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Abstract. The Helios voting scheme is well studied including formal
proofs for verifiability and ballot privacy. However, depending on its ver-
sion, the scheme provides either participation privacy (hiding who par-
ticipated in the election) or verifiability against malicious bulletin board
(preventing election manipulation by ballot stuffing), but not both at the
same time. It also does not provide receipt-freeness, thus enabling vote
buying by letting the voters contstruct receipts proving how they voted.
Recently, an extension to Helios, further referred to as KTV-Helios, has
been proposed that claims to provide these additional security proper-
ties. However, the authors of KTV-Helios did not prove their claims. Our
first contribution is to provide formal definition for participation privacy
and receipt-freeness, that can be applied to KTV-Helios. These defini-
tions were used to also prove the corresponding claims of KTV-Helios.
Our second contribution is to use the existing definitions of ballot privacy
and verifiability against malicious bulletin board as applied to Helios in
order to prove that both security properties also hold for KTV-Helios.

1 Introduction

The Helios voting scheme has been introduced in [1] and subsequently imple-
mented and used in several real-world elections such as the IACR elections [2].
Moreover, the research conducted on Helios led to the development of several
extensions for the scheme [3–9], formal security definitions and proofs [3,10–12]
and usability evaluations [13, 14]. Due to these numerous scientific extensions
and evaluations, the Helios scheme can be cosnidered one of the most eveolved
e-voting scheme which provides ballot privacy and end-to-end verifiability. How-
ever, the current implementation of Helios does not provide verifiability against
malicious bulletin board that can add or modify ballots on behalf of the voters
who do not perform the necessary verification procedures. The extension pro-
posed in [3], called Belenios, solves this issue by introducing digital signatures



thus providing such verifiability against malicious bulletin board. Belenios, how-
ever, does not ensure participation privacy, meaning that the public available
election data reveals whether a honest voter cast a vote or abstained. Although
this information is usually potentially available in traditional paper-based elec-
tions, whereby anyone can observes people going into a polling station, an In-
ternet voting system without participation privacy reveals the identities of the
voters who cast their vote in an election on a much larger scale by publishing
them online. Hence, the lack of participation privacy in Interent voting is a viola-
tion of voter privacy that is more serious in comparison to paper-based elections.
A further issue with voter privacy in Helios is the lack of receipt-freeness, that
enables voters constructing receipts that prove to a third party which candidate
the voter has voted for. Thus, such receipts could be used for vote buying.

Recently an extension to Helios has been proposed [15] (henceforth referred
to as KTV-Helios) that adds probabilistic participation privacy and probabilistic
receipt-freeness to the Helios voting scheme while, at the same time, ensuring
verifiability against malicious bulletin board, assuming a reliable public-key in-
frastructure is in place. However, despite their conceptual contributions to the
Helios scheme, the authors of [15] did not actually formally prove the security of
their scheme. Furthermore, providing such proofs for KTV-Helios requires intro-
ducing new formal definitions for participation privacy as well as receipt-freeness:
Although the existing formal definitions of ballot privacy can be extended and
applied for evaluating participation privacy in some voting systems, no definition
that adresses participation privacy specifically has been proposed, yet. The avail-
able definitions of receipt-freeness, on the other hand, do not fully encompass
the available e-voting schemes and security models that ensure receipt-freeness.

Our contributions. The main contributions of our paper are new formal
definitions for probabilistic participation privacy (see Section 3) and probabilistic
receipt-freeness (see Section 4), that we use to apply to KTV-Helios and evaluate
its security claims. In addition, we prove that KTV-Helios ensures ballot privacy
according to the definition in [11] in the random oracle model (see Section 5). We
further prove that the KTV-Helios scheme provides verifiability against malicious
bulletin board based on the definition in [3] (see Section 6).

Verifiability: The system should provide for every honest4 voter the pos-
sibility to verify that their ballot is properly stored on the bulletin board. It
further should enable everyone to verify that only ballots from the eligible vot-
ers are included in the tally, and that each ballot cast by eligible voters on the
bulletin board is correctly processed during tallying. These verifications should
not require any security assumptions other that the register of eligible voters and
the PKI is trustworthy, the voting devices used by the voters are trustworthy
and that the bulletin board provides a consistent review to all the voters and
the voting system entities.

Ballot privacy: Given the public data of the election (incl. the election re-
sult), the adversary should be incapable of gaining more information about an

4 We refer to a voter as honest, if she is not under adversarial control, and corrupted
otherwise.
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individual honest voter’s vote than is leaked by the election result. This should
not require further security assumptions other that the following ones: (1) a ma-
jority of entities responsible for tallying does not divulge their secret key shares
to the adversary; (2) the honest voter does not divulge private information used
for encrypting her vote to the adversary; (3) the bulletin board acts according
to its specification by not removing the ballots submitted to it.

Participation privacy: Given the public data of the election, the adversary
should be incapable to tell, whether a given honest voter has cast her ballot in
the election. Participation privacy should be ensured given only the following
security assumptions: (1) the majority of entities responsible for the tallying
do not divulge their secret key shares to the adversary, (2) the adversary is
incapable of observing the communication channel between the voter, posting
trustees and the voting system, (3) at least one of the posting trustees does
not divulge private information to the adversary, (4) the bulletin board acts
according to its specification, (5) The honest voters decide to participate or to
abstain in the election independently from each other.

2 Description of KTV-Helios

We first describe the version of the Helios scheme, based upon the improve-
ments in [3, 4, 10], that KTV-Helios extends upon. In this version, the eligible
voters exchange their public signing keys with the registration authority, who
then publishes these keys. In the setup phase, the tabulation tellers generate a
pair of ElGamal keys used for encrypting the votes. During the voting, the voters
encrypt and sign their chosen voting option, also computing the well-formedness
proof. The voters then have an option either to audit the encrypted vote, or to
submit it to the bulletin board. During the tallying, after the voting is finished,
the encrypted votes are being anonymised, either via mix net shuffle or homo-
morphic tallying. The result of the anonymisation is being jointly decrypted by
the tabulation trustees, and published as the outcome of the election.

The basic idea of KTV-Helios is the introduction of so-called dummy ballots,
that are meant to obfuscate the presence of ballots cast by the voters5. During
the whole voting phase, the posting trustee also casts a number of dummy bal-
lots on behalf of each voter, that are published next to that voter’s name. Each
dummy ballot consists of an encryption of a null vote accompanied with the
well-formedness proof, that is constructed in the same way as the proofs for
non-dummy ballots. Before the tallying, for each voter the ballots that are pub-
lished next to the voter’s name are aggregated into the final ballot. Due to the
homomorphic property of the cryptosystem, and due to the fact that the dummy
ballots contain the encryption of a null vote, this final ballot encrypts the sum of
all non-dummy votes cast by the voter. The final ballots of all voters are being
anonymised via shuffling. Afterwards, each anonymised ballot is assigned to a
valid voting option, or discarded without revealing its plaintext value.

5 A similar concept of dummy ballots has also been used in [16] which extends the
JCJ/Civitas voting scheme [17]
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For the sake of simplicity, we assume a single tabulation teller and a single
posting trustee.

2.1 Building Blocks of KTV-Helios

In this section, we describe the building blocks (i.e. the cryptographic primitives,
probability distributions and plaintext tally function) of the KTV-Helios scheme.
The scheme uses the following cryptographic primitives:

– Signed ElGamal [10], a NM-CPA secure encryption scheme (the same one
is used in Helios). Its algorithms are KeyGen,Enc,Dec. The encryption of a
message m ∈ Zq with a public key (g, h) ∈ G2 is ((gr, gmhr), πPoK) where
r←$Zq is randomly sampled and πPoK is a Schnorr proof of knowledge of
r. To decrypt a ciphertext ((c(1), c(2)), πPoK) with a secret key sk, first check
the PoK and if successful set m = c(2) · (c(1))(−sk).

– An existentially unforgeable digital signature scheme consisting of algorithms
SigKeyGen, Sign and Verify, for example Schnorr signatures.

– The Chaum-Pedersen NIZK proof EqProof(g1, g2, h1, h2) that proves the
equality of discrete logarithms logg1 h1 = logg2 h2 as described in [18]. This
proof can be simulated in the random oracle model, for which we write
SimEqProof(g1, g2, h

′
1, h
′
2) (see e.g. [11]).

– A NIZK disjunctive proof DisjProof(pkid, skid′ ∈ {skid, 0}, g1, g2, h1, h2, t)
that given (pkid, skid)←$ SigKeyGen and g1, g2, h1, h2 ∈ Gq and timestamp t
proves either the knowledge of s = Sign(sks, g1||g2||h1||h2||t)6, or the equality
of discrete logarithms logg1 h1 = logg2 h2.

– A re-encryption mix-net for ElGamal ciphertexts Mix(c1, ..., cN ), for example
the one of Wikström and Terelius [21].

– A plaintext equivalence test (PET) to decrypt ElGamal ciphertexts. On
input a ciphertext c, a secret key sk and a message m it creates a decryption
factor d that is 1 if c is an encryption of m under sk and random in Zq if
not. It also creates a proof πPET that it operated correctly (this is another
Chaum-Pedersen EqProof).

The next building blocks are the probability distributions. They are used by
the posting trustees in order to cast a random number of dummy ballots at
random times next to each voter’s id. In order to specify the dummy ballot
casting algorithm for the posting trustee, we use two probability distributions
Pd and Pt. The first probability distrubition Pd is used to sample a number of
dummy ballots for each voter. This distribution therefore has a support [x, y]
with x, y as the minimal and maximal number of dummy ballots that the posting
trustee is going to cast for each voter (i.e., x ∈ N0, y ∈ N0∪{∞}). The parameters
x and y, as well as the exact Pd needs to be defined by the election authorities
when setting up a corresponding system, i.e. their optimal trade-off between

6 Methods for proving the knowledge of a digital signatures via Σ-proof are described
by Asokan et al. [19] for common signature schemes; the general method of con-
structing NIZK disjunctive proofs is described by Cramer et al. in [20].
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security and efficiency. For further information which influence the selection of
Pd has to the level of security and the efficiency of the tallying algorithms, see
Section 3. The second probability distribution Pt is used to determine the time
to cast each dummy ballot. Thus, this distribution has a support [Ts, Te] with Ts
denoting the timestamp at the start of the voting phase, and Te the timestamp
at the end of the voting phase. In order to obfuscate the ballots cast by voters,
Pt should be chosen so that this distribution resembles the distribution of times
at which the voters cast their ballots. For this, e.g. the information from the
previous elections could be used.

The plaintext tally function of the KTV-Helios scheme, that takes the plain-
text votes cast by voters and the posting trustee as input and outputs the elec-
tion result, is informally described in the following way: The valid votes cast
by registered eligible voters are included in the tally. If the voter casts multi-
ple votes, they are added together to form a final vote before the final tally if
the result of this addition is a valid voting option, or replaced with a null vote
otherwise. If the voter abstains, their final vote is counted as a null vote7. The
votes cast by the posting trustee are not included in the result. The formalised
description of the plaintext tally function is as follows: Let Gq be the plaintext
space of (KeyGen,Enc,Dec). Then, let Vvalid = {o1, ..., oL} ⊂ GLq , 0 6∈ Vvalid be
a set of valid voting options, so that the voter is allowed to select one of these
options as her vote. Let then ρ′ : (Vvalid ∪ {0})N → NL0 be the function that,
given the plaintext votes cast within the election, outputs a vector of values
with the sum of cast votes for each candidate and the number of abstaining
voters. Let I = {id1, ..., idN} be a set of registered eligible voters, and îd 6∈ I
denote the posting trustee. Further, let NT be the total number of votes cast
within the election. We define the tally function for the KTV-Helios scheme
ρ(Vcast) : (I ∪ {îd} ×Gq)∗ → R as follows:

1. Initialise a set Vfinal = {(id1, 0), ..., (idN , 0)}
2. For every (id, v) ∈ Vcast, if id ∈ I, replace the tuple (id, v′) ∈ Vfinal with

(id, v′ + v). If id = îd, discard the vote.
3. For every (idi, vi) ∈ Vfinal, if vi 6∈ Vvalid, replace (idi, vi) with (idi, 0)
4. Output ρ′(v1, ..., vN ).

The function ρ provides partial counting defined as follows: Given the sets

I1,...,Ik that partition I ∪ {îd}, define lists V(1)
cast, ...,V

(k)
cast ⊂ Vcast so that for

each (id, v) ∈ Vcast holds (id, v) ∈ V(i)
cast ⇐⇒ id ∈ Ii, i = 1, ..., k. Then it holds:

ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)

2.2 Formal Description of KTV-Helios

We are now ready to provide the formal description of the KTV-Helios scheme.
This description is based upon the syntax proposed in [11], adjusted to the

7 Note, that the function does not make a distinction between abstaining voters, and
voters that cast a null vote.
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context of the KTV-Helios scheme. For the sake of simplicity, we assume a sin-
gle tabulation teller and a single posting trustee8. We first specify the various
functions in place, i.e.:

– RegisterVoter(1λ, id) is run by the voter id. The voter id generates a pair
of keys (pkid, skid)←$ SigKeyGen(1λ) and sends the public key pkid to the
registration authority.

– RegisterRA(1λ, id, pkid) is run by the registration authority. The registration
authority adds (id, pkid) to the list of registered voters’ public keys Ipk if
id ∈ I, and returns ⊥ otherwise.

– Setup(1λ) is run by the tabulation teller. It runs (pk, sk) = KeyGen to create
the election keys and returns the public key pk.

– Vote((id′, skid′), id, v, t) creates a ballot b = (id, c, πPoK , π, t) for voter id ∈ I
and voting option v, that is cast at a timestamp9 t. If id = id′ (a voter
casting her own ballot) then it computes (c, πPoK) = Enc(pk, v) where
c = (c(1), c(2)) and π = DisjProof(pkid, skid′ , g, h, c

(1), c(2), t) using a signa-

ture Sign(skid′ , g||h||c||t). If id′ = îd (the posting trustee is casting a ballot
on behalf of voter id) then skid′ is not required but v must be 0. Note, that
the challenges used in πPoK and π should include the statements and com-
mitments from both πPoK and π in order to prevent that the voter signs and
casts the ballot she did not compute herself.

– Validate(b) parses the ballot b as (id, c = (c(1), c(2)), πPoK , π, t) and returns
1 if π and πPoK are valid proofs, id ∈ I and t ∈ [Ts, Te], and ⊥ otherwise.

– VerifyVote(BB, b) is used by the voter to ensure that her ballot b is properly
stored on the bulletin board. It outputs 1 if b ∈ BB and ValidateBB(BB)
holds, otherwise ⊥.

– VoteDummy(id) is used by the posting trustee to cast dummy ballots for a
given voter id. The posting trustee samples a random number m←$Pd and
random timestamps t1, ..., tm←$Pt, and returns a set of ballots

(Vote((îd, 0), id, 0, t1), ...,Vote((îd, 0), id, 0, tm))

– Valid(BB, b) is run by the board before appending a new ballot. It checks
that Validate(b) = 1 and that the ciphertext c in b does not appear in any
ballot already on the board. If this holds it returns 1, otherwise ⊥.

– ValidateBB(BB) checks that a board is valid. It is run by the tabulation
tellers as part of the tallying process and by voters verifying the board. It
creates an empty board B′ and for each ballot b ∈ BB runs “if Valid(B′, b)
then append b to B′”. If any ballot gets rejected it returns ⊥, otherwise 1.

– Tally(BB, sk) is used by the tabulation teller to calculate the election result.
It returns a tuple (R,Π) where R is the election result and Π is auxiliary
data (proofs of correct tallying). In more detail:

1. Run ValidateBB(BB) and return ⊥ if this fails.

8 We discuss extending the proofs towards several of those entities in Appendix A.
9 As the timestamp t denotes the time at which b is submitted to the bulletin board,

we assume that it is chosen in [Ts, Te].
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2. Parse each ballot b ∈ BB as (id, c, πPoK , π, t).
3. For each id appearing in the ballots, set cid =

∏
c∈C(id) c where C(id) is

the set of ciphertexts c in ballots belonging to voter id.
4. Mix the ballots (c1, . . . , cN ) (where N is the number of distinct identities

who cast a ballot) to get a new list of ballots (c̄1, . . . , c̄N ) and a proof
πmix of correct mixing.

5. For each i ∈ {1, . . . , N} and each valid voting option v ∈ Vvalid, use the
PET to create a decryption factor di,v and proof πPET,i,v.

6. The result R is the number of times each voting option was chosen,
i.e. R(v) = |{i : di,v = 1}| for all v ∈ Vvalid. The auxiliary data Π
contains the mixing proofs πmix, the mixed ciphertexts (c̄1, . . . , c̄N ), the
decryption factors di,v and the PET proofs πPET,i,v for i ∈ {1, . . . , N}
and v ∈ Vvalid.

– ValidateTally(BB, (R,Π)) takes a bulletin board BB and the output (R,Π) of
Tally and returns 1 if ValidateBB(BB) = 1 and all the proofs πmix and πPET
are valid, otherwise ⊥. It is used to verify an election.

These functions are combined in order to build the KTV Helios scheme. The
corresponding description of the KTV Helios scheme is given in the following
paragraphs along the line of the three phases of an election.

Setup phase: The election organizers set up an empty bulletin board BB and
publish a set of valid non-null voting options Vvalid = (v1, ..., vL) with 0 6∈ Vvalid.
If there is no existing PKI encompassing the eligible voters, the eligible voters
from the voting register I register themselves by running RegisterVoter(1λ, id).
After the voters have registered, or if there is an existing PKI already established
among the voters, the registration authority prepares the list of the eligible vot-
ers’ public keys by running RegisterRA(id, pkid) for each voter id and publishing
the list Ipk = {(id1, pkid1), ..., (idN , pkidN )}. The tabulation teller runs Setup(1λ).

Voting phase: The posting trustee runs VoteDummy(id) for each regis-
tered eligible voter id ∈ I. The posting trustee then submits each resulting
dummy ballot b = (id, c, πPoK , π, t) to the bulletin board at a time correspond-
ing to the timestamp t. The bulletin board appends b to BB. The voter id runs
Vote((id, skid), id, v, t) in order to cast her ballot for a voting option v at a time
denoted by timestamp t. The bulletin board appends b to BB. Then, the voter
can run VerifyVote(BB, b) to check whether her ballot is properly stored.

Tallying phase: The tabulation teller runs Tally(BB, sk) on the contents
of the bulletin board, and publishes the resulting output (R,Π). Everyone who
wants to verify the correctness of the tally runs ValidateTally(BB, (R,Π)).

3 Participation Privacy

We first provide a cryptographic definition of probabilistic participation privacy.
In order to enable the evaluation of participation privacy in KTV-Helios, we
chose to propose a quantitative definition. The definition is inspired by the co-
ercion resistance definition in [22] and the verifiability definition in [23]. Similar
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to the notion of (γk, δ)-verifiability with quantitative goal γk in [23], we speak
of (δ, k)-participation privacy, where δ denotes the advantage of the adversary
who tries to tell whether a given voter has abstained from casting her vote in
the election, or cast her vote at most k times.

Defining (δ, k)-participation privacy. We define participation privacy
via modeling the experiment, where the actions of two honest voters id0, id1
(that is, their decision to abstain or to cast a vote) are swapped. Namely, we

consider the following experiment Expppriv,βA,S,k given the adversary A ∈ CS , so that
CS is a set of PPT adversaries, defined according the adversarial model for a
particular scheme. There are two bulletin boards BB0, BB1, which are filled by
the challenger modelling the voting phase. The adversary only sees the public
output for one of these bulletin boards BBβ , β←$ {0, 1}. Let QS be a set of oracle
queries which the adversary has access to. Using these queries, the adversary fills
both of the bulletin boards with additional content, so that BB0 and BB1 contain
the same cast ballots except the votes for the voters id0, id1: given a number
of voting options v1, ..., vk′ chosen by the adversary, k′ ≤ k, for each i = 0, 1,
the bulletin board BBi contains the votes for v1, ..., vk′ on behalf of idi and an
abstention from the election is modelled for the voter id1−i.

The oracle computes the tally result R on BB0. In case a voting scheme
provides auxiliary output Π for the tally, the oracle returns (R,Π) in case β = 0,
and simulates the auxiliary output Π′ = SimProof(BB1, R), returning the tuple
(R,Π′) in case β = 110. The adversary further outputs the public output of BBβ .
The goal of the adversary is to guess whether the provided output corresponds
to BB0 or to BB1, i.e. to output β. The definition of (δ, k)-participation privacy
is then as follows:

Definition 1. The voting scheme S achieves (δ, k)-participation privacy given
a subset of PPT adversaries CS, if for any adversary A ∈ CS, k ∈ N and two
honest voter id0, id1 holds

|Pr
[
Expppriv,0A,S,k = 0

]
− Pr

[
Expppriv,1A,S,k = 0

]
− δ|

is negligible in the security parameter.

As an example of applying the definition, consider a voting scheme that
assigns a random unique pseudonym to each voter and publishes the encrypted
cast votes next to the voters pseudonyms. The assignment of pseudonyms is
assumed to be known only to a trustworthy registration authority, and only the
registration authority and an honest voter knows what her pseudonym is. Hence,
as the adversary who only has access to the public output cannot establish a
link between the pseudonym and the voter’s identity, she has no advantage in

10 The tally result should be the same, if the vote of each voter is equally included
in the result. However, in order to be able to model the voting schemes where the
weight of the vote might depend on the voter’s identity, we chose to simulate the
auxiliary output in our definition.
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distinguishing between the output of Expppriv,0A,S,k and Expppriv,1A,S,k for any value of k.
Thus, the scheme provides (0, k)-participation privacy.

(δ, k)-participation privacy in KTV-Helios. In order to evaluate (δ, k)-
participation privacy in the KTV-Helios scheme according to the aforementioned
definition, we first need to specify the adversary A ∈ CS we aim to protect
against. We make following assumptions regarding adversarial capabilities: the
tabulation teller does not divulge her secret key to the adversary, the adversary
is incapable of observing the communication channel between the voter, the
posting trustee and the voting system, the posting trustee does not divulge
private information to the adversary, the bulletin board acts according to its
specification, and the honest voters decide to participate or to abstain in the
election independently from each other.

Hence, we define CS as a set of adversaries that are given access to the
following queries in the experiment Expppriv,βA,S,k :

OVoteAbstain(v1, ..., vk′):

if k′ > k then
return ⊥

endif
b0,1, ..., b0,m0 ←$VoteDummy(id0)
b1,1, ..., b1,m1 ←$VoteDummy(id1)
for j = 1, ..., k′ do

t′j ←$Pt
b′0,j = Vote((idβ , skid0), id0, vj , t

′
j)

b′1,j = Vote((idβ , skid1), id1, vj , t
′
j)

endfor
Append b0,1, ..., b0,m0 to BB0

Append b1,1, ..., b1,m1 to BB1

Append b′0,1, ..., b
′
0,k′ to BB0

Append b′1,1, ..., b
′
1,k′ to BB1

OCast(b):
if Valid(BBβ , b) then

Append b to BB0

Append b to BB1

endif

OTally():
if β = 0 then

return Tally(sk,BB0)
else

(R,Π) = Tally(sk,BB0)
Π′ = SimTally(BB1, R)

endif
return (R,Π′)

One source of information that can be used by the adversary for guessing β is k′

additional ballots on the bulletin board BB1 as the output ofOVoteAbstain(v1, ..., vk′).
In order to account for the adversarial advantage gained from this number, we
define the following experiment Expnum,βA,S,Pd,Pt,k′

, with β = i ∈ {0, 1} if the voter
idi abstains and the voter id1−i casts k′ ballot in the election.

Expnum,βA,Pd,Pt,k:

m←$Pd
mβ = m+ k
m1−β ←$Pd
t0,1, ..., tm0 , tm0+1, ..., tm0+m1 ←$Pt
returnm0,m1, t0,1, ..., tm0 , tm0+1, ..., tm0+m1
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Let δnumk,Pd,Pt
denote an advantage in this experiment, so that |Pr

[
Expnum,0A,Pd,Pt,k

= 0
]
−

Pr
[
Expnum,1A,Pd,Pt,k

= 0
]
− δnumk,Pd,Pt

| is negligible11. We are now ready to evaluate

(δ, k)-participation privacy, for KTV-Helios.

Theorem 1. KTV-Helios, instantiated with the probability distributions Pd,Pt
achieves (δ, k)-participation privacy for a given k > 0 given the subset of ad-
versaries CS, with δ = maxk′≤k δ

num
k′,Pd,Pt

. It further does not achieve (δ′, k)-
participation privacy for any δ′ < δ.

We provide the proof for this theorem in Appendix D.

4 Receipt-Freeness

The KTV-Helios scheme ensures probabilistic receipt-freeness via deniable vote
updating. The principle of deniable vote updating has also been proposed in
other e-voting schemes [24–26] in order to prevent a voter from constructing
receipts that show how the voter has voted. As such, the voter can cast her vote
for the voting option the adversary instructs to vote for, but due to deniable
vote updating the voter can change her vote without the adversary knowing it.
The variant of deniable vote updating used in KTV-Helios is also characterised
by enabling the so-called preliminary deniable vote updating. Given two ballots
bA, bv, with bA as the ballot with the vote for a candidate demanded by the
adversary, and bv the ballot that changes bA to a vote for a candidate chosen
by the voter, the voter can cast bA and bv in any order. This approach prevents
an attack, where the voter succeeds to cast bA as the last ballot in the election,
thus making sure that her vote has not been updated. However, in KTV-Helios,
constructing bv requires the knowledge of a vote that was cast with bA.

Defining δ-receipt-freeness. We propose a formal definition for probabilistic
receipt-freeness for e-voting schemes with deniable vote updating. Hereby we
employ the δ-notation similar to the definition of (δ, k)-participation privacy
and define δ-receipt-freeness. We base our definitions on the definition of receipt-
freeness by Cortier et al. [5]. However, as opposed to their definition, and similar
to a probabilistic definition of coercion resistantce by Kuesters et al. in [22], we
consider vote buying from a single voter, while considering an extension towards
multiple voters in future work. We further adjust the definition by Cortier et
al. by enabling the voter to apply a counter-strategy against an adversary that
demands a receipt, namely, to deniably update her vote.

We define an experiment Exprfree,βA,S for a voting scheme S as follows. The chal-
lenger sets up two bulletin boards BB0, BB1 and simulates the election setup.
The challenger further sets β = 0 to represent the voter following the adversar-
ial instructions and β = 1 to represent the voter deniably updating her vote.
The adversary has access to following queries, whereby she is allowed to query

11 We show how to calculate δnumk,Pd,Pt for some choices of Pd and Pt in Appendix G.
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OReceipt(id, v0, v1, t) and OTally() only once:

OCast(b):
if Valid(BBβ , b) then

Append b to BB0

Append b to BB1

endif

OReceipt(id, v0, v1, t):
if v0 6∈ Vvalid or v1 6∈ Vvalid then

return ⊥
endif
bA = Vote(id, skid, v0, t)
Append bA to BB0

Append bA to BB1

tv ←$Pt
bv = DeniablyUpdate(id, skid, v0, v1, tv)
Append bv to BB1

Obfuscate(BB0, id)
Obfuscate(BB1, id)

OVoteLR(id, v0, v1, t):
b0 = Vote((id, skid), id, v0, t)
b1 = Vote((id, skid), id, v1, t)
if Valid(BBβ , bβ) = 0 then

return ⊥
endif
Append b0 to BB0

Append b1 to BB1

OTally():
if β = 0 then

return Tally(sk,BB0)
else

(R,Π) = Tally(sk,BB0)
Π′ = SimTally(BB1, R)

endif
return (R,Π′)

Intuitively, the definition encompasses the scenario of vote buying, whereby
the adversary tells the voter the name of the candidate the voter has to provide
a receipt for, and the voter is able to access the random coins used in creating
an adversarial ballot bA. It, however, does not cover the scenarios where the
adversary wants to make sure the voter did not cast a valid vote in the election,
or to change the voter’s vote to a random candidate (forced abstention and
randomization as described in [27]). It also does not consider the information
leakage from the election result. We now define δ-receipt-freeness for deniable
vote updating:

Definition 2. The voting scheme S achieves δ-receipt-freeness, if there are al-
gorithms SimProof, DeniablyUpdate, Obfuscate so that

|Pr
[
Exprfree,0A,S = 0

]
− Pr

[
Exprfree,1A,S = 0

]
− δ|

is negligible in the security parameter.

δ-receipt-freeness in KTV-Helios. In order to evaluate δ-receipt-freeness
for the KTV-Helios scheme, we define the algorithm DeniablyUpdate(id, skid, v0, v1, tv)
as casting a ballot for v1/v0: that is,

DeniablyUpdate(id, skid, v0, v1, tv) = Vote((id, skid), id, v1/v0, tv)

The assumptions regarding adversarial capabilities for receipt-freeness in
KTV-Helios are then as follows: the tabulation teller does not divulge her secret
key to the adversary, the adversary is incapable of observing the communication
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channel between the voter, the posting trustee and the voting system, the post-
ing trustee does not divulge private information to the adversary, the bulletin
board acts according to its specification, the voter is capable of casting a vote
without being observed by the adversary, the voters who are required by the
adversary to provide receipts act independent from each other and the adver-
sary does not cast ballots on behalf of the voter, which plaintexts the voter does
not know. The last assumption relies the voter not divulging her secret key to
the adversary, which is justified if the secret key is also used for purposes other
than voting, e.g. as a part of eID infrastructure, in which case divulging it to the
adversary would incur larger losses to the voter than she would gain from selling
her vote. It further relies on on the absense of two-way communication between
the voter and the adversary during casting the ballot, which we consider unlikely
in large-scale vote buying.

For finding an appropriate value of δ we need to account for the adversarial
advantage gained from the number of ballots next to voter’s id on the bulletin
board. For this purpose, we define the following experiment Exprfnum,βA,Pd,Pt

, where
the challenger sets β = 0 if the voter id does not cast any additional ballot and
β = 1 if she casts an additional ballot that deniably updates her vote:

Exprfnum,βA,Pd,Pt :

m←$Pd
t1, ..., tm, tm+β ←$Pt
return m+ β, t1, ..., tm, tm+β

Let δrfnumPd,Pt
denote an advantage in this experiment, so that Pr

[
Exprfnum,0A,Pd,Pt

= 0
]
−

Pr
[
Exprfnum,1A,Pd,Pt

= 0
]
− δrfnumPd,Pt

is negligible. We are now ready to provide an eval-

uation of δ-receipt-freeness for KTV-Helios.

Theorem 2. KTV-Helios, instantiated with probability distributions Pd,Pt, achieves
δ-receipt-freeness privacy given the algorithms SimProof, DeniablyUpdate, Obfuscate,
with δ = δrfnumPd,Pt

. It further does not achieve δ′-participation privacy for any δ′ < δ.

We provide the proof of this theorem in Appendix E.

5 Ballot Privacy

In this section we prove ballot privacy (BPRIV) for the KTV-Helios scheme fol-
lowing the defintion in [11]. Since the original definition also uses two auxiliary
properties called strong correctness and strong consistency, we prove these as
well. Together these definitions imply that an adversary does not get more in-
formation from an election scheme as they would from the election result alone.
Put differently, the election data — ballots on the board, proofs of correctness,
proofs of correct tallying — do not leak any information about the votes. We
assume like in [11] that both the tabulation teller and the bulletin board are
honest, which corresponds to our informal definition in the introduction of this
paper.
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5.1 Purpose and Definition of BPRIV

We adjust the definition proposed by Bernhard et al. [11] – more precisely the
definition in the random oracle model – to the KTV-Helios scheme by including
additional parameters required for casting a ballot. We also omit the Publish
algorithm as our boards do not store any non-public data (our Publish would be
the identity function). Recall that a scheme satisfies BPRIV [11] if there exists
an algorithm SimProof such that no adversary has more than a negligible chance
of winning the BPRIV game; the game itself uses the SimProof algorithm in the
tallying oracle.

The purpose of BPRIV is to show that one does not learn anything more from
the election data (including the bulletin board and any proofs output by the
tallying process) than from the election result alone. In other words, the election
data does not leak information about the votes, at least in a computational
sense12. For example, if Alice, Bob and Charlie vote in an election and the result
is “3 yes” then the result alone implies that Alice must have voted yes, which
is not considered a privacy breach. But if Charlie votes yes and the result is “2
yes, 1 no” then Charlie should not, without any further information, be able to
tell whether Alice voted yes or no as this does not follow from the result.

The BPRIV notion is a security experiment with two bulletin boards, one of
which (chosen at random by sampling a bit β) is shown to the adversary. For
each voter, the adversary may either cast a ballot themselves or ask the voter
to cast one of two votes v0, v1 in which case a ballot for v0 is sent to the first
board and a ballot for v1 is sent to the second board. The adversary thus sees
either a ballot for v0 or a ballot for v1 and a scheme is BPRIV secure if no PPT
adversary has better than a negligible chance of distinguishing the two cases.
At the end of the election, the adversary is always given the election result for
the first board. This disallows trivial wins if the adversary makes the results on
the two boards differ from each other. If the first board was the one shown to
the adversary, it is tallied normally; if the adversary saw the second board but
the first result then the experiment creates fake tallying proofs to pretend that
the second board had the same result as the first one. This is the role of the
SimProof algorithm that must be provided as part of a BPRIV security proof.

The experiment Expbpriv,βA,S for the scheme S is formally defined as follows:
The challenger sets up two empty bulletin boards BB0 and BB1, runs the setup
phase as outlined in Section 2.2 and publishes the election public key pk. The
challenger also chooses a random β ∈ {0, 1}. The adversary can read the board
BBβ at any time and can perfomr the following oracle queries:

– OCast(b): This query lets the adversary cast an arbitrary ballot b, as long as
b is valid for the board BBβ that the adversary can see. If Valid(BBβ , b) = 1,

12 In an information-theoretic sense, an encrypted ballot does of course contain infor-
mation about a vote, otherwise one could not tally it. But since ballots are encrypted,
they should not help anyone who does not have the election secret key to discover
the contained vote.
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the challenger runs Append(BB0, b) and Append(BB1, b) to append the ballot
b to both bulletin boards.

– OVoteLR(id′, id, v0, v1, t): This lets the adversary ask a voter to vote for ei-
ther v0 or v1 depending on the secret β. First, if id ∈ I and id′ = id the chal-
lenger computes b0 = Vote((id, skid), id, v0, t) and b1 = Vote((id, skid), id, v1, t).

If id ∈ I and id′ = îd then the challenger computes two13 ballots b0 =
Vote((id′, skid′), id, 0, t) and b1 = Vote((id, skid), id, 0, t). If none of these
cases applies, the challenger returns ⊥.
Secondly, the challenger checks if Valid(BBβ , bβ) = 1 and returns ⊥ if not.
Finally the challenger runs Append(BB0, b0) and Append(BB1, b1).

– OTally(): The adversary calls this to end the voting and obtain the results.
They may call this oracle only once and after calling it, the adversary may
not make any more OCast or OVoteLR calls.
The challenger computes a result and auxiliary data for BB0 as (R,Π) =
Tally(BB0, sk). If β = 1, the challenger also computes simulated auxiliary
data for BB1 as Π = SimProof(BB1, R), overwriting the previous auxiliary
data Π. The challenger then returns (R,Π) to the adversary.

At the end, the adversary has to output a guess g ∈ {0, 1}. We say that the
adversary wins an execution of the experiment if g = β.

Definition 3. A voting scheme S satisfies ballot privacy (BPRIV) if there exists
a PPT simulation function SimProof(BB, R) so that for any PPT adversary the
quantity

AdvbprivA,S :=
∣∣∣Pr
[
Expbpriv,0A,S = 1

]
− Pr

[
Expbpriv,1A,S = 1

]∣∣∣
is negligible (in the security parameter).

5.2 Proof for the KTV-Helios Scheme

The core of a BPRIV proof is a simulator SimTally that, when β = 1, takes as
input the board BB1 and the result R from BB0 and outputs simulated data Π
that the adversary cannot distinguish from real auxiliary data, such as proofs
of correct tallying. This proves that the auxiliary data Π does not leak any
information about the votes, except what already follows from the result.

Recall that the tallying process in KTV-Helios is as follows:

1. Remove any invalid ballots from the board using ValidateBB.
2. Homomorphically aggregate the ballots from each voter.
3. Shuffle the remaining ballots (one per voter) in a mix-net.
4. Match each shuffled ballot against each valid vote v ∈ V with a PET.
5. Compute the number of voters who chose each vote v ∈ V by counting the

successful PETs. This gives the election result R.

13 Vote is a randomised algorithm so the effect of calling it twice on the same inputs is
to create two distinct ballots.
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6. The auxiliary data Π comprises the proofs of correct mixing Πmix from stage
3 and the data and proofs ΠPET forming the PETs in stage 4.

The additional PET stage compared to (non-KTV) Helios actually makes
the ballot privacy proof easier. The simulator SimProof(BB, R) works as follows:

1. Remove any invalid ballots from the board BB using ValidateBB.
2. Homomorphically aggregate the ballots from each voter.
3. Shuffle the remaining ballots (one per voter) in a mix-net. Note, we do not

need to simulate the mix-net; we can just run a normal mix (and store the
auxiliary data Πmix that this creates).

4. Simulate the PETs (we will describe this in detail below) to get simulated
data Π′PET .

5. Return (Πmix,Π
′
PET ).

The following lemma is useful to construct the PET simulator.

Lemma 1. In any execution of the BPRIV game, if we tallied both boards then
with all but negligible probability, both boards would end up with the same number
of ballots.

Note that both the OVoteLR and the OCast oracles either add one ballot
to both boards each or do not add any ballots at all. Therefore we have the
invariant that the number of ballots before tallying is the same on both boards
with probability 1.

The first stage of the tallying algorithm runs ValidateBB to remove possibly
invalid ballots. On the visible board BBβ , since all ballots were already checked
in the oracles before placing them on the board, we conclude that ValidateBB
does not remove any ballots. On the invisible board BB(1−β), if any ballot b gets
removed then we consider the query (VoteLR or Cast) where it was created. The
only way a ballot b can get removed again is if at the time it was added, it was
valid on BBβ (or it would never have got added at all) but invalid on BB(1−β) (or
it would not get removed again later). But this means that the ciphertext c in the
ballot b in question must be a copy of an earlier ciphertext on BB(1−β) but not
on BBβ , as this is the only other case when Valid declares a ballot invalid, and
the only such ballots are those created by OVoteLR. Therefore we conclude that
either two ballots created by OVoteLR have collided, the probability of which
is certainly negligible, or the adversary has submitted in a OCast query a copy
of a ciphertext that OVoteLR previously placed on the invisible board BB(1−β).
Since the adversary never saw this ciphertext, and since the encryption scheme
is NM-CPA so ciphertexts must be unpredictable, the probability of this event
is negligible too. This concludes the proof of Lemma 3.

We now describe how to simulate the PET. Our inputs are a number n of
ballots (the output of the mix-net), a result R that was correctly computed on
a different board that also had n ballots (after stage 1 of tallying) by Lemma 3
and a set V of valid votes.
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Since the PETs in a real tally are taken over ballots that have just come out
of a mix-netm the distribution of votes in these ballots is a uniformly random
permutation of votes subject to the tally being R. For example, if R indicates
that there was one vote for v = 1 and n− 1 votes for v = 2 then the probability
of the 1-vote being in the i-th ballot is 1/n, irrespective of the order in which the
ballots were cast (for example the adversary might know that the first person to
vote was the one that cast the 1-vote). This is because the ballots are uniformly
permuted in the mix-net.

Our simulation strategy is therefore to emulate this random permutation.
The result R gives us a mapping fR : V ∪{⊥} → {0, 1, . . . , n} where for example
fR(v) = 3 means that three voters voted for v and fR(⊥) is the number of voters
who cast an invalid vote. We have fR(⊥) +

∑
v∈V fR(v) = n, i.e. the number of

invalid votes plus the totals for each valid option sum to the number n of ballots
that came out of the mix-net. We simulate as follows:

1. Create a list L = (L1, . . . , Ln) such that each vote v ∈ V appears fR(v) times
in L and the symbol ⊥ appears fR(⊥) times. Then permute L randomly.

2. Create an n× |V | matrix d of PET results: if L[i] = v, which means that we
pretend voter i voted for v ∈ V , then set di,v = 1. Otherwise set di,v to be
a random element of Zq.

3. For each (i, v) pair create a simulated PET proof as follows. For each ci-

phertext ci = (c
(1)
i , c

(2)
i ) and each valid voting option v ∈ V pick a random

ri,v ←$Zq and set si,v = ((c
(1)
i )r, (c

(2)
i /v)r). Then compute proofs

πi,v = SimEqProof(g, s
(1)
i,v , h, s

(2)
i,v /di,v) ∪ EqProof(c

(1)
i , c

(2)
i /v, s

(1)
i,v , s

(2)
i,v )

4. Return the mix-net proofs Πmix and the PET proofs/data ΠPET consisting
of the values di,v, si,v and the associated proofs πi,v.

The EqProof part proves that the si,v are correct rerandomisations of the ci
for the votes v ∈ V , which they are. The SimEqProof are fake proofs that the
di,v are the decryptions of the si,v which is generally false since we chose the
di,v values randomly. As the encryption scheme in question is NM-CPA secure,
no PPT adversary has more than a negligible change of telling a correct d-value
from a false one without any proofs (indeed, this is why we have the proofs of
correct decryption in the real tally) and since the proofs are zero-knowledge,
we can assume that a PPT adversary cannot tell a real from a simulated proof.
Therefore the proofs πi,v do not help in distinguishing real from fake di,v either.

The adversary does know the result R (since the challenger in the BPRIV
game outputs that and SimTally cannot change it) but the simulated decryptions
di,v are consistent with R and follow the same distribution as the real ones.
Therefore we can claim that the output of the tallying oracle in case β = 1
is indistinguishable to PPT adversaries from the output in the case β = 0.
The other information that the adversary sees are the ballots on the board
(in particular the OVoteLR ones which have a dependency on β) but these are
ciphertexts in an NM-CPA secure encryption scheme so we can assume that
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they are indistinguishable to PPT adversaries too. We therefore conclude that
KTV-Helios satisfies BPRIV and have proven the following.

Theorem 3. KTV-Helios satisfies the BPRIV security definition.

5.3 Strong Correctness and Strong Consistency

Together with BPRIV, [11] contains two auxiliary properties called strong cor-
rectness and strong consistency that are also required for a voting scheme to
guarantee privacy. We define and check these properties here for the KTV
scheme.

The Valid algorithm can reject new ballots based on the information already
on the board (for example, it can reject a duplicate of an existing ballot). Strong
correctness ensures that the rejection algorithm is not too stong, in particular
that dishonest voters cannot manipulate the board to the point where it would
prevent an honest voter from casting her ballot. To model this we let the adver-
sary choose a bulletin board and test if an honest ballot, for which the adversary
can choose all inputs, would get rejected from this board.

Since the original definition did not contain timestamps or a list of registered
voter identities, we adapt the syntax of the original definition [11, Def. 9] to
include these elements.

Definition 4. A voting scheme S has strong correctness if no PPT adversary
has more than a negligible probability of winning in the following experiment.

1. The challenger sets up the voting scheme and publishes the election public
key pk and the list of voter identities and public keys I.

2. The adversary generates a board BB, a voter identity id ∈ I, a vote v ∈ V
and a timestamp t ∈ [Ts, Te].

3. The challenger creates a ballot b = Vote((id, skid), id, v, t).
4. The adversary loses if there is already a ballot with timestamp t′ ≥ t on BB.
5. The adversary wins if Valid(BB, b) rejects the honest ballot b.

We have made the following changes compared to the original definition: we
have added identities id to match the syntax of our voting scheme and demanded
that the adversary choose an id ∈ I since otherwise the ballot b will quite
legitimately be rejected. We have also added timestamps and the restriction
that the adversary must choose a timestamp t satisfying both t ≤ Te and t > t′

for any timestamp t′ of a ballot already on the board BB. Otherwise one could
trivially stop any more ballots from being accepted by putting a ballot with
timestamp Te on the board.

Lemma 2. The voting scheme described in Section 2.2 satisfies strong correct-
ness.

Proof. If Valid(BB, b) fails on a ballot then one of two things must have happened:
Validate(b) = 0 or the ciphertext c in b is already on the board somewhere.
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Validate(b) only fails if the identity id in b is not in I, one of the proofs in b
does not verify or the timestamp is out of its domain. Since we are considering
a honestly generated ballot b in the strong correctness experiment, correctness
of the proof schemes involved means that the proofs are correct.

Since the ballot b in question is created by Vote which picks a fresh random
r←$Zq, the probability of c colliding with a previous ciphertext (even an adver-
sarially created one) is negligible. (To be precise, since we are assuming a PPT
adversary, the board BB created by the adversary can only contain a polynomi-
ally bounded number of ciphertexts and since the probability of a collision with
any of these is negligible individually, so is the sum of these probabilities for a
union bound.) This proves Lemma 4. ut

The definition of strong correctness may seem tautological (and the proof
trivial) but it prevents the following counter-example from [11, Section 4.4]:
an adversary can set a particular bit in a ballot of its own that causes the
board to reject all further ballots. Assuming that either Alice wants to vote for
(candidate) 1 and Bob wants to vote for 2 or the other way round, in a private
voting scheme we would not expect the adversary to be able to tell who voted
for 1. Without strong correctness, the adversary could let Alice vote then submit
their “special” ballot to block the board, then ask Bob to vote. Since Bob’s ballot
now gets rejected, the result is exactly Alice’s vote, so the adversary discovers
how she voted.

Strong consistency prevents the Valid algorithm from leaking information
in scenarios such as the following: the adversary can submit a special ballot
that gets accepted if and only if the first ballot already on the board is a vote
for 1. Of course this is mainly of interest where Valid has access to non-public
information, either because it has access to a secret key or the board contains
non-public information.

Strong consistency formally says that the election result is a function of the
votes and that each valid ballot must be uniquely associated with a vote. In
particular, the vote in one ballot cannot depend on the other ballots on the
board.

Definition 5. A voting scheme has strong consistency relative to a result func-
tion ρ if there are two algorithms

– Extract(sk, b) takes an election secret key and a ballot and returns either a
pair (id, v) containing an identity id ∈ I and a vote v ∈ V , or the symbol ⊥
to denote an invalid ballot.

– ValidInd(pk, b) takes an election public key and a ballot and returns 0 (invalid
ballot) or 1 (valid ballot).

such that the following conditions hold.

1. The extraction algorithm returns the identity and vote for honestly created
ballots: for any election keypair (pk, sk) created by Setup, any voter registra-
tion list I and any ballot b created by Vote((id, skid), id, v, t) where id ∈ I,
t ∈ [Ts, Te] and v ∈ V we have Extract(sk, b) = (id, v).
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2. Ballots accepted onto a board are also accepted by ValidInd: for any board
BB, if Valid(BB, b) holds then ValidInd(pk, b) holds too.

3. For any PPT adversary A, the probability of winning the following game is
negligible:
(a) Create an election keypair (pk, sk) with Setup and set up user registration

list I.
(b) Give A all public and secret keys of the election and the users and let A

return a board BB. Let n be the number of ballots on this board.
(c) A loses if there is any ballot b on the board BB for which ValidInd(b) = 0.
(d) Let (r1,Π) = Tally(sk,BB). The adversary loses if the tallying function

returns ⊥.
(e) Let ei = Extract(bi) for i = 1, . . . , n and the bi are the ballots on the

board BB. Let r2 = ρ(e1, . . . , en).
(f) The adversary wins if r1 6= r2.

We prove that KTV-Helios satisfies strong consistency. This means that we
have to check that the tally function really counts the votes in the ballots.

For Extract(sk, b) we parse the ballot as b = (id, c, πPoK , π, t) and check the
two proofs; if either of them fail then we return ⊥. Then we decrypt c with
sk to get a vote v. If v ∈ V then we return (id, v) otherwise we return ⊥. For
ValidInd(pk, b) we just run Validate(b). We can assume that the list I of voter
identities and public keys is public. We check the three conditions:

1. This follows from correctness of the encryption and proof schemes. If we
encrypt a vote v ∈ V to get ciphertext c then we also get v back when we
decrypt c with the matching key and the correct voting algorithm produces
correct proofs too.

2. Since Valid runs Validate, it must hold that ballots accepted onto the board
are valid.

3. In fact the probability of an adversary winning this game is zero. Consider an
execution of the experiment in which r1 6= r2 in the last stage. We know that
Tally did not return ⊥ or we would not have got this far, therefore all ballots
on the board passed Validate individually and the board as a whole passed
ValidBB(BB). In particular ValidateBB did not cause tallying to abort.
In this case, by the definition of Tally, the result r1 is obtained by homomor-
phically adding the ciphertexts of each voter, mixing (which does not change
the votes) and then PET-decrypting the resulting ballots which for all valid
votes produces the same result as normal decryption whereas invalid ones
are discarded.
The extraction to get r2 on the other hand first decrypts each ciphertext
individually, then (to evaluate ρ) sums the decrypts for each voter, discards
invalid sums and then reports the number of votes for each option. By the
homomorphic property of the encryption scheme, these two methods of tal-
lying must return the same result r (strong consistency does not deal with
the proofs Π of correct tallying).

This concludes the proof of strong consistency. ut

19



6 Verifiability

Our goal was to prove that the scheme provides verifiability, i.e. cast as intended
and stored as cast verifiability is provided for every honest voter; and that ev-
eryone can verify that only ballots from the eligible voters are included in the
tally, and that each ballot cast by eligible voters is correctly tallied. It is hence
required, that a successful verification ensures, that the tally result consists of
the ballots of all the honest voters who run VerifyVote(BB, b), a subset of ballots
of honest voters who did not do this, and a subset of ballots of voters corrupted
by the adversary. We accept the following assumptions: the register of eligible
voters and the PKI is trustworthy, and the honest voters’ secret keys and the
signatures on ballots are not leaked to the adversary. The latter assumption
relies on the trustworhiness of the voting devices, which, however, might be re-
alistically expected in some settings, e.g. in case a national eID infrastructure
with tamper-resistant smartcards is in place.

For the actual proof, we rely on the ’verifiability against a malicious bulletin
board’ framework definition for Helios alike schemes of [3] which matches the
verifiability definition in our introduction. We adjust the definition in [3] to
the KTV-Helios scheme by applying the following experiment Expver−bA,S : The
challenger runs the setup phase as outlined in Section 2.2 on behalf of the election
organizer, registration authority and eligible voters. The tabulation teller, which
might be controlled by the adversary, runs Setup(1λ). The challenger further
initialises an empty set IC and HVote, which would correspond to the set of
corrupted voters and to the votes cast by honest voters correspondingly. The
adversary is given access to the following queries:

OVote(id′, id, v, t):
if id 6∈ I ∪ {îd} or id ∈ IC

return ⊥
endif
b = Vote((id′, skid′), id, v, t)
Append b to BB

OCast(b):
Append b to BB

OCorrupt(id):

if id ∈ IC then
return ⊥

endif
Add id to IC

Remove all tuples (id, ∗, ∗) from HVote
return skid

In addition to these queries, the adversary also has the capabilities of adding,
modifying and removing the ballots on the bulletin board. Additionally, a set
of voters Checked ⊂ I is defined, so that for each query OVote(id, id, v, t), it is
assumed that the corresponding voter id ∈ Checked has run VerifyVote(BB, b) on
the resulting ballot at the end of the election, and complained to the authorities
in case the verification result was negative. At the end of the experiment, the
adversary produces the tally output (R,Π). The experiment outputs Expver−bA,S =
0 if one of the following cases holds:

Case 1: There were no manipulation, i.e. the output result R corresponds
to the votes from honest voters who checked that their ballot is properly stored
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on the bulletin board, a subset of votes from honest voters who did not perform
this check, and a subset of votes from corrupted voters: i.e.

R = ρ((idE,1, vE,1), ..., (idE,nE
, vE,nE

))

+ ρ((idA,1, vA,1), ..., (idA,nA
, vA,nA

)) + ρ((idB,1, vB,1), ..., (idB,nB
, vB,nB

))

holds; while the list of tuples (idE,i, vE,i) were cast by honest voters (i.e. it
holds, (idE,i, vE,i, ∗) ∈ HVote for all i = 1, ..., nE ) who verified that their
ballot is properly stored on the bulletin board (i.e. idE,i ∈ Checked for all
i = 1, ..., nE); the list of tuples {(idA,1, vA,1), ..., (idA,nA

, vA,nA
)} were cast by

honest voters (i.e. (idA,i, vA,i, ∗) ∈ HVote for all i = 1, ..., nA) but who did
not verify (i.e. idA,i 6∈ Checked for all i = 1, ..., nA); and the list of tuples
{(idB,1, vB,1), ..., (idB,nB

, vB,nB
)} represents those votes cast by the adversary

so that the number of unique IDs in a list {idB,1, ..., idB,nB
} is at most the

number of corrupted voters |IC |.
Case 2: A manipulation was detected, i.e either there were complains from

the voters who run the VerifyVote check with VerifyVote(BB, b) =⊥, or the tally
output does not pass the validity check: ValidateTally(BB, (R,Π)) = 0. The
experiment Expver−bA,S serves as a basis for the definition of verifiability against a
malicious bulletin board.

Definition 6. A voting scheme S ensures verifiability, if the success probability

Pr
[
Expver−bA,S = 1

]
is negligible for any PPT adversary.

We are now ready to prove the verifiability against a malicious bulletin board
for the KTV-Helios scheme.

Theorem 4. KTV-Helios provides verifiability against a malicious bulletin board.

The proof is provided in Appendix F.

7 Related Work

Several concrete and abstract definitions of security requirements and underlying
assumptions have been developed applying various formalization approaches:
An overview of game-based ballot privacy definitions was proposed in [11], and
a framework that proposes a uniform treatment of the verifiability definitions
from [3,28–31] is described in [23]. Other approaches for defining and evaluating
the security of voting schemes include applied pi-calculus [32–34], process algebra
[35] or k-resilience terms [36]. These approaches have been applied to evaluate
various voting schemes [12,34,36,37]. In particular, the formal security analysis
of Helios has been the topic of [3, 11,12].

Due to its versatility, various extensions and modifications of the original He-
lios scheme [1] have been proposed: A modification in [10] fixes the vulnerabilities
in [1]. Zeus [9], Selene [8] or the work by Guasch et al. [7] propose alternatives
to the cast-as-intended mechanism in Helios. Improvements of various security
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properties were proposed in [6] (ensuring long-term ballot privacy), in [3] (ensur-
ing verifiability against malicious bulletin board), in [4] (introducing threshold
decryption for better robustness); and in [5] (ensuring receipt-freeness). Other
research focused on improving the usability of Helios [13,14].

8 Conclusion and Future Work

We have evaluated the security properties of the KTV-Helios extension pro-
posed in [15]. Namely, we have proven that KTV-Helios satisfies ballot privacy
and verifiability against a malicious bulletin board according to the definitions
from [3, 11] adjusted to the context of KTV-Helios. Furthermore, we proposed
a probabilistic abstract definition of (δ, k)-participation privacy, with δ repre-
senting the adversarial advantage in distinguishing whether a particular honest
voter has cast up to k ballots in the election. We also proposed a probabilis-
tic abstract definition of δ-receipt-freeness for voting schemes based on deniable
vote updating. We proposed instantiations of both (δ, k)-participation privacy
and δ-receipt-freeness defintions for KTV-Helios and determined the value of δ
as the adversarial advantage for both of these properties.

We plan to extend the proofs in this paper for the case where the tabulation
teller and the posting trustee are implemented in a distributed way. We further
plan to adress the existing security and efficiency issues of KTV-Helios, such as
the possibility of board flooding and the neccessity of trusting the device that
holds the secret key for integrity, as well as its usability.
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26. D. Achenbach, C. Kempka, B. Löwe, and J. Müller-Quade, “Improved coercion-
resistant electronic elections through deniable re-voting,” JETS 2015: USENIX
Journal of Election Technology and Systems, pp. 26–45, 2015.

27. A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant electronic elections,”
in WPES 2005: Proceedings of the 2005 ACM workshop on Privacy in the electronic
society. ACM, 2005, pp. 61–70.
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A Multiple entities

In our proofs, we assumed that the tabulation teller and the posting trustee are
implemented as a single entity each.

We first consider the case with a total of Np > 1 posting trustees. We as-
sume that each of them acts independently from the others. Hence, the function
VoteDummy is run a total of Np times for each voter. As mentioned in the in-
troduction, our goal was to ensure participation privacy for the case, where at
most Np − 1 posting trustees are corrupted. In that case, in the experiment

Expppriv,βA,k defined Section 3, the query OVoteAbstain corresponds to a remaining
honest posting trustee casting dummy ballots on behalf of each voter. Hence,
the definition and proofs from Section 3 still hold.

There are several ways to implement multiple tabulation tellers. In particular,
for the shuffling, each tabulation teller could act as a separate mix node, and the
decryption could be implemented in a threshold distributed way. Similar to [11],
the security proofs for such a case will be considered in future work.

B Proof of partial counting property

We show, that the plaintext tally function ρ described in Section 2.1 has the
partial counting property. Let I = {id1, ..., idN} be a set of voter ids, îd 6∈ I
the id denoting the posting trustee, {o1, ..., oL} ∈ Gq \ {0} a set of valid voting

options, and let Vcast be a set of tuples (id, v) with id ∈ I ∪ {îd} and v ∈ Gq.
Let I1, .., Ik be partitions of I∪{îd}, so that

⋃k
i=1 Ii = I∪{îd} and Ii∩Ij = ∅

for all i 6= j. We further define the lists V(i)
cast ⊂ Vcast as a list of all the tuples

(id, v) ∈ Vcast, for which holds id ∈ Ii.
The partial counting property means, that the tally on Vcast can be expressed

as a sum of tallies on all the lists V(i)
cast, i = 1, ..., k. Namely, it should hold

ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)
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In order to prove this, consider the output of ρ(V(i)
cast). Let ρ′ be the function,

that, given the list of plaintext votes v1, ..., vN outputs the number of votes for
each voting option o1, ..., oL and the number of abstaining voters. Namely, on the
input of v1, ..., vN ∈ ({o1, ..., oL} ∪ 0)L+1 ⊂ GL+1

q , ρ′ returns a vector of values

R ∈ NL+1
0 . It holds, that ρ′ supports partial counting. Namely, for two lists

S1 = (v1,1, ..., vN1,1) and S2 = (v2,1, ..., vN2,2) with S1, S2 ∈ ({o1, ..., oL}∪0)L+1,
it holds

ρ′(S1) + ρ′(S2) = ρ′(S1 ∪ S2)

As described in Section 2.1, with V as a set of tuples (id, v) ∈ I ∪ {îd}×G1,
the function ρ outputs R = ρ′(v1, ..., vN ) with vi, i = 1, ..., N being either the
sum of all votes cast by the voter idi ∈ I, or vi = 0 if there were no valid votes
from the voter idi in V (i.e. there is no tuple (idi, v) with v ∈ {o1, ..., oL} in V).

it follows that ρ(V(i)
cast) = ρ′(v1,i, ..., vN,i) with vj,i denoting the sum of all

cast votes by the voter idj if idj ∈ Ii, and vj,i = 0 if idj 6∈ Ii. Combined with
the partial counting property of ρ′ it follows that

ρ(Vcast) =

k∑
i=1

ρ(V(i)
cast)

ut

C Proof of Ballot Privacy, Strong Correctness and Strong
Consistency

We base the proofs described in this section on the same ideas as [11].

C.1 Ballot Privacy

The core of a BPRIV proof is a simulator SimTally that, when β = 1, takes as
input the board BB1 and the result R from BB0 and outputs simulated data Π
that the adversary cannot distinguish from real auxiliary data, such as proofs
of correct tallying. This proves that the auxiliary data Π does not leak any
information about the votes, except what already follows from the result.

Recall that the tallying process in KTV-Helios is as follows:

1. Remove any invalid ballots from the board using ValidateBB.
2. Homomorphically aggregate the ballots from each voter.
3. Shuffle the remaining ballots (one per voter) in a mix-net.
4. Match each shuffled ballot against each valid vote v ∈ V with a PET.
5. Compute the number of voters who chose each vote v ∈ V by counting the

successful PETs. This gives the election result R.
6. The auxiliary data Π comprises the proofs of correct mixing Πmix from stage

3 and the data and proofs ΠPET forming the PETs in stage 4.
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The additional PET stage compared to (non-KTV) Helios actually makes
the ballot privacy proof easier. The simulator SimProof(BB, R) works as follows:

1. Remove any invalid ballots from the board BB using ValidateBB.
2. Homomorphically aggregate the ballots from each voter.
3. Shuffle the remaining ballots (one per voter) in a mix-net. Note, we do not

need to simulate the mix-net; we can just run a normal mix (and store the
auxiliary data Πmix that this creates).

4. Simulate the PETs (we will describe this in detail below) to get simulated
data Π′PET .

5. Return (Πmix,Π
′
PET ).

The following lemma is useful to construct the PET simulator.

Lemma 3. In any execution of the BPRIV game, if we tallied both boards then
with all but negligible probability, both boards would end up with the same number
of ballots.

Note that both the OVoteLR and the OCast oracles either add one ballot
to both boards each or do not add any ballots at all. Therefore we have the
invariant that the number of ballots before tallying is the same on both boards
with probability 1.

The first stage of the tallying algorithm runs ValidateBB to remove possibly
invalid ballots. On the visible board BBβ , since all ballots were already checked
in the oracles before placing them on the board, we conclude that ValidateBB
does not remove any ballots. On the invisible board BB(1−β), if any ballot b gets
removed then we consider the query (VoteLR or Cast) where it was created. The
only way a ballot b can get removed again is if at the time it was added, it was
valid on BBβ (or it would never have got added at all) but invalid on BB(1−β) (or
it would not get removed again later). But this means that the ciphertext c in the
ballot b in question must be a copy of an earlier ciphertext on BB(1−β) but not
on BBβ , as this is the only other case when Valid declares a ballot invalid, and
the only such ballots are those created by OVoteLR. Therefore we conclude that
either two ballots created by OVoteLR have collided, the probability of which
is certainly negligible, or the adversary has submitted in a OCast query a copy
of a ciphertext that OVoteLR previously placed on the invisible board BB(1−β).
Since the adversary never saw this ciphertext, and since the encryption scheme
is NM-CPA so ciphertexts must be unpredictable, the probability of this event
is negligible too. This concludes the proof of Lemma 3.

We now describe how to simulate the PET. Our inputs are a number n of
ballots (the output of the mix-net), a result R that was correctly computed on
a different board that also had n ballots (after stage 1 of tallying) by Lemma 3
and a set V of valid votes.

Since the PETs in a real tally are taken over ballots that have just come out
of a mix-netm the distribution of votes in these ballots is a uniformly random
permutation of votes subject to the tally being R. For example, if R indicates
that there was one vote for v = 1 and n− 1 votes for v = 2 then the probability
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of the 1-vote being in the i-th ballot is 1/n, irrespective of the order in which the
ballots were cast (for example the adversary might know that the first person to
vote was the one that cast the 1-vote). This is because the ballots are uniformly
permuted in the mix-net.

Our simulation strategy is therefore to emulate this random permutation.
The result R gives us a mapping fR : V ∪{⊥} → {0, 1, . . . , n} where for example
fR(v) = 3 means that three voters voted for v and fR(⊥) is the number of voters
who cast an invalid vote. We have fR(⊥) +

∑
v∈V fR(v) = n, i.e. the number of

invalid votes plus the totals for each valid option sum to the number n of ballots
that came out of the mix-net. We simulate as follows:

1. Create a list L = (L1, . . . , Ln) such that each vote v ∈ V appears fR(v) times
in L and the symbol ⊥ appears fR(⊥) times. Then permute L randomly.

2. Create an n× |V | matrix d of PET results: if L[i] = v, which means that we
pretend voter i voted for v ∈ V , then set di,v = 1. Otherwise set di,v to be
a random element of Zq.

3. For each (i, v) pair create a simulated PET proof as follows. For each ci-

phertext ci = (c
(1)
i , c

(2)
i ) and each valid voting option v ∈ V pick a random

ri,v ←$Zq and set si,v = ((c
(1)
i )r, (c

(2)
i /v)r). Then compute proofs

πi,v = SimEqProof(g, s
(1)
i,v , h, s

(2)
i,v /di,v) ∪ EqProof(c

(1)
i , c

(2)
i /v, s

(1)
i,v , s

(2)
i,v )

4. Return the mix-net proofs Πmix and the PET proofs/data ΠPET consisting
of the values di,v, si,v and the associated proofs πi,v.

The EqProof part proves that the si,v are correct rerandomisations of the ci
for the votes v ∈ V , which they are. The SimEqProof are fake proofs that the
di,v are the decryptions of the si,v which is generally false since we chose the
di,v values randomly. As the encryption scheme in question is NM-CPA secure,
no PPT adversary has more than a negligible change of telling a correct d-value
from a false one without any proofs (indeed, this is why we have the proofs of
correct decryption in the real tally) and since the proofs are zero-knowledge,
we can assume that a PPT adversary cannot tell a real from a simulated proof.
Therefore the proofs πi,v do not help in distinguishing real from fake di,v either.

The adversary does know the result R (since the challenger in the BPRIV
game outputs that and SimTally cannot change it) but the simulated decryptions
di,v are consistent with R and follow the same distribution as the real ones.
Therefore we can claim that the output of the tallying oracle in case β = 1
is indistinguishable to PPT adversaries from the output in the case β = 0.
The other information that the adversary sees are the ballots on the board
(in particular the OVoteLR ones which have a dependency on β) but these are
ciphertexts in an NM-CPA secure encryption scheme so we can assume that
they are indistinguishable to PPT adversaries too. We therefore conclude that
KTV-Helios satisfies BPRIV and have proven the following.

Theorem 5. KTV-Helios satisfies the BPRIV security definition.

28



C.2 Strong Correctness and Strong Consistency

Together with BPRIV, [11] contains two auxiliary properties called strong cor-
rectness and strong consistency that are also required for a voting scheme to
guarantee privacy. We define and check these properties here for the KTV
scheme.

The Valid algorithm can reject new ballots based on the information already
on the board (for example, it can reject a duplicate of an existing ballot). Strong
correctness ensures that the rejection algorithm is not too stong, in particular
that dishonest voters cannot manipulate the board to the point where it would
prevent an honest voter from casting her ballot. To model this we let the adver-
sary choose a bulletin board and test if an honest ballot, for which the adversary
can choose all inputs, would get rejected from this board.

Since the original definition did not contain timestamps or a list of registered
voter identities, we adapt the syntax of the original definition [11, Def. 9] to
include these elements.

Definition 7. A voting scheme S has strong correctness if no PPT adversary
has more than a negligible probability of winning in the following experiment.

1. The challenger sets up the voting scheme and publishes the election public
key pk and the list of voter identities and public keys I.

2. The adversary generates a board BB, a voter identity id ∈ I, a vote v ∈ V
and a timestamp t ∈ [Ts, Te].

3. The challenger creates a ballot b = Vote((id, skid), id, v, t).
4. The adversary loses if there is already a ballot with timestamp t′ ≥ t on BB.
5. The adversary wins if Valid(BB, b) rejects the honest ballot b.

We have made the following changes compared to the original definition: we
have added identities id to match the syntax of our voting scheme and demanded
that the adversary choose an id ∈ I since otherwise the ballot b will quite
legitimately be rejected. We have also added timestamps and the restriction
that the adversary must choose a timestamp t satisfying both t ≤ Te and t > t′

for any timestamp t′ of a ballot already on the board BB. Otherwise one could
trivially stop any more ballots from being accepted by putting a ballot with
timestamp Te on the board.

Lemma 4. The voting scheme described in Section 2.2 satisfies strong correct-
ness.

Proof. If Valid(BB, b) fails on a ballot then one of two things must have happened:
Validate(b) = 0 or the ciphertext c in b is already on the board somewhere.

Validate(b) only fails if the identity id in b is not in I, one of the proofs in b
does not verify or the timestamp is out of its domain. Since we are considering
a honestly generated ballot b in the strong correctness experiment, correctness
of the proof schemes involved means that the proofs are correct.

Since the ballot b in question is created by Vote which picks a fresh random
r←$Zq, the probability of c colliding with a previous ciphertext (even an adver-
sarially created one) is negligible. (To be precise, since we are assuming a PPT
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adversary, the board BB created by the adversary can only contain a polynomi-
ally bounded number of ciphertexts and since the probability of a collision with
any of these is negligible individually, so is the sum of these probabilities for a
union bound.) This proves Lemma 4. ut

The definition of strong correctness may seem tautological (and the proof
trivial) but it prevents the following counter-example from [11, Section 4.4]:
an adversary can set a particular bit in a ballot of its own that causes the
board to reject all further ballots. Assuming that either Alice wants to vote for
(candidate) 1 and Bob wants to vote for 2 or the other way round, in a private
voting scheme we would not expect the adversary to be able to tell who voted
for 1. Without strong correctness, the adversary could let Alice vote then submit
their “special” ballot to block the board, then ask Bob to vote. Since Bob’s ballot
now gets rejected, the result is exactly Alice’s vote, so the adversary discovers
how she voted.

Strong consistency prevents the Valid algorithm from leaking information
in scenarios such as the following: the adversary can submit a special ballot
that gets accepted if and only if the first ballot already on the board is a vote
for 1. Of course this is mainly of interest where Valid has access to non-public
information, either because it has access to a secret key or the board contains
non-public information.

Strong consistency formally says that the election result is a function of the
votes and that each valid ballot must be uniquely associated with a vote. In
particular, the vote in one ballot cannot depend on the other ballots on the
board.

Definition 8. A voting scheme has strong consistency relative to a result func-
tion ρ if there are two algorithms

– Extract(sk, b) takes an election secret key and a ballot and returns either a
pair (id, v) containing an identity id ∈ I and a vote v ∈ V , or the symbol ⊥
to denote an invalid ballot.

– ValidInd(pk, b) takes an election public key and a ballot and returns 0 (invalid
ballot) or 1 (valid ballot).

such that the following conditions hold.

1. The extraction algorithm returns the identity and vote for honestly created
ballots: for any election keypair (pk, sk) created by Setup, any voter registra-
tion list I and any ballot b created by Vote((id, skid), id, v, t) where id ∈ I,
t ∈ [Ts, Te] and v ∈ V we have Extract(sk, b) = (id, v).

2. Ballots accepted onto a board are also accepted by ValidInd: for any board
BB, if Valid(BB, b) holds then ValidInd(pk, b) holds too.

3. For any PPT adversary A, the probability of winning the following game is
negligible:

(a) Create an election keypair (pk, sk) with Setup and set up user registration
list I.
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(b) Give A all public and secret keys of the election and the users and let A
return a board BB. Let n be the number of ballots on this board.

(c) A loses if there is any ballot b on the board BB for which ValidInd(b) = 0.
(d) Let (r1,Π) = Tally(sk,BB). The adversary loses if the tallying function

returns ⊥.
(e) Let ei = Extract(bi) for i = 1, . . . , n and the bi are the ballots on the

board BB. Let r2 = ρ(e1, . . . , en).
(f) The adversary wins if r1 6= r2.

We prove that KTV-Helios satisfies strong consistency. This means that we
have to check that the tally function really counts the votes in the ballots.

For Extract(sk, b) we parse the ballot as b = (id, c, πPoK , π, t) and check the
two proofs; if either of them fail then we return ⊥. Then we decrypt c with
sk to get a vote v. If v ∈ V then we return (id, v) otherwise we return ⊥. For
ValidInd(pk, b) we just run Validate(b). We can assume that the list I of voter
identities and public keys is public. We check the three conditions:

1. This follows from correctness of the encryption and proof schemes. If we
encrypt a vote v ∈ V to get ciphertext c then we also get v back when we
decrypt c with the matching key and the correct voting algorithm produces
correct proofs too.

2. Since Valid runs Validate, it must hold that ballots accepted onto the board
are valid.

3. In fact the probability of an adversary winning this game is zero. Consider an
execution of the experiment in which r1 6= r2 in the last stage. We know that
Tally did not return ⊥ or we would not have got this far, therefore all ballots
on the board passed Validate individually and the board as a whole passed
ValidBB(BB). In particular ValidateBB did not cause tallying to abort.
In this case, by the definition of Tally, the result r1 is obtained by homomor-
phically adding the ciphertexts of each voter, mixing (which does not change
the votes) and then PET-decrypting the resulting ballots which for all valid
votes produces the same result as normal decryption whereas invalid ones
are discarded.
The extraction to get r2 on the other hand first decrypts each ciphertext
individually, then (to evaluate ρ) sums the decrypts for each voter, discards
invalid sums and then reports the number of votes for each option. By the
homomorphic property of the encryption scheme, these two methods of tal-
lying must return the same result r (strong consistency does not deal with
the proofs Π of correct tallying).

This concludes the proof of strong consistency. ut

D Proof of participation privacy for the KTV-Helios
scheme

We base our proof on the idea, that the aforementioned sources of information
(i.e. the number of ballots next to id0 and id1) is the only ones that give advan-
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tage to the adversary. The rest of the public election data, as in case of ballot
privacy (as shown in Section 5), does not provide any advantage to the adversary.

Our proof strategy is hence as follows. We consider a sequence of games,
starting from Expppriv,0A,Sk and ending with Expppriv,1A,S,k and show, that the adversary
A that is given access to the queries in QS distinguishes the transition through
all those games with the advantage of at most δ := maxk′≤k δ

num
k′,Pd,Pt

. We define
BB0,i as the content of the bulletin board and (Ri,Πi) as the tally output at the
end of the game Gi, i = 1, ..., 4. We define the sequence as follows:

• G1. The first game G1 is equivalent to the experiment Expppriv,βA,S,k with
β = 0, and v1, ..., vk′ 6= 0 (hence, it is equivalent to the election where the voter
id0 abstains, and the voter id1 casts k′ ≤ k ballots with the votes v1, ..., vk′).
Thus, the content of BB0,1 and the tally output (R1,Π1) corresponds to the

content of BB0 and the output of OTally at the end of Expppriv,0A,S,k .

• G2. The second game G2 is equivalent to the election, where the voter id0
abstains, and the voter id1 casts k′ ≤ k ballots with a null-vote. The contents of
the bulletin board BB0,2 is equivalent to the content of the bulletin board BB1 at

the end of Expppriv,1A,S,k for the adversary using the query OVoteAbstain(v1, ..., vk′)
with v = 0. The tally result R, however, is calculated on the contents of the
bulletin board BB0,1 in the game G1, and the auxiliary output Π2 is simulated
as Π2 = SimProof(R1,BB0,2).

We prove, that the adversarial advantage in distinguishing between the out-
put of G1 and G2 is at most the adversarial advantage in the ballot privacy
experiment (Section 5). Consider an adversary B in the ballot privacy experi-

ment Expbpriv,βA,S , who simulates the games G1 and G2 for the adversary A. The

adversary B returns the output of Expbpriv,βA,S for the queries OCast and OTally.
For simulating the output of OVoteAbstain(v1, ..., vk′), B proceeds as follows:
First, she simulates the dummy ballots for each voter idi, i ∈ {0, 1} by choos-
ing a random values mi←$Pd, and a set of random timestamps t1, ..., tmi

←$Pt.
The dummy ballots bi,1, ..., bi,mi

are computed as bi,j = Vote((îd, 0), idi, 0, tj),
j = 1, ...,mi. Aftwewards, she simulates casting the votes v1, ..., vk′ : For each
of the votes vl, l = 1, ..., k′, she uses the query OVoteLR(id1, id1, 0, vl, t) for a

random tl ∈ Pt in Expbpriv,βA,S . The output of the queries OVoteLR and the dummy
ballots bi,1, ..., bi,mi

is returned to A. At the end, B returns the value β output

by A as the guess in Expbpriv,βA,S . Thus, it follows that the adversarial advantage
in distinguishing G1 from G2 is at most equal to the adversarial advantage in
Expbpriv,βA,S , denoted as δBPRIV .

• G3. The third game G3 is equivalent to the election, where the voter
id0 casts k′ ≤ k ballots with null-vote, and the voter id1 abstains from the
election. Namely, the content of the bulletin board BB0,3 is equivalent to the

content of the bulletin board BB1 at the end of Expppriv,1A,S,k for the adversary
using the query OVoteAbstain(v1, ..., vk′) with vl = 0 ∀l = 1, ..., k′, k′ ≤ k. The
tally outputs the result R1 computed on BB0,1 and simulated auxilary data
Π3 = SimProof(R2,BB0,3).
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We prove, that the adversary has an advantage of maxk′≤k δ
num
k′,Pd,Pt

of distin-
guishing between the output of G2 and G3. The tally result does not change,
hence the tally output (R1,Π2) is equivalent to the tally output (R1,Π3). The
only difference between the contents of BB0,1 and BB0,2 is the presence of k′

additional ballots with the encryption of 0 on BB0,3. Therefore, we conclude
that the challenge in distinguishing between the outputs of G2 and G3 is equiv-
alent to the challenge in distinguishing between the output of Expnum,0A,Pd,Pt,k′

and

Expnum,1A,Pd,Pt,k′
for every k′ ≤ k chosen by the adversary, and therefore the adver-

sarial advantage of distinguishing between the output of G1 and G2 is at most
maxk′≤k δ

num
k′,Pd,Pt

.
• G4. The fourth game G4 is equivalent to the election where the voter

id0 casts k′ ballots with the votes v1, ..., vk′ , and the voter id1 abstains. The
tally is computed on BB0,1, and the auxiliary output is simulated as Π4 =
SimProof(R1,BB0,4). Applying the same argument as for the indistinguishability
of G1 and G2, it holds that adversary distinghuishes between the outputs of two
games with the same advantage as in the ballot privacy experiment, namely
δBPRIV .

It follows, that the in transition through the game sequence G1 → G2 →
G3 → G4, the outputs of each game are distinguished from the outputs of a pre-
vious game with the advantage either δBPRIV (for the games G1 and G2, and for
the games G3 and G4) or δnumk′,Pd,Pt

for k′ ≤ k (for the games G1 and G2). Since
δBPRIV is negligible, as proven in Section 5, it holds that the adversary distin-
guishes between the output in Expppriv,βA,k with the advantage only negligibly larger
than δnumk,Pd,Pt

for each k′ < k that she chooses in the experiment. Thus, given
that an adversary chooses k′ so that δnumk,Pd,Pt

≥ δnum,k′′ ∀k′′ 6= k′, k′′ ≤ k, the ad-

versarial advantage in Expppriv,βA,S,k is negligibly larger than δk := maxk′≤k δ
num
k′,Pd,Pt

.
ut

E Proof of receipt-freeness for the KTV-Helios scheme

As in the case with δ-participation-privacy, we base our proof on the idea, that
the number of ballots next to the voter is the only source of information that
givens advantage to the adversary.

We consider a sequence of games, starting from Exprfree,0A and ending with

Exprfree,1A and show, that the adversary A distinguishes the transition through all
those games with the advantage of at most δrfnumPd,Pt

. We define BB0,i as the content
of the bulletin board and (Ri,Πi) as the tally output at the end of the game Gi,
i = 1, ..., 4. We define the sequence as follows:
• G1. The first game G1 is equivalent to the experiment Exprfree,βA with

β = 0 (hence, it is equivalent to the election where the voter id does not try
to deniably update her vote). Thus, the content of BB0,1 and the tally output
(R1,Π1) corresponds to the content of BB0 and the output of OTally at the end

of Exprfree,0A .
• G2. The second game G2 is equivalent to the election, where the voter

id casts an additional ballot with a null-vote. Thus, the content of the bulletin
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board BB0,2 is equivalent to the content of the bulletin board BB1 at the end of

Exprfree,1A for the adversary using the query OReceipt(id, v0, v1, t) with v0 = v1.
We prove, that the adversary has an advantage of δnum of distinguishing be-

tween the output of G1 and G2. The tally result does not change, hence the tally
output (R2,Π2) is equivalent to the tally output (R1,Π1). The only difference
between the contents of BB0,1 and BB0,2 is the presence of an additional ballot
with the encryption of 0 on BB0,2. Therefore, we conclude that the challenge in
distinguishing between the outputs of G1 and G2 is equivalent to the challenge
in distinguishing between the output of Exprfnum,0A,Pd,Pt

and Exprfnum,1A,Pd,Pt
, and therefore

the adversarial advantage of distinguishing between the output of G1 and G2 is
δrfnumPd,Pt

.
• G3. The third game G3 is equivalent to the election, where the voter cast

a vote for a non-null voting option v 6= 0, and the tally result R is calculated on
the bulletin board BB0,2 with simulated tally proof Π = SimProof(BB0,3, R).

We now prove, that the adversarial advantage in distinguishing between the
output of G2 and G3 is negligible. Consider an adversary B in the ballot pri-
vacy experiment (Section 5) Expbpriv,βA,S , who simulates the games G2 and G3

for the adversary A. The adversary B returns the output of Expbpriv,βA for the
queries OVoteLR, OTally. For simulating the output of OReceipt(id, v0, v1, t), B
proceeds as follows: first, she computes a ballot bv = Vote((id, skid), id, v0, t).
She then chooses a random value m←$Pd, and a set of and random timestamps
t1, ..., tm←$Pt, and computes a set of ballots b1, ..., bm with bi = Vote((îd, 0), id, 0, ti).
She then uses the query OVoteLR(id, id, 0, v1/v0, t

′) for a random t′ ∈ Pt in

Expbpriv,βA and returns its output together with the ballots bv, b1, ..., bm to A. At

the end, B returns the value β output by A as the guess in Expbpriv,βA,S . Thus, it
follows that the adversarial advantage in distinguishing G2 from G3 is at most
equal to the adversarial advantage in Expbpriv,βA , denoted as δBPRIV .

It follows, that the in transition through the game sequence G1 → G2 → G3,
the outputs of each game are distinguished from the outputs of a previous game
with the advantage either δrfnumPd,Pt

(for games G1 and G2) or δBPRIV (for games

G2 and G3). Hence, the adversary distinguishes between the output in Exprfree,βA
with the advantage at most δ = δrfnumPd,Pt

+ δBPRIV , with δBPRIV negligible as
proven in Section 5. ut

F Proof of verifiability for the KTV-Helios scheme

The proof is based on similar ideas as in [3]. We proceed as follows: (1) We first
prove that each well-formed ballot b1, ..., bn on the bulletin board was either cast
by an honest voter who checked whether the ballot is properly stored on the
bulletin board, by an honest voter who did not check this, by a corrupted voter,
or the ballot corresponds to a null vote. (2) We then show that the plaintext
tally result on all the votes corresponding to these ballots together correspond
to all the votes cast by honest voters who checked that their vote is stored on the
bulletin board, a subset of honest voters who did no such checks, at most |IC |
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votes cast by the adversary and the dummy votes. After this, we prove (3) that
this plaintext tally result corresponds to the result output by the tally function
Tally, if this function is applied according to its specification in Section 2.2. We
conclude by proving (4), that the adversary is incapable of producing a tally
result that passes the verification check, and yet is different from the tally result
output by Tally.

Step 1. Let b = (id, c, πPoK , π, t) be a well-formed ballot (that passes Validate)
on the board. We prove that b belongs to one of the following lists with over-
whelming probability:

– VHCcast := ((idE,1, vE,1), ..., (idE,nE
, vE,nE

)) the list of all tuples of honest vot-
ers and non-zero votes (i.e. ((idE,i, vE,i), ∗) ∈ HVote) who verified that their
vote is properly stored on the bulletin board (i.e. idE,i ∈ Checked).

– VHUcast := ((idA,1, vA,1), ..., (idA,nA
, vA,nA

)), the list of all tuples of honest
voters and non-zero votes (i.e. ((idA,i, vA,i), ∗) ∈ HVote) who did not verify
that their vote is properly stored on the bulletin board (i.e. idE,i 6∈ Checked).

– VCcast := ((idB,1, vB,1), ..., (idB,nB
, vB,nB

)), the list of all tuples of corrupted
voters with non-zero votes (i.e. idB,i ∈ IC) and their votes.

– VDcast := {(∗, 0)}nD : the list of all tuples that correspond to zero-votes.

From soundness of the proof π we conclude that the ciphertext c ballot b
is signed by the voter’s secret key or else c encrypts zero, in which case b is
a zero-ballot and (îd, 0) must be in VDcast. If b is signed, by unforgeability of
the signature scheme and the assumption that honest voters do not reveal their
signing keys, either b was cast by a corrupt voter and so (id, v) ∈ VCcast where v
is the vote in c or else b was cast by a honest voter and so (id, v) must lie in one
of the other two lists (depending on whether id ∈ Checked or not).

Step 2. We prove that applying the tally function ρ to the lists in step 1
inlclues all votes by honest voters who checked their ballots, at most IC votes
by corrupt voters and a subset of the remaining honest votes (by voters who did
not check).

If there were no complaints from the voters in Checked, which would have
caused the adversary to lose the security game, we know that all the ballots from
these voters must be on the board so all their votes are in VHCcast. The adversary’s
ballots are only the ones in VCcast whose identities are in IC so the number of
these ballots is at most |IC |. All the remaining ballots are in VHUcast and so must
have been cast by non-checking honest voters. Since ρ supports partial counting
as expained in Section 2.1 we conclude, for Vcast the list of all votes in ballots
on the board:

ρ(Vcast) = ρ(VHCcast) + ρ(VHUcast) + ρ(VCcast).

Step 3. We prove that applying Tally(BB, sk) to the ballots on the board
tallies them correctly, i.e. the result R corresponds to ρ(Vcast).

The homomorphic property of ElGamal means that the ciphertexts input to
the mix contain the sum of all votes cast under the name of each voter. The mix
does not change the encrypted values in the ciphertexts, it just permutes them
around. Since ElGamal is a correct encryption scheme and the PET is sound, the
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decrypted values output in the PET correspond to the messages in the mixed
ciphertexts. It follows that the result output by Tally(BB, sk) corresponds to the
function ρ applied to the votes in the ballots on BB. (This step is essentially a
proof of correctness for the KTV scheme.)

Step 4. We prove that the adversary cannot output a result/proof pair
(R′,Π′) for a result R′ 6= R different from the result R that Tally would return,
which passes ValidateTally.

The homomorphic sum-ciphertexts for each voter are recomputed by ValidateTally
to be able to check the mix. The mix is protected by the proof πmix ∈ Π′ which
is sound, so the mixed ciphertexts (c̄i) ∈ Π′ must be a valid permutation and
rerandomisation of those on the board. The PET decryptions too are protected
by a sound proof so the decryption factors d in Π must match the ballots on
the board. From these, the result R can be recomputed. Therefore, unless one of
the proofs in Π is invalid (which would contradict soundness) we conclude that
if ValidateTally(BB, (R′,Π′)) only outputs 1 when R is the correct result for BB.

Hence, the adversarial success probability Pr
[
Expver−bA,S = 1

]
is negligible.

This proves verifiability against malicious bulletin boards.

ut

G Example for (δ, k)-participation privacy in KTV-Helios

We now provide an example of how to quantify (δ, k)-participation privacy given
a particular distribution for the number of dummy votes Pd.

Let Pd be a geometric distribution with the parameter p ∈ (0, 1], so that the
probability Pr[X = m ] = (1 − p)mp for m ≥ 0 and Pr[X = m] = 0 for m < 0.
Since the probability distribution for times of casting the dummy ballots Pt is
chosen in such a way, that it corresponds to the distribution of times at which
the voters cast their ballots, the timestamps on the ballots do not provide any
additional information to the adversary. Hence, we only consider the adversary
seeing the total number of cast ballots next to the voter.

Let k > 0, Mc ⊂ N2
0 be a set of all pairs (m0,m1) output in Expnum,βA,k , for

which an adversary guesses β = 0 (i.e. that m0 = m+k with m←$Pd, m1←$Pd.
It holds for δnumk,Pd,Pt

as defined in Section 3:

δnumk,Pd,Pt
:= Pr

[
Expnum,0A,k = 0

]
− Pr

[
Expnum,1A,k = 0

]
=

∑
(m0,m1)∈Mc

Pr[X = m0 − k ] · Pr[X = m1 ]

− Pr[X = m0 ] · Pr[X = m1 − k ]

Let M+ := {(m0,m1) ∈ N2
0 : P (X = m0 − k) · P (X = m1) − P (X =

m0) · P (X = m1 − k) > 0}. It further holds,
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δnumk,Pd,Pt
≥

∑
(m0,m1) ∈M+

P (X = m0 − k) · Pr[X = m1 ]

−Pr[X =m0 ] · Pr[X =m1 − k ] =

k−1∑
m1=0

∞∑
m0=k

Pr[X =m0 − k ] · Pr[X =m1 ]

=

k−1∑
m1=0

(1− p)m1p

∞∑
m0=0

(1− p)m0p

= 1− (1− p)k

It further follows, that an adversary who is instructed to always output β = 0
if for the output pair (m0,m1) if it holds that Pr[X = m0 − k ] · Pr[X = m1 ]−
Pr[X = m0 ] · Pr[X = m1 − k ] > 0, guesses β correctly with an advantage of
1− (1−p)k. Hence, it holds for the adversarial advantage δnumk,Pd,Pt

= 1− (1−p)k.
It further holds, that maxk′≤k δ

num
k,Pd,Pt

= δnumk,Pd,Pt
. Thus, the KTV-Helios scheme

with Pd as a geometric distribution with parameter p achieves (δ, k)-participation
privacy with δ = 1− (1− p)k.
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