing defects from a catalog of predefined defect types
as well as creating customized artificial defects to be inserted
into the SUT. As a demonstration and for a quick start for
experiments, a set of 28 already assembled defect clones are
available for testbed users.

In this section, we describe the following aspects of the
TbUIS: (A) the scope of the system and its use cases, (B)
the implementation and technical details, (C) the available
automated tests to be employed in the experiments, (D) the
mechanism for introducing artificial defects in the system and
(E) the test case effectiveness evaluation process, including the
logging mechanism used in the evaluations.

A. Scope and Use Cases of the TbUIS

The TbUIS is a fictional university study information system
that supports a study agenda related to students enrolment
in courses, management of exams and related processes. The
standard actors of the system are students and lecturers.

1https://projects.kiv.zcu.cz/tbuis/



TABLE I
BRIEF COMPARISON OF ARTIFICIAL DEFECT INTRODUCTION TYPES TO AN EXPERIMENTAL SUT

Discussed Defect introduction method
aspects Historic defects Mutation testing Defect injection
The objectivity
of the defectsa

The defects correspond to a real soft-
ware project; however, the used sample
of defects can be limited, which can
restrict the objectivity of the experi-
ment to only one particular experience-
based case.

Various combinations of mutation op-
erators can be selected. This approach
allows the flexible mixing of vari-
ous defects made by the programmer.
More complex defects caused by a
misunderstanding of the specification
can be simulated by a set of mutation
operators.

More complex simulated defects are
not limited to a defined set of muta-
tion operators. Additionally, it might
be difficult to prove that an artificially
elaborated defect is likely to occur in
the real software development process.

Ease to create
instancesb

In some cases, creating multiple in-
stances might be challenging, as there
are a limited number of defects from
the past software development process.

Technically, creating new mutants is
straightforward, and the number of
various created SUT instances is prac-
tically unlimited.

If a set of artificially elaborated defects
is limited, then the possible number
of instances of experimental SUTs that
can be configured is limited.

Test automation
coveragec

Test automation options are not influenced by a particular defect introduction method; automated testability is rather
influenced by the structure and coding standards employed in an experimental SUT

aHow the introduced defects are realistic in comparison to real current software development process
bHow easy is it to create an extensive set of various configurations of an experimental SUT with different inserted defects
cHow easy is it to cover an experimental SUT by automated tests that help to evaluate whether the examined test scenarios detect an inserted defect

Fig. 2. Example of TbUIS user interface—lecturer’s view.

The whole system can be summarized into 21 general, high-
level use cases. Five use cases are related to a user who is not
logged in. Another two use cases are common for lecturers and
students and cover the login mechanism and user settings. The
students part is then defined by five use cases and the lecturers
part by nine separate use cases.

The graphical layout of the user interface (UI) of the system
is kept relatively simple and compact, considering the goal of
the system, which is to evaluate testing techniques as well as
the need to cover the application by reliable front-end (FE)
based automated tests to support this process (introduced later
in Section III-C). An example of the TbUIS user interface is
presented in Figure 2.

Regarding the process flow, the possible states and functions
of the system are documented in the UML Activity Diagram
schema in the Oxygen2 [5] application and are available in the
Oxygen project format as well as the SVG graphical format.
This model of the current version of the TbUIS is composed
of 119 different states and 164 transitions among them.

2http://still.felk.cvut.cz/oxygen/

TABLE II
SIZE OF TBUIS SOURCE CODE

Number of files Size of files [KB] LOC
Java 87 340 8550
JSP 18 94 1550

total 105 434 10100

B. Implementation and Technical Details

Technically, the TbUIS is a layered web-based application
implemented in J2EE with Java Server Pages (JSP) and Spring.
As the ORM layer, Hibernate is used. For the implementation
of the UI, Bootstrap is used.

In the user interface of the TbUIS, all the common basic
types of control for web elements (e.g., menus, buttons, check
boxes, selections, modal windows, etc.) are used. Each element
(including rows in tables) has its own unique ID attribute to
ease the creation of FE-based functional automated tests.

The extent of the TbUIS source code is documented in Table
II. Here, the number of source files, size of source code files
in kilobytes and number of lines of code (LOC) are presented
separately for back-end code in Java as well as for UI code
in JSP. Unit tests as well as functional automated tests are not
included in these statistics.

Any important activity in the TbUIS testbed is reported
in detailed application logs implemented by Log4J2. Because
of the logging framework configuration options, the user can
customize the level of detail and the output stream of the
log. The application logs are also extended by the activation
information of the inserted artificial defects (further discussed
in Section III-D) and can be paired with the logs of available
functional automated tests (further discussed in Section III-C).

C. Automated tests

TbUIS is strongly covered by various types of automated
tests that have the following two goals:



TABLE III
EXTENT OF SOURCE CODE OF AUTOMATED TESTS

Number of files Size of files [KB] LOC
Unit tests for TbUIS
code 33 277 6945

Shared libraries for
FE-based functional
tests

101 452 14707

Unit tests for shared
libraries for FE-based
functional tests

30 97 2649

FE-based functional
tests for TbUIS 81 248 7530

total 245 1024 31831

1) To ensure that the system (before the introduction of
controlled artificial defects used to evaluate the effec-
tiveness of testing techniques) is largely free of other
defects and

2) To support the process of evaluating the effectiveness of
the testing techniques by executing the defined test cases
that are to be examined in the system via automated
tests,

Two types of tests are available as extra modules for the
TbUIS testbed:

1) Unit tests implemented in the JUnit framework, which
test individual methods of the system and the basic
sequences of methods calls on the technical level.

2) FE-based functional tests, which simulate users tests
accessing the system UI. These tests are written in Java
with the Selenium Web Driver API, currently version
3.141.59. The tests are structured using the PageObject
pattern, which significantly decreases their maintenance
and allows future extensions of the test set, as indepen-
dently verified [15].

Regarding the coverage level, in the current version of the
TbUIS, the line coverage of the available unit tests is greater
than 85%.

The FE-based functional tests cover all of the processes, as
documented in the process flow schema created in the Oxygen
application (introduced above in Section III-A).

To determine the expected test results of the FE-based
functional tests, the Oracle module is implemented and is
thoroughly tested using a special set of unit tests.

Table III provides insight into the extent of the implemented
automated tests. The number of source code files, their size
in kilobytes and the number of lines of code (LOC) are
presented. The FE-based functional tests for TbUIS employ
several modules of reusable objects and support code (in Table
III denoted as Shared libraries for FE-based functional tests).
These modules are also covered by their own set of unit tests.

Compared to size of the source code of the TbUIS (see
Table II), the extent of the automated tests measured in terms
of LOC is approximately three times higher.

The FE-based functional automated tests are divided into
several types, covering various technical and user aspects of

TABLE IV
TYPES OF FE-BASED FUNCTIONAL AUTOMATED TESTS

Number
of tests

Number
of asserts

Elapsed
time [sec]

Atomic tests 890 2702 780
Process tests 64 2351 1477
Negative tests 29 52 50
total 983 5105 2307

the TbUIS:
• Atomic tests that are verifying if elements of application

UI are correctly rendered and filled with correct data
• Process tests that are exercising individual processes in

the TbUIS (e.g. enrolling a course or assigning a grade
to the student)

• Negative tests that are testing boundary conditions and
correct handling of wrong input data

Atomic types of tests are also orchestrated as parts of
the process tests. The test scripts are organized into building
blocks that allow the automated composition of an automated
end-to-end test via a defined path-based test scenario (the
details are presented in Section III-E).

The numbers of tests in the individual categories with
their numbers of asserts and average runtime are presented
in Table IV. The runtimes were measured using the following
configuration: Intel i5 1.6 GHz, 16 GB RAM, MS Windows
10pro operating system, Apache Tomcat 9.0 application server
and MySQL database. The database and web and application
servers were installed on the same workstation, and the auto-
mated tests were run on the same computer.

The automated atomic tests cover 100% of all active and
passive elements composing the user interface of the TbUIS.
As active elements, we consider user control elements (e.g.,
text boxes, drop-down menus, links, etc.) and fields that
display data loaded from the database or are taken from
the runtime memory of the application. Each of the active
elements is tested at least by one atomic test.

FE-based automated functional tests can be easily run from
a special application, TestRunner, which provides its own user
interface in which particular tests to run can be selected. The
TestRunner application can be downloaded from the project
web page.

The extent of the building blocks of the FE-based auto-
mated functional tests introduced in this section allows the
effective composition of automated tests for the path-based
test scenarios to be evaluated in the testbed. The relevant part
of these blocks can also be used to evaluate the combinatorial
or constrained interaction testing test sets.

D. Introduction of Artificial Defects

Artificial defects are introduced into the TbUIS by the error
seeder module, which conducts the following process:

1) The error seeder takes the baseline TbUIS code, which
is considered free of defects (which is verified by the
thorough automated tests introduced in Section III-C).



2) Based on the artificial defect specification, the error
seeder assembles the source code of a defect clone of
the TbUIS.

3) Then, the defect clone of the TbUIS system is built and
deployed to a testing environment.

Artificial defect specification defines a set of artificial de-
fects that are to be introduced into the TbUIS code. Predefined
catalogue defect types are available as well as the possibility to
define custom artificial defects. The catalogue of defect types
is available on the project web page.

Each artificial defect inserted into the TbUIS code is ac-
companied by a logging mechanism that records information
if and when the defect has been activated by a test. The main
purpose of this information is to support the evaluation of the
effectiveness of the testing techniques. The defect activation
logs can be paired with the logs of available automated tests
to give reliable sources of information, which artificial defect
were detected by which test cases.

In the current version of the TbUIS testbeds, a set of 27
artificial defects of various types from the above catalogue
is available for initial experiments and are accompanied by
detailed information making their application easy3.

As mentioned above, for further experiments and to evaluate
the effectiveness of the testing techniques, more various defect
clones can be created and compiled from available artificial
defects, and also, based on the well-documented examples in
the source code, the user can implement their own artificial
defects.

E. Test Case Effectiveness Evaluation Process

As introduced above, in principle, the effectiveness of vari-
ous testing techniques can be evaluated in the TbUIS testbed.
In the following section, we focus on two major represen-
tatives, path-based techniques and combinatorial/constrained
interaction testing techniques.

The parts of the TbUIS testbed related to the evaluation
of path-based testing techniques are summarized in Figure 3.
The inputs and outputs of the process are depicted by yellow
boxes.

The input to the process is a path-based test set, whose
effectiveness is going to be evaluated. The test cases in this
test set have to correspond to an available TbUIS process
model (unless we intentionally created invalid paths-based test
cases in the experiment). Using predefined building blocks
from the FE-based functional automated test scripts (intro-
duced in Section III-C), the process test builder chains these
building blocks as instructed by the input path-based test cases
to produce assembled FE automated tests, which represent
individual path-based test cases. For each of the path-based
test cases at the input, a corresponding automated FE test is
created.

The second input of the process is artificial defect specifi-
cation, which can be created via predefined catalogue defect
types or own defects defined in the SUT. To create an defect

3https://projects.kiv.zcu.cz/tbuis/web/page/download

Fig. 3. TbUIS parts for evaluation of path-based testing techniques.

clone of the TbUIS with the specified defects, Error seeder
takes the specification of the defects and inserts them into the
code of the Baseline UIS specification. Then, the defect clone
is built as a running system instance.

At this stage, experimental evaluation of the path-based test
set can be performed (an example is provided on the project
web pages). Automated FE tests corresponding to the input
path-based test cases are run in the defect clone, and the
results are reported to the test report, which can be evaluated.
The information from the test report can also be paired with
detailed application logs to obtain more context information
about the activated defects.

The schema for evaluating combinatorial or constrained
testing test cases slightly differs, but the general principle
remains the same.

In this type of evaluation, we do not compile FE automated
tests to correspond to path-based test cases; instead, we can
use

1) available automated FE-based functional tests covering
all active elements and processes in the TbUIS,

2) available unit tests available together with the TbUIS
code, or

3) combinations of both types of tests (the automated tests
available to the TbUIS were introduced in Section III-C).

Input data combinations to be exercised in the testbed can be
entered into the available automated tests via the standardized
DataProvider interface of the JUnit framework.

IV. DISCUSSION AND POSSIBLE LIMITS

Like other alternative artificial defect introduction ap-
proaches discussed in this paper, namely, using real defects
from a previous software project and code mutation, the
approach taken in the proposed testbed has certain advantages
and disadvantages. We summarize these advantages and dis-
advantages in this section.

Regarding the possible complexity of the artificial defects
introduced into an experimental SUT, the proposed approach



does not limit an artificial defect to a set of mutation operators
or a conditionally switched block of code. Instead, the defect
clone can be built with the changes made in several different
places in the source code, which allows high flexibility in
simulating complex defects.

Concern whether the introduced defects represent typical
defects that are being made during real software projects can
be raised. This responsibility in experiments is up to the re-
searchers and testing practitioners. Typical defects might vary
between various software architectures, development styles,
programming languages, business domains, and even decades
when the empirical observations are made. Hence, the testbed
provides a general possibility to create different types of
defects and defect clones, and the decision is up to the testbed
user.

In the proposed concept, the artificial defects are selected
from a pre-defined set, which might limit the generalization
of experiment results. This potential limit can be solved by
the addition of more artificial defects as well as the correct
interpretation of the results of the experiments.

Also, certain defects might be easier to detect than other
defects, which may impact the results of the experiments
[16]. However, this concern can be raised generally for any
defect injection technique and shall be mitigated by correct
interpretation of the results of the experiments.

Another concern is that the system is artificially created;
however, the use cases and processes in the SUT are similar
to real-world study information systems. The more important
factor here is the selection of artificial defects that are rep-
resentative of real-world projects. In the presented testbed,
this selection is enabled by the possible introduction of more
complex defects via the described mechanism of the defect
clones.

Also, the size of the TbUIS system might limit its potential
applicability as a benchmark for larger software systems. We
are going to mitigate this concern by further evolution and
extensions of the TbUIS.

V. CONCLUSION

In evaluating the effectiveness of testing techniques based
on the measurement of the defect number that the test cases
produced by these techniques detect in an experimental sys-
tem, the established mutation testing approach can be ac-
companied by an alternative allowing the insertion of more
complex defects caused by a misunderstanding of the design
specification or other causes. We describe such an alternative
in this paper: the presented TbUIS testbed, which is available
as an open-source application and comprises a fictional uni-
versity information system. The TbUIS testbed gives its user
a mechanism to introduce artificial defects, including those
from a predefined catalogue of possible defects, an extensive
set of unit and FE-based functional automated tests, which can
be used to examine test cases in the system, and a logging
mechanism, which allows the collection of the data regarding
which defects were activated by the examined test cases.
Together with a good level of code and system documentation,

the open structure of the TbUIS testbed eases its employment
as a benchmark system to be used in the evaluation of
path-based and combinatorial/constrained interaction testing
techniques.

ACKNOWLEDGMENT

This work was supported by the European
structural and investment funds (ESIF) project
CZ.02.1.01/0.0/0.0/17 048/0007267 (InteCom)—Intelligent
Components of Advanced Technologies for the Pilsen
metropolitan area. Work package WP1.3: Methods and
processes for control software safety assurance. The authors
acknowledge the support of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 Research Center for
Informatics.

REFERENCES

[1] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient mutation
operators for measuring test effectiveness,” in Proceedings of the 30th
international conference on Software engineering. ACM, 2008, pp.
351–360.

[2] J. Offutt, “A mutation carol: Past, present and future,” Information and
Software Technology, vol. 53, no. 10, pp. 1098–1107, 2011.

[3] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.

[4] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained
interaction testing: A systematic literature study,” IEEE Access, vol. 5,
pp. 25 706–25 730, 2017.

[5] M. Bures, “Pctgen: Automated generation of test cases for application
workflows,” in New Contributions in Information Systems and Technolo-
gies. Cham: Springer International Publishing, 2015, pp. 789–794.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Program mutation:
A new approach to program testing,” Infotech State of the Art Report,
Software Testing, vol. 2, no. 1979, pp. 107–126, 1979.

[7] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system,” Software Testing, Verification and Reliability, vol. 15,
no. 2, pp. 97–133, 2005.

[8] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. Garcı́a-
Domı́nguez, and J. J. Domı́nguez-Jiménez, “Assessment of class mu-
tation operators for c++ with the mucpp mutation system,” Information
and Software Technology, vol. 81, pp. 169–184, 2017.

[9] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: an analysis and survey,” in Advances in
Computers. Elsevier, 2019, vol. 112, pp. 275–378.

[10] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they
to real faults?” in 2014 IEEE 25th International Symposium on Software
Reliability Engineering. IEEE, 2014, pp. 189–200.

[11] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proceedings of the 27th international
conference on Software engineering. ACM, 2005, pp. 402–411.

[12] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental
analysis of binary-level software fault injection in complex software,”
in 2012 Ninth European Dependable Computing Conference. IEEE,
2012, pp. 162–172.

[13] M. Kooli and G. Di Natale, “A survey on simulation-based fault injection
tools for complex systems,” in 2014 9th IEEE International Conference
On Design & Technology of Integrated Systems In Nanoscale Era
(DTIS). IEEE, 2014, pp. 1–6.

[14] M. Bures, K. Frajtak, and B. S. Ahmed, “Tapir: Automation support of
exploratory testing using model reconstruction of the system under test,”
IEEE Transactions on Reliability, vol. 67, no. 2, pp. 557–580, 2018.

[15] M. Bures, “Model for evaluation and cost estimations of the automated
testing architecture,” in New Contributions in Information Systems and
Technologies. Cham: Springer International Publishing, 2015, pp. 781–
787.

[16] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon, “Threats
to the validity of mutation-based test assessment,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, 2016,
pp. 354–365.


	I Introduction
	II Background and State of The Art
	III Testbed Description
	III-A Scope and Use Cases of the TbUIS
	III-B Implementation and Technical Details
	III-C Automated tests
	III-D Introduction of Artificial Defects
	III-E Test Case Effectiveness Evaluation Process

	IV Discussion and Possible Limits
	V Conclusion
	References

