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A dislocation-based fracture mechanics approach is 
applied to a mode III crack within the first strain gradient 
elasticity (GradEla) framework [1–4]. The mode III crack 
is modeled by the convolution of distributed screw dislo-
cations, for which the stress and dislocation density have 
been discussed in [4–7]. The unknown dislocation density 
is determined by using the nonstandard boundary condi-
tions resulting from a variational formulation of GradEla 
[3, 8, 9]. In particular, the GradEla counterpart of the clas-
sical traction vector and the double stress traction vector 
are taken into account in modeling the crack faces. Then, 
the dislocation density is determined, resulting in non-
singular elastic stresses. To investigate the effect of the 
nonstandard boundary condition, the dislocation density 
and stress components are compared for the two cases 
involving nonstandard and classical boundary conditions.

Within an incompatible GradEla framework, we have 
the following basic equations
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In the above-mentioned relations, (ui, εij, αij) are 
kinematic quantities denoting the displacement vector, 
the elastic strain tensor, and the dislocation density 
tensor [10]. The total distortion tensor T

ijβ  is curl-free, 
while the elastic βij and plastic P

ijβ  distortions are not 
curl-free within an incompatible framework. The con-
stitutive quantities τij and τijk denote the elastic stress 
and the double (third-order) stress tensor, while σij 
denotes the total (Cauchy-like) stress tensor satisfying 
the usual equilibrium equation. The symbols δij and 
eijk denote the Kronecker delta and the Levi-Chivita 
tensors, respectively, while ℓ is the internal length and 
(λ, μ) the usual Lamé constants. The “natural” bound-
ary conditions for the nonclassical traction vector ti and 
the double traction vector qi listed in Eq. (5) are to be 
used in the sequel result from a variational formula-
tion of GradEla [2], with ni denoting the unit normal to a 
smooth boundary [8, 9].

For infinite domains, the “boundary conditions” 
do not imply any constraint on the solution of the gov-
erning equations, other than the requirement of having 
finite values at infinity. In fact, the nonsingular solu-
tion for the stress field τij of a screw dislocation was 
first derived by Gutkin and Aifantis [5, 6] and Lazar and 
Maugin [4] as
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where bz denotes the Burgers vector and K1 is the modi-
fied Bessel function of order 1. The singularity of the 
classical stress is regularized in GradEla by the term 
inside the parenthesis, which includes the Bessel func-
tion. Analogous expressions hold for the elastic strains, 
whereas the only non-vanishing component of the dislo-
cation density tensor αzz reads [11]
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where K0 denotes the Bessel function of order 0. Further-
more, the non-vanishing components of the double stress 
tensor of the screw dislocation are [4, 11]
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It turns out that the stresses τij and τijk are divergent-
free outside the dislocation core region. It should also be 
noted that the double stress tensor in first strain GradEla 
is still singular. Non-singular expressions for τijk can be 
derived within a second strain GradEla theory [11].

Dislocations are elementary defects in solids, which 
can be used to represent more complex (composite) 
defects [12]. For example, using the distributed dislocation 
technique (DDT), the arbitrary configuration of cracks can 
be modeled [13]. In this technique, the dislocations are 
distributed in the locations of cracks, and then, the stress 
fields for the cracked medium can be derived by using the 
stress field of dislocations. In other words, the basic idea 
of DDT is that the field tensor for cracks can be determined 
by the convolution of the field tensor for dislocations with 
a dislocation distribution function.

In general, DDT is capable of analysis of multiple 
curved cracks. Here, for simplicity, we consider one 
straight crack, i.e. a plane weakened by one straight crack 
of length 2a along the x-axis (Figure 1). The parametric 
form of the crack is

	 1 1( ) ;  ( ) 0, -1 1.x s as y s s= = = = < <α β � (9)

The antiplane Cauchy traction vector (tz) and the 
double stress traction vector (qz) on the surface of the 
crack (for which nx = 0, ny = 1, Figure 1) in terms of shear 
stress components in the Cartesian coordinates (x, y) 
can be determined by using Eq. (5). Considering the 

Figure 1: Plane weakened by one crack.

non-vanishing stress components, the antiplane Cauchy 
traction along the crack face is

	 , , ,-( ),z yz zyx x zyy y zxy xt = + +τ τ τ τ � (10)

and the double stress traction is

	 .z zyyq =τ � (11)

A crack is constructed by a continuous distribution of 
dislocations. Consequently, using the principal of super-
position, the antiplane Cauchy and double stress trac-
tions on the surface of the crack due to the presence of 
the above-mentioned distribution of dislocations on the 
crack are
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while Bz(t) is the unknown effective dislocation density of 
a crack for which (Hills et al. [13])
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The kernels Kt(α(s), β(t)) = Kt (s, t) and Kq(α(s), β(t)) = Kq 
(s, t) are
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in which X = α(s)-α(t), Y = β(s)-β(t).
Using Eqs. (6) and (8), the kernels in Eq. (14) are 

simplified to
2
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where 2 2 .R X Y= +
For a single horizontal crack, in view of Eq. (9),  

(X, Y ) are simplified to X = α(s)-α(t) = a(s-t), Y = β(s)-β(t) = 0. 
Consequently, the kernel corresponding to double stress 
traction vanishes, i.e. Kq(s, t) = 0, and Eq. (12) reduces to a 
single equation, i.e. Eq. (12)1, where the unknown effective 
dislocation density Bz(t) needs to be determined by using 
the traction-free boundary conditions, i.e.

	 0.i it q= = � (16)



S.M. Mousavi and E.C. Aifantis: A note on dislocation-based mode III gradient elastic fracture mechanics      117

We proceed by considering the horizontal crack 
(Figure 1) described by the parametric form given by Eq. 
(9) loaded as shown by Eq. (17), with τyz0 = μ. The dislo-
cation density Bzj(t) is determined by solving the system 
of Eqs. (20) and (21) and is depicted in Figure 2. To shed 
light on the effect of the gradient parameter, the results 
for ℓ = 0.05a, 0.1a, and 0.5a are compared with the classi-
cal dislocation density for this crack. The stress compo-
nents corresponding to the cracked plate are denoted by 
the superscript “crack”.

It is observed that by reducing the gradient parameter, 
the GradEla results approach those in classical elasticity 
everywhere (even in the vicinity of the crack tip). It is 
worth mentioning that, in nonlocal elasticity, it turned out 
that by reducing the nonlocal parameter, the dislocation 
density of crack approaches to the one in classical elastic-
ity everywhere, except at the crack tip [15].

By using the stress field given by Eq. (22) for a single 
horizontal crack, the stress along the x-axis reads
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while crack( ) 0.xz x =τ  This result is derived using a dislo-
cation-based approach within an incompatible GradEla 
framework. It is interesting to compare this result with 
the analytical expression of Aifantis [3, 16] and Isaksson 
and Hägglund [17], as well as the incompatible nonlocal 
elasticity dislocation-based approach [15]. The analytical 
asymptotic expression for the “microstress” field in these 
works [3, 16] reads
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For the mode III crack problem considered herein, we 
assume the following conditions at infinity
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The defectless plane under the above-mentioned 
loading experiences the following stress components:

	 00;  ,xz yz yz= =τ τ τ � (18)

and thus, the tractions at the location (xk, yk) of the crack 
in the defectless plane read

	 0( , ) ;  ( , ) 0.z k k yz z k kt x y q x y= =τ � (19)

By virtue of the Bueckner superposition principle [14] 
to satisfy the boundary conditions at the crack face, the 
left-hand side of Eq. (12)1 is identical to the traction with 
opposite sign in Eq. (19), i.e.
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The closure requirement should be satisfied to ensure 
single-valued field around the crack surface, i.e.
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which constitutes N closure equations. The unknown dis-
location densities (Bz) can be determined by solving the 
above-mentioned system of integral equations, i.e. Eqs. 
(20) and (21).

Having calculated the dislocation density functions, 
by using the superposition principle, the stress field 
inside the medium at an arbitrary point with coordinates 
(x, y) is given by
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with the double stress tensor components given by
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where X = x-α(t), Y = y-β(t).

Classical elasticity
Gradient elasticity: I=0.05*a
Gradient elasticity: I=0.1*a
Gradient elasticity: I=0.5*a

Figure 2: Dislocation density of a crack.
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where KIII is the mode III stress intensity factor, and r = |x-a| 
is the polar coordinate centered at the crack tip.

Figure 3 depicts the normalized stress component 
τyz in the above-mentioned theories, in comparison with 
classical elasticity. It should also be noted that since the 
non-classical traction-free boundary condition is satisfied 
at the crack faces, consequently it is the traction given by 
Eq. (10) that vanishes at the crack faces, while the stress 
component (τyz) is nonzero at the crack faces.

Moreover, for completeness, we depict in Figure 4 the 
asymptotic stress field expressions of classical elasticity 
and GradEla solutions [16] derived without the use of the 
present continuously distributed dislocation approach. 
The gradient parameter is assumed to be ℓ = 0.2a. As 

Gradient elasticity: classical traction-free condition
Gradient elasticity: nonclassical traction-free condition

Figure 5: Dislocation density of crack for classical and nonclassical 
traction-free conditions in gradient theory.

Classical elasticity
Gradient elasticity (Present approach)
Nonlocal elasticity (Mousavi & Lazar, 2015)

Figure 3: Normalized stress component τyz for ℓ = 0.1a, in compari-
son with classical and nonlocal elasticity.

Asymptotic classical solution
Asymptotic gradient solution (Aifantis 2011)

Figure 4: Asymptotic stress fields around the crack tip, ℓ = 0.2a 
(Aifantis, [16]).

expected, the gradient theory predicts nonsingular com-
ponents as opposed to the singular classical field. 

The only nonzero double stress component along the 
crack line, i.e. τzyx is
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where X = x-at. The other double stress components vanish 
on the x-axis. As expected, the double stress component is 
singular at the crack tip. The total stress tensor σzy along 
the x-axis (y = 0) reads
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and it is singular at the crack tip.
To shed further light on the effect of the non-classical 

terms in the expression for the traction given by Eq. (10), 
the classical traction-free condition tz = τyz = 0 is examined. 
This condition was also used by Mousavi et al. [18]. The 
appropriate kernel in this case reads
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and the corresponding dislocation density is determined 
and is compared with the one derived from the nonclassi-
cal traction condition in Figure 5. It is observed that at the 
vicinity of the right (left) crack tips, the dislocation density 
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nonclassical traction-free conditions are compared in 
Figure 6. It is observed that once considering the classi-
cal traction-free condition in GradEla, the stress field τyz is 
zero along the crack faces.

In addition to regularizing the stress field, GradEla 
also provides nonsingular strain field. Consequently, it 
offers a modified crack opening displacement (COD). In 
contrast, because no nonlocal strain appears in nonlocal 
elasticity, the COD for nonlocal elasticity is identical to 
the one in classical elasticity. Figure 7 compares the COD 
within classical and GradEla.
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To investigate the effect of the boundary condi-
tion, the stress components resulting from classical and 

traction-free condition

traction-free condition

Gradient elasticity: classical

Gradient elasticity: nonclassical

Classical elasticity

Figure 6: Stress τyz for classical and nonclassical traction-free 
conditions in gradient theory compared to the one in classical 
elasticity, ℓ = 0.2a.

Classical elasticity
Gradient elasticity: I=0.05a
Gradient elasticity: I=0.1a

Figure 7: Crack opening displacement for classical and gradient 
elasticity.


